Εμφανίζονται 1 - 14 Αποτελέσματα από 14 για την αναζήτηση '"МИКРОБНЫЕ МЕТАБОЛИТЫ"', χρόνος αναζήτησης: 0,56δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Πηγή: General Reanimatology; Том 19, № 6 (2023); 4-12 ; Общая реаниматология; Том 19, № 6 (2023); 4-12 ; 2411-7110 ; 1813-9779

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.reanimatology.com/rmt/article/view/2403/1776; https://www.reanimatology.com/rmt/article/view/2403/1784; Evans L., Rhodes A., Alhazzani W., Antonelli M., Coopersmith C.M., French C., Machado F.R., et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021; 47 (11): 1181–1247. DOI:10.1007/s00134-021-06506-y. PMID: 34599691.; Zhang Y.-Y., Ning B.-T. Signaling pathways and intervention therapies in sepsis. Signal Transduct Target Ther. 2021; 6 (1): 407. DOI:10.1038/s41392-021-00816-9. PMID: 34824200.; Быкова К.М., Саввина И.А., Бодарева Н.В., Забродская Ю.М. Патофизиологические аспекты и комплексная диагностика сепсис-ассоциированной энцефалопатии. Перспективы этиопатогенетической терапии. Анестезиология и реаниматология. 2022; (4): 92–98. DOI:10.17116/anaesthesiology202204192.; Ковзель В.А., Давыдова Л.А., Карзин А.В., Царенко С.В., Батурова В.Ю., Полупан А.А., Гутников А.И. Методы экстракорпоральной гемокоррекции при сепсисе (обзор). Общая реаниматология. 2023; 19 (2): 68–82. DOI:10.15360/1813-9779-2023-2-2282.; Adelman M.W., Woodworth M.H., Langelier C., Busch L.M., Kempker J.A., Kraft C.S., Martin G.S. The gut microbiome’s role in the development, maintenance, and outcomes of sepsis. Crit Care. 2020; 24 (1): 278. DOI:10.1186/s13054-020-02989-1. PMID: 32487252.; Chernevskaya E., Beloborodova N., Klimenko N., Pautova A., Shilkin D., Gusarov V., Tyakht A. Serum and fecal profiles of aromatic microbial metabolites reflect gut microbiota disruption in critically ill patients: a prospective observational pilot study. Crit Care; 2020; 24 (1): 312. DOI:10.1186/s13054-020-03031-0. PMID: 32513224.; Xiao K., Sun Y., Song J., Li L., Mao W., Jiang C. Gut microbiota involved in myocardial dysfunction induced by sepsis. Microb Pathog. 2023; 175: 105984. DOI:10.1016/j.micpath.2023.105984. PMID: 36638851.; Wasyluk W., Zwolak A. Metabolic alterations in sepsis. J Clin Med. 2021; 10 (11): 2412. DOI:10.3390/jcm10112412. PMID: 34072402.; Sun S., Wang D., Dong D., Xu L., Xie M., Wang Y., Ni T., et al. Altered intestinal microbiome and metabolome correspond to the clinical outcome of sepsis. Crit Care. 2023; 27 (1): 127. DOI:10.1186/s13054-023-04412-x. PMID: 36978107.; Beloborodova N.V., Sarshor Yu.N., Bedova A.Yu., Chernevskaya E.A., Pautova A.K. Involvement of aromatic metabolites in the pathogenesis of septic shock. Shock. 2018; 50 (3): 273–279. DOI:10.1097/SHK.0000000000001064. PMID: 29189605.; Beloborodova N.V. Serum aromatic microbial metabolites as biological markers in intensive care. In: Rajendram, R., Preedy, V.R., Patel, V.B. (eds.). Biomarkers in trauma, injury and critical care. Biomarkers in disease: methods, discoveries and applications. Springer, Cham. 2023; 13: 245–268. DOI:10.1007/978-3-031-07395-3_64.; Белобородова Н.В., Байрамов И.Т., Оленин А.Ю., Федотчева Н.И. Экзометаболиты некоторых анаэробных микроорганизмов микрофлоры человека. Биомедицинская химия. 2011; 57 (1): 95–105. DOI:10.18097/pbmc20115701095. PMID: 21516781.; Jenner A.M., Rafter J., Halliwell B. Human fecal water content of phenolics: the extent of colonic exposure to aromatic compounds. Free Radic Biol Med. 2005; 38 (6): 763–772. DOI:10.1016/j.freeradbiomed.2004.11.020. PMID: 15721987.; Russell W.R., Duncan S.H., Scobbie L., Duncan G., Cantlay L., Calder A,G,, Anderson S.E., et al. Major phenylpropanoidderived metabolites in the human gut can arise from microbial fermentation of protein. Mol Nutr Food Res. 2013; 57 (3): 523–535. DOI:10.1002/mnfr.201200594. PMID: 23349065.; Muñoz-González I., Jiménez-Girón A., Martín-Álvarez P.J., Bartolomé B., Moreno-Arribas M.V. Profiling of microbial-derived phenolic metabolites in human feces after moderate red wine intake. J Agric Food Chem. 2013; 61 (39): 9470–9. DOI:10.1021/jf4025135. PMID: 24010549.; Saito Y., Sato T., Nomoto K., Tsuji H. Identification of phenol- and p-cresol-producing intestinal bacteria by using media supplemented with tyrosine and its metabolites. FEMS Microbiol Ecol. 2018; 94 (9): fiy125. DOI:10.1093/fem-sec/fiy125. PMID: 29982420.; Gutiérrez-Díaz I., Fernández-Navarro T., Salazar N., Bartolomé B., Moreno-Arribas M.V., López P., Suárez A., et al. Could fecal phenylacetic and phenylpropionic acids be used as indicators of health status? J Agric Food Chem. 2018; 66 (40): 10438–10446. DOI:10.1021/acs.jafc.8b. PMID: 30227707.; Жиркова Е.А., Спиридонова Т.Г., Сачков А.В., Елисеенкова Е.А., Брыгин П.А., Никулина В.П., Кашолкина Е.А., с соавт. Биомаркеры воспаления при острой дыхательной недостаточности у пациентов с ингаляционной травмой. Анестезиология и реаниматология. 2022; (5): 23 29. DOI:10.17116/anaesthesiology202303145.; Козлов И.А., Соколов Д.А. Оценка биомаркера напряжения миокарда NT-proBNP в реальной клинической практике. Общая реаниматология. 2023; 19 (1): 4–12. DOI:10.15360/1813-9779-2023-1-2272.; Dwivedy A.K., Shah S.N. Effects of phenylalanine and its deaminated metabolites on Na+,K+-ATPase activity in synaptosomes from rat brain. Neurochem Res. 1982; 7 (6): 717-25. DOI:10.1007/BF00965524. PMID: 6289150.; Zhu L., Shao Y.D., Wang J.Y., Lin D.L., Gu C.L., Li Y.H., Gu J.G., et al. Effect of beta-phenyl lactic acid on platelet aggregation, thrombosis, and plasma cAMP content. Zhongguo Yao Li Xue Bao. 1988; 9 (3): 249–251. PMID: 2850712.; Вахитовa Т.Я., Чалисова Н.И., Ситкин С.И., Салль Т.С., Шалаева О.Н., Демьянова Е.В., Моругина А.С., с соавт. Низкомолекулярные компоненты метаболома крови регулируют пролиферативную активность в клеточных и бактериальных культурах. Доклады академии наук. 2017; 472 (4): 491–493. DOI:10.1134/S0012496617010069. PMID: 28429257.; Martiìn M., Gibello A., Fernaìndez J., Ferrer E. , Garrido-Pertierra A. Catabolism of 3- and 4-hydroxyphenylacetic acid by Klebsiella pneumoniae. J Gen Microbiol. 1991; 137 (3): 621–628. DOI:10.1099/00221287-137-3-621. PMID: 1851804.; Calder P.C. n-3 fatty acids, inflammation, and immunity — relevance to postsurgical and critically ill patients. Lipids. 2004; 39 (12): 1147–1161. DOI:10.1007/s11745-004-1342-z. PMID: 15736910.; Dodd D., Spitzer M.H., Van Treuren W., Merrill B.D., Hryckowian A.J., Higginbottom S.K., Le A., et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 2017; 551 (7682): 648–652. DOI:10.1038/nature24661. PMID: 29168502.; Díaz E., Ferrández A., Prieto M.A., García J.L. Biodegradation of aromatic compounds by Escherichia coli. Microbiol Mol Biol Rev. 2001; 65 (4): 523–569. DOI:10.1128/MMBR.65.4.523-569.2001. PMID: 11729263.; Clarkson S.M., Giannone R.J., Kridelbaugh D.M., Elkins J.G., Guss A.M., Michener J.K. Construction and optimization of a heterologous pathway for protocatechuate catabolism in Escherichia coli enables bioconversion of model aromatic compounds. Appl Environ Microbiol. 2017; 83 (18): e01313–17. DOI:10.1128/AEM.01313-17. PMID: 28733280.; Smith E.A., Macfarlane G.T. Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J Appl Bacteriol. 1996; 81 (3): 288–302. DOI:10.1111/j.1365-2672.1996.tb04331.x. PMID: 8810056.; Liu Y., Guo Y., Hu S., Wang Y., Zhang L., Yu L., Geng F. Analysis of the dynamic changes in gut microbiota in patients with different severity in sepsis. BMC Infect Dis. 2023; 23 (1): 614. DOI:10.1186/s12879-023-08608-y. PMID: 37723420; Zhou Y., Luo Y., Wang X., Luan F., Peng Y., Li Y., Ma X., et al. Early gut microbiological changes and metabolomic changes in patients with sepsis: a preliminary study. Int Microbiol. 2023; 26 (4): 1131–1142. DOI:10.1007/s10123-023-00363-z. PMID: 37145385.; Evans T., Ali U., Anderton R., Raby E., Manning L., Litton E. Lower gut dysbiosis and mortality in acute critical illness: a systematic review and meta-analysis. Intensive Care Med Exp. 2023; 11 (1): 6. DOI:10.1186/s40635-022-00486-z. PMID: 36732439.; Chanderraj R., Baker J.M., Kay S.G., Brown C.A., Hinkle K.J., Fergle D.J., McDonald R.A., et al. In critically ill patients, anti-anaerobic antibiotics increase risk of adverse clinical outcomes. Eur Respir J. 2023; 61 (2): 2200910. DOI:10.1183/13993003.00910-2022. PMID: 36229047.; Zanza C., Romenskaya T., Thangathurai D., Ojetti V., Saviano A., Abenavoli L., Robba C., et al. Microbiome in critical care: an unconventional and unknown ally. Curr Med Chem. 2022; 29 (18): 3179–3188. DOI:10.2174/0929867328666210915115056. PMID: 34525908.; Zaborin A., Smith D., Garfield K., Quensen J., Shakhsheer B., Kade M., Tirrell M., et al. Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness. mBio 2014; 5 (5): e01361-14. DOI:10.1128/mBio.01361-14. PMID: 25249279.; Ситкин С.И., Вахитов Т.Я., Демьянова Е.В. Микробиом, дисбиоз толстой кишки и воспалительные заболевания кишечника: когда функция важнее таксономии. Альманах клинической медицины. 2018; 46 (5): 396–425. DOI:10.18786/2072-0505-2018-46-5-396-425.; Zhang Z., Cheng L., Ning D. Gut microbiota and sepsis: bidirectional Mendelian study and mediation analysis. Front Immunol. 2023; 14: 1234924. DOI:10.3389/fimmu.2023. 1234924. PMID: 37662942.; Balaban N.Q., Merrin J., Chait R., Kowalik L., Leibler S. Bacterial persistence as a phenotypic switch. Science. 2004; 305 (5690): 1622–1625. DOI:10.1126/science.1099390. PMID: 15308767.; Андрюков Б.Г., Ляпун И.Н. Молекулярные механизмы персистенции бактерий. Журнал микробиологии, эпидемиологии и иммунобиологии. 2020; 97 (3): 271–279. DOI:10.36233/0372-9311-2020-97-3-10.; Orman M.A., Brynildsen M.P. Inhibition of stationary phase respiration impairs persister formation in E. coli. Nat Commun. 2015; 6: 7983. DOI:10.1038/ncomms8983. PMID: 26246187.; Маркелова Н.Н., Тутельян А.В., Писарев В.М., Гапонов А.М. Некоторые закономерности формирования персистирующих форм клинических изолятов грамотрицательных бактерий. Антибиотики и Химиотерапия. 2018; 63 (7–8): 41–46.; Zelezniak A., Andrejev S., Ponomarova O., Mende D.R., Bork P., Patil K.R. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc Natl Acad Sci U S A. 2015; 112 (20): 6449–54. DOI:10.1073/pnas.1421834112. PMID: 25941371.; https://www.reanimatology.com/rmt/article/view/2403

