Εμφανίζονται 1 - 20 Αποτελέσματα από 220 για την αναζήτηση '"МИКРООКРУЖЕНИЕ"', χρόνος αναζήτησης: 1,13δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
    Academic Journal

    Συνεισφορές: Исследование финансировалось программой стратегического академического лидерства БГМУ «ПРИОРИТЕТ-2030»

    Πηγή: Medical Immunology (Russia); Online First ; Медицинская иммунология; Online First ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-0-0

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/3299/2223; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3299/15849; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3299/15850; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3299/15851; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3299/15852; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3299/15853; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3299/15854; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3299/15855; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3299/15856; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3299/15857; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3299/15858; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3299/15859; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3299/15860; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3299/15863; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3299/15864; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3299/16017; Bluml S., Scheinecker C., Smolen J.S., Redlich K. Targeting TNF receptors in rheumatoid arthritis. International Immunology, 2012, Vol. 24, No. 5, P. 275-281.; Byerly J., Halstead-Nussloch G., Ito K., Katsyv I., Irie H.Y. PRKCQ promotes oncogenic growth and anoikis resistance of a subset of triple-negative breast cancer cells. Breast Cancer Research, 2016, Vol. 18, No. 1, P. 95.; Cavassani K.A., Meza R.J., Habiel D.M., Chen J., Montes A., Tripathi M., Martins G.A., Crother T.R., You S., Hogaboam C.M., Bhowmick N., Posadas E.M. Circulating monocytes from prostate cancer patients promote invasion and motility of epithelial cells. Cancer Medicine, 2018, Vol. 7, No. 9, P. 4639-4649.; Farfariello V., Prevarskaya N., Gkika D. Ion Channel Profiling in Prostate Cancer: Toward Cell Population-Specific Screening. Transportome Malfunction in the Cancer Spectrum : Reviews of Physiology, Biochemistry and Pharmacology. eds. C. Stock, L.A. Pardo. – Cham: Springer International Publishing, 2020. – Vol. 181. – Ion Channel Profiling in Prostate Cancer. – P. 39-56.; Galiègue‐Zouitina S., Fu Q., Carton‐Latreche C., Poret N., Cheok M., Leprêtre F., Figeac M., Quesnel B., El Bouazzati H., Shelley C.S. Bimodal expression of RHOH during myelomonocytic differentiation: Implications for the expansion of AML differentiation therapy. eJHaem, 2021, Vol. 2, Bimodal expression of RHOH during myelomonocytic differentiation, No. 2, P. 196-210.; Gao J., Liu J., Lu J., Zhang X., Zhang W., Li Q., Cai J., Li M., Gan Y., Tang Y., Wu S. SKAP1 Expression in Cancer Cells Enhances Colon Tumor Growth and Impairs Cytotoxic Immunity by Promoting Neutrophil Extracellular Trap Formation via the NFATc1/CXCL8 Axis. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2024, Т. 11, N 41, C. e2403430.; Gillen A.E., Brechbuhl H.M., Yamamoto T.M., Kline E., Pillai M.M., Hesselberth J.R., Kabos P. Alternative Polyadenylation of PRELID1 Regulates Mitochondrial ROS Signaling and Cancer Outcomes. Molecular Cancer Research, 2017, Vol. 15, No. 12, P. 1741-1751.; Gonzalez-Junca A., Driscoll K.E., Pellicciotta I., Du S., Lo C.H., Roy R., Parry R., Tenvooren I., Marquez D.M., Spitzer M.H., Barcellos-Hoff M.H. Autocrine TGFβ Is a Survival Factor for Monocytes and Drives Immunosuppressive Lineage Commitment. Cancer Immunology Research, 2019, Vol. 7, No. 2, P. 306-320.; Hermani A., Deservi B., Medunjanin S., Tessier P., Mayer D. S100A8 and S100A9 activate MAP kinase and NF-κB signaling pathways and trigger translocation of RAGE in human prostate cancer cells. Experimental Cell Research, 2006, Vol. 312, No. 2, P. 184-197.; Hourani T., Sharma A., Luwor R.B., Achuthan A.A. Transforming growth factor-β in tumor microenvironment: Understanding its impact on monocytes and macrophages for its targeting. International Reviews of Immunology, 2025, Vol. 44, Transforming growth factor-β in tumor microenvironment, No. 2, P. 82-97.; Huang R., Guo L., Gao M., Li J., Xiang S. Research Trends and Regulation of CCL5 in Prostate Cancer. OncoTargets and Therapy, 2021, Vol. Volume 14, P. 1417-1427.; Jäger R., Groneberg D., Friebe A. Role of NO/cGMP signalling in VEGF-mediated angiogenesis. BMC Pharmacology, 2011, Vol. 11, No. S1, P. P35, 1471-2210-11-S1-P35.; James N.D., Tannock I., N’Dow J., Feng F., Gillessen S., Ali S.A., Trujillo B., Al-Lazikani B., Attard G., Bray F., Compérat E., Eeles R., Fatiregun O., Grist E., Halabi S., Haran Á., Herchenhorn D., Hofman M.S., Jalloh M., Loeb S., MacNair A., Mahal B., Mendes L., Moghul M., Moore C., Morgans A., Morris M., Murphy D., Murthy V., Nguyen P.L., Padhani A., Parker C., Rush H., Sculpher M., Soule H., Sydes M.R., Tilki D., Tunariu N., Villanti P., Xie L.-P. The Lancet Commission on prostate cancer: planning for the surge in cases. The Lancet, 2024, Vol. 403, The Lancet Commission on prostate cancer, No. 10437, P. 1683-1722.; Johnstone R.W., Frew A.J., Smyth M.J. The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nature Reviews Cancer, 2008, Vol. 8, No. 10, P. 782-798.; Le Gallou S., Lhomme F., Irish J.M., Mingam A., Pangault C., Monvoisin C., Ferrant J., Azzaoui I., Rossille D., Bouabdallah K., Damaj G., Cartron G., Godmer P., Le Gouill S., Casasnovas R.-O., Molina T.J., Houot R., Lamy T., Tarte K., Fest T., Roussel M. Nonclassical Monocytes Are Prone to Migrate Into Tumor in Diffuse Large B-Cell Lymphoma. Frontiers in Immunology, 2021, Т. 12, C. 755623.; Lee C.-R., Lee W., Cho S., Park S.-G. Characterization of Multiple Cytokine Combinations and TGF-β on Differentiation and Functions of Myeloid-Derived Suppressor Cells. International Journal of Molecular Sciences, 2018, Vol. 19, No. 3, P. 869.; Li Y., Cai L., Wang H., Wu P., Gu W., Chen Y., Hao H., Tang K., Yi P., Liu M., Miao S., Ye D. Pleiotropic regulation of macrophage polarization and tumorigenesis by formyl peptide receptor-2. Oncogene, 2011, Vol. 30, No. 36, P. 3887-3899.; Liguori M., Buracchi C., Pasqualini F., Bergomas F., Pesce S., Sironi M., Grizzi F., Mantovani A., Belgiovine C., Allavena P. Functional TRAIL receptors in monocytes and tumor-associated macrophages: A possible targeting pathway in the tumor microenvironment. Oncotarget, 2106, Vol. 7, Functional TRAIL receptors in monocytes and tumor-associated macrophages, No. 27, P. 41662-41676.; Liu D., Liu J., Li Y., Du L., Cao Q., Yang L., Zhou Y., Chen P., Guo Y., Zeng G., DiSanto M.E., Hu W., Zhang X. Broad and diverse roles of sphingosine-1-phosphate/sphingosine-1-phosphate receptors in the prostateю. iScience, 2024, Т. 27, N 12, C. 111290.; Liu F., Wang C., Huang H., Yang Y., Dai L., Han S., Xing N., Ren S. SEMA3A-mediated crosstalk between prostate cancer cells and tumor-associated macrophages promotes androgen deprivation therapy resistance. Cellular & Molecular Immunology, 2021, Т. 18, N 3, C. 752-754.; Lu Y., Cai Z., Xiao G., Liu Y., Keller E.T., Yao Z., Zhang J. CCR2 expression correlates with prostate cancer progression. Journal of Cellular Biochemistry, 2007, Vol. 101, No. 3, P. 676-685.; Ma L., Sun P., Zhang J.-C., Zhang Q., Yao S.-L. Proinflammatory effects of S100A8/A9 via TLR4 and RAGE signaling pathways in BV-2 microglial cells. International Journal of Molecular Medicine, 2017, Vol. 40, No. 1, P. 31-38.; Mayernik D.G., Haq A., Rinehart J.J. Interleukin 1 Secretion by Human Monocytes and Macrophages. Journal of Leukocyte Biology, 1984, Vol. 36, No. 4, P. 551-557.; Mengus C., Le Magnen C., Trella E., Yousef K., Bubendorf L., Provenzano M., Bachmann A., Heberer M., Spagnoli G.C., Wyler S. Elevated levels of circulating IL-7 and IL-15 in patients with early stage prostate cancer. Journal of Translational Medicine, 2011, Vol. 9, No. 1, P. 162.; Meyer-Siegler K.L., Iczkowski K.A., Leng L., Bucala R., Vera P.L. Inhibition of Macrophage Migration Inhibitory Factor or Its Receptor (CD74) Attenuates Growth and Invasion of DU-145 Prostate Cancer Cells. The Journal of Immunology, 2006, Vol. 177, No. 12, P. 8730-8739.; Nobumoto A., Oomizu S., Arikawa T., Katoh S., Nagahara K., Miyake M., Nishi N., Takeshita K., Niki T., Yamauchi A., Hirashima M. Galectin-9 expands unique macrophages exhibiting plasmacytoid dendritic cell-like phenotypes that activate NK cells in tumor-bearing mice. Clinical Immunology, 2009, Vol. 130, No. 3, P. 322-330.; Olingy C.E., Dinh H.Q., Hedrick C.C. Monocyte heterogeneity and functions in cancer. Journal of Leukocyte Biology, 2019, Vol. 106, No. 2, P. 309-322.; Ouyang X., Jessen W.J., Al-Ahmadie H., Serio A.M., Lin Y., Shih W.-J., Reuter V.E., Scardino P.T., Shen M.M., Aronow B.J., Vickers A.J., Gerald W.L., Abate-Shen C. Activator Protein-1 Transcription Factors Are Associated with Progression and Recurrence of Prostate Cancer. Cancer Research, 2008, Vol. 68, No. 7, P. 2132-2144.; Pfeifhofer-Obermair C., Albrecht-Schgoer K., Peer S., Nairz M., Siegmund K., Klepsch V., Haschka D., Thuille N., Hermann-Kleiter N., Gruber T., Weiss G., Baier G. Role of PKCtheta in macrophage-mediated immune response to Salmonella typhimurium infection in mice. Cell Communication and Signaling, 2016, Vol. 14, No. 1, P. 14.; Smith-Garvin J.E., Koretzky G.A., Jordan M.S. T Cell Activation. Annual Review of Immunology, 2009, Vol. 27, No. 1, P. 591-619.; Van Helden S.F.G., Anthony E.C., Dee R., Hordijk P.L. Rho GTPase Expression in Human Myeloid Cells. PLoS ONE, 2012, Vol. 7, No. 8, P. e42563.; Wang H.-C., Xia R., Chang W.-H., Hsu S.-W., Wu C.-T., Chen C.-H., Shih T.-C. Improving cancer immunotherapy in prostate cancer by modulating T cell function through targeting the galectin-1. Frontiers in Immunology, 2024, Т. 15.; Wang S., Song R., Wang Z., Jing Z., Wang S., Ma J. S100A8/A9 in Inflammation. Frontiers in Immunology, 2018, Т. 9, C. 1298.; Williams H., Mack C., Baraz R., Marimuthu R., Naralashetty S., Li S., Medbury H. Monocyte Differentiation and Heterogeneity: Inter-Subset and Interindividual Differences. International Journal of Molecular Sciences, 2023, Vol. 24, Monocyte Differentiation and Heterogeneity, No. 10, P. 8757.; Wong K.L., Tai J.J.-Y., Wong W.-C., Han H., Sem X., Yeap W.-H., Kourilsky P., Wong S.-C. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood, 2011, Vol. 118, No. 5, P. e16-e31.; Yaddanapudi K., Putty K., Rendon B.E., Lamont G.J., Faughn J.D., Satoskar A., Lasnik A., Eaton J.W., Mitchell R.A. Control of tumor-associated macrophage alternative activation by macrophage migration inhibitory factor. Journal of Immunology (Baltimore, Md.: 1950), 2013, Т. 190, N 6, C. 2984-2993.; Yang B., Wang L., Tian Z. Silencing of RHOC induces macrophage M1 polarization to inhibit migration and invasion in colon cancer via regulating the PTEN / FOXO1 pathway. International Journal of Experimental Pathology, 2023, Vol. 104, No. 1, P. 33-42.; https://www.mimmun.ru/mimmun/article/view/3299

