Showing 1 - 20 results of 31 for search '"МИКРОПЛАСТИЧЕСКАЯ ДЕФОРМАЦИЯ"', query time: 2.53s Refine Results
  1. 1
    Academic Journal

    Contributors: The study was carried out within the framework of the research project “Mechanisms of the impact of natural and man-made factors on processes in the geospheres based on the results of monitoring natural geophysical fields”. Project number FWZZ-2022-0019 in the ISGZ of Ministry of Education and Science, Работа выполнялась в рамках проекта НИР «Механизмы воздействия природных и техногенных факторов на процессы в геосферах по результатам мониторинга естественных геофизических полей». Номер проекта в ИСГЗ Минобрнауки FWZZ-2022-0019

    Source: Mining Science and Technology (Russia); Vol 8, No 1 (2023); 22-29 ; Горные науки и технологии; Vol 8, No 1 (2023); 22-29 ; 2500-0632

    File Description: application/pdf

    Relation: https://mst.misis.ru/jour/article/view/468/340; https://mst.misis.ru/jour/article/view/468/343; Гущин В. В.; Павленко О.В. Изучение нелинейно-упругих свойств земных пород по сейсмическим данным. В: Современная сейсмология. Достижения и проблемы. Т. 13. М.; 1998.; Егоров Г.В. Вариация нелинейных параметров консолидированного пористого водонасыщенного образца в зависимости от степени газонасыщения. Физическая мезомеханика. 2007;10(1):107–110.; Кондратьев О.К. Сейсмические волны в поглощающих средах. М.: Недра; 1986. 176 с.; Николаев А. В. Проблемы нелинейной сейсмики. М.: Наука; 1987. 288 с.; Diallo M. S., Prasad M., Appel E. Comparison between experimental results and theoretical predictions for P-wave velocity and attenuation at ultrasonic frequency. Wave Motion. 2003;37(1):1–16. https://doi.org/10.1016/S0165-2125(02)00018-5; Duretz T., Souche A., Borst R., Le Pourhiet L. The benefits of using a consistent tangent operator for viscoelastoplastic computations in geodynamics. Geochemistry, Geophysics, Geosystems. 2018;19(12):4904–4924. https:///doi.org/10.1029/2018GC007877; Golovin I. S., Pavlova T.S., Golovina S. B. et al. Effect of severe plastic deformation on internal friction of an Fe–26at.% Al alloy and titanium. Materials Science and Engineering: A. 2006;442(1–2):165–169.; Guyer R. A., Johnson P.A. Nonlinear mesoscopic elasticity: Evidence for a new class of materials. Physics Today. 1999;52(4):30–36. https://doi.org/10.1063/1.882648; Mashinskii E. I. Difference between static and dynamic elastic moduli of rocks: Physical causes. Russian Geology and Geophysics. 2003;44(9):953–959.; Derlet P.M., Maaß R. Micro-plasticity and intermittent dislocation activity in a simplied micro structural model. arXiv:1205.1486v2. Condensed Matter – Materials Science. 8 February 2013. https://doi.org/10.48550/ arXiv.1205.1486; Mashinskii E. I. Amplitude-frequency dependencies of wave attenuation in single-crystal quartz: experimental study. Journal of Geophysical Research. Solid Earth. 2008;113(B11). https://doi.org/10.1029/2008JB005719; Mashinskii E. I. Seismo-micro-plasticity phenomenon in the rocks. Natural Science. 2010;2(3):155–159. https://doi.org/10.4236/ns.2010.23025; Mashinskii E. I. Jump-like inelasticity in sandstone and its effect on the amplitude dependence of P-wave attenuation: An experimental study. Wave Motion. 2020;97:102585. https://doi.org/10.1016/j.wavemoti.2020.102585; Huang J., Zhao M.,•Du X. et al. An elasto-plastic damage model for rocks based on a new nonlinear strength criterion. Rock Mechanics and Rock Engineering. 2018;51:1413–1429. https://doi.org/10.1007/s00603018-1417-1; Vodenitcharova T., Zhang L. C. A new constitutive model for the phase transformations in monocrystalline silicon. International Journal of Solids and Structures. 2004;41(18–19):5411–5424. https://doi.org/10.1007/s00603-018-1417-1; Liu Y., Dai F., Feng P., Xu N.