  3. 3
  4. 4
    Academic Journal

    Πηγή: Zaporozhye мedical journal; Vol. 24 No. 1 (2022); 123-131 ; Запорожский медицинский журнал; Том 24 № 1 (2022); 123-131 ; Запорізький медичний журнал; Том 24 № 1 (2022); 123-131 ; 2310-1210 ; 2306-4145

    Περιγραφή αρχείου: application/pdf

    Διαθεσιμότητα: http://zmj.zsmu.edu.ua/article/view/236932

  5. 5
  6. 6
  7. 7
    Academic Journal
  8. 8
    Academic Journal

    Πηγή: General Reanimatology; Том 14, № 5 (2018); 96-119 ; Общая реаниматология; Том 14, № 5 (2018); 96-119 ; 2411-7110 ; 1813-9779 ; 10.15360/1813-9779-2018-5

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.reanimatology.com/rmt/article/view/1716/1254; https://www.reanimatology.com/rmt/article/view/1716/1263; Белобородова Н.В. Сепсис – метаболомный подход. М.: МИА; 2018: 272. ISBN 978-5-9986-0350-1; Schmidt K., Mwaigwisya S., Crossman L.C., Doumith M., Munroe D., Pires C., Khan A.M., Woodford N., Saunders N.J., Wain J., O’Grady J., Livermore D.M. Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. J. Antimicrob. Chemother. 2017; 72 (1): 104–114. DOI:10.1093/jac/dkw397. PMID: 27667325; Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012; 486 (7402): 207–214. DOI:10.1038/nature11234. PMID: 22699609; Berg R.D. The indigenous gastrointestinal microflora. Trends Microbiol. 1996; 4 (11): 430–435. DOI:10.1016/0966-842X(96)10057-3. PMID: 8950812; Kelly D., Mulder I.E. Microbiome and immunological interactions. Nutr. Rev. 2012; 70 (Suppl 1): S18-S30. DOI:10.1111/j.17534887.2012.00498.x. PMID: 22861803; Proctor L.M. The Human Microbiome Project in 2011 and beyond. Cell Host. Microbe. 2011; 10 (4): 287-291. DOI:10.1016/j.chom.2011.10.001. PMID: 22018227; Franzosa E.A., Huang K., Meadow J.F., Gevers D., Lemon K.P., Bohannan B.J., Huttenhower C. Identifying personal microbiomes using metagenomic codes. Proc. Natl. Acad. Sci. USA. 2015; 112 (22): E2930-E2938. DOI:10.1073/pnas.1423854112. PMID: 25964341; Turnbaugh P.J., Hamady M., Yatsunenko T., Cantarel B.L., Duncan A., Ley R.E., Sogin M.L., Jones W.J., Roe B.A., Affourtit J.P., Egholm M., Henrissat B., Heath A.C., Knight R., Gordon J.I. A core gut microbiome in obese and lean twins. Nature. 2009; 457 (7228): 480–484. DOI:10.1038/nature07540. PMID: 19043404; Sekirov I., Russell S.L., Antunes L.C., Finlay B.B. Gut microbiota in health and disease. Physiol. Rev. 2010; 90 (3): 859–904. DOI:10.1152/physrev.00045.2009. PMID: 20664075; Cho I., Blaser M.J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 2012; 13 (4): 260-270. DOI:10.1038/nrg3182. PMID: 22411464; Lepage P., Leclerc M.C., Joossens M., Mondot S., Blottière H.M., Raes J., Ehrlich D., Doré J. A metagenomic insight into our gut’s microbiome. Gut. 2013; 62 (1): 146-158. DOI:10.1136/gutjnl-2011-301805. PMID: 22525886; Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006; 444 (7122): 1027–1031. DOI:10.1038/nature05414. PMID: 17183312; Mariat D., Firmesse O., Levenez F., Guimar°es V., Sokol H., Doré J., Corthier G., Furet J.P. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009; 9: 123. DOI:10.1186/1471-2180-9-123. PMID: 19508720; Tyakht A.V., Kostryukova E.S., Popenko A.S., Belenikin M.S., Pavlenko A.V., Larin A.K., Karpova I.Y., Selezneva O.V., Semashko T.A., Ospanova E.A., Babenko V.V., Maev I.V., Cheremushkin S.V., Kucheryavyy Y.A., Shcherbakov P.L., Grinevich V.B., Efimov O.I., Sas E.I., Abdulkhakov R.A., Abdulkhakov S.R., Lyalyukova E.A., Livzan M.A., Vlassov V.V., Sagdeev R.Z., Tsukanov V.V., Osipenko M.F., Kozlova I.V., Tkachev A.V., Sergienko V.I., Alexeev D.G., Govorun V.M. Human gut microbiota community structures in urban and rural populations in Russia. Nat. Commun. 2013; 4: 2469. DOI:10.1038/ncomms3469. PMID: 24036685; Insoft R.M., Sanderson I.R., Walker W.A. Development of immune function in the intestine and its role in neonatal diseases. Pediatr. Clin. North Am. 1996; 43 (2): 551-571. DOI:10.1016/S0031-3955(05)70420-X. PMID: 8614615; Tamburini S., Shen N., Wu H.C., Clemente J.C. The microbiome in early life: implications for health outcomes. Nat. Med. 2016; 22 (7): 713-722. DOI:10.1038/nm.4142. PMID: 27387886; Schirmer M., Smeekens S.P., Vlamakis H., Jaeger M., Oosting M., Franzosa E.A., Horst R.T., Jansen T., Jacobs L., Bonder M.J., Kurilshikov A., Fu J., Joosten L., Zhernakova A., Huttenhower C., Wijmenga C., Netea M.G., Xavier R.J. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell. 2016; 167 (7): 1897. DOI:10.1016/j.cell.2016.11.046. PMID: 27984736; Ohnmacht C. Microbiota, regulatory T cell subsets, and allergic disorders. Allergo J. Int. 2016; 25 (5): 114–123. DOI:10.1007/s40629-016-0118-0. PMID: 27656354; Donia M.S., Fischbach M.A. Small molecules from the human microbiota science. Science. 2015; 349 (6246): 1254766. DOI:10.1126/science.1254766. PMID: 26206939; Thorburn A.N., Macia L., Mackay C.R. Diet, metabolites, and «westernlifestyle» inflammatory diseases. Immunity. 2014; 40 (6): 833-842. DOI:10.1016/j.immuni.2014.05.014. PMID: 24950203; Wikoff W.R., Anfora A.T., Liu J., Schultz P.G., Lesley S.A., Peters E.C., Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA. 2009; 10; 106 (10): 3698-3703. DOI:10.1073/pnas.0812874106. PMID: 19234110; Blaser M.J., Falkow S. What are the consequences of the disappearing human microbiota? Nat. Rev. Microbiol. 2009; 7 (12): 887-894. DOI:10.1038/nrmicro2245. PMID: 19898491; Biedermann L., Rogler G. The intestinal microbiota: its role in health and disease. Eur. J. Pediatr. 2015; 174 (2): 151-167. DOI:10.1007/s00431014-2476-2. PMID: 25563215; Белобородова Н.В. Интеграция метаболизма человека и его микробиома при критических состояниях. Общая реаниматология. 2012; 8 (4): 42-54. DOI:10.15360/1813-9779-2012-4-42; Haak B.W., Levi M., WiersingaW.J. Microbiota-targeted therapies on the intensive care unit. Curr. Opin. Crit. Care. 2017; 23 (2): 167-174. DOI:10.1097/MCC.0000000000000389. PMID: 28092309; Marshall J.C. Gastrointestinal flora and its alterations in critical illness. Curr. Opin. Clin. Nutr. Metab. Care. 1999; 2 (5): 405-411. DOI:10.1097/00075197-199909000-00009. PMID: 10589383; Alverdy J.C., Laughlin R.S., Wu L. Influence of the critically ill state on host-pathogen interactions within the intestine: gut-derived sepsis redefined. Crit. Care Med. 2003; 31 (2): 598-607. DOI:10.1097/01.CCM.0000045576.55937.67. PMID: 12576972; Lapichino G., Callegari M.L., Marzorati S., Cigada M., Corbella D., Ferrari S., Morelli L. Impact of antibiotics on the gut microbiota of critically ill patients. J. Med. Microbiol. 2008; 57 (Pt 8): 1007-1014. DOI:10.1099/jmm.0.47387-0. PMID: 18628503; Zaborin A., Smith D., Garfield K., Quensen J., Shakhsheer B., Kade M., Tirrell M., Tiedje J., Gilbert J.A., Zaborina O., Alverdy J.C. Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness. MBio. 2014; 5 (5): e0136114. DOI:10.1128/mBio.01361-14. PMID: 25249279; Stiefel U., Donskey C.J. The role of the intestinal tract as a source for transmission of nosocomial pathogens. Curr. Infect. Dis. Rep. 2004; 6 (6): 420-425. DOI:10.1007/s11908-004-0060-z. PMID: 15538978; Ojima M., Motooka D., Shimizu K., Gotoh K., Shintani A., Yoshiya K., Nakamura S., Ogura H., Iida T., Shimazu T. Metagenomic analysis reveals dynamic changes of whole gut microbiota in the acute phase of intensive care unit patients. Dig. Dis. Sci. 2016; 61 (6): 1628-1634. DOI:10.1007/s10620-015-4011-3. PMID: 26715502; McDonald D., Ackermann G., Khailova L., Baird C., Heyland D., Kozar R., Lemieux M., Derenski K., King J., Vis-Kampen C., Knight R., Wischmeyer P.E. Extreme dysbiosis of the microbiome in critical illness. mSphere. 2016; 1 (4): e00199-16. DOI:10.1128/mSphere.00199-16. PMID: 27602409; Chernevskaya E., Beloborodova N., Bedova A., Pautova A., Klimenko N., Tyakht A., Gusarov V. The gut microbiota disturbances in ICU patients with nosocomial pneumonia. Infection. 2017; 45 (Suppl 1): 37-38. DOI:10.1007/s15010-017-1046-8. PMID: 28799000; Säemann M.D., Böhmig G.A., Zlabinger G.J. Short-chain fatty acids: bacterial mediators of a balanced host-microbial relationship in the human gut. Wien Klin. Wochenschr. 2002; 114 (8-9): 289 –300. PMID: 12212362; Blottière H.M., Buecher B., Galmiche J.P., Cherbut C. Molecular analysis of the effect of short-chain fatty acids on intestinal cell proliferation. Proc. Nutr. Soc. 2003; 62 (1): 101-106. DOI:10.1079/PNS2002215. PMID: 12740064; Yin L., Laevsky G., Giardina C. Butyrate suppression of colonocyte NFkappa B activation and cellular proteasome activity. J. Biol. Chem. 2001; 276 (48): 44641–44646. DOI:10.1074/jbc.M105170200. PMID: 11572859; Heerdt B.G., Houston M.A., Augenlicht L.H. Short-chain fatty acid-initiated cell cycle arrest and apoptosis of colonic epithelial cells is linked to mitochondrial function. Cell Growth Differ. 