  8. 8
    Academic Journal

    Πηγή: Medical science of Uzbekistan; No. 1 (2025): January-February; 22-26 ; Медицинская наука Узбекистана; № 1 (2025): Январь-Февраль; 22-26 ; O`zbekiston tibbiyot ilmi; No. 1 (2025): Yanvar-Fevral; 22-26 ; 2181-3612

    Περιγραφή αρχείου: application/pdf

  9. 9
  10. 10
  11. 11
    Academic Journal

    Συνεισφορές: The research was carried out at the expense of a grant from the Russian Science Foundation (grant No. 24-15-00356, https://rscf.ru/project/24-15-00356)., Исследование выполнено за счет гранта Российского научного фонда (грант № 24-15-00356, https://rscf.ru/project/24-15-00356).

    Πηγή: Advances in Molecular Oncology; Vol 11, No 4 (2024); 93-101 ; Успехи молекулярной онкологии; Vol 11, No 4 (2024); 93-101 ; 2413-3787 ; 2313-805X

    Περιγραφή αρχείου: application/pdf

  12. 12
    Academic Journal

    Συνεισφορές: The study was financially supported by the Ministry of Education and Science of Russia (State Assignment No FZEG-2023-0009 “Study of the heterogeneity of the tumor microenvironment as a factor in its aggressiveness and resistance to therapy”)., Работа выполнена при финансовой поддержке Минобрнауки России (государственное задание № FZEG-2023-0009 «Изучение гетерогенности микроокружения опухоли как фактора ее агрессивности и резистентности к терапии»).

    Πηγή: Advances in Molecular Oncology; Vol 11, No 3 (2024); 103-113 ; Успехи молекулярной онкологии; Vol 11, No 3 (2024); 103-113 ; 2413-3787 ; 2313-805X

    Περιγραφή αρχείου: application/pdf

  13. 13
    Academic Journal

    Συνεισφορές: The work was carried out with the financial support of the Russian Science Foundation (grant No. 23-65-00003)., Работа выполнена при финансовой поддержке Российского научного фонда (грант № 23-65-00003).

    Πηγή: Advances in Molecular Oncology; Том 11, № 4 (2024); 8-22 ; Успехи молекулярной онкологии; Том 11, № 4 (2024); 8-22 ; 2413-3787 ; 2313-805X