-W. Mechanical behavior of intermittent jointed rocks under random cyclic compression with different loading parameters. Soil Dynamics and Earthquake Engineering. 2018;113:12–24. https://doi.org/10.1016/j.soildyn.2018.05.030; Nourifard N., Lebedev M. Research note: the effect of strain amplitude produced by Ultrasonic waves on its velocity. Geophysical Prospecting. 2019;67(4):715–722. https://doi.org/10.1111/1365-2478.12674; Nourifard N., Mashinskii E., Lebedev M. The effect of wave amplitude on S-wave velocity in porous media: an experimental study by Laser Doppler Interferometry. Exploration Geophysics. 2019;50(6):683–691. https://doi.org/10.1080/08123985.2019.1667228; Baud P., Vajdova V., Wong T. Shear-enhanced compaction and strain localization: Inelastic deformation and constitutive modeling of four porous sandstones. Journal of Geophysical Research. Solid Earth. 2006;111(B12). https://doi.org/10.1029/2005JB004101; Gurmani S. F., Jahn S., Brasse H., Schilling F. R. Atomic scale view on partially molten rocks: Molecular dynamics simulations of melt-wetted olivine grain boundaries. Journal of Geophysical Research. Solid Earth. 2011;116(B12). https://doi.org/10.1029/2011JB008519; Olsson A. K., Austrell P.-E. A fitting procedure for viscoelastic-elastoplastic material models. In: Proceedings of the Second European Conference on Constitutive Models for Rubber. Hannover, Germany, 10–12 September 2001.; Головин Ю.И., Дуб С. Н., Иволгин В. И. и др. Кинетические особенности деформации твердых тел в нано-микрообъемах. Физика твердого тела. 2005;47(6):961–973.; Песчанская Н. Н., Смирнов Б. И., Шпейзман В. В. Скачкообразная микро-деформация в нано-структурных материалах. Физика твердого тела. 2008;50(5):815–819.; Zhou C., Biner S. B., LeSar R. Discrete dislocation dynamics simulations of plasticity at small scales. ActaMaterialia. 2010;58:1565–1577.; Luo Sh.-N., Swadener J. G., Ma Ch., Tschauner O. Examining crystallographic orientation dependence of hardness of silica stishovite. Physica B: Condensed Matter. 2007;399(2):138–142. https://doi.org/10.1016/j. physb.2007.06.011; Yin H., Zhang G. Nanoindentation behavior of muscovite subjected to repeated loading. Journal of Nanomechanics and Micromechanics. 2011;1(2):72–83. https://doi.org/10.1061/(asce)nm.2153-5477.0000033; Mashinskii E.I., Dynamic micro-plasticity manifestation in consolidated sandstone in the acoustical frequency range. Geophysical Prospecting. 2016;64:1588–1601. https://doi.org/10.1111/1365-2478.12368; Nishinoa Y., Kawaguchia R., Tamaokaa S., Idea N. Amplitude-dependent internal friction study of fatigue deterioration in carbon fiber reinforced plastic laminates. Materials Research. 2018;21(2):e20170858. https://doi.org/10.1590/1980-5373-MR-2017-0858; Johnston D.H., Toksoz M. N. Thermal cracking and amplitude dependent attenuation. Journal of Geophysical Research. Solid Earth. 1980;85(B2):937–942. https://doi.org/10.1029/JB085iB02p00937; Jones S. M. Velocity and quality factors of sedimentary rocks at low and high effective pressures. Geophysical Journal International. 1995;123(3):774–780. https://doi.org/10.1111/j.1365-246X.1995.tb06889.x; Mavko G. M. Frictional attenuation: an inherent amplitude dependence. Journal of Geophysical Research. Solid Earth. 1979;84(B9):4769–4775. https://doi.org/10.1029/JB084iB09p04769; Winkler K. W. Frequence dependent ultrasonic properties of high-porosity sandstones. Journal of Geophysical Research. Solid Earth. 1983;88(B11):9493–9499. https://doi.org/10.1029/JB088iB11p09493; https://mst.misis.ru/jour/article/view/468

  2. 2
    Academic Journal

    Contributors: I express my gratitude to B.V. Pashkov and G.V. Egorov for performing the experiments and further discussion of the results obtained., Я выражаю благодарность Б. В. Пашкову и Г. В. Егорову за проведение экспериментов и дальнейшее обсуждение полученных результатов.