1997; 8 (5): 523–532. PMID: 9149903; Shimizu K., Ogura H., Goto M., Asahara T., Nomoto K., Morotomi M., Yoshiya K., Matsushima A., Sumi Y., Kuwagata Y., Tanaka H., Shimazu T., Sugimoto H. Altered gut flora and environment in patients with severe SIRS. J. Trauma. 2006; 60 (1): 126-133. DOI:10.1097/01.ta.0000197374.99755.fe. PMID: 16456446; Zoetendal E.G., Raes J., van den Bogert B., Arumugam M., Booijink C.C., Troost F.J., Bork P., Wels M., de Vos W.M., Kleerebezem M. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J. 2012; 6 (7): 1415-1426. DOI:10.1038/ismej.2011.212. PMID: 22258098; Levy M., Blacher E., Elinav E. Microbiome, metabolites and host immunity. Curr. Opin. Microbiol. 2017; 35: 8–15. DOI:10.1016/j.mib.2016.10.003. PMID: 27883933; Beloborodova N.V., Olenin A.Y., Pautova A.K. Metabolomic findings in sepsis as a damage of host-microbial metabolism integration. J. Crit. Care. 2018; 43: 246-255. DOI:10.1016/j.jcrc.2017.09.014. PMID: 28942199; Agus A., Planchais J., Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host. Microbe. 2018; 23 (6): 716724. DOI:10.1016/j.chom.2018.05.003. PMID: 29902437; Fedotcheva N.I., Kazakov R.E., Kondrashova M.N., Beloborodova N.V. Toxic effects of microbial phenolic acids on the functions of mitochondria. Toxicol. Lett. 2008; 180 (3): 182-188. DOI:10.1016/j.toxlet.2008.06.861. PMID: 18634861; Белобородова Н.В., Мороз В.В., Бедова А.Ю., Осипов А.А., Саршор Ю.Н., ЧерневскаяЕ.А. Участие ароматических микробных метаболитов в развитии тяжелой инфекции и сепсиса. Анестезиология и реаниматология. 2016; 61 (3): 202-208. DOI:10.18821/0201-7563-2016-3-202208. PMID: 29465205; Fedotcheva N.I., Chernevskaya E.A., Beloborodova N.V. The role of bacterial phenolic metabolites in mitochondrial dysfunction. Crit. Care. 2016; 20 (Suppl 1): P4. DOI:10.1186/s13054-016-1204-x. PMID: 26996981; Мороз В.В., Белобородова Н.В., Осипов А.А., Власенко А.В., Бедова А.Ю., Паутова А.К. Фенилкарбоновые кислоты в оценке тяжести состояния и эффективности интенсивного лечения больных в реаниматологии. Общая реаниматология. 2016; 12 (4): 37-48. DOI:10.15360/1813-9779-2016-4-37-48; Khodakova A.S., Beloborodova N.V. Microbial metabolites in the blood of patients with sepsis. Crit. Care. 2007; 11 (Suppl 4): 5. DOI:10.1186/cc5150; Valerio F., Lavermicocca P., Pascale M., Visconti A. Production of phenyllactic acid by lactic acid bacteria: an approach to the selection of strains contributing to food quality and preservation. FEMS Microbiol. Lett. 2004; 233 (2): 289-295. DOI:10.1016/j.femsle.2004.02.020. PMID: 15063498; Zhao H., Jiang Z., Chang X., Xue H., Yahefu W., Zhang X. 4-Hydroxyphenylacetic acid prevents acute APAP-induced liver injury by increasing phase II and antioxidant enzymes in mice. Front. Pharmacol. 2018; 9: 653. DOI:10.3389/fphar.2018.00653. PMID: 29973881; Jenner A.M., Rafter J., Halliwell B. Human fecal water content of phenolics: the extent of colonic exposure to aromatic compounds. Free Radic. Biol. Med. 2005; 38 (6): 763-772. DOI:10.1016/j.freeradbiomed.2004.11.020. PMID: 15721987; Белобородова Н.В., Мороз В.В., Осипов А.А., Бедова А.Ю., Оленин А.Ю., Гецина М.Л., Карпова О.В., Оленина Е.Г. Нормальный уровень сепсис-ассоциированных фенилкарбоновых кислот в сыворотке крови человека. Биохимия. 2015; 80 (3): 449-455. DOI:10.1134/S0006297915030128. PMID: 25761691; Beloborodova N., Moroz V., Osipov A., Bedova A., Sarshor Y., Vlasenko A., Olenin A. Tyrosine metabolism disorder and the potential capability of anaerobic microbiota to decrease the value of aromatic metabolites in critically ill patients. Crit. Care. 2014; 18 (Suppl 2): 42-44. DOI:10.1186/cc14063; Rogers A.J., McGeachie M., Baron R.M., Gazourian L., Haspel J.A., Nakahira K., Fredenburgh L.E., Hunninghake G.M., Raby B.A., Matthay M.A., Otero R.M., Fowler V.G., Rivers E.P., Woods C.W., Kingsmore S., Langley R.J., Choi A.M. Metabolomic derangements are associated with mortality in critically ill adult patients. PLoS One. 2014; 9 (1): e87538. DOI:10.1371/journal.pone.0087538. PMID: 24498130; Dovrolis N., Kolios G., Spyrou G.M., Maroulakou I. Computational profiling of the gut-brain axis: microflora dysbiosis insights to neurological disorders. Brief Bioinform. 2017; Nov 27. [Epub ahead of print]. DOI:10.1093/bib/bbx154. PMID: 29186317; Carabotti M., Scirocco A., Maselli M.A., Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015; 28 (2): 203-209. PMID: 25830558; Singh V., Roth S., Llovera G., Sadler R., Garzetti D., Stecher B., Dichgans M., Liesz A. Microbiota dysbiosis controls the neuroinflammatory response after stroke. J. Neurosci. 2016; 36 (28): 7428–7440. DOI:10.1523/JNEUROSCI.1114-16.2016. PMID: 27413153; Stanley D., Mason L.J., Mackin K.E., Srikhanta Y.N., Lyras D., Prakash M.D., Nurgali K., Venegas A., Hill M.D., Moore R.J., Wong C.H. Translocation and dissemination of commensal bacteria in poststroke infection. Nat. Med. 2016; 22 (11): 1277–1284. DOI:10.1038/nm.4194. PMID: 27694934; Benakis C., Brea D., Caballero S., Faraco G., Moore J., Murphy M., Sita G., Racchumi G., Ling L., Pamer E.G., Iadecola C., Anrather J. Commensal mic robiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat. Med. 2016; 22 (5): 516-523. DOI:10.1038/nm.4068. PMID: 27019327; Braniste V., Asmakh M., Kowal C., Anuar F., Abbaspour A., Tóth M., Korecka A., Bakocevic N., Ng L.G., Kundu P., Gulyás B., Halldin C., Hultenby K., Nilsson H., Hebert H., Volpe B.T., Diamond B., Pettersson S. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 2014; 6 (263): 263ra158. DOI:10.1126/scitranslmed.3009759. PMID: 25411471; Fung T.C., Olson C.A., Hsiao E.Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 2017; 20 (2): 145-155. DOI:10.1038/nn.4476. PMID: 28092661; Kau A.L., Ahern P.P., Griffin N.W., Goodman A.L., Gordon J.I. Human nutrition, the gut microbiome and the immune system. Nature. 2011; 474 (7351): 327-336. DOI:10.1038/nature10213. PMID: 21677749; Bravo J.A., Forsythe P., Chew M.V., Escaravage E., Savignac H.M., Dinan T.G., Bienenstock J., Cryan J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA. 2011; 108 (38): 1605016055. DOI:10.1073/pnas.1102999108. PMID: 21876150; Foster J.A., McVey Neufeld K.A. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013; 36 (5): 305-312. DOI:10.1016/j.tins.2013.01.005. PMID: 23384445; DeLegge M.H., Smoke A. Neurodegeneration and inflammation. Nutr. Clin. Pract. 2008; 23 (1): 35-41. DOI:10.1177/011542650802300135. PMID: 18203962; Chaudhry N., Duggal A.K. Sepsis associated encephalopathy. Adv. Med. 2014: 2014: 762320. DOI:10.1155/2014/762320. PMID: 26556425; Белобородова Н.В., Острова И.В. Сепсис-ассоциированная энцефалопатия (обзор). Общая реаниматология. 2017; 13 (5): 121-139. DOI:10.15360/1813-9779-2017-5-121-139; Oleskin A.V., Shenderov B.A. Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota. Microb. Ecol. Health Dis. 2016; 27: 30971. DOI:10.3402/mehd.v27.30971. PMID: 27389418; DaSilva N.A., Nahar P.P., Ma H., Eid A., Wei Z., Meschwitz S., Zawia N.H., Slitt A.L., Seeram N.P. Pomegranate ellagitannin-gut microbial-derived metabolites, urolithins, inhibit neuroinflammation in vitro. Nutr. Neurosci. 2017; 7: 1-11. DOI:10.1080/1028415X.2017.1360558. PMID: 28784051; Yissachar N., Zhou Y., Ung L., Lai N.Y., Mohan J.F., Ehrlicher A., Weitz D.A., Kasper D.L., Chiu I.M., Mathis D., Benoist C. An intestinal organ culture system uncovers a role for the nervous system in microbe-immune crosstalk. Cell. 2017; 168 (6): 1135-1148. e12. DOI:10.1016/j.cell.2017.02.009. PMID: 28262351; Annane D., Sharshar T. Cognitive decline after sepsis. Lancet Respir. Med. 2015; 3 (1): 61-69. DOI:10.1016/S2213-2600(14)70246-2. PMID: 25434614; Basler T., Meier-Hellmann A., Bredle D., Reinhart K. Amino acid imbalance early in septic encephalopathy. Intensive Care Med. 2002; 28 (3): 293–298. DOI:10.1007/s00134-002-1217-6. PMID: 11904658; Белобородова Н.В., Ходакова А.С., Байрамов И.Т., Оленин А.Ю. Микробный путь образования фенилкарбоновых кислот в организме человека. Биохимия. 2009; 74 (12): 1657-1663. PMID: 19961416; Белобородова Н.В., Байрамов И.Т., Оленин А.Ю., Федотчева Н.И. Экзометаболиты некоторых анаэробных микроорганизмов микрофлоры человека. Биомедицинская химия. 2011; 57 (1): 95—105. DOI:10.18097/pbmc20115701095. PMID: 21516781; Mizock B.A., Sabelli H.C., Dubin A., Javaid J.I., Poulos A., Rackow E.C. Еvidence for altered phenylalanine metabolism and comparison with hepatic encephalopathy. Arch. Intern. Med. 1990; 150 (2): 443-449. PMID: 2302019; Williams R.A., Mamotte C.D., Burnett J.R. Phenylketonuria: an inborn error of phenyl-alanine metabolism. Clin. Biochem. Rev. 2008; 29 (1): 3141. PMID: 18566668; O’Mahony S.M., Clarke G., Borre Y.E., Dinan T.G., Cryan J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 2015; 277: 32-48. DOI:10.1016/j.bbr.2014.07.027. PMID: 25078296; Budden K.F., Gellatly S.L., Wood D.L., Cooper M.A., Morrison M., Hugenholtz P., Hansbro P.M. Emerging pathogenic links between microbiota and the gut-lung axis. Nat. Rev. Microbiol 2017; 15 (1): 55–63. DOI:10.1038/nrmicro.2016.142. PMID: 27694885; Deitch E.A., Xu D.Z., Lu Q. Gut lymph hypothesis of early shock and traumainduced multiple organ dysfunction syndrome: a new look at gut origin sepsis. J. Organ Dysfunct. 