    Περιγραφή αρχείου: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/726/368; Berg G., Rybakova D., Fischer D. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 2020;30(8):103. DOI:10.1186/s40168-020-00875-0; Bassler B.L. Small talk: cell-to-cell communication in bacteria. Cell 2002;109(4):421–4. DOI:10.1016/S0092-8674(02)00749-3; Medzhitov R., Preston-Hurlburt P., Janeway C.A. Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997;388(6640):394–7. DOI:10.1038/41131; Thaiss C.A., Zmora N., Levy M., Elinav E. The microbiome and innate immunity. Nature 2016;535(7610):65–74. DOI:10.1038/nature18847; Silverstein A.M. Paul Ehrlich’s passion: the origins of his receptor immunology. Cell Immunol 1999;194(2):213–21. DOI:10.1006/cimm.1999.1505; Amarante-Mendes G.P., Adjemian S., Branco L.M. et al. Pattern recognition receptors and the host cell death molecular machinery. Front Immunol 2018;9:2379. DOI:10.3389/fimmu.2018.02379; Sender R., Fuchs S., Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016;14(8):e1002533. DOI:10.1371/journal.pbio.1002533; Sepich-Poore G.D., Zitvogel L., Straussman R. et al. The icrobiome and human cancer. Science 2021;371(6536):eabc4552. DOI:10.1126/science.abc4552; Liang G., Bushman F.D. The human virome: assembly composition and host interactions. Nat Rev Microbiol 2021;19(8):514–27. DOI:10.1038/s41579-021-00536-5; Белявская В.А., Чердынцева Н.В., Кжышковска Ю.Г., Литвяков Н.В. Микробиом, иммунная система и рак: три стороны одной медали. Сибирский онкологический журнал 2022;21(6):131–44. DOI:10.21294/1814-4861-2022-21-6-131-144; Кайбышева В.О., Жарова М.Е., Филимендикова К.Ю., Никонов Е.Л. Микробиом человека: возрастные изменения и функции. Доказательная гастроэнтерология 2020;9(2):42–55. DOI:10.17116/dokgastro2020902142; Mima K., Ogino S., Nakagawa S. et al. The role of intestinal bacteria in the development and progression of gastrointestinal tract neoplasms. Surg Oncol 2017;26(4):368. DOI:10.1016/j.suronc.2017.07.011; Chen J., Domingue J.C., Sears C.L. Microbiota dysbiosis in select human cancers: evidence of association and causality. Semin Immunol 2017;32:25–34. DOI:10.1016/j.smim.2017.08.001; Zitvogel L., Pietrocola F., Kroemer G. Nutrition, inflammation and cancer. Nat Immunol 2017;18(8):843–50. DOI:10.1038/ni.3754; Nejman D., Livyatan I., Fuks G. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 2020;368(6494):973–80. DOI:10.1126/science.aay9189; Samet J.M., Chiu W.A., Cogliano V. et al. The IARC monographs: updated procedures for modern and transparent evidence synthesis in cancer hazard identification. J Natl Cancer Inst 2019;112(1):30–7. DOI:10.1093/jnci/djz169; De Martel C., Georges D., Bray F. et al. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health 2020;8(2):e180–90. DOI:10.1016/S2214-109X(19)30488-7; Biological agents. IARC Monographs on the evaluation of carcinogenic risks to humans. IARC, 2012. Vol. 100B. Available at: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Biological-Agents-2012.; Malaria and some polyomaviruses (SV40, BK, JC, and Markel cell viruses). IARC monographs on the working group on the evaluation of carcinogenic risks to humans. IARC, 2012. Vol. 104. Available at: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Malaria-And-Some-Polyomaviruses-SV40-BK-JC-And-Merkel-Cell-Viruses-2013.; Shannon-Lowe C., Rickinson A. The global landscape of EBV-associated tumors. Front Oncol 2019;9:713. DOI:10.3389/fonc.2019.00713; Wang Y., Yuan Y., Gu D. Hepatitis B and C virus Infections and the risk of biliary tract cancers: a meta-analysis of observational studies. Infect Agent Cancer 2022;17(1):45. DOI:10.1186/s13027-022-00457-9; Zhang W., Du F., Wang L. et al. Hepatitis virus-associated non-hodgkin lymphoma: pathogenesis and treatment strategies. J Clin Transl Hepatol 2023;11(5):1256–66. DOI:10.14218/JCTH.2022.00079S; Labo N., Whitby D. Kaposi’s sarcoma-associated herpesvirus: epidemiology and clinical features of related cancer. In: Viruses and human cancer. Ed. by S.D. Hudnall. NY: Springer, 2014. Pp. 323–340.; Silverberg M.J., Lau B., Achenbach C.J. et al. Cumulative incidence of cancer among HIV-infected individuals in North America. Ann Intern Med 2015;163(7):507–18. DOI:10.7326/M14-2768; Taberna M., Mena M., Pavón M.A. et al. Human papillomavirus-related oropharyngeal cancer. Ann Oncol 2017;28(10):2386–98. DOI:10.1093/annonc/mdx304; Van Dyne E.A., Henley S.J., Saraiya M. et al. Trends in human papillomavirus-associated cancers – United States, 1999–2015. MMWR Morb Mortal Wkly Rep 2018;67(33):918–24. DOI:10.15585/mmwr.mm6733a2; Whiteman D.C., Parma P., Fahey P. et al. Association of Helicobacter Pylori infection with reduced risk for esophageal cancer is independent of environmental and genetic modifiers. Gastroenterology 2010;139(1):73–83. DOI:10.1053/j.gastro.2010.04.009; Wyss K., Granath F., Wångdahl A. et al. Malaria and risk of lymphoid neoplasms and other cancer: a nationwide population-based cohort study. BMC Med 2020;18:296. DOI:10.1186/s12916-020-01759-8; Tan L.S.Y., Fredrik P., Ker L. et al. High-risk HPV genotypes and P16INK4a expression in a cohort of head and neck squamous cell carcinoma patients in singapore. Oncotarget 2016;7(52):86730–9. DOI:10.18632/oncotarget.13502; Dimitraki M.G., Sourvinos G. Merkel cell polyomavirus (MCPyV) and cancers: emergency bell or false alarm? Cancers (Basel) 2022,14(22):5548. DOI:10.3390/cancers14225548; Ceccarelli G., Giovanetti M., Sagnelli C. et al. Human immunodeficiency virus type 2: the neglected threat. Pathogens 2021;10(11):1377. DOI:10.3390/pathogens10111377; Si-Mohamed A., Badoual C., Hans S. et al. An unusual human papillomavirus type 82 detection in laryngeal squamous cell carcinoma: case report and review of literature. J Clin Virol 2012;54(2):190–3. DOI:10.1016/j.jcv.2012.02.024; Wallace J., Gonzalez H., Rajan R. et al. Anti-HIV drugs cause mitochondrial dysfunction in monocyte-derived macrophages. Antimicrob Agents Chemother 2022;66(4):e0194121. DOI:10.1128/aac.01941-21; Passerini S., Prezioso C., Prota A. et al. Detection of human neurotropic JCPyV DNA sequence in pediatric anaplastic xanthoastrocytoma. J Neurovirol 2023;29(2):232–6. DOI:10.1007/s13365-023-01129-z; Tavassoli N., Vojdani A., Salimi-Namin S. et al. Human BKV large T genome detection in prostate cancer and benign prostatic hyperplasia tissue samples by nested PCR: a case-control study. Mol Biol Res Commun 2023;12(4):149–54. DOI:10.22099/mbrc.2023.47537.1836; Starrett G.J., Buck C.B. BK Polyomavirus is a cause of bladder cancer. Curr Opin Virol 2019;39:8–15. DOI:10.1016/j.coviro.2019.06.009; Wong Y., Meehan M.T., Burrows S.R. et al. Estimating the global burden of Epstein–Barr virus-related cancers. J Cancer Res Clin Oncol 2022;148(1):31–46. DOI:10.1007/s00432-021-03824-y; Ibrahim Khalil A., Franceschi S., de Martel C. et al. Burden of Kaposi sarcoma according to HIV status: a systematic review and global analysis. Int J Cancer 2022;150(12):1948–57. DOI:10.1002/ijc.33951; Hernández-Ramírez R.U., Shiels M.S., Dubrow R., Engels E.A. Cancer risk in HIV-infected people in the USA from 1996 to 2012: a population-based, registry-linkage study. Lancet HIV 2017;4(11):e495–504. DOI:10.1016/S2352-3018(17)30125-X; Human immunodeficiency viruses and human T-cell lymphotropic viruses. IARC monographs on the evaluation of carcinogenic risks to humans. IARC, 2012. Vol. 67. Available at: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Human-Immunodeficiency-Viruses-And-Human-T-Cell-Lymphotropic-Viruses-1996.; Mirzaei R., Afaghi A., Babakhani S. et al. Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed Pharmacother 2021;139:111619. DOI:10.1016/j.biopha.2021.111619; Nougayrède J.-P., Homburg S., Taieb F. et al. Escherichia Coli induces DNA double-strand breaks in eukaryotic cells. Science 2006:313(5788):848–51. DOI:10.1126/science.1127059; Hartl K., Sigal M. Microbe-driven genotoxicity in gastrointestinal carcinogenesis. Int J Mol Sci 2020;21(20):7439. DOI:10.3390/ijms21207439; Jones R.M., Mercante J.W., Neish A.S. Reactive oxygen production induced by the gut microbiota: pharmacotherapeutic implications. Curr Med Chem 2012;19(10):1519–29. DOI:10.2174/092986712799828283; Tian X., Liu Z., Niu B. et al. E-cadherin/β-catenin complex and the epithelial barrier. J Biomed Biotechnol 2011;2011:567305. DOI:10.1155/2011/567305; Stein R.A., Riber L. Epigenetic effects of short-chain fatty acids from the large intestine on host cells. Microlife 2023;4. DOI:10.1093/femsml/uqad032; Dzutsev A., Badger J.H., Perez-Chanona E. et al. Microbes and cancer. Annu Rev Immunol 2017;35(1):199–228. DOI:10.1146/annurev-immunol-051116-052133; Turner L., Bitto N.J., Steer D.L. et al. Helicobacter pylori outer membrane vesicle size determines their mechanisms of host cell entry and protein content. Front Immunol 2018;9:1466. DOI:10.3389/fimmu.2018.01466; Shi Y., Meng L., Zhang C. Extracellular vesicles of Lacticaseibacillus paracasei PC-H1 induce colorectal cancer cells apoptosis via PDK1/AKT/Bcl-2 signaling pathway. Microbiol Res 2021;255:126921. DOI:10.1016/j.micres.2021.126921; Pistello M., Antonelli G. Integration of the viral genome into the host cell genome: a double-edged sword. Clin Microbiol Infect 2016;22(4):296–8. DOI:10.1016/j.cmi.2016.01.022; Spurgeon M.E., Liem A., Buehler D. et al. The Merkel cell polyomavirus T antigens function as tumor promoters in murine skin. Cancers (Basel) 2021;13(2):222. DOI:10.3390/cancers13020222; Read S.A., Douglas M.W. Virus induced inflammation and cancer development. Cancer Lett 2014;345(2):174–81. DOI:10.1016/j.canlet.2013.07.030; Nauts H.C., McLaren J.R. Coley toxins – the first century. Adv Exp Med Biol 1990;267:483–500. DOI:10.1007/978-1-4684-5766-7_52; Aghamajidi A., Maleki Vareki S. The effect of the gut microbiota on systemic and anti-tumor immunity and response to systemic therapy against cancer. Cancers (Basel) 2022;14(15):3563. DOI:10.3390/cancers14153563; Wang M., Yang G., Tian Y. et al. The role of the gut microbiota in gastric cancer: the immunoregulation and immunotherapy. Front Immunol 2023;14:1183331. DOI:10.3389/fimmu.2023.1183331; Ivanov I.I. Microbe hunting hits home. Cell Host Microbe 2017;21(3):282–5. DOI:10.1016/j.chom.2017.02.010; Jacouton E., Chain F., Sokol H. et al. Probiotic strain Lactobacillus casei BL23 prevents colitis-associated colorectal cancer. Front Immunol 2017;8:1553. DOI:10.3389/fimmu.2017.01553; Tarrah A., de Castilhos J., Rossi R.C. et al. In vitro probiotic potential and anti-cancer activity of newly isolated folate-producing Streptococcus thermophilus strains. Front Microbiol 2018;9:2214. DOI:10.3389/fmicb.2018.02214; Buret A.G., Motta J.P., Allain T. et al. Pathobiont release from dysbiotic gut microbiota biofilms in intestinal inflammatory diseases: a role for iron? J Biomed Sci 2019;26(1):1. DOI:10.1186/s12929-018-0495-4; Bordon Y. Microbiota: a viral understudy for commensal bacteria. Nat Rev Immunol 2015;15(1):4. DOI:10.1038/nri3788; Kernbauer E., Ding Y., Cadwell K. An enteric virus can replace the beneficial function of commensal bacteria. Nature 2014;516(7529):94–8. DOI:10.1038/nature13960; Champagne-Jorgensen K., Luong T., Darby T., Roach D.R. Immunogenicity of bacteriophages. Trends Microbiol 2023;31(10):1058–71. DOI:10.1016/j.tim.2023.04.008; O’Neill L.A., Golenbock D., Bowie A.G. The history of Toll-like receptors – redefining innate immunity. Nat Rev Immunol 2013;13(6):453–60. DOI:10.1038/nri3446; Jiang T., Zhou C., Ren S. Role of IL-2 in cancer immunotherapy. Oncoimmunology 2016;5(6):e1163462. DOI:10.1080/2162402X.2016.1163462; Considine B., Hurwitz M.E. Current status and future directions of immunotherapy in renal cell carcinoma. Curr Oncol Rep 2019;21(4):34. DOI:10.1007/s11912-019-0779-1; Rosenberg S.A., Yang J.C., Topalian S.L. et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA 1994;30;271(12):907–13.; Smith M., García-Martínez E., Pitter M.R. et al. Trial watch: Toll-like receptor agonists in cancer immunotherapy. Oncoimmunology 2018;7(12):e1526250. DOI:10.1080/2162402X.2018.1526250; Wu Z., Zhang S., Li L. et al. The gut microbiota modulates responses to anti-PD-1 and chemotherapy combination therapy and related adverse events in patients with advanced solid tumors. Front Oncol 2022;12:887383. DOI:10.3389/fonc.2022.887383; Che S., Yan Z., Feng Y., Zhao H. Unveiling the intratumoral microbiota within cancer landscapes. iScience 2024;27(6):109893. DOI:10.1016/j.isci.2024.109893; Zhang L., Yu L. The role of the microscopic world: exploring the role and potential of intratumoral microbiota in cancer immunotherapy. Medicine (Baltimore) 2024;103(20):e38078. DOI:10.1097/MD.0000000000038078; Perry L.M., Cruz S.M., Kleber K.T. et al. Human soft tissue sarcomas harbor an intratumoral viral microbiome which is linked with natural killer cell infiltrate and prognosis. J Immunother Cancer 2023;11(1):e004285. DOI:10.1136/jitc-2021-004285; Yang L., Li A., Wang Y., Zhang Y. Intratumoral microbiota: roles in cancer initiation, development and therapeutic efficacy. Signal Transduct Target Ther 2023;8(1):35. DOI:10.1038/s41392-022-01304-4; Wu J., Zhang P., Mei W., Zeng C. Intratumoral microbiota: implications for cancer onset, progression, and therapy. Front Immunol 2024;14:1301506. DOI:10.3389/fimmu.2023.1301506; Xu J., Cheng M., Liu J. et al. Research progress on the impact of intratumoral microbiota on the immune microenvironment of malignant tumors and its role in immunotherapy. Front Immunol 2024;15:1389446. DOI:10.3389/fimmu.2024.1389446; Rajasekaran K., Carey R.M., Lin X. et al. The microbiome of HPV-positive tonsil squamous cell carcinoma and neck metastasis. Oral Oncol 2021;117:105305. DOI:10.1016/j.oraloncology.2021.105305; Chiba A., Bawaneh A., Velazquez C. et al. Neoadjuvant chemotherapy shifts breast tumor microbiota populations to regulate drug responsiveness and the development of metastasis. Mol Cancer Res 2020;18(1):130–9. DOI:10.1158/1541-7786.MCR-19-0451; Chen G., Gao C., Jiang S. et al. Fusobacterium nucleatum outer membrane vesicles activate autophagy to promote oral cancer metastasis. J Adv Res 2024;56:167–79. DOI:10.1016/j.jare.2023.04.002; Li L., Chandra V., McAllister F. Tumor-resident microbes: the new kids on the microenvironment block. Trends Cancer 2024;10(4):347–55. DOI:10.1016/j.trecan.2023.12.002; Tiraboschi L., Braga D., Melacarne A. et al. Unveiling the impact of intratumoral microbiota in the treatment efficacy of soft tissue sarcoma. Cancer Res 2024;84(6):1277. DOI:10.1158/1538-7445.AM2024-1277; Camacho E.M., Mesa-Pereira B., Medina C. et al. Engineering Salmonella as intracellular factory for effective killing of tumour cells. Sci Rep 2016:28(6):30591. DOI:10.1038/srep30591; Groot A.J., Mengesha A., van der Wall E. et al. Functional antibodies produced by oncolytic clostridia. Biochem Biophys Res Commun 2007;364(4):985–9. DOI:10.1016/j.bbrc.2007.10.126; Ribas A., Dummer R., Puzanov I. et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and Improves anti-PD-1 immunotherapy. Cell 2017;170(6):1109–19.e10. DOI:10.1016/j.cell.2017.08.027; https://umo.abvpress.ru/jour/article/view/726