    Source: Mining Science and Technology (Russia); Vol 7, No 1 (2022); 30-36 ; Горные науки и технологии; Vol 7, No 1 (2022); 30-36 ; 2500-0632

    File Description: application/pdf

    Relation: https://mst.misis.ru/jour/article/view/328/271; https://mst.misis.ru/jour/article/view/328/272; Гущин В. В., Павленко О. В. Изучение нелинейно-упругих свойств земных пород по сейсмическим данным. В: Современная сейсмология. Достижения и проблемы. М.; 1998. Т. 13.; Егоров Г. В. Вариация нелинейных параметров консолидированного пористого водо-насыщенного образца в зависимости от степени газо-насыщения. Физическая мезомеханика. 2007;10(1):107–110.; Кондратьев О. К. Сейсмические волны в поглощающих средах. М.: Недра; 1986. 176 с.; Николаев А. В. Проблемы нелинейной сейсмики. М.: Наука; 1987. 288 с.; McCall K. R., Guyer R.A. Equation of state and wave propagation in hysteretic nonlinear elastic materials. Journal of Geophysical Research: Solid Earth. 1994;99(B12):23887–23897.; Ostrovsky L. A., Johnson P. A. Dynamic nonlinear elasticity in geomaterials. La Rivista del Nuovo Cimento. 2001;24(4):1–46. https://doi.org/10.1007/BF03548898; Guyer R.A., Johnson P.A. Nonlinear mesoscopic elasticity: Evidence for a new class of materials. Physics Today. 1999;52(4):30–36. https://doi.org/10.1063/1.882648; Zhou Ch., Shen Zh.-J., Yin J.-H. Biot dynamic consolidation finite element analysis using a hypo-plasticity model. In: 13th World Conference on Earthquake Engineering Vancouver, B.C. August 1–6 2004. Canada; 2004. Paper No. 351. URL: https://www.iitk.ac.in/nicee/wcee/article/13_351.pdf; Diallo M. S., Prasad M., Appel E. Comparison between experimental results and theoretical predictions for P-wave velocity and attenuation at ultrasonic frequency. Wave Motion. 2003;37(1):1–16. https://doi.org/10.1016/S0165-2125(02)00018-5; Golovin I. S., Pavlova T. S., Golovina S. B. et al. Effect of severe plastic deformation of Fe–26 at. Al and titanium on internal friction. Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. 2006;442(1–2):165–169. https://doi.org/10.1016/j.msea.2005.12.081; Sajeva A., Filograsso R., Capaccioli S. Including plastic behaviour in the Preisach-Mayergoyz space to find static and dynamic bulk moduli in granular media. In: SEG Technical Program Expanded Abstracts. 2018. Pp. 3517–3521. https://doi.org/10.1190/segam2018-2994837.1; Luoa Sh.-N., Swadenerb J. G., Ma Ch., Tschauner O. Examining crystallographic orientation dependence of hardness of silica stishovite. Physica B: Condensed Matter. 2007;399:138–142. https://doi.org/10.1016/j.physb.2007.06.011; Mashinskii E. I. Jump-like inelasticity in sandstone and its effect on the amplitude dependence of P-wave attenuation: An experimental study. Wave Motion. 2020;97:102585. https://doi.org/10.1016/j.wavemoti.2020.102585; Nishino Y., Kawaguchi R., Tamaoka S., Ide N. Amplitude-dependent internal friction study of fatigue deterioration in carbon fiber reinforced plastic laminates. Materials Research. 