2006; 2: 70–79. DOI:10.1080/17471060600551772; Reino D.C., Pisarenko V., Palange D., Doucet D., Bonitz R.P., Lu Q., Colorado I., Sheth S.U., Chandler B., Kannan K.B., Ramanathan M., Xu D.Z., Deitch E.A., Feinman R. Trauma hemorrhagic shock-induced lung injury involves a gut-lymph-induced TLR4 pathway in mice. PLoS One. 2011; 6 (8): e14829. DOI:10.1371/journal.pone.0014829. PMID: 21829592; Schuijt T.J., Lankelma J.M., Scicluna B.P., de Sousa e Melo F., Roelofs J.J., de Boer J.D., Hoogendijk A.J., de Beer R., de Vos A., Belzer C., de Vos W.M., van der Poll T., Wiersinga W.J. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut. 2016; 65 (4): 575–583. DOI:10.1136/gutjnl-2015-309728. PMID: 26511795; Gray J., Oehrle K., Worthen G., Alenghat T., Whitsett J., Deshmukh H. Intestinal commensal bacteria mediate lung mucosal immunity and promote resistance of newborn mice to infection. Sci. Transl. Med. 2017; 9 (376): eaaf9412. DOI:10.1126/scitranslmed.aaf9412. PMID: 28179507; Dickson R.P., Singer B.H., Newstead M.W., Falkowski N.R., Erb-Downward J.R., Standiford T.J., Huffnagle G.B. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat. Microbiol. 2016; 1 (10): 16113. DOI:10.1038/nmicrobiol.2016.113. PMID: 27670109; Jacobs M.C., Haak B.W., Hugenholtz F., Wiersinga W.J. Gut microbiota and host defense in critical illness. Curr. Opin. Crit. Care. 2017; 23 (4): 257-263. DOI:10.1097/MCC.0000000000000424. PMID: 28548992; Rogler G., Rosano G. The heart and the gut. Eur. Heart J. 2014; 35 (7): 426-430. DOI:10.1093/eurheartj/eht271. PMID: 23864132; Pathan N., Burmester M., Adamovic T., Berk M., Ng K.W., Betts H., Macrae D., Waddell S., Paul-Clark M., Nuamah R., Mein C., Levin M., Montana G., Mitchell J.A. Intestinal injury and endotoxemia in children undergoing surgery for congenital heart disease. Am. J. Respir. Crit. Care Med. 2011; 184 (11): 1261-1269. DOI:10.1164/rccm.201104-0715OC. PMID: 21868501; Lam V., Su J., Hsu A., Gross G.J., Salzman N.H., Baker J.E. Intestinal microbial metabolites are linked to severity of myocardial infarction in rats. PLoS One. 2016; 11 (8): e0160840. DOI:10.1371/journal.pone.0160840. PMID: 27505423; Vincent J.L., Rello J., Marshall J., Silva E., Anzueto A., Martin C.D., Moreno R., Lipman J., Gomersall C., Sakr Y., Reinhart K.; EPIC II Group of Investigators. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009; 302 (21): 2323-2329. DOI:10.1001/jama.2009.1754. PMID: 19952319; Wischmeyer P.E., McDonald D., Knight R. Role of the microbiome, probiotics, and “dysbiosis therapy” in critical illness. Curr. Opin. Crit. Care. 2016; 22 (4): 347-353. DOI:10.1097/MCC.0000000000000321. PMID: 27327243; Dethlefsen L., Relman D.A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. USA. 2011; 108 (Suppl 1): 4554–4561. DOI:10.1073/pnas.1000087107. PMID: 20847294; Isaac S., Scher J.U., Djukovic A., Jiménez N., Littman D.R., Abramson S.B., Pamer E.G., Ubeda C. Shortand long-term effects of oral vancomycin on the human intestinal microbiota. J. Antimicrob. Chemother. 2017; 72 (1): 128-136. DOI:10.1093/jac/dkw383. PMID: 27707993; Buffie C.G., Jarchum I., Equinda M., Lipuma L., Gobourne A., Viale A., Ubeda C., Xavier J., Pamer E.G. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect. Immun. 2012; 80 (1): 62–73. DOI:10.1128/IAI.05496-11. PMID: 22006564; Deshmukh H.S., Liu Y., Menkiti O.R., Mei J., Dai N., O’Leary C.E., Oliver P.M., Kolls J.K., Weiser J.N., Worthen G.S. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nat. Med. 2014; 20 (5): 524-530. DOI:10.1038/nm.3542. PMID: 24747744; Singer M., Glynne P. Treating critical illness: the importance of first doing no harm. PLoS Med. 2005; 2 (6): e167. DOI:10.1371/journal.pmed.0020167. PMID: 15971943; Manzanares W., Langlois P.L., WischmeyerP.E. Restoring the microbiome in critically ill patients: are probiotics our true friends when we are seriously ill? JPEN. J. Parenter. Enteral Nutr. 2017; 41 (4): 530-533. DOI:10.1177/0148607117700572. PMID: 28445681; Lankelma J.M., Cranendonk D.R., Belzer C., de Vos A.F., de Vos W.M., van der Poll T., Wiersinga W.J. Antibiotic-induced gut microbiota disruption during human endotoxemia: a randomised controlled study. Gut. 2017; 66 (9): 1623-1630. DOI:10.1136/gutjnl-2016-312132. PMID: 27307305; Panigrahi P., Chandel D.S., Hansen N.I., Sharma N., Kandefer S., Parida S., Satpathy R., Pradhan L., Mohapatra A., Mohapatra S.S., Misra P.R., Banaji N., Johnson J.A., Morris J.G.Jr., Gewolb I.H., Chaudhry R. Neonatal sepsis in rural India: timing, microbiology and antibiotic resistance in a population-based prospective study in the community setting. J. Perinatol. 2017; 37 (8): 911-921. DOI:10.1038/jp.2017.67. PMID: 28492525; Manzanares W., Lemieux M., Langlois P.L., Wischmeyer P.E. Probiotic and synbiotic therapy in critical illness: a systematic review and meta-analysis. Crit. Care. 2016; 19: 262. DOI:10.1186/s13054-016-1434-y. PMID: 27538711; Kasatpibal N., Whitney J.D., Saokaew S., Kengkla K., Heitkemper M.M., Apisarnthanarak A. Effectiveness of probiotic, prebiotic, and synbiotic therapies in reducing postoperative complications: a systematic review and network meta-analysis. Clin. Infect. Dis. 2017; 64 (Suppl 2): S153S160. DOI:10.1093/cid/cix114. PMID: 28475793; Klingensmith N.J., Coopersmith C.M. The gut as the motor of multiple organ dysfunction in critical illness. Crit. Care Clin. 2016; 32 (2): 203– 212. DOI:10.1016/j.ccc.2015.11.004. PMID: 27016162; Brenner T., Decker S.O., Grumaz S., Stevens P., Bruckner T., Schmoch T., Pletz M.W., Bracht H., Hofer S., Marx G., Weigand M.A., Sohn K.; TIFOnet Critical Care Trials Group. Next-generation sequencing diagnostics of bacteremia in sepsis (Next GeneSiS-Trial): study protocol of a prospective, observational, noninterventional, multicenter, clinical trial. Medicine (Baltimore). 2018; 97 (6): e9868. DOI:10.1097/MD.0000000000009868. PMID: 29419698; Besselink M.G., van Santvoort H.C., Buskens E., Boermeester M.A., van Goor H., Timmerman H.M., Nieuwenhuijs V.B., Bollen T.L., van Ramshorst B., Witteman B.J., Rosman C., Ploeg R.J., Brink M.A., Schaapherder A.F., Dejong C.H., Wahab P.J., van Laarhoven C.J., van der Harst E., van Eijck C.H., Cuesta M.A., Akkermans L.M., Gooszen H.G.; Dutch Acute Pancreatitis Study Group. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet. 2008; 371 (9613): 651-659. DOI:10.1016/S0140-6736(08)60207-X. PMID: 18279948; Bongaerts G.P., Severijnen R.S. A reassessment of the PROPATRIA study and its implications for probiotic therapy. Nat. Biotechnol. 2016; 34 (1): 55–63. DOI:10.1038/nbt.3436. PMID: 26744983; van Nood E., Speelman P., Nieuwdorp M., Keller J. Fecal microbiota transplantation: facts and controversies. Curr. Opin. Gastroenterol. 2014; 30 (1): 34-39. DOI:10.1097/MOG.0000000000000024. PMID: 24241245; Han S., Shannahan S., Pellish R. Fecal microbiota transplant: treatment options for Clostridium difficile infection in the intensive care unit. J. Intensive Care Med. 2015; 31 (9): 577–586. DOI:10.1177/0885066615594344. PMID: 26141116; Moayyedi P., Yuan Y., Baharith H., Ford A.C. Faecal microbiota transplantation for Clostridium difficile-associated diarrhoea: a systematic review of randomised controlled trials. Med. J. Aust. 2017; 207 (4): 166-172. DOI:10.5694/mja17.00295. PMID: 28814204; McClave S.A., Patel J., Bhutiani N. Should fecal microbial transplantation be used in the ICU? Curr. Opin. Crit. Care. 2018; 24 (2): 105-111. DOI:10.1097/MCC.0000000000000489. PMID: 29432297; Price R., MacLennan G., Glen J.; SuDDICU Collaboration. Selective digestive or oropharyngeal decontamination and topical oropharyngeal chlorhexidine for prevention of death in general intensive care: systematic review and network meta-analysis. BMJ. 2014; 348: g2197. DOI:10.1136/bmj.g2197. PMID: 24687313; Buelow E., Bello González T.D.J., Fuentes S., de Steenhuijsen Piters W.A.A., Lahti L., Bayjanov J.R., Majoor E.A.M., Braat J.C., van Mourik M.S.M., Oostdijk E.A.N., Willems R.J.L., Bonten M.J.M., van Passel M.W.J., Smidt H., van Schaik W. Comparative gut microbiota and resistome profiling of intensive care patients receiving selective digestive tract decontamination and healthy subjects. Microbiome. 2017; 5 (1): 88. DOI:10.1186/s40168-017-0309-z. PMID: 28803549; Dickson R.P. The microbiome and critical illness. Lancet Respir. Med. 2016; 4 (1): 59-72. DOI:10.1016/S2213-2600(15)00427-0. PMID: 26700442; https://www.reanimatology.com/rmt/article/view/1716