  14. 14
    Academic Journal

    Συνεισφορές: This work was supported by the Russian Science Foundation (grant No. 20-75-10033). The study was carried out using the equipment of the Center for Collective Use “Medical Genomics” of the Tomsk National Research Medical Center., Работа выполнена при финансовой поддержке Российского научного фонда (грант № 20-75-10033) с использованием оборудования ЦКП «Медицинская геномика» Томского НИМЦ.

    Πηγή: Siberian journal of oncology; Том 23, № 1 (2024); 87-97 ; Сибирский онкологический журнал; Том 23, № 1 (2024); 87-97 ; 2312-3168 ; 1814-4861

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2959/1198; Okazaki T., Honjo T. The PD-1-PD-L pathway in immunological tolerance. Trends Immunol. 2006; 27(4): 195–201. doi:10.1016/j.it.2006.02.001.; Han Y., Liu D., Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020; 10(3): 727–42.; Lu D., Ni Z., Liu X., Feng S., Dong X., Shi X., Zhai J., Mai S., Jiang J., Wang Z., Wu H., Cai K. Beyond T Cells: Understanding the Role of PD-1/PD-L1 in Tumor-Associated Macrophages. J Immunol Res. 2019. doi:10.1155/2019/1919082.; Singhal S., Stadanlick J., Annunziata M.J., Rao A.S., Bhojnagarwala P.S., O’Brien S., Moon E.K., Cantu E., Danet-Desnoyers G., Ra H.J., Litzky L., Akimova T., Beier U.H., Hancock W.W., Albelda S.M., Eruslanov E.B. Human tumor-associated monocytes/macrophages and their regulation of T cell responses in early-stage lung cancer. Sci Transl Med. 2019; 11(479). doi:10.1126/scitranslmed.aat1500.; Zhu Z., Zhang H., Chen B., Liu X., Zhang S., Zong Z., Gao M. PD-L1-Mediated Immunosuppression in Glioblastoma Is Associated With the Infiltration and M2-Polarization of Tumor-Associated Macrophages. Front Immunol. 2020; 11. doi:10.3389/fimmu.2020.588552.; Horn L., Spigel D.R., Vokes E.E., Holgado E., Ready N., Steins M., PoddubskayaE.,BorghaeiH.,FelipE.,Paz-AresL.,PluzanskiA.,ReckampK.L., Burgio M.A., Kohlhäeufl M., Waterhouse D., Barlesi F., Antonia S., Arrieta O., Fayette J., Crinò L., Rizvi N., Reck M., Hellmann M.D., Geese W.J., Li A., Blackwood-Chirchir A., Healey D., Brahmer J., Eberhardt W.E.E. Nivolumab Versus Docetaxel in Previously Treated Patients With Advanced Non-Small-Cell Lung Cancer: Two-Year Outcomes From Two Randomized, Open-Label, Phase III Trials (CheckMate 017 and CheckMate 057). J Clin Oncol. 2017; 35(35): 3924–33. doi:10.1200/JCO.2017.74.3062.; Schmid P., Adams S., Rugo H.S., Schneeweiss A., Barrios C.H., Iwata H., Diéras V., Hegg R., Im S.A., Shaw Wright G., Henschel V., Molinero L., Chui S.Y., Funke R., Husain A., Winer E.P., Loi S., Emens L.A.; IMpassion130 Trial Investigators. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. N Engl J Med. 2018; 379(22): 2108–21. doi:10.1056/NEJMoa1809615.; Kang Y.K., Boku N., Satoh T., Ryu M.H., Chao Y., Kato K., Chung H.C., Chen J.S., Muro K., Kang W.K., Yeh K.H., Yoshikawa T., Oh S.C., Bai L.Y., Tamura T., Lee K.W., Hamamoto Y., Kim J.G., Chin K., Oh D.Y., Minashi K., Cho J.Y., Tsuda M., Chen L.T. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017; 390(10111): 2461–71. doi:10.1016/S0140-6736(17)31827-5.; Keenan T.E., Tolaney S.M. Role of Immunotherapy in Triple-Negative Breast Cancer. J Natl Compr Canc Netw. 2020; 18(4): 479–89. doi:10.6004/jnccn.2020.7554.; Kamakura D., Asano R., Kawai H., Yasunaga M. Mechanism of action of a T cell-dependent bispecific antibody as a breakthrough immunotherapy against refractory colorectal cancer with an oncogenic mutation. Cancer Immunol Immunother. 2021; 70(1): 177–88. doi:10.1007/s00262-020-02667-9.; Yamaguchi K., Tsuchihashi K., Tsuji K., Kito Y., Tanoue K., Ohmura H., Ito M., Isobe T., Ariyama H., Kusaba H., Akashi K., Baba E. Prominent PD-L1-positive M2 macrophage infiltration in gastric cancer with hyper-progression after anti-PD-1 therapy: A case report. Medicine (Baltimore). 2021; 100(19). doi:10.1097/MD.0000000000025773.; Salgado R., Denkert C., Demaria S., Sirtaine N., Klauschen F., Pruneri G., Wienert S., Van den Eynden G., Baehner F.L., Penault-Llorca F., Perez E.A., Thompson E.A., Symmans W.F., Richardson A.L., Brock J., Criscitiello C., Bailey H., Ignatiadis M., Floris G., Sparano J., Kos Z., Nielsen T., Rimm D.L., Allison K.H., Reis-Filho J.S., Loibl S., Sotiriou C., Viale G., Badve S., Adams S., Willard-Gallo K., Loi S.; International TILs Working Group 2014. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol. 2015; 26(2): 259–71. doi:10.1093/annonc/mdu450.; Larijani B., Miles J., Ward S.G., Parker P.J. Quantification of biomarker functionality predicts patient outcomes. Br J Cancer. 2021; 124(10): 1618–20. doi:10.1038/s41416-021-01291-3.; Sánchez-Magraner L., Miles J., Baker C.L., Applebee C.J., Lee D.J., Elsheikh S., Lashin S., Withers K., Watts A.G., Parry R., Edmead C., Lopez J.I., Mehta R., Italiano A., Ward S.G., Parker P.J., Larijani B. High PD-1/PD-L1 Checkpoint Interaction Infers Tumor Selection and Therapeutic Sensitivity to Anti-PD-1/PD-L1 Treatment. Cancer Res. 2020; 80(19): 4244–57. doi:10.1158/0008-5472.CAN-20-1117.; Cirqueira M.B., Mendonça C.R., Noll M., Soares L.R., de Paula Carneiro Cysneiros M.A., Paulinelli R.R., Moreira M.A.R., Freitas-Junior R. Prognostic Role of PD-L1 Expression in Invasive Breast Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel). 2021; 13(23): 6090. doi:10.3390/cancers13236090.; Huang W., Ran R., Shao B., Li H. Prognostic and clinicopathological value of PD-L1 expression in primary breast cancer: a meta-analysis. Breast Cancer Res Treat. 2019; 178(1): 17–33. doi:10.1007/s10549-019-05371-0.; Yunna C., Mengru H., Lei W., Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020; 877. doi:10.1016/j.ejphar.2020.173090.; Peranzoni E., Lemoine J., Vimeux L., Feuillet V., Barrin S., Kantari-Mimoun C., Bercovici N., Guérin M., Biton J., Ouakrim H., Régnier F., Lupo A., Alifano M., Damotte D., Donnadieu E. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci U S A. 2018; 115(17): 4041–50. doi:10.1073/pnas.1720948115.; Hartley G.P., Chow L., Ammons D.T., Wheat W.H., Dow S.W. Programmed Cell Death Ligand 1 (PD-L1) Signaling Regulates Macrophage Proliferation and Activation. Cancer Immunol Res. 2018; 6(10): 1260–73. doi:10.1158/2326-6066.CIR-17-0537.; Sánchez-Magraner L., Gumuzio J., Miles J., Quimi N., Martínez Del Prado P., Abad-Villar M.T., Pikabea F., Ortega L., Etxezarraga C., Martín-Algarra S., Lozano M.D., Saiz-Camin M., Egurrola-Izquierdo M., Barredo-Santamaría I., Saiz-López A., Gomez-Mediavilla J., Segues-Merino N., Juaristi-Abaunz M.A., Urruticoechea A., Geraedts E.J., van Elst K., Claessens N.J.M., Italiano A., Applebee C.J., Del Castillo S., Evans C., Aguirre F., Parker P.J., Calleja V. Functional Engagement of the PD-1/ PD-L1 Complex But Not PD-L1 Expression Is Highly Predictive of Patient Response to Immunotherapy in Non-Small-Cell Lung Cancer. J Clin Oncol. 2023. doi:10.1200/JCO.22.01748.; https://www.siboncoj.ru/jour/article/view/2959

  15. 15
    Academic Journal

    Συνεισφορές: The article was prepared without sponsorship, Статья подготовлена без спонсорской поддержки

    Πηγή: Malignant tumours; Том 14, № 2 (2024); 75-82 ; Злокачественные опухоли; Том 14, № 2 (2024); 75-82 ; 2587-6813 ; 2224-5057