2018;21(2):e20170858. https://doi.org/10.1590/1980-5373-MR-2017-0858; Derlet P. M., Maaß R. Micro-plasticity and intermittent dislocation activity in a simplied micro structural model. Modelling and Simulation in Materials Science and Engineering. 2013;21(3):035007. https://doi.org/10.1088/0965-0393/21/3/035007; Duretz T., Souche A., Borst R., Le Pourhiet L. The benefits of using a consistent tangent operator for viscoelastoplastic computations in geodynamics. Geochemistry, Geophysics, Geosystems. 2018;19(12):4904–4924. https://doi.org/10.1029/2018GC007877; Huang J., Zhao M.,·Du X., Dai F., Ma Ch., Liu J. An elasto-plastic damage model for rocks based on a new nonlinear strength criterion. Rock Mechanics and Rock Engineering. 2018;51:1413–1429. https://doi.org/10.1007/s00603-018-1417-1; Mashinskii E. I. Difference between static and dynamic elastic moduli of rocks: Physical causes. Russian Geology and Geophysics. 2003:44(9):953–959. URL: https://repository.geologyscience.ru/bitstream/handle/123456789/32706/Mash_03.pdf?sequence=1&isAllowed=y; Mashinskii E.I. Seismo-micro-plasticity phenomenon in the rocks. Natural Science. 2010;2(3):155–159. https://doi.org/10.4236/ns.2010.23025; Vodenitcharova T., Zhang L. C. A new constitutive model for the phase transformations in mono-crystalline silicon. International Journal of Solids and Structures. 2004;41(18–19):5411–5424. https://doi.org/10.1016/j.ijsolstr.2004.04.025; Liu Y., Dai F., Feng P., Xu N. Mechanical behavior of intermittent jointed rocks under random cyclic compression with different loading parameters. Soil Dynamics and Earthquake Engineering. 2018;113:12–24. https://doi.org/10.1016/j.soildyn.2018.05.030; Johnston D. H., Toksoz M. N. Thermal cracking and amplitude dependent attenuation. Journal of Geophysical Research. 1980;85(B2):937–942. https://doi.org/10.1029/JB085iB02p00937; Mashinskii E. I. Amplitude-frequency dependencies of wave attenuation in single-crystal quartz: Experimental study. Journal of Geophysical Research: Solid Earth. 2008;113(B11). https://doi.org/10.1029/2008JB005719; Jones S. M. Velocity and quality factors of sedimentary rocks at low and high effective pressures. Geophysical Journal International. 1995;123(3):774–780. https://doi.org/10.1111/j.1365-246X.1995.tb06889.x; Mavko G. M. Friction attenuation: an inherent amplitude dependence. Journal of Geophysical Research: Solid Earth. 1979;84(B9):4769–4775. https://doi.org/10.1029/JB084iB09p04769; Nourifard N., Lebedev M. Research note: the effect of strain amplitude produced by ultrasonic waves on its velocity. Geophysical Prospecting. 2019;67(4):715–722. https://doi.org/10.1111/1365-2478.12674; Nourifard N., Mashinskii E., Lebedev M. The effect of wave amplitude on S-wave velocity in porous media: an experimental study by Laser Doppler Interferometry. Exploration Geophysics. 2019;50(6):683–691. https://doi.org/10.1080/08123985.2019.1667228; https://mst.misis.ru/jour/article/view/328

  3. 3
    Academic Journal

    Source: Mining Science and Technology (Russia); Vol 6, No 1 (2021); 23-30 ; Горные науки и технологии; Vol 6, No 1 (2021); 23-30 ; 2500-0632