  9. 9
    Academic Journal

    Πηγή: General Reanimatology; Том 11, № 5 (2015); 6-14 ; Общая реаниматология; Том 11, № 5 (2015); 6-14 ; 2411-7110 ; 1813-9779 ; 10.15360/1813-9779-2015-5

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.reanimatology.com/rmt/article/view/1482/939; https://www.reanimatology.com/rmt/article/view/1482/996; Дмитриева И.Б., Белобородова Н.В., Черневская Е.А. Биомаркеры прокальцитонин и белок S100в в клинико лабораторном монито ринге при критических состояниях новорожденных. Общая реани матология. 2013; 9 (3): 58–65. http://dx.doi.org/10.15360/1813 9779 2013 3 58; Мороз В.В., Голубев А.М., Кузовлев А.Н., Писарев В.М., Половников С.Г., Шабанов А.К., Голубев М.А. Сурфактантный протеин А (SP A) — про гностический молекулярный биомаркер при остром респираторном дистресс синдроме. Общая реаниматология. 2013; 9 (3): 5–13. http://dx.doi.org/10.15360/1813 9779 2013 3 5; Мороз В.В., Голубев А.М., Кузовлев А.Н., Писарев В.М. Новые диа гностические кандидатные молекулярные биомаркеры острого ре спираторного дистресс синдрома. Общая реаниматология. 2014; 10 (4): 6–10. http://dx.doi.org/10.15360/1813 9779 2014 4 6 10; Мороз В.В., Голубев А.М., Кузовлев А.Н., Шабанов А.К., Писарев В.М. Белок клеток Клара (Club Cell Protein) — новый диагностический кандидатный молекулярный биомаркер при нозокомиальной пнев монии. Общая реаниматология. 2014; 10 (6): 6–14. http://dx.doi. org/ 10.15360/1813 9779 2014 6 6 14; Honoré P.M., Joannes-Boyau O., Collin V., Boer W., Jennes S. Continuous hemofiltration in 2009: what is new for clinicians regard ing pathophysiology, preferred technique and recommended dose? Blood Purif. 2009; 28 (2): 135–143. http://dx.doi.org/10.1159/ 000227282. PMID: 19590180; Rabindranath K.S., Adams J., Macleod A.M., Muirhead N. Intermittent versus continuous renal replacement therapy for acute renal failure in adults. Cochrane Database Syst Rev. 2007; 18 (3): CD003773. http://dx. doi.org/10.1002/14651858.CD003773.pub3. PMID: 17636735; Lin H.H., Liu Y.L., Liu J.H., Chou C.Y., Yang Y.F., Kuo H.L., Huang C.C. Uremic pruritus, cytokines, and polymethylmethacrylate artificial kid ney. Artif. Organs. 2008; 32 (6): 468–472. http://dx.doi.org/10.1111/ j.1525 1594.2008.00568.x. PMID: 18422797; Хорошилов С.Е., Никулин А.В. Эфферентное лечение критических состояний. Общая реаниматология. 2012; 8 (4): 30–41. http://dx. doi.org/10.15360/1813 9779 2012 4 30; Valerio F., Lavermicocca P., Pascale M., Visconti A. Production of phenyllactic acid by lactic acid bacteria: an approach to the selection of strains contributing to food quality and preservation. FEMS Microbiol. Lett. 2004; 233 (2): 289–295. http://dx.doi.org/10.1111/j.1574 6968.2004.tb09494.x. PMID: 15063498; Белобородова Н.В., Ходакова А.С., Байрамов И.Т., Оленин А.Ю. Ми кробный путь образования фенилкарбоновых кислот в организме человека. Биохимия. 2009; 74 (12): 1657–1663. http://dx.doi.org/ 10.1134/S0006297909120086. PMID: 19961416; Russel W.R., Duncan S.H., Scobbie L., Duncan G., Cantlay L., Calder A.G., Anderson S.E., Flint H.J. Major phenylpropanoid derived metabo lites in the human gut can arise from microbial fermentation of protein. Mol. Nutr. Food Res. 2013; 57 (3): 523–535. http://dx.doi.org/ 10.1002/mnfr.201200594. PMID: 23349065; Белобородова Н.В. Интеграция метаболизма человека и его микро биома при критических состояниях. Общая реаниматология. 2012; 8 (4): 42–54. http://dx.doi.org/10.15360/1813 9779 2012 4 42; Белобородова Н.В., Оленин А.Ю., Ходакова А.С. Способ лаборатор ной диагностики сепсиса. Патент РФ на изобретение No2423704.; Urbschat A., Obermüller N., Haferkamp A. Biomarkers of kidney injury. Biomarkers. 2011; 16 (Suppl 1): S22 S30. http://dx.doi.org/10.3109/ 1354750X.2011.587129. PMID: 21707441; Мороз В.В., Белобородова Н.В., Хорошилов С.Е., Никулин А.В., Бедо ва А.Ю., Осипов А.А., Гецина М.Л., Саршор Ю.Н. Способ оценки эф фективности диализно фильтрационной очистки крови. Патент РФ на изобретение No2423704.; Хорошилов С.Е., Белобородова Н.В., Никулин А.В., Бедова А.Ю., Оси пов А.А., Гецина М.Л. Элиминация низкомолекулярных ароматиче ских метаболитов во время экстракорпоральной детоксикации у больных ОПН при сепсисе. Мат лы Девятой Междунар. конф. «Актуальные аспекты экстракорпорального очищения крови в ин тенсивной терапии». М.; 2014: 44–45.; Dellinger R.P., Levy M.M., Rhodes A., Annane D., Gerlach H., Opal S.M., Sevransky J.E., Sprung C.L., Douglas I.S., Jaeschke R., Osborn T.M., Nunnally M.E., Townsend S.R., Reinhart K., Kleinpell R.M., Angus D.C., Deutschman C.S., Machado F.R., Rubenfeld G.D., Webb S., Beale R.J., Vincent J.L., Moreno R.; Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013; 39 (2): 165–228. http://dx.doi.org/10.1007/s00134 012 2769 8. PMID: 23361625; Белобородова Н.В., Мороз В.В., Бедова А.Ю., Оленин А.Ю., Карпова О.В., Гецина М.Л., Оленина Е.Г. Нормальный уровень сепсис ассо циированных фенилкарбоновых кислот в сыворотке крови челове ка. Биохимия. 2015; 80 (3): 449–455. http://dx.doi.org/10.1134/ S0006297915030128. PMID: 25761691; Белобородова Н.В., Оленин А.Ю., Ходакова А.С., Черневская Е.А., Хабиб О.Н. Происхождение и клиническое значение низкомолеку лярных фенольных метаболитов в сыворотке крови человека. Ане стезиология и реаниматология. 2012; 5: 65–72.; https://www.reanimatology.com/rmt/article/view/1482

  10. 10
  11. 11
  12. 12
  13. 13
    Electronic Resource

    Additional Titles: Микробиота кишечника при критических состояниях (обзор)

    Πηγή: General Reanimatology; Том 14, № 5 (2018); 96-119; Общая реаниматология; Том 14, № 5 (2018); 96-119; 2411-7110; 1813-9779; 10.15360/1813-9779-2018-5