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.malignanttumors.org/jour/article/view/1329/946; Состояние онкологической помощи населению России в 2022 году. Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой 2022. М.: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2022. − илл. – 239 с.; Нейфельд И.В., Рогожина И.Е., Жирняков А.И. и соавт. Акушерско-гинекологический анамнез с позиции факторов риска возникновения сердечно-сосудистых заболеваний. Вестник Тамбовского университета. Серия: Естественные и технические науки 2014;19(3):986–990.; Morice P., Leary A., Creutzberg C., et al. Endometrial cancer. Lancet 2016;387(10023):1094–1108. doi:10.1016/s0140-6736(15)00130-0; Wang L, Du Z.-H., Qiao J.-M., Gao S. Association between metabolic syndrome and endometrial cancer risk : a systematic review and meta-analysis of observational studies. Aging (Albany NY) 2020;12(10):9825–9839. doi:10.18632/aging.103247; Yunusova N.V., Kondakova I.V., Kolomiets L.A., et al. The role of metabolic syndrome variant in the malignant tumors progression. Diabetes Metab Syndr 2018;12(5):807–812. doi:10.1016/j.dsx.2018.04.028.; Cтатья р. Диагностика и лечение метаболического синдрома. Российские рекомендации. Кардиоваскулярная терапия и профилактика 2007;3–28. URL: https://cardiovascular.elpub.ru/jour/article/view/1088; Ward K.K., Roncancio A.M., Shah N.R., et al. Bariatric surgery decreases the risk of uterine malignancy. Gynecol Oncol 2014;133(1):63–6. doi:10.1016/j.ygyno.2013.11.012; Hausman D.B., DiGirolamo M., Bartness T.J., et al. The biology of white adipocyte proliferation. Obes Rev 2001;2(4):239–254. doi:10.1046/j.1467-789x.2001.00042.x; Сметник В.П. Значение жировой ткани в формировании гормонального статуса у женщин. Эффективная фармакотерапия в акушерстве и гинекологии 2007;4:6–13.; Key T.J., Allen N.E., Verkasalo P.K., Banks E. Energy balance and cancer: the role of sex hormones. Proceed Nutrit Societ 2001;60(01):81–89. doi:10.1079/PNS200068; Key T.J., Pike M.C. The dose-effect relationship between “unopposed” oestrogens and endometrial mitotic rate: its central role in explaining and predicting endometrial cancer risk. Br J Cancer 1988;57(2):205–212. doi:10.1038/bjc.1988.44; Akhmedkhanov A., Zeleniuch-Jacquotte A., Toniolo P. Role of exogenous and endogenous hormones in endometrial cancer : review of the evidence and research perspectives. Ann N Y Acad Sci 2001;943:296–315. doi:10.1111/j.1749-6632.2001.tb03811.x; Cleary M.P., Grossmann M.E. Minireview: obesity and breast cancer: the estrogen connection. Endocrinology 2009;150(6):2537–2542. doi:10.1210/en.2009-0070; Agnew H.J., Kitson S.J., Crosbie E.J. Gynecological malignancies and obesity. Best Pract Res Clin Obstet Gynaecol 2023;88:102337. doi:10.1016/j.bpobgyn.2023.102337; Yu J. SL., Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 2016;143(17):3050–3060. doi:10.1242/dev.137075; Sarris E.G., Saif M.W., Syrigos K.N. The biological role of PI3K pathway in lung cancer. Pharmaceuticals (Basel) 2012;5(11):1236–1264. doi:10.3390/ph5111236; Alayev A., Holz M.K. mTOR signaling for biological control and cancer. J Cell Physiol 2013;228(8):1658–1664. doi:10.1002/jcp.24351; Ryu T.Y., Park J., Scherer P.E. Hyperglycemia as a risk factor for cancer progression. Diabetes Metab J 2014;38(5):330 –336. doi:10.4093/dmj.2014.38.5.330; Mutter G.L., Lin M.C., Fitzgerald J.T., et al. Altered PTEN expression as a diagnostic marker for the earliest endometrial precancer. J. Natl Cancer Inst 2000;92(11):924–930. doi:10.1093/jnci/92.11.924; Norimatsu Y., Moriya T., Kobayashi T.K., et al. Immunohistochemical expression of PTEN and β-catenin for endometrial intraepithelial neoplasia in Japanese women. Ann Diagn Pathol 2007;11(2):103–108. doi:10.1016/j.anndiagpath.2006.06.009; Радзинский В.Е., Панова Е.А., Тотчиев Г.Ф. и соавт. Роль гена PTEN при гиперпластических процессах эндометрия на фоне метаболического синдрома. Гинекология Эндокринология 2012;69(1):87–89.; Kershaw E.E., Flier J.S. Adipose tissue as an endocrine organ. J Clin. Endocrinol Metab 2004;89(6):2548–2556. doi:10.1210/jc.2004-0395; Li J., Han X. Adipocytokines and Breast Cancer. Curr Probl Cancer 2018;42(2):208–214. doi:10.1016/j.currproblcancer.2018.01.004; Pang L., Chang X. Resistin expression in epithelial ovarian cancer promotes the proliferation and migration of ovarian cancer cells to worsen prognosis. J Cancer 2021;12(22):6796–6804. doi:10.7150/jca.62496; Wang Y.-Y., Hung A.C., Lo S., Yuan S.-S.F. Adipocytokines visfatin and resistin in breast cancer: Clinical relevance, biological mechanisms, and therapeutic potential. Cancer Lett 2021;498:229–239. doi:10.1016/j.canlet.2020.10.045; Michalakis K., Mintziori G., Kaprara A., et al. The complex interaction between obesity, metabolic syndrome and reproductive axis : a narrative review. Metabolism 2013;62(4):457–78. doi:10.1016/j.metabol.2012.08.012; Perez-Hernandez A.I., Catalan V., Gomez-Ambrosi J., et al. Mechanisms linking excess adiposity and carcinogenesis promotion. Front Endocrinol 2014;5:65. doi:10.3389/fendo.2014.00065; Lee C.H., Woo Y.C., Wang Y., et al. Obesity, adipokines and cancer: an update. Clin Endocrinol (Oxf) 2015;83(2):147–156. doi:10.1111/cen.12667; Renehan A.G., Zwahlen M., Egger M. Adiposity and cancer risk: new mechanistic insights from epidemiology. Nat Rev Cancer 2015;15(8):484–498. doi:10.1038/nrc3967; Dashti S.G., English D.R., Simpson J.A., et al. Adiposity and endometrial cancer risk in postmenopausal women: A sequential causal mediation analysis. Cancer Epidemiology, Biomarkers & Prevention 2021;30(1):104–113. doi:10.1158/1055-9965.EPI-20-0965; Chen D.-C., Chung Y.-F., Yeh Y.-T., et al. Serum adiponectin and leptin levels in Taiwanese breast cancer patients. Cancer Lett 2006;237(1):109–114. doi:10.1016/j.canlet.2005.05.047; Ожирение (клинические очерки). Под ред. проф. Барановского А.Ю., проф. Ворохбиной Н.В. Санкт-Петербург. 2007;240.; Fruhbeck G., Jebb S.A., Prentice A.M. Leptin: physiology and pathophysiology. Clin Physiol 1998;18(5):399–419. doi:10.1046/j.1365-2281.1998.00129.x; Chen J., Munter P., Hamm L.L., et al. Insulin resistance and risk of chronic kidney disease in nondiabetic US adults. J Am Soc Nephrol 2003;14(2):469–477. doi:10.1097/01.asn.0000046029.53933.09; Thompson J.A., Regnault T.R.H. In Utero origins of adult insulin resistance and vascular dysfunction. Semin Reprod Med 2011;29(3):211–224. doi:10.1055/s-0031-1275522; Sharma A., Bahadursingh S., Ramsewak S., Teelucksingh S. Medical and surgical interventions to improve outcomes in obese women planning for pregnancy. Best Pract Res Clin Obstet Gуnаecol 2015;29(4):565–576. doi:10.1016/j.bpobgyn.2014.12.003; Ellis P.E., Barron G.A., Bermano G. Adipocytokines and their relationship to endometrial cancer risk : A systematic review and meta-analysis. Gynecol Oncol 2020;158(2):507–516. doi:10.1016/j.ygyno.2020.05.033; Sharma D., Saxena N.K., Vertino P.M., Anania F.A. Leptin promotes the proliferative response and invasiveness in human EC cells by activating multiple signal-transduction pathways. Endocr Relat Cancer 2006;13(2):629–640. doi:10.1677/erc.1.01169; Khoramipour K., Chamari K., Hekmatikar A.A., et al. Adiponectin: structure, physiological functions, role in diseases, and effects of nutrition. Nutrients 2021;13(4):1180. doi:10.3390/nu13041180; Вавилова Т.П., Плетень А.П., Михеев Р.К. Биологическая роль адипокинов как маркеров патологических состояний. Вопросы питания 2017;86(2):5–13.; Вербовой А.Ф., Цанава И.А., Вербовая Н.И. Адипокины и метаболические показатели у больных сахарным диабетом 2 типа в сочетании с подагрой. Ожирение и метаболизм 2016;13(1):20–24. doi:10.14341/OMET2016120-24; Парфенова Н.С., Танянский Д.А. Адипонектин: благоприятное воздействие на метаболические и сердечно-сосудистые нарушения. Артериальная гипертензия 2013;19(1):84–96; Geagea A.G., Mallat S., Matar C.F., et al. Adiponectin and inflammation in health and disease: an update. Open Medicine Journal 2018;5:20–32. doi:10.2174/1874220301805010020; Титов В.Н. Функциональное различие висцеральных жировых клеток и подкожных адипоцитов. Клиническая медицина 2015;93(2):14–23.; Blachnio-Zabielska A.U., Hady H.R., Markowski A.R., et al. Inhibition of ceramide de novo synthesis affects adipocytokine secretion and improves systemic and adipose tissue insulin sensitivity. Int J Mol Sci 2018;19(12):3995. doi:10.3390/ijms19123995; Yunusova N.V., Kondakova I.V., Kolomiets L.A., et al. The role of metabolic syndrome variant in the malignant tumors progression. Diabetes Metab Syndr 2018;12(5):807–812. doi:10.1016/j.dsx.2018.04.028; Coelho M., Oliveira T., Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci 2013;9(2):191–200. doi:10.5114/aoms.2013.33181; Adolph T.E., Grander C., Grabherr F., Tilg H. Adipokines and non-alcoholic fatty liver disease: multiple interactions. Int J Mol Sci 2017;18(8):1649. doi:10.3390/ijms18081649; Wang Y., Meng R.W., Kunutsor S.K., et al. Plasma adiponectin levels and type 2 diabetes risk: A nested case-control study in a Chinese population and an updated meta-analysis. Sci Rep 2018;8(1):406. doi:10.1038/s41598-017-18709-9; Wang Z., Gao S., Sun C. Et al. Clinical significance of serum adiponectin and visfatin levels in endometrial cancer. Int J Gynecol Obstet 2019;145(1):34–39. doi:10.1002/ijgo.12772; Ray I., Meira L.B., Michael A., Ellis P.E. Adipocytokines and disease progression in endometrial cancer : a systematic review. Cancer Metastasis Rev 2022;41(1):211–242. doi:10.1007/s10555-021-10002-6; Kölbl H., Bartl T. Obesity in gynecologic oncology. Geburtshilfe Frauenheilkd 2020;80(12):1205–1211. doi:10.1055/a-1124-7139; De Nola R., Menga A., Castegna A., et al. The crowded crosstalk between cancer cells and stromal microenvironment in gynecological malignancies: biological pathways and therapeutic implication. Int J Mol Sci 2019;20(10):2401. doi:10.3390/ijms20102401; Landskron G., De la Fuente M., Thuwajit P., et al. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014;2014:149185. doi:10.1155/2014/149185.; Romaiuk A., Lуndіn M. Immune microenvironment as a factor of breast cancer progression. Diagn Pathol 2015;10:79. doi:10.1186/s13000-015-0316-y; Felix A.S., Weissfeld J., Edwards, R., Linkov F. Future directions in the field of endometrial cancer research: The need to investigate the tumor microenvironment. Eur J Gynaecol Oncol 2010;31(2):139–144; Hlavna M., Kohut L., Lipkova J., et al. Relationship of resistin levels with endometrial cancer risk. Neoplasma 2011;58(2):124–128. doi:10.4149/neo_2011_02_124; Lumeng C.N., Bodzin J.L., Saltiel A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Investig 2007;117(1):175–184. doi:10.1172/JCI29881; Dirat B.A., Bochet L., Escourrou G., et al. Unraveling the obesity and breast cancer links: a role for cancer-associated adipocytes? Endocr Dev 2010;19:45–52. doi:10.1159/000316896.; https://www.malignanttumors.org/jour/article/view/1329