    File Description: application/pdf

    Relation: https://mst.misis.ru/jour/article/view/262/230; https://mst.misis.ru/jour/article/view/262/231; Вознесенский Е. А. Поведение грунтов при динамических нагрузках. М.: Изд-во Моск. ун-та; 1998. 320 с.; Гущин В. В., Шалашов Г. М. О возможности использования нелинейных сейсмических эффектов в задачах вибрационного просвечивания Земли. В: Николаев А. В., Галкин И. Н. Исследование Земли невзрывными сейсмическими источниками. М.: Наука; 1981. С. 144–155.; Гущин В. В., Павленко О. В. Изучение нелинейно-упругих свойств земных пород по сейсмическим данным. Современная сейсмология. Достижения и проблемы. 1998;13.; Егоров Г. В. Вариация нелинейных параметров консолидированного пористого водо-насыщенного образца в зависимости от степени газо-насыщения. Физическая мезомеханика. 2007;10(1):107–110.; Николаев А. В. Проблемы нелинейной сейсмики. М.: Наука; 1987. 288 с.; Johnston D. H., Toksoz M. N. Thermal cracking and amplitude dependent attenuation. Journal of Geophysical Research. 1980;85:937–942.; Ostrovsky L. A., Johnson P. A. Dynamic nonlinear elasticity in geomaterials. La Rivista del Nuovo Cimento. 2001;24:1–46. https://doi.org/10.1007/BF03548898; Кондратьев О. К. Сейсмические волны в поглощающих средах. М.: Недра; 1986. 176 с.; Mavko G. M. Friction Attenuation: An Inherent Amplitude Dependence. Journal of Geophysical Research. 1979;84(9):4769–4775.; Nishino Y., Asano S., Amplitude-dependent internal friction and microplasticity in thin-film materials. Journal de Physique. 1996;(06):C8-783–C8-786. https://doi.org/10.1051/jp4:19968167; Nourifard N., Lebedev M. Research note: the effect of strain amplitude produced by Ultrasonic waves on its velocity. Geophysical Prospecting. 2019;67(4):715–722. https://doi.org/10.1111/1365-2478.12674; Nourifard N., Mashinskii E., Lebedev M. The effect of wave amplitude on S- wave velocity in porous media: an experimental study by Laser Doppler Interferometry. Exploration Geophysics. 2019;50(6):683–691. https://doi.org/10.1080/08123985.2019.1667228; Zaitsev V. Yu., Nazarov V. E., Talanov V. I. Experimental Study of the self-action of seismoacoustic waves. Acoustic Physics. 1999;45(6):720–726.; Tutuncu A. N., Podio A. L., Sharma M. An experimental investigation of factors influencing compressional- and shear-wave velocities and attenuations in tight gas sandstones. Geophysics. 1994;59(1):77–86. https://doi.org/10.1190/1.1443536; Winkler K. W., Nur A., Gladwin M. Friction and seismic attenuation in rocks. Nature. 1979;277:528–531. https://doi.org/10.1038/277528a0; Derlet P. M., Maaf R. Micro-plasticity and intermittent dislocation activity in a simplied micro structural model. Modelling and Simulation in Materials Science and Engineering. 2013;21(3):035007. https://doi.org/10.1088/0965-0393/21/3/035007; Guyer R. A., McCall K. R., Boitnott G. N. Hysteresis, Discrete Memory and Nonlinear Wave Propagation in Rock: a New Paradigm. Physical Review Letters. 1995;74(17):3491–3494. https://doi.org/10.1103/PhysRevLett.74.3491; Guyer R. A., Johnson P. A. Nonlinear mesoscopic elasticity: Evidence for a new class of materials. Physics Today. 1999;52(4):30–36.; Mashinskii E. I. Difference between static and dynamic elastic moduli of rocks: Physical causes. Russian Geology and Geophysics. 2003;44(9):953–959.; McCall K. R., Guyer R. A. Equation of State and Wave Propagation in Hysteretic Nonlinear Elastic Materials. Journal of Geophysical Research. Solid Earth. 1994;99:23887–23897. https://doi.org/10.1029/94JB01941; Duretz, T., Souche, A., Borst R., Le Pourhiet, L. The Benefits of Using a Consistent Tangent Operator for Viscoelastoplastic Computations in Geodynamics. Geochemistry, Geophysics, Geosystems. 2018;19(12):4904–4924. https://doi.org/10.1029/2018GC007877; Golovin I. S., Sinning H.-R., Goken J. Riehemann W. Fatigue-related damping in some cellular metallic materials. Materials Science and Engineering: A. 2004;370(1-2):537–541. https://doi.org/10.1016/j.msea.2003.08.090; Golovin I. S., Pavlova T. S., Golovina S. B. et al. Effect of severe plastic deformation of Fe–26 at. Al and titanium on internal friction. Materials Science and Engineering: A. 2006;442(1–2):165–169. https://doi.org/10.1016/j.msea.2005.12.081; Sajeva A., Filograsso R., Capaccioli S. Including plastic behaviour in the Preisach-Mayergoyz space to find static and dynamic bulk moduli in granular media. In: Conference: SEG Technical Program Expanded Abstracts; 2018. https://doi.org/10.1190/segam2018-2994837.1; Kim J.-Y., Qu J., Jacobs L. J., Littles J. W., Savage M. F. Acoustic Nonlinearity Parameter Due to Microplasticity. Journal of Nondestructive Evaluation. 2006;25(1):28–36. https://doi.org/10.1007/s10921-006-0004-7; Mashinskii E. I. Jump-like inelasticity in sandstone and its effect on the amplitude dependence of P-wave attenuation: An experimental study. Wave Motion. 2020;97:102585. https://doi.org/10.1016/j.wavemoti.2020.102585; Wang J., Li Q., Yang Ch., Zhou C. Repeated loading model for elastic–plastic contact of geomaterial. Advances in Mechanical Engineering. 2018;10(7):1–15. https://doi.org/10.1177/1687814018788778; Yarushina V. M., Podladchikov Y. Y. Microscale yielding as mechanism for low-frequency intrinsic seismic wave attenuation. In: 70th EAGE Conference & Exhibition, June 2008. Rome, Italy; 2008. P. 9–12. https://doi.org/10.3997/2214-4609.20147947; Zhou C., Bulent Biner, Richard LeSar. Discrete dislocation dynamics simulations of plasticity at small scales. Acta Materialia. 2010;58:1565–1577. https://doi.org/10.1016/j.actamat.2009.11.001; Егоров Г. В., Носов В. М., Маньковский В. В. Экспериментальная оценка нелинейных упругих параметров сухой и флюидо-насыщенной пористой среды. Геология и геофизика. 1999;40(3):457–464.; https://mst.misis.ru/jour/article/view/262