    Σύνδεσμος: https://www.reanimatology.com/rmt/article/view/1716/1254
    https://www.reanimatology.com/rmt/article/view/1716/1263
    https://www.reanimatology.com/rmt/article/view/1716/1254
    https://www.reanimatology.com/rmt/article/view/1716/1263
    Белобородова Н.В. Сепсис – метаболомный подход. М.: МИА; 2018: 272. ISBN 978-5-9986-0350-1
    Schmidt K., Mwaigwisya S., Crossman L.C., Doumith M., Munroe D., Pires C., Khan A.M., Woodford N., Saunders N.J., Wain J., O’Grady J., Livermore D.M. Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. J. Antimicrob. Chemother. 2017; 72 (1): 104–114. DOI: 10.1093/jac/dkw397. PMID: 27667325
    Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012; 486 (7402): 207–214. DOI: 10.1038/nature11234. PMID: 22699609
    Berg R.D. The indigenous gastrointestinal microflora. Trends Microbiol. 1996; 4 (11): 430–435. DOI: 10.1016/0966-842X(96)10057-3. PMID: 8950812
    Kelly D., Mulder I.E. Microbiome and immunological interactions. Nutr. Rev. 2012; 70 (Suppl 1): S18-S30. DOI: 10.1111/j.17534887.2012.00498.x. PMID: 22861803
    Proctor L.M. The Human Microbiome Project in 2011 and beyond. Cell Host. Microbe. 2011; 10 (4): 287-291. DOI:10.1016/j.chom.2011.10.001. PMID: 22018227
    Franzosa E.A., Huang K., Meadow J.F., Gevers D., Lemon K.P., Bohannan B.J., Huttenhower C. Identifying personal microbiomes using metagenomic codes. Proc. Natl. Acad. Sci. USA. 2015; 112 (22): E2930-E2938. DOI: 10.1073/pnas.1423854112. PMID: 25964341
    Turnbaugh P.J., Hamady M., Yatsunenko T., Cantarel B.L., Duncan A., Ley R.E., Sogin M.L., Jones W.J., Roe B.A., Affourtit J.P., Egholm M., Henrissat B., Heath A.C., Knight R., Gordon J.I. A core gut microbiome in obese and lean twins. Nature. 2009; 457 (7228): 480–484. DOI: 10.1038/nature07540. PMID: 19043404
    Sekirov I., Russell S.L., Antunes L.C., Finlay B.B. Gut microbiota in health and disease. Physiol. Rev. 2010; 90 (3): 859–904. DOI: 10.1152/physrev.00045.2009. PMID: 20664075
    Cho I., Blaser M.J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 2012; 13 (4): 260-270. DOI: 10.1038/nrg3182. PMID: 22411464
    Lepage P., Leclerc M.C., Joossens M., Mondot S., Blottière H.M., Raes J., Ehrlich D., Doré J. A metagenomic insight into our gut’s microbiome. Gut. 2013; 62 (1): 146-158. DOI: 10.1136/gutjnl-2011-301805. PMID: 22525886
    Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006; 444 (7122): 1027–1031. DOI: 10.1038/nature05414. PMID: 17183312
    Mariat D., Firmesse O., Levenez F., Guimar°es V., Sokol H., Doré J., Corthier G., Furet J.P. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009; 9: 123. DOI: 10.1186/1471-2180-9-123. PMID: 19508720
    Tyakht A.V., Kostryukova E.S., Popenko A.S., Belenikin M.S., Pavlenko A.V., Larin A.K., Karpova I.Y., Selezneva O.V., Semashko T.A., Ospanova E.A., Babenko V.V., Maev I.V., Cheremushkin S.V., Kucheryavyy Y.A., Shcherbakov P.L., Grinevich V.B., Efimov O.I., Sas E.I., Abdulkhakov R.A., Abdulkhakov S.R., Lyalyukova E.A., Livzan M.A., Vlassov V.V., Sagdeev R.Z., Tsukanov V.V., Osipenko M.F., Kozlova I.V., Tkachev A.V., Sergienko V.I., Alexeev D.G., Govorun V.M. Human gut microbiota community structures in urban and rural populations in Russia. Nat. Commun. 2013; 4: 2469. DOI: 10.1038/ncomms3469. PMID: 24036685
    Insoft R.M., Sanderson I.R., Walker W.A. Development of immune function in the intestine and its role in neonatal diseases. Pediatr. Clin. North Am. 1996; 43 (2): 551-571. DOI: 10.1016/S0031-3955(05)70420-X. PMID: 8614615
    Tamburini S., Shen N., Wu H.C., Clemente J.C. The microbiome in early life: implications for health outcomes. Nat. Med. 2016; 22 (7): 713-722. DOI: 10.1038/nm.4142. PMID: 27387886
    Schirmer M., Smeekens S.P., Vlamakis H., Jaeger M., Oosting M., Franzosa E.A., Horst R.T., Jansen T., Jacobs L., Bonder M.J., Kurilshikov A., Fu J., Joosten L., Zhernakova A., Huttenhower C., Wijmenga C., Netea M.G., Xavier R.J. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell. 2016; 167 (7): 1897. DOI: 10.1016/j.cell.2016.11.046. PMID: 27984736
    Ohnmacht C. Microbiota, regulatory T cell subsets, and allergic disorders. Allergo J. Int. 2016; 25 (5): 114–123. DOI: 10.1007/s40629-016-0118-0. PMID: 27656354
    Donia M.S., Fischbach M.A. Small molecules from the human microbiota science. Science. 2015; 349 (6246): 1254766. DOI: 10.1126/science.1254766. PMID: 26206939
    Thorburn A.N., Macia L., Mackay C.R. Diet, metabolites, and «westernlifestyle» inflammatory diseases. Immunity. 2014; 40 (6): 833-842. DOI: 10.1016/j.immuni.2014.05.014. PMID: 24950203
    Wikoff W.R., Anfora A.T., Liu J., Schultz P.G., Lesley S.A., Peters E.C., Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA. 2009; 10; 106 (10): 3698-3703. DOI: 10.1073/pnas.0812874106. PMID: 19234110
    Blaser M.J., Falkow S. What are the consequences of the disappearing human microbiota? Nat. Rev. Microbiol. 2009; 7 (12): 887-894. DOI: 10.1038/nrmicro2245. PMID: 19898491
    Biedermann L., Rogler G. The intestinal microbiota: its role in health and disease. Eur. J. Pediatr. 2015; 174 (2): 151-167. DOI: 10.1007/s00431014-2476-2. PMID: 25563215
    Белобородова Н.В. Интеграция метаболизма человека и его микробиома при критических состояниях. Общая реаниматология. 2012; 8 (4): 42-54. DOI: 10.15360/1813-9779-2012-4-42
    Haak B.W., Levi M., WiersingaW.J. Microbiota-targeted therapies on the intensive care unit. Curr. Opin. Crit. Care. 2017; 23 (2): 167-174. DOI: 10.1097/MCC.0000000000000389. PMID: 28092309
    Marshall J.C. Gastrointestinal flora and its alterations in critical illness. Curr. Opin. Clin. Nutr. Metab. Care. 1999; 2 (5): 405-411. DOI: 10.1097/00075197-199909000-00009. PMID: 10589383
    Alverdy J.C., Laughlin R.S., Wu L. Influence of the critically ill state on host-pathogen interactions within the intestine: gut-derived sepsis redefined. Crit. Care Med. 2003; 31 (2): 598-607. DOI: 10.1097/01.CCM.0000045576.55937.67. PMID: 12576972
    Lapichino G., Callegari M.L., Marzorati S., Cigada M., Corbella D., Ferrari S., Morelli L. Impact of antibiotics on the gut microbiota of critically ill patients. J. Med. Microbiol. 2008; 57 (Pt 8): 1007-1014. DOI: 10.1099/jmm.0.47387-0. PMID: 18628503
    Zaborin A., Smith D., Garfield K., Quensen J., Shakhsheer B., Kade M., Tirrell M., Tiedje J., Gilbert J.A., Zaborina O., Alverdy J.C. Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness. MBio. 2014; 5 (5): e0136114. DOI: 10.1128/mBio.01361-14. PMID: 25249279
    Stiefel U., Donskey C.J. The role of the intestinal tract as a source for transmission of nosocomial pathogens. Curr. Infect. Dis. Rep. 2004; 6 (6): 420-425. DOI: 10.1007/s11908-004-0060-z. PMID: 15538978
    Ojima M., Motooka D., Shimizu K., Gotoh K., Shintani A., Yoshiya K., Nakamura S., Ogura H., Iida T., Shimazu T. Metagenomic analysis reveals dynamic changes of whole gut microbiota in the acute phase of intensive care unit patients. Dig. Dis. Sci. 2016; 61 (6): 1628-1634. DOI: 10.1007/s10620-015-4011-3. PMID: 26715502
    McDonald D., Ackermann G., Khailova L., Baird C., Heyland D., Kozar R., Lemieux M., Derenski K., King J., Vis-Kampen C., Knight R., Wischmeyer P.E. Extreme dysbiosis of the microbiome in critical illness. mSphere. 2016; 1 (4): e00199-16. DOI: 10.1128/mSphere.00199-16. PMID: 27602409
    Chernevskaya E., Beloborodova N., Bedova A., Pautova A., Klimenko N., Tyakht A., Gusarov V. The gut microbiota disturbances in ICU patients with nosocomial pneumonia. Infection. 2017; 45 (Suppl 1): 37-38. DOI: 10.1007/s15010-017-1046-8. PMID: 28799000
    Säemann M.D., Böhmig G.A., Zlabinger G.J. Short-chain fatty acids: bacterial mediators of a balanced host-microbial relationship in the human gut. Wien Klin. Wochenschr. 2002; 114 (8-9): 289 –300. PMID: 12212362
    Blottière H.M., Buecher B., Galmiche J.P., Cherbut C. Molecular analysis of the effect of short-chain fatty acids on intestinal cell proliferation. Proc. Nutr. Soc. 2003; 62 (1): 101-106. DOI: 10.1079/PNS2002215. PMID: 12740064
    Yin L., Laevsky G., Giardina C. Butyrate suppression of colonocyte NFkappa B activation and cellular proteasome activity. J. Biol. Chem. 2001; 276 (48): 44641–44646. DOI: 10.1074/jbc.M105170200. PMID: 11572859
    Heerdt B.G., Houston M.A., Augenlicht L.H. Short-chain fatty acid-initiated cell cycle arrest and apoptosis of colonic epithelial cells is linked to mitochondrial function. Cell Growth Differ. 1997; 8 (5): 523–532. PMID: 9149903
    Shimizu K., Ogura H., Goto M., Asahara T., Nomoto K., Morotomi M., Yoshiya K., Matsushima A., Sumi Y., Kuwagata Y., Tanaka H., Shimazu T., Sugimoto H. Altered gut flora and environment in patients with severe SIRS. J. Trauma. 2006; 60 (1): 126-133. DOI: 10.1097/01.ta.0000197374.99755.fe. PMID: 16456446
    Zoetendal E.G., Raes J., van den Bogert B., Arumugam M., Booijink C.C., Troost F.J., Bork P., Wels M., de Vos W.M., Kleerebezem M. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J. 2012; 6 (7): 1415-1426. DOI: 10.1038/ismej.2011.212. PMID: 22258098
    Levy M., Blacher E., Elinav E. Microbiome, metabolites and host immunity. Curr. Opin. Microbiol. 2017; 35: 8–15. DOI: 10.1016/j.mib.2016.10.003. PMID: 27883933
    Beloborodova N.V., Olenin A.Y., Pautova A.K. Metabolomic findings in sepsis as a damage of host-microbial metabolism integration. J. Crit. Care. 2018; 43: 246-255. DOI: 10.1016/j.jcrc.2017.09.014. PMID: 28942199
    Agus A., Planchais J., Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host. Microbe. 2018; 23 (6): 716724. DOI: 10.1016/j.chom.2018.05.003. PMID: 29902437
    Fedotcheva N.I., Kazakov R.E., Kondrashova M.N., Beloborodova N.V. Toxic effects of microbial phenolic acids on the functions of mitochondria. Toxicol. Lett. 2008; 180 (3): 182-188. DOI: 10.1016/j.toxlet.2008.06.861. PMID: 18634861
    Белобородова Н.В., Мороз В.В., Бедова А.Ю., Осипов А.А., Саршор Ю.Н., ЧерневскаяЕ.А. Участие ароматических микробных метаболитов в развитии тяжелой инфекции и сепсиса. Анестезиология и реаниматология. 2016; 61 (3): 202-208. DOI: 10.18821/0201-7563-2016-3-202208. PMID: 29465205
    Fedotcheva N.I., Chernevskaya E.A., Beloborodova N.V. The role of bacterial phenolic metabolites in mitochondrial dysfunction. Crit. Care. 2016; 20 (Suppl 1): P4. DOI: 10.1186/s13054-016-1204-x. PMID: 26996981
    Мороз В.В., Белобородова Н.В., Осипов А.А., Власенко А.В., Бедова А.Ю., Паутова А.К. Фенилкарбоновые кислоты в оценке тяжести состояния и эффективности интенсивного лечения больных в реаниматологии. Общая реаниматология. 2016; 12 (4): 37-48. DOI: 10.15360/1813-9779-2016-4-37-48
    Khodakova A.S., Beloborodova N.V. Microbial metabolites in the blood of patients with sepsis. Crit. Care. 2007; 11 (Suppl 4): 5. DOI: 10.1186/cc5150
    Valerio F., Lavermicocca P., Pascale M., Visconti A. Production of phenyllactic acid by lactic acid bacteria: an approach to the selection of strains contributing to food quality and preservation. FEMS Microbiol. Lett. 2004; 233 (2): 289-295. DOI: 10.1016/j.femsle.2004.02.020. PMID: 15063498
    Zhao H., Jiang Z., Chang X., Xue H., Yahefu W., Zhang X. 4-Hydroxyphenylacetic acid prevents acute APAP-induced liver injury by increasing phase II and antioxidant enzymes in mice. Front. Pharmacol. 2018; 9: 653. DOI: 10.3389/fphar.2018.00653. PMID: 29973881
    Jenner A.M., Rafter J., Halliwell B. Human fecal water content of phenolics: the extent of colonic exposure to aromatic compounds. Free Radic. Biol. Med. 2005; 38 (6): 763-772. DOI: 10.1016/j.freeradbiomed.2004.11.020. PMID: 15721987
    Белобородова Н.В., Мороз В.В., Осипов А.А., Бедова А.Ю., Оленин А.Ю., Гецина М.Л., Карпова О.В., Оленина Е.Г. Нормальный уровень сепсис-ассоциированных фенилкарбоновых кислот в сыворотке крови человека. Биохимия. 2015; 80 (3): 449-455. DOI: 10.1134/S0006297915030128. PMID: 25761691
    Beloborodova N., Moroz V., Osipov A., Bedova A., Sarshor Y., Vlasenko A., Olenin A. Tyrosine metabolism disorder and the potential capability of anaerobic microbiota to decrease the value of aromatic metabolites in critically ill patients. Crit. Care. 2014; 18 (Suppl 2): 42-44. DOI: 10.1186/cc14063
    Rogers A.J., McGeachie M., Baron R.M., Gazourian L., Haspel J.A., Nakahira K., Fredenburgh L.E., Hunninghake G.M., Raby B.A., Matthay M.A., Otero R.M., Fowler V.G., Rivers E.P., Woods C.W., Kingsmore S., Langley R.J., Choi A.M. Metabolomic derangements are associated with mortality in critically ill adult patients. PLoS One. 2014; 9 (1): e87538. DOI: 10.1371/journal.pone.0087538. PMID: 24498130
    Dovrolis N., Kolios G., Spyrou G.M., Maroulakou I. Computational profiling of the gut-brain axis: microflora dysbiosis insights to neurological disorders. Brief Bioinform. 2017; Nov 27. [Epub ahead of print]. DOI: 10.1093/bib/bbx154. PMID: 29186317
    Carabotti M., Scirocco A., Maselli M.A., Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015; 28 (2): 203-209. PMID: 25830558
    Singh V., Roth S., Llovera G., Sadler R., Garzetti D., Stecher B., Dichgans M., Liesz A. Microbiota dysbiosis controls the neuroinflammatory response after stroke. J. Neurosci. 2016; 36 (28): 7428–7440. DOI: 10.1523/JNEUROSCI.1114-16.2016. PMID: 27413153