  16. 16
    Academic Journal

    Πηγή: Malignant tumours; Том 14, № 1 (2024); 67-73 ; Злокачественные опухоли; Том 14, № 1 (2024); 67-73 ; 2587-6813 ; 2224-5057

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.malignanttumors.org/jour/article/view/1293/928; Ferlay J., Shin H.R., Bray F., et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010;127(12):2893–917. https://doi.org/10.1002/ijc.25516; Клинические рекомендации. Рак молочной железы, 2021. Доступно по: https://cr.minzdrav.gov.ru/recomend/379_4 (дата размещения: 28.01.2021; Малыгин С.Е., Малыгин Е.Н., Петерсон С.Б. и соавт. Местные и региональные рецидивы после мастэктомии с одномоментной реконструкцией при раке молочной железы. Вестник РГМУ 2013;4:24–27.; Титов К.С., Оганесян А.П., Ротин Д.Л. и соавт. Опухолевые стволовые клетки при раке молочной железы. Роль в патогенезе и подходы к терапии. Злокачественные опухоли 2016;2:22–27. https://doi.org/10.18027/2224-5057-2016-2-22-27; Medrek C., Pontén F., Jirström K., Leandersson K. The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer 2012;12:306. https://doi.org/10.1186/1471-2407-12-306; Рябчиков Д.А., Чулкова С.В., Шамилов Ф.А. и соавт. Субпопуляции интратуморальных эффекторных клеток при раке молочной железы (обзор литературы и представление собственных данных). Креативная хирургия и онкология 2021;11(4):328–336. https://doi.org/10.24060/2076-3093-2021-11-4-328-336; Denkert C., von Minckwitz G., Darb-Esfahani S., et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol 2018;19:40–50. https://doi.org/10.1016/S1470-2045(17)30904-X; Литвяков Н.В., Цыганов М.М., Ибрагимова М.К. и соавт. Экспрессия макрофаг-ассоциированных генов в опухоли молочной железы: связь с опухолевой прогрессией. Сибирский онкологический журнал 2017;16(6):47–56. https://doi.org/10.21294/18144861-2017-16-6-47-56; Голубцова А.К., Кантышева Е.Б., Новоселова А.В., Попугайло М.В. Нейтрофилы как факторы, которые способны стимулировать и тормозить развитие рака. Роль нейтрофилов в метастазировании, прогнозе и возможные точки для терапевтических вмешательств. Научное обозрение. Медицинские науки 2022;4:10–15. https://doi.org/10.17513/srms.1264; Лазарев А.Ф., Бобров И.П., Черданцева Т.М. и соавт. Тучные клетки и опухолевый рост. Сибирский онкологический журнал 2011;4(46):59–63.; Pe K.C. S., Saetung R., Yodsurang V., et al. Triple-negative breast cancer influences a mixed M1/M2 macrophage phenotype associated with tumor aggressiveness. PLoS ONE 2022;17(8):e0273044. https://doi.org/10.1371/journal.pone.0273044; Qian B.Z., Pollard J.W. Macrophage diversity enhances tumor progression and metastasis. Cell 2010;141(1):39–51. https://doi.org/10.1016/j.cell.2010.03.014; Qiu S.Q., Waaijera S.J. H., Zwager M.C., et al. Tumor-associated macrophages in breast cancer: Innocent bystander or important player? Cancer Treat Rev 2018;70:178–189. https://doi.org/10.1016/j.ctrv.2018.08.010; Campbell M.J., Tonlaar N.Y., Garwood E.R., et al. Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome. Breast Cancer Res Treat 2011;128(3):703–711. https://doi.org/10.1007/s10549-010-1154-y; Shiao S.L., Ruffell B., DeNardo D.G., et al. TH2-polarized CD4(+) T cells and macrophages limit efficacy of radiotherapy. Cancer Immunol Res 2015;3(5):518–525. https://doi.org/10.1158/2326-6066.CIR-14-0232; Laoui D., Movahedi K., Van Overmeire E., et al. Tumor-associated macrophages in breast cancer: Distinct subsets, distinct functions. Int J Dev Biol 2011;55(7–9):861–7. https://doi.org/10.1387/ijdb.113371dl; Miyasato Y., Shiota T., Ohnishi K., et al. High density of CD204-positive macrophages predicts worse clinical prognosis in patients with breast cancer. Cancer Sci 2017;108(8):1693–1700. https://doi.org/10.1111/cas.13287; Mohammed Z.M. A., Going J.J., Edwards J., et al. The relationship between components of tumour inflammatory cell infiltrate and clinicopathological factors and survival in patients with primary operable invasive ductal breast cancer. Br J Cancer 2012;107(5):864–73. https://doi.org/10.1038/bjc.2012.347; Qian B.Z., Zhang H., Li J., et al. FLT1 signaling in metastasis-associated macrophages activates an inflammatory signature that promotes breast cancer metastasis. J Exp Med 2015;212(9):1433–48. https://doi.org/10.1084/jem.20141555; Muthuswamy R., Okada N.J., Jenkins F.J., et al. Epinephrine promotes COX-2-dependent immune suppression in myeloid cells and cancer tissues. Brain Behav Immun 2017;62:78–86. https://doi.org/10.1016/j.bbi.2017.02.008; Joyce J.A., Pollard J.W. Microenvironmental regulation of metastasis. Nat Rev Cancer 2009;9(4):239–52. https://doi.org/10.1038/nrc2618; Sangaletti S., Di Carlo E., Gariboldi S., et al. Macrophage-derived SPARC bridges tumor cell-extracellular matrix interactions toward metastasis. Cancer Res 2008;68(21):9050–9. https://doi.org/10.1158/0008-5472.CAN-08-1327; Chen J., Yao Y., Gong C., et al. CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 2011;19(4):541–555. https://doi.org/10.1016/j.ccr.2011.02.006; Roh-Johnson M., Bravo-Cordero J.J., Patsialou A., et al. Macrophage contact induces RhoA GTPase signaling to trigger tumor cell intravasation. Oncogene 2014;33(33):4203–12. https://doi.org/10.1038/onc.2013.377; Stockmann C., Doedens A., Weidemann A., et al. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 2008;456(7223):814–8. https://doi.org/10.1038/nature07445; Junankar S., Shay G., Jurczyluk J., et al. Real-time intravital imaging establishes tumor-associated macrophages as the extraskeletal target of bisphosphonate action in cancer. Cancer Discov 2015;5(1):35–42. https://doi.org/10.1158/21598290.CD-14-0621; Luo Y., Zhou H., Krueger J., et al. Targeting tumor-associated macrophages as a novel strategy against breast cancer. J Clin Invest 2006;116(8):2132–2141. https://doi.org/10.1172/JCI27648; Galmbacher K., Heisig M., Hotz C., et al. Shigella mediated depletion of macrophages in a murine breast cancer model is associated with tumor regression. PLoS One 2010;5(3):e9572. https://doi.org/10.1371/journal.pone.0009572; Willingham S.B., Volkmer J.P., Gentles A.J., et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA 2012;109(17):6662–7. https://doi.org/10.1073/pnas.1121623109; Xu M., Liu M., Du X., et al. Intratumoral delivery of IL-21 overcomes anti-Her2/Neu resistance through shifting tumor-associated macrophages from M2 to M1 phenotype. J Immunol 2015;194(10):4997–5006. https://doi.org/10.4049/jimmunol.1402603; Wu L., Saxena S., Goel P., et al. Breast cancer cell-neutrophil interactions enhance neutrophil survival and pro-tumorigenic activities. Cancers (Basel) 2020;12(10):2884. https://doi.org/10.3390/cancers12102884; Li Y., Cao X., Liu Y., et al. Neutrophil extracellular traps formation and aggregation Orchestrate induction and resolution of sterile crystal-mediated inflammation. Front Immunol 2018;9:1559. https://doi.org/10.3389/fimmu.2018.01559; Albrengues J., Shields M.A., Ng D., et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 2018;361(6409):eaao4227. https://doi.org/10.1126/science.aao4227; Queen M.M., Ryan R.E., Holzer R.G., et al. Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Res 2005;65(19):8896–904. https://doi.org/10.1158/0008-5472.CAN-05-1734; Soto-Perez-de-Celis E., Chavarri-Guerra Y., Leon-Rodriguez E., Gamboa-Dominguez A. Tumor-associated neutrophils in breast cancer subtypes. Asian Pac J Cancer Prev 2017;18(10):2689–2693. https://doi.org/10.22034/APJCP.2017.18.10.2689; Ocana A., Nieto-Jiménez C., Pandiella A., Templeton A.J. Neutrophils in cancer: prognostic role and therapeutic strategies. Mol Cancer 2017;16(1):137. https://doi.org/10.1186/s12943-017-0707-7; He G., Zhang H., Zhou J., et al. Peritumoural neutrophils negatively regulate adaptive immunity via the PD-L1/ PD-1 signalling pathway in hepatocellular carcinoma. J Exp Clin Cancer Res 2015;34:141. https://doi.org/10.1186/s13046-015-0256-0; Mishalian I., Bayuh R., Eruslanov E., et al. Neutrophils recruit regulatory T-cells into tumors via secretion of CCL17 a new mechanism of impaired antitumor immunity. Int J Cancer 2014;135(5):1178–86. https://doi.org/10.1002/ijc.28770; Huang S., Mills L., Mian B., et al. Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. Am J Pathol 2002;161(1):125–34. https://doi.org/10.1016/S0002-9440(10)64164-8; Singh S., Sadanandam A., Nannuru K.C., et al. Small-molecule antagonists for CXCR2 and CXCR1 inhibit human melanoma growth by decreasing tumor cell proliferation, survival, and angiogenesis. Clin Cancer Res 2009;15(7):2380–6. https://doi.org/10.1158/1078-0432.CCR-08-2387; Marshall J.S., Portales-Cervantes L., Leong E. Mast cell responses to viruses and pathogen products. Int J Mol Sci 2019;20(17):4241. https://doi.org/10.3390/ijms20174241; Hanes M.R., Giacomantonio C.A., Marshall J.S. Mast cells and skin and breast cancers: A complicated and microenvironment-dependent role. Cells 2021;10(5):986. https://doi.org/10.3390/cells10050986; McHale C., Mohammed Z., Gomez G. Human skin-derived mast cells spontaneously secrete several angiogenesis-related factors. Front Immunol 2019;10:1445. https://doi.org/10.3389/fimmu.2019.01445; Wulaningsih W., Holmberg L., Garmo H., et al. Investigating the association between allergen-specific immunoglobulin E, cancer risk and survival. Oncoimmunology 2016;5(6):e1154250. https://doi.org/10.1080/2162402X.2016.1154250; Das Roy L., Curry J.M., Sahraei M., et al. Arthritis augments breast cancer metastasis: Role of mast cells and SCF/cKit signaling. Breast Cancer Res 2013;15(2):R32. https://doi.org/10.1186/bcr3412; Samoszuk M., Corwin M.A. Mast cell inhibitor cromolyn increases blood clotting and hypoxia in murine breast cancer. Int J Cancer 2003;107(1):159–63. https://doi.org/10.1002/ijc.11340; Majorini M.T., Cancila V., Rigoni A., et al. Infiltrating mast cell-mediated stimulation of estrogen receptor activity in breast cancer cells promotes the luminal phenotype. Cancer Res 2020;80(11):2311–2324. https://doi.org/10.1158/00085472.CAN-19-3596; Carpenco E., Ceauşu R.A., Cimpean A.M., et al. Mast cells as an indicator and prognostic marker in molecular subtypes of breast cancer. In Vivo 2019;33(3):743–748. https://doi.org/10.21873/invivo.11534; Cimpean A.M., Tamma R., Ruggieri S., et al. Mast cells in breast cancer angiogenesis. Crit Rev Oncol Hematol 2017;115:23–26. https://doi.org/10.1016/j.critrevonc.2017.04.009; Ueshima C., Kataoka T.R., Hirata M., et al. The killer cell Ig-like receptor 2DL4 expression in human mast cells and its potential role in breast cancer invasion. Cancer Immunol Res 2015;3(8):871–80. https://doi.org/10.1158/2326-6066. CIR-14-0199; Kuonen F., Laurent J., Secondini C., et al. Inhibition of the Kit ligand/c-Kit axis attenuates metastasis in a mouse model mimicking local breast cancer relapse after radiotherapy. Clin Cancer Res 2012;18(16):4365–74. https://doi.org/10.1158/1078-0432.CCR-11-3028; https://www.malignanttumors.org/jour/article/view/1293