  4. 4
  5. 5
    Academic Journal

    Authors: Yutskevych, S.S.

    Source: Herald of Aeroenginebuilding; № 2 (2013): Herald of aeroenginebuilding
    Вестник двигателестроения; № 2 (2013): Вестник двигателестроения
    Вісник двигунобудування; № 2 (2013): Вісник двигунобудування

    File Description: application/pdf

  6. 6
  7. 7
  8. 8
  9. 9
    Academic Journal

    Source: VESTNIK of Samara University. Aerospace and Mechanical Engineering; Vol 10, No 3-1 (2011): Special Issue; 299-307 ; Вестник Самарского университета. Аэрокосмическая техника, технологии и машиностроение; Vol 10, No 3-1 (2011): Special Issue; 299-307 ; 2541-7533 ; 2542-0453

    File Description: application/pdf

  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    Contributors: Томский государственный университет Сибирский физико-технический институт Научные подразделения СФТИ, Томский государственный университет Физический факультет Кафедра физики металлов

    Source: Известия высших учебных заведений. Физика. 2013. Т. 56, № 5. С. 33-40

    File Description: application/pdf

  15. 15
    Academic Journal

    Contributors: Томский государственный университет Сибирский физико-технический институт Научные подразделения СФТИ, Томский государственный университет Физический факультет Кафедра физики металлов

    Source: Известия высших учебных заведений. Физика. 2012. Т. 55, № 7. С. 88-97

    File Description: application/pdf

  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
    Academic Journal

    Contributors: Томский государственный университет Сибирский физико-технический институт Научные подразделения СФТИ, Томский государственный университет Физический факультет Кафедра физики металлов

    Source: Известия высших учебных заведений. Физика. 2013. Т. 56, № 5. С. 33-40

    File Description: application/pdf