    Stanley D., Mason L.J., Mackin K.E., Srikhanta Y.N., Lyras D., Prakash M.D., Nurgali K., Venegas A., Hill M.D., Moore R.J., Wong C.H. Translocation and dissemination of commensal bacteria in poststroke infection. Nat. Med. 2016; 22 (11): 1277–1284. DOI: 10.1038/nm.4194. PMID: 27694934
    Benakis C., Brea D., Caballero S., Faraco G., Moore J., Murphy M., Sita G., Racchumi G., Ling L., Pamer E.G., Iadecola C., Anrather J. Commensal mic robiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat. Med. 2016; 22 (5): 516-523. DOI: 10.1038/nm.4068. PMID: 27019327
    Braniste V., Asmakh M., Kowal C., Anuar F., Abbaspour A., Tóth M., Korecka A., Bakocevic N., Ng L.G., Kundu P., Gulyás B., Halldin C., Hultenby K., Nilsson H., Hebert H., Volpe B.T., Diamond B., Pettersson S. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 2014; 6 (263): 263ra158. DOI: 10.1126/scitranslmed.3009759. PMID: 25411471
    Fung T.C., Olson C.A., Hsiao E.Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 2017; 20 (2): 145-155. DOI: 10.1038/nn.4476. PMID: 28092661
    Kau A.L., Ahern P.P., Griffin N.W., Goodman A.L., Gordon J.I. Human nutrition, the gut microbiome and the immune system. Nature. 2011; 474 (7351): 327-336. DOI: 10.1038/nature10213. PMID: 21677749
    Bravo J.A., Forsythe P., Chew M.V., Escaravage E., Savignac H.M., Dinan T.G., Bienenstock J., Cryan J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA. 2011; 108 (38): 1605016055. DOI: 10.1073/pnas.1102999108. PMID: 21876150
    Foster J.A., McVey Neufeld K.A. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013; 36 (5): 305-312. DOI: 10.1016/j.tins.2013.01.005. PMID: 23384445
    DeLegge M.H., Smoke A. Neurodegeneration and inflammation. Nutr. Clin. Pract. 2008; 23 (1): 35-41. DOI: 10.1177/011542650802300135. PMID: 18203962
    Chaudhry N., Duggal A.K. Sepsis associated encephalopathy. Adv. Med. 2014: 2014: 762320. DOI: 10.1155/2014/762320. PMID: 26556425
    Белобородова Н.В., Острова И.В. Сепсис-ассоциированная энцефалопатия (обзор). Общая реаниматология. 2017; 13 (5): 121-139. DOI: 10.15360/1813-9779-2017-5-121-139
    Oleskin A.V., Shenderov B.A. Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota. Microb. Ecol. Health Dis. 2016; 27: 30971. DOI: 10.3402/mehd.v27.30971. PMID: 27389418
    DaSilva N.A., Nahar P.P., Ma H., Eid A., Wei Z., Meschwitz S., Zawia N.H., Slitt A.L., Seeram N.P. Pomegranate ellagitannin-gut microbial-derived metabolites, urolithins, inhibit neuroinflammation in vitro. Nutr. Neurosci. 2017; 7: 1-11. DOI: 10.1080/1028415X.2017.1360558. PMID: 28784051
    Yissachar N., Zhou Y., Ung L., Lai N.Y., Mohan J.F., Ehrlicher A., Weitz D.A., Kasper D.L., Chiu I.M., Mathis D., Benoist C. An intestinal organ culture system uncovers a role for the nervous system in microbe-immune crosstalk. Cell. 2017; 168 (6): 1135-1148. e12. DOI: 10.1016/j.cell.2017.02.009. PMID: 28262351
    Annane D., Sharshar T. Cognitive decline after sepsis. Lancet Respir. Med. 2015; 3 (1): 61-69. DOI: 10.1016/S2213-2600(14)70246-2. PMID: 25434614
    Basler T., Meier-Hellmann A., Bredle D., Reinhart K. Amino acid imbalance early in septic encephalopathy. Intensive Care Med. 2002; 28 (3): 293–298. DOI: 10.1007/s00134-002-1217-6. PMID: 11904658
    Белобородова Н.В., Ходакова А.С., Байрамов И.Т., Оленин А.Ю. Микробный путь образования фенилкарбоновых кислот в организме человека. Биохимия. 2009; 74 (12): 1657-1663. PMID: 19961416
    Белобородова Н.В., Байрамов И.Т., Оленин А.Ю., Федотчева Н.И. Экзометаболиты некоторых анаэробных микроорганизмов микрофлоры человека. Биомедицинская химия. 2011; 57 (1): 95—105. DOI: 10.18097/pbmc20115701095. PMID: 21516781
    Mizock B.A., Sabelli H.C., Dubin A., Javaid J.I., Poulos A., Rackow E.C. Еvidence for altered phenylalanine metabolism and comparison with hepatic encephalopathy. Arch. Intern. Med. 1990; 150 (2): 443-449. PMID: 2302019
    Williams R.A., Mamotte C.D., Burnett J.R. Phenylketonuria: an inborn error of phenyl-alanine metabolism. Clin. Biochem. Rev. 2008; 29 (1): 3141. PMID: 18566668
    O’Mahony S.M., Clarke G., Borre Y.E., Dinan T.G., Cryan J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 2015; 277: 32-48. DOI: 10.1016/j.bbr.2014.07.027. PMID: 25078296
    Budden K.F., Gellatly S.L., Wood D.L., Cooper M.A., Morrison M., Hugenholtz P., Hansbro P.M. Emerging pathogenic links between microbiota and the gut-lung axis. Nat. Rev. Microbiol 2017; 15 (1): 55–63. DOI: 10.1038/nrmicro.2016.142. PMID: 27694885
    Deitch E.A., Xu D.Z., Lu Q. Gut lymph hypothesis of early shock and traumainduced multiple organ dysfunction syndrome: a new look at gut origin sepsis. J. Organ Dysfunct. 2006; 2: 70–79. DOI: 10.1080/17471060600551772
    Reino D.C., Pisarenko V., Palange D., Doucet D., Bonitz R.P., Lu Q., Colorado I., Sheth S.U., Chandler B., Kannan K.B., Ramanathan M., Xu D.Z., Deitch E.A., Feinman R. Trauma hemorrhagic shock-induced lung injury involves a gut-lymph-induced TLR4 pathway in mice. PLoS One. 2011; 6 (8): e14829. DOI: 10.1371/journal.pone.0014829. PMID: 21829592
    Schuijt T.J., Lankelma J.M., Scicluna B.P., de Sousa e Melo F., Roelofs J.J., de Boer J.D., Hoogendijk A.J., de Beer R., de Vos A., Belzer C., de Vos W.M., van der Poll T., Wiersinga W.J. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut. 2016; 65 (4): 575–583. DOI: 10.1136/gutjnl-2015-309728. PMID: 26511795
    Gray J., Oehrle K., Worthen G., Alenghat T., Whitsett J., Deshmukh H. Intestinal commensal bacteria mediate lung mucosal immunity and promote resistance of newborn mice to infection. Sci. Transl. Med. 2017; 9 (376): eaaf9412. DOI: 10.1126/scitranslmed.aaf9412. PMID: 28179507
    Dickson R.P., Singer B.H., Newstead M.W., Falkowski N.R., Erb-Downward J.R., Standiford T.J., Huffnagle G.B. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat. Microbiol. 2016; 1 (10): 16113. DOI: 10.1038/nmicrobiol.2016.113. PMID: 27670109
    Jacobs M.C., Haak B.W., Hugenholtz F., Wiersinga W.J. Gut microbiota and host defense in critical illness. Curr. Opin. Crit. Care. 2017; 23 (4): 257-263. DOI: 10.1097/MCC.0000000000000424. PMID: 28548992
    Rogler G., Rosano G. The heart and the gut. Eur. Heart J. 2014; 35 (7): 426-430. DOI: 10.1093/eurheartj/eht271. PMID: 23864132
    Pathan N., Burmester M., Adamovic T., Berk M., Ng K.W., Betts H., Macrae D., Waddell S., Paul-Clark M., Nuamah R., Mein C., Levin M., Montana G., Mitchell J.A. Intestinal injury and endotoxemia in children undergoing surgery for congenital heart disease. Am. J. Respir. Crit. Care Med. 2011; 184 (11): 1261-1269. DOI: 10.1164/rccm.201104-0715OC. PMID: 21868501
    Lam V., Su J., Hsu A., Gross G.J., Salzman N.H., Baker J.E. Intestinal microbial metabolites are linked to severity of myocardial infarction in rats. PLoS One. 2016; 11 (8): e0160840. DOI: 10.1371/journal.pone.0160840. PMID: 27505423
    Vincent J.L., Rello J., Marshall J., Silva E., Anzueto A., Martin C.D., Moreno R., Lipman J., Gomersall C., Sakr Y., Reinhart K.; EPIC II Group of Investigators. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009; 302 (21): 2323-2329. DOI: 10.1001/jama.2009.1754. PMID: 19952319
    Wischmeyer P.E., McDonald D., Knight R. Role of the microbiome, probiotics, and “dysbiosis therapy” in critical illness. Curr. Opin. Crit. Care. 2016; 22 (4): 347-353. DOI: 10.1097/MCC.0000000000000321. PMID: 27327243
    Dethlefsen L., Relman D.A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. USA. 2011; 108 (Suppl 1): 4554–4561. DOI: 10.1073/pnas.1000087107. PMID: 20847294
    Isaac S., Scher J.U., Djukovic A., Jiménez N., Littman D.R., Abramson S.B., Pamer E.G., Ubeda C. Shortand long-term effects of oral vancomycin on the human intestinal microbiota. J. Antimicrob. Chemother. 2017; 72 (1): 128-136. DOI: 10.1093/jac/dkw383. PMID: 27707993
    Buffie C.G., Jarchum I., Equinda M., Lipuma L., Gobourne A., Viale A., Ubeda C., Xavier J., Pamer E.G. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect. Immun. 2012; 80 (1): 62–73. DOI: 10.1128/IAI.05496-11. PMID: 22006564
    Deshmukh H.S., Liu Y., Menkiti O.R., Mei J., Dai N., O’Leary C.E., Oliver P.M., Kolls J.K., Weiser J.N., Worthen G.S. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nat. Med. 2014; 20 (5): 524-530. DOI: 10.1038/nm.3542. PMID: 24747744
    Singer M., Glynne P. Treating critical illness: the importance of first doing no harm. PLoS Med. 2005; 2 (6): e167. DOI: 10.1371/journal.pmed.0020167. PMID: 15971943
    Manzanares W., Langlois P.L., WischmeyerP.E. Restoring the microbiome in critically ill patients: are probiotics our true friends when we are seriously ill? JPEN. J. Parenter. Enteral Nutr. 2017; 41 (4): 530-533. DOI: 10.1177/0148607117700572. PMID: 28445681
    Lankelma J.M., Cranendonk D.R., Belzer C., de Vos A.F., de Vos W.M., van der Poll T., Wiersinga W.J. Antibiotic-induced gut microbiota disruption during human endotoxemia: a randomised controlled study. Gut. 2017; 66 (9): 1623-1630. DOI: 10.1136/gutjnl-2016-312132. PMID: 27307305
    Panigrahi P., Chandel D.S., Hansen N.I., Sharma N., Kandefer S., Parida S., Satpathy R., Pradhan L., Mohapatra A., Mohapatra S.S., Misra P.R., Banaji N., Johnson J.A., Morris J.G.Jr., Gewolb I.H., Chaudhry R. Neonatal sepsis in rural India: timing, microbiology and antibiotic resistance in a population-based prospective study in the community setting. J. Perinatol. 2017; 37 (8): 911-921. DOI: 10.1038/jp.2017.67. PMID: 28492525
    Manzanares W., Lemieux M., Langlois P.L., Wischmeyer P.E. Probiotic and synbiotic therapy in critical illness: a systematic review and meta-analysis. Crit. Care. 2016; 19: 262. DOI: 10.1186/s13054-016-1434-y. PMID: 27538711
    Kasatpibal N., Whitney J.D., Saokaew S., Kengkla K., Heitkemper M.M., Apisarnthanarak A. Effectiveness of probiotic, prebiotic, and synbiotic therapies in reducing postoperative complications: a systematic review and network meta-analysis. Clin. Infect. Dis. 2017; 64 (Suppl 2): S153S160. DOI: 10.1093/cid/cix114. PMID: 28475793
    Klingensmith N.J., Coopersmith C.M. The gut as the motor of multiple organ dysfunction in critical illness. Crit. Care Clin. 2016; 32 (2): 203– 212. DOI: 10.1016/j.ccc.2015.11.004. PMID: 27016162
    Brenner T., Decker S.O., Grumaz S., Stevens P., Bruckner T., Schmoch T., Pletz M.W., Bracht H., Hofer S., Marx G., Weigand M.A., Sohn K.; TIFOnet Critical Care Trials Group. Next-generation sequencing diagnostics of bacteremia in sepsis (Next GeneSiS-Trial): study protocol of a prospective, observational, noninterventional, multicenter, clinical trial. Medicine (Baltimore). 2018; 97 (6): e9868. DOI: 10.1097/MD.0000000000009868. PMID: 29419698
    Besselink M.G., van Santvoort H.C., Buskens E., Boermeester M.A., van Goor H., Timmerman H.M., Nieuwenhuijs V.B., Bollen T.L., van Ramshorst B., Witteman B.J., Rosman C., Ploeg R.J., Brink M.A., Schaapherder A.F., Dejong C.H., Wahab P.J., van Laarhoven C.J., van der Harst E., van Eijck C.H., Cuesta M.A., Akkermans L.M., Gooszen H.G.; Dutch Acute Pancreatitis Study Group. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet. 2008; 371 (9613): 651-659. DOI: 10.1016/S0140-6736(08)60207-X. PMID: 18279948
    Bongaerts G.P., Severijnen R.S. A reassessment of the PROPATRIA study and its implications for probiotic therapy. Nat. Biotechnol. 2016; 34 (1): 55–63. DOI: 10.1038/nbt.3436. PMID: 26744983
    van Nood E., Speelman P., Nieuwdorp M., Keller J. Fecal microbiota transplantation: facts and controversies. Curr. Opin. Gastroenterol. 2014; 30 (1): 34-39. DOI: 10.1097/MOG.0000000000000024. PMID: 24241245
    Han S., Shannahan S., Pellish R. Fecal microbiota transplant: treatment options for Clostridium difficile infection in the intensive care unit. J. Intensive Care Med. 2015; 31 (9): 577–586. DOI: 10.1177/0885066615594344. PMID: 26141116
    Moayyedi P., Yuan Y., Baharith H., Ford A.C. Faecal microbiota transplantation for Clostridium difficile-associated diarrhoea: a systematic review of randomised controlled trials. Med. J. Aust. 2017; 207 (4): 166-172. DOI: 10.5694/mja17.00295. PMID: 28814204
    McClave S.A., Patel J., Bhutiani N. Should fecal microbial transplantation be used in the ICU? Curr. Opin. Crit. Care. 2018; 24 (2): 105-111. DOI: 10.1097/MCC.0000000000000489. PMID: 29432297
    Price R., MacLennan G., Glen J.; SuDDICU Collaboration. Selective digestive or oropharyngeal decontamination and topical oropharyngeal chlorhexidine for prevention of death in general intensive care: systematic review and network meta-analysis. BMJ. 2014; 348: g2197. DOI: 10.1136/bmj.g2197. PMID: 24687313
    Buelow E., Bello González T.D.J., Fuentes S., de Steenhuijsen Piters W.A.A., Lahti L., Bayjanov J.R., Majoor E.A.M., Braat J.C., van Mourik M.S.M., Oostdijk E.A.N., Willems R.J.L., Bonten M.J.M., van Passel M.W.J., Smidt H., van Schaik W. Comparative gut microbiota and resistome profiling of intensive care patients receiving selective digestive tract decontamination and healthy subjects. Microbiome. 2017; 5 (1): 88. DOI: 10.1186/s40168-017-0309-z. PMID: 28803549
    Dickson R.P. The microbiome and critical illness. Lancet Respir. Med. 2016; 4 (1): 59-72. DOI: 10.1016/S2213-2600(15)00427-0. PMID: 26700442