  17. 17
    Academic Journal

    Συνεισφορές: This study was funded by the project – “Development of diagnostic criteria for predicting and overcoming reproductive losses”, head O.N. Bespalova. State registration number 122041500061-8.

    Πηγή: Medical Immunology (Russia); Том 27, № 2 (2025); 445-450 ; Медицинская иммунология; Том 27, № 2 (2025); 445-450 ; 2313-741X ; 1563-0625

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/3061/2049; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3061/14046; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3061/14047; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3061/14048; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3061/14049; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3061/14050; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3061/14051; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3061/14052; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3061/14053; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3061/14062; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3061/14063; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3061/14064; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3061/14387; Bačenková D., Trebuňová M., Čížková D., Hudák R., Dosedla E., Findrik-Balogová A., Živčák J. In vitro model of human trophoblast in early placentation. Biomedicines, 2022, Vol. 10, no. 4, 904. doi:10.3390/biomedicines10040904.; Burgess S.J., Marusina A.I., Pathmanathan I., Borrego F., Coligan J.E. IL-21 down-regulates NKG2D/DAP10 expression on human NK and CD8+ T cells. J. Immunol., 2006, Vol. 176, no. 3, pp. 1490-1497.; Cai G., Kastelein R.A., Hunter C.A. IL-10 enhances NK cell proliferation, cytotoxicity and production of IFN-gamma when combined with IL-18. Eur. J. Immunol., 1999, Vol. 29, no. 9, pp. 2658-2665.; Fujiwara H., Higuchi T., Sato Y., Nishioka Y., Zeng B.X., Yoshioka S., Tatsumi K., Ueda M., Maeda M. Regulation of human extravillous trophoblast function by membrane-bound peptidases. Biochim. Biophys. Acta, 2005, Vol. 1751, no. 1, pp. 26-32.; Gómez-Lomelí P., Bravo-Cuellar A., Hernández-Flores G., Jave-Suárez L.F., Aguilar-Lemarroy A., Lerma-Díaz J.M., Domínguez-Rodríguez J.R., Sánchez-Reyes K., Ortiz-Lazareno P.C. Increase of IFN-γ and TNF-γ production in CD107a + NK-92 cells co-cultured with cervical cancer cell lines pre-treated with the HO-1 inhibitor. Cancer Cell Int., 2014, Vol. 14, no. 1, 100. doi:10.1186/s12935-014-0100-1.; Hanna J., Goldman-Wohl D., Hamani Y., Avraham I., Greenfield C., Natanson-Yaron S., Prus D., CohenDaniel L., Arnon T.I., Manaster I., Gazit R., Yutkin V., Benharroch D., Porgador A., Keshet E., Yagel S., Mandelboim O. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med, 2006, Vol. 12, no. 9, pp. 1065-1074.; Klimkiewicz-Blok D., Florjanski J., Zalewski J., Blok R. Analysis of the concentrations of interleukin 15 in amniotic fluid in the second and the third trimesters of pregnancy. Adv. Clin. Exp. Med., 2012, Vol. 21, no. 1, pp. 75-79.; Klimkiewicz-Blok D., Florjanski J., Zalewski J., Blok R. Analysis of the concentrations of interleukin 18 in amniotic fluid in the second and the third trimesters of pregnancy. Adv. Clin. Exp. Med., 2013, Vol. 22, no. 5, pp. 699-703.; Peters C., Meyer A., Kouakanou L., Feder J., Schricker T., Lettau M., Janssen O., Wesch D., Kabelitz D. TGF-beta enhances the cytotoxic activity of Vdelta2 T cells. Oncoimmunology, 2019, Vol. 8, no. 1, e1522471. doi:10.1080/2162402X.2018.1522471.; Roth I., Fisher S.J. IL-10 is an autocrine inhibitor of human placental cytotrophoblast MMP-9 production and invasion. Dev. Biol., 1999, Vol. 205, no. 1, pp. 194-204.; Viel S., Marcais A., Guimaraes F.S., Loftus R., Rabilloud J., Grau M., Degouve S., Djebali S., Sanlaville A., Charrier E., Bienvenu J., Marie J.C., Caux C., Marvel J., Town L., Huntington N.D., Bartholin L., Finlay D., Smyth M.J., Walzer T. TGF-beta inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci. Signal., 2016, Vol. 9, no. 415, ra19. doi:10.1126/scisignal.aad1884.; Wang R., Jaw J.J., Stutzman N.C., Zou Z., Sun P.D. Natural killer cell-produced IFN-gamma and TNF-alpha induce target cell cytolysis through up-regulation of ICAM-1. J. Leukoc. Biol., 2012, Vol. 91, no. 2, pp. 299-309.; Wang X., Liang C., Xia W., Guo C., Niu Z., Zhu W., Zhang H. VEGF165b augments NK92 cytolytic activity against human K562 leukemia cells by upregulating the levels of perforin and granzyme B via the VEGR1-PLC pathway. Mol. Immunol., 2020, Vol. 128, pp. 41-46.; Weiss I.D., Shoham H., Wald O., Wald H., Beider K., Abraham M., Barashi N., Galun E., Nagler A., Peled A. Ccr5 deficiency regulates the proliferation and trafficking of natural killer cells under physiological conditions. Cytokine, 2011, Vol. 54, no. 3, pp. 249-257.; Zhang C., Tian Z. NK cell subsets in autoimmune diseases. J. Autoimmun., 2017, Vol. 83, pp. 22-30.; https://www.mimmun.ru/mimmun/article/view/3061

  18. 18
    Academic Journal

    Πηγή: Medical Immunology (Russia); Том 26, № 4 (2024); 819-826 ; Медицинская иммунология; Том 26, № 4 (2024); 819-826 ; 2313-741X ; 1563-0625

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/3055/1982; Состояние онкологической помощи населению России в 2022 году / Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2022. 239 с.; Blok E.J., Engels C.C., Dekker-Ensink G. Exploration of tumour-infiltrating lymphocytes as a predictive biomarker for adjuvant endocrine therapy in early breast cancer. Breast Cancer Res. Treat., 2018, Vol. 171, pp. 65-74.; Goff S.L., Danforth D.N. The role of immune cells in breast tissue and immunotherapy for the treatment of breast cancer. Clin. Breast Cancer, 2021, Vol. 21, no. 1, pp. e63-e73.; Lan H.R., Du W.L., Liu Y., Mao C.S., Jin K.T., Yang X. Role of immune regulatory cells in breast cancer: Foe or friend? Int. Immunopharmacol., 2021, Vol. 96, 107627. doi:10.1016/j.intimp.2021.107627.; Levy E.M., Roberti M.P., Mordoh J. Natural killer cells in human cancer: from biological functions to clinical applications. J. Biomed. Biotechnol., 2011, Vol. 2011, 676198. doi:10.1155/2011/676198.; Lundgren C., Bendahl P.O., Ekholm M. Tumour-infiltrating lymphocytes as a prognostic and tamoxifen predictive marker in premenopausal breast cancer: data from a randomised trial with long-term follow-up. Breast Cancer Res., 2020, Vol. 22, 140. doi:10.1186/s13058-020-01364-w.; Usman A.N., Ahmad M., Sinrang A.W., Natsir S., Takko A.B., Ariyandy A., Ilhamuddin I., Eragradini A.R., Hasan I.I., Hasyim S. Regulatory T cells on prognosis of breast cancer. Breast Dis., 2023, Vol. 42, no. 1, pp. 213-218. doi:10.3233/BD-239002.; Virassamy B., Caramia F., Savas P., Sant S., Wang J., Christo S.N., Byrne A., Clarke K., Brown E., Teo Z.L., von Scheidt B., Freestone D., Gandolfo L.C., Weber K., Teply-Szymanski J., Li R., Luen S.J., Denkert C., Loibl S., Lucas O., Swanton C., Speed T.P., Darcy P.K., Neeson P.J., Mackay L.K., Loi S. Intratumoral CD8(+) T cells with a tissue-resident memory phenotype mediate local immunity and immune checkpoint responses in breast cancer. Cancer Cell, 2023, Vol. 41, no. 3, pp. 585-601.; https://www.mimmun.ru/mimmun/article/view/3055

  19. 19
    Academic Journal

    Πηγή: Medical Immunology (Russia); Том 26, № 5 (2024); 933-940 ; Медицинская иммунология; Том 26, № 5 (2024); 933-940 ; 2313-741X ; 1563-0625

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/3100/2006; De Meulenaere A., Vermassen T., Aspeslagh S., Vandecasteele K., Rottey S., Ferdinande L. TILs in head and neck cancer: ready for clinical implementation and why (not)? Head Neck Pathol., 2017, Vol. 11, no. 3, pp. 354-363.; Del Prete A., Salvi V., Soriani A., Laffranchi M., Sozio F., Bosisio D., Sozzani S. Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell. Mol. Immunol., 2023, Vol., 20, no. 5, pp. 432-447.; Diao J., Mikhailova A., Tang M., Gu H., Zhao J., Cattral M.S. Immunostimulatory conventional dendritic cells evolve into regulatory macrophage-like cells. Blood, 2012, Vol. 119, no. 21, pp. 4919-4927.; Eide J.G., Welch K.C., Adappa N.D., Palmer J.N., Tong C.C.L. Sinonasal inverted papilloma and squamous cell carcinoma: contemporary management and patient outcomes. Cancers (Basel), 2022, Vol. 14, no. 9, 2195. doi:10.3390/cancers14092195.; García-Marín R., Reda S., Riobello C., Cabal V.N., Suárez-Fernández L., Vivanco B., Álvarez-Marcos C., López F., Llorente J.L., Hermsen M.A. Prognostic and therapeutic implications of immune classification by CD8+ tumor-infiltrating lymphocytes and PD-L1 expression in sinonasal squamous cell carcinoma. Int. J. Mol. Sci., 2021, Vol. 22, no. 13, 6926. doi:10.3390/ijms22136926.; Gu J.T., Claudio N., Betts C., Sivagnanam S., Geltzeiler M., Pucci F. Characterization of the tumor immune microenvironment of sinonasal squamous-cell carcinoma. Int. Forum Allergy Rhinol., 2022, Vol. 12, no. 1, pp. 39-50.; Gulubova M. Myeloid and plasmacytoid dendritic cells and cancer – new insights. Open Access Maced. J. Med. Sci., 2019, Vol. 7, no. 19, pp. 3324-3340.; Gupta Y.H., Khanom A., Acton S.E. Control of dendritic cell function within the tumour microenvironment. Front. Immunol., 2022, Vol. 10, no. 13, 733800. doi:10.3389/fimmu.2022.733800.; Mitchell D., Chintala S., Dey M. Plasmacytoid dendritic cell in immunity and cancer. J. Neuroimmunol., 2018, Vol. 322, pp. 63-73.; Musella M., Galassi C., Manduca N., Sistigu A. The yin and yang of type I IFNs in cancer promotion and immune activation. Biology (Basel), 2021, Vol. 10, no. 9, 856. doi:10.3390/biology10090856.; Plesca I., Müller L., Böttcher J.P., Medyouf H., Wehner R., Schmitz M. Tumor-associated human dendritic cell subsets: phenotype, functional orientation, and clinical relevance. Eur. J. Immunol., 2022, Vol. 52, no. 11, pp. 1750-1758.; Sittig S.P., De Vries I.J., Schreibelt G. Primary human blood dendritic cells for cancer immunotherapy – tailoring the immune response by dendritic cell maturation. Biomedicines, 2015, Vol. 3, no. 4, pp. 282-303.; Sprooten J., Agostinis P., Garg A.D. Type I interferons and dendritic cells in cancer immunotherapy. Int. Rev. Cell. Mol. Biol., 2019, Vol. 348, pp. 217-262.; Wu J., Li S., Yang Y., Zhu S., Zhang M., Qiao Y., Liu Y., Chen J. TLR-activated plasmacytoid dendritic cells inhibit breast cancer cell growth in vitro and in vivo. Oncotarget, 2017, Vol. 8, no. 7, pp. 11708-11718.; Zhou B., Lawrence T., Liang Y. The role of plasmacytoid dendritic cells in cancers. Front. Immunol., 2021, Vol. 12, 749190. doi:10.3389/fimmu.2021.749190.; https://www.mimmun.ru/mimmun/article/view/3100

  20. 20
    Academic Journal

    Συνεισφορές: Работа выполнена при финансовой поддержке Российского Научного Фонда (грант РНФ 19-75-30032).

    Πηγή: Medical Immunology (Russia); Том 26, № 4 (2024); 693-700 ; Медицинская иммунология; Том 26, № 4 (2024); 693-700 ; 2313-741X ; 1563-0625

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/3036/1964; Boutilier A.J., Elsawa S.F. Macrophage polarization states in the tumor microenvironment. Int. J. Mol. Sci., 2021, Vol. 29, no. 22, 6995. doi:10.3390/ijms22136995.; Bruni D., Angell H.K., Galon J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer, 2020, Vol. 20, no. 11, pp. 662-680.; Chambers C.R., Ritchie S., Pereira B.A., Timpson P. Overcoming the senescence-associated secretory phenotype (SASP): a complex mechanism of resistance in the treatment of cancer. Mol. Oncol., 2021, Vol. 15, no. 12, pp. 3242-3255.; de Brito Monteiro L., Davanzo G.G., de Aguiar C.F., Corrêa da Silva F., Andrade J.R., Campos Codo A., Silva Pereira J.A.D., Freitas L.P., Moraes-Vieira P.M. M-CSF- and L929-derived macrophages present distinct metabolic profiles with similar inflammatory outcomes. Immunobiology, 2020, Vol. 225, no. 3, 151935. doi:10.1016/j.imbio.2020.151935.; Ding C., Shrestha R., Zhu X., Geller A.E., Wu S., Woeste M.R., Li W., Wang H., Yuan F., Xu R., Chariker J.H., Hu X., Li H., Tieri D., Zhang H.G., Rouchka E.C., Mitchell R., Siskind L.J., Zhang X., Xu X.G., McMasters K.M., Yu Y., Yan J. Inducing trained immunity in pro-metastatic macrophages to control tumor metastasis. Nat. Immunol., 2023, Vol. 24, no. 2, pp. 239-254.; Haston S., Gonzalez-Gualda E., Morsli S., Ge J., Reen V., Calderwood A., Moutsopoulos I., Panousopoulos L., Deletic P., Carreno G., Guiho R., Manshaei S., Gonzalez-Meljem J. M., Lim H.Y., Simpson D.J., Birch J., Pallikonda H.A., Chandra T., Macias D., Doherty G.J., Rassl D.M., Rintoul R.C., Signore M., Mohorianu I., Akbar A.N., Gil J., Muñoz-Espín D., Martinez-Barbera J.P. Clearance of senescent macrophages ameliorates tumorigenesis in KRAS-driven lung cancer. Cancer Cell, 2023, Vol. 41, no. 7, pp. 1242-1260.e6.; Hu S., Marshall C., Darby J., Wei W., Lyons A.B., Körner H. Absence of tumor necrosis factor supports alternative activation of macrophages in the liver after infection with leishmania major. Front. Immunol., 2018, Vol. 9, 1. doi:10.3389/fimmu.2018.00001.; Mantovani A., Marchesi F., Malesci A., Laghi L., Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol., 2017, Vol. 14, no. 7, pp. 399-416.; Marim F.M., Silveira T.N., Lima D.S. Jr., Zamboni D.S. A method for generation of bone marrow-derived macrophages from cryopreserved mouse bone marrow cells. PLoS One, 2010, Vol. 5, no. 12, e15263. doi:10.1371/journal.pone.0015263.; Schmittgen T.D., Livak K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc., 2008, Vol. 3, no. 6, pp. 1101-1108.; Yu S., Li Q., Wang Y., Cui Y., Yu Y., Li W., Liu F., Liu T. Tumor-derived LIF promotes chemoresistance via activating tumor-associated macrophages in gastric cancers. Exp. Cell. Res., 2021, Vol. 406, no. 1, 112734. doi:10.1016/j.yexcr.2021.112734.; Yurakova T.R., Gubernatorova E.O., Gorshkova E.A., Nosenko M.A., Nedospasov S.A., Drutskaya M.S. HDM induces distinct immunometabolic phenotype in macrophages in TLR4-dependent manner. Biochim. Biophys. Acta Mol. Basis Dis., 2022, Vol. 1868, no. 12, 166531. doi:10.1016/j.bbadis.2022.166531.; https://www.mimmun.ru/mimmun/article/view/3036