  14. 14
    Electronic Resource

    Additional Titles: ВЛИЯНИЕ ЭКСТРАКОРПОРАЛЬНОЙ ДЕТОКСИКАЦИИ НА УРОВЕНЬ АРОМАТИЧЕСКИХ МИКРОБНЫХ МЕТАБОЛИТОВ В СЫВОРОТКЕ КРОВИ ПРИ СЕПСИСЕ

    Συγγραφείς: S. Khoroshilov E.; V. A. Negovsky Research Institute of General Reanimatology, Moscow, Russia 25, Petrovka St., Build. 2, Moscow 107031 Acad. N. N. Burdenko Main Military Clinical Hospital, Ministry of Defense of the Russian Federation 3, Gospitalnaya Sq., Moscow 105094, Russia, N. Beloborodova V.; V. A. Negovsky Research Institute of General Reanimatology, Moscow, Russia 25, Petrovka St., Build. 2, Moscow 107031, A. Nikulin V.; V. A. Negovsky Research Institute of General Reanimatology, Moscow, Russia 25, Petrovka St., Build. 2, Moscow 107031 Acad. N. N. Burdenko Main Military Clinical Hospital, Ministry of Defense of the Russian Federation 3, Gospitalnaya Sq., Moscow 105094, Russia, A. Bedova Yu.; V. A. Negovsky Research Institute of General Reanimatology, Moscow, Russia 25, Petrovka St., Build. 2, Moscow 107031, С. Хорошилов Е.; НИИ общей реаниматологии им. В. А. Неговского Россия, 107031, Москва, ул. Петровка, д. 25, стр. 2 Главный военный клинический госпиталь им. акад. Н. Н. Бурденко МО РФ Россия, 105094, Москва, Госпитальная пл., д. 3, Н. Белобородова В.; НИИ общей реаниматологии им. В. А. Неговского Россия, 107031, Москва, ул. Петровка, д. 25, стр. 2, А. Никулин В.; НИИ общей реаниматологии им. В. А. Неговского Россия, 107031, Москва, ул. Петровка, д. 25, стр. 2 Главный военный клинический госпиталь им. акад. Н. Н. Бурденко МО РФ Россия, 105094, Москва, Госпитальная пл., д. 3, А. Бедова Ю.; НИИ общей реаниматологии им. В. А. Неговского Россия, 107031, Москва, ул. Петровка, д. 25, стр. 2

    Πηγή: General Reanimatology; Том 11, № 5 (2015); 6-14; Общая реаниматология; Том 11, № 5 (2015); 6-14; 2411-7110; 1813-9779; 10.15360/1813-9779-2015-5

    Σύνδεσμος: https://www.reanimatology.com/rmt/article/view/1482/939
    https://www.reanimatology.com/rmt/article/view/1482/996
    https://www.reanimatology.com/rmt/article/view/1482/939
    https://www.reanimatology.com/rmt/article/view/1482/996
    Дмитриева И.Б., Белобородова Н.В., Черневская Е.А. Биомаркеры прокальцитонин и белок S100в в клинико лабораторном монито ринге при критических состояниях новорожденных. Общая реани матология. 2013; 9 (3): 58–65. http://dx.doi.org/10.15360/1813 9779 2013 3 58
    Мороз В.В., Голубев А.М., Кузовлев А.Н., Писарев В.М., Половников С.Г., Шабанов А.К., Голубев М.А. Сурфактантный протеин А (SP A) — про гностический молекулярный биомаркер при остром респираторном дистресс синдроме. Общая реаниматология. 2013; 9 (3): 5–13. http://dx.doi.org/10.15360/1813 9779 2013 3 5
    Мороз В.В., Голубев А.М., Кузовлев А.Н., Писарев В.М. Новые диа гностические кандидатные молекулярные биомаркеры острого ре спираторного дистресс синдрома. Общая реаниматология. 2014; 10 (4): 6–10. http://dx.doi.org/10.15360/1813 9779 2014 4 6 10
    Мороз В.В., Голубев А.М., Кузовлев А.Н., Шабанов А.К., Писарев В.М. Белок клеток Клара (Club Cell Protein) — новый диагностический кандидатный молекулярный биомаркер при нозокомиальной пнев монии. Общая реаниматология. 2014; 10 (6): 6–14. http://dx.doi. org/ 10.15360/1813 9779 2014 6 6 14
    Honoré P.M., Joannes-Boyau O., Collin V., Boer W., Jennes S. Continuous hemofiltration in 2009: what is new for clinicians regard ing pathophysiology, preferred technique and recommended dose? Blood Purif. 2009; 28 (2): 135–143. http://dx.doi.org/10.1159/ 000227282. PMID: 19590180
    Rabindranath K.S., Adams J., Macleod A.M., Muirhead N. Intermittent versus continuous renal replacement therapy for acute renal failure in adults. Cochrane Database Syst Rev. 2007; 18 (3): CD003773. http://dx. doi.org/10.1002/14651858.CD003773.pub3. PMID: 17636735
    Lin H.H., Liu Y.L., Liu J.H., Chou C.Y., Yang Y.F., Kuo H.L., Huang C.C. Uremic pruritus, cytokines, and polymethylmethacrylate artificial kid ney. Artif. Organs. 2008; 32 (6): 468–472. http://dx.doi.org/10.1111/ j.1525 1594.2008.00568.x. PMID: 18422797
    Хорошилов С.Е., Никулин А.В. Эфферентное лечение критических состояний. Общая реаниматология. 2012; 8 (4): 30–41. http://dx. doi.org/10.15360/1813 9779 2012 4 30
    Valerio F., Lavermicocca P., Pascale M., Visconti A. Production of phenyllactic acid by lactic acid bacteria: an approach to the selection of strains contributing to food quality and preservation. FEMS Microbiol. Lett. 2004; 233 (2): 289–295. http://dx.doi.org/10.1111/j.1574 6968.2004.tb09494.x. PMID: 15063498
    Белобородова Н.В., Ходакова А.С., Байрамов И.Т., Оленин А.Ю. Ми кробный путь образования фенилкарбоновых кислот в организме человека. Биохимия. 2009; 74 (12): 1657–1663. http://dx.doi.org/ 10.1134/S0006297909120086. PMID: 19961416
    Russel W.R., Duncan S.H., Scobbie L., Duncan G., Cantlay L., Calder A.G., Anderson S.E., Flint H.J. Major phenylpropanoid derived metabo lites in the human gut can arise from microbial fermentation of protein. Mol. Nutr. Food Res. 2013; 57 (3): 523–535. http://dx.doi.org/ 10.1002/mnfr.201200594. PMID: 23349065
    Белобородова Н.В. Интеграция метаболизма человека и его микро биома при критических состояниях. Общая реаниматология. 2012; 8 (4): 42–54. http://dx.doi.org/10.15360/1813 9779 2012 4 42
    Белобородова Н.В., Оленин А.Ю., Ходакова А.С. Способ лаборатор ной диагностики сепсиса. Патент РФ на изобретение No2423704.
    Urbschat A., Obermüller N., Haferkamp A. Biomarkers of kidney injury. Biomarkers. 2011; 16 (Suppl 1): S22 S30. http://dx.doi.org/10.3109/ 1354750X.2011.587129. PMID: 21707441
    Мороз В.В., Белобородова Н.В., Хорошилов С.Е., Никулин А.В., Бедо ва А.Ю., Осипов А.А., Гецина М.Л., Саршор Ю.Н. Способ оценки эф фективности диализно фильтрационной очистки крови. Патент РФ на изобретение No2423704.
    Хорошилов С.Е., Белобородова Н.В., Никулин А.В., Бедова А.Ю., Оси пов А.А., Гецина М.Л. Элиминация низкомолекулярных ароматиче ских метаболитов во время экстракорпоральной детоксикации у больных ОПН при сепсисе. Мат лы Девятой Междунар. конф. «Актуальные аспекты экстракорпорального очищения крови в ин тенсивной терапии». М.; 2014: 44–45.
    Dellinger R.P., Levy M.M., Rhodes A., Annane D., Gerlach H., Opal S.M., Sevransky J.E., Sprung C.L., Douglas I.S., Jaeschke R., Osborn T.M., Nunnally M.E., Townsend S.R., Reinhart K., Kleinpell R.M., Angus D.C., Deutschman C.S., Machado F.R., Rubenfeld G.D., Webb S., Beale R.J., Vincent J.L., Moreno R.; Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013; 39 (2): 165–228. http://dx.doi.org/10.1007/s00134 012 2769 8. PMID: 23361625
    Белобородова Н.В., Мороз В.В., Бедова А.Ю., Оленин А.Ю., Карпова О.В., Гецина М.Л., Оленина Е.Г. Нормальный уровень сепсис ассо циированных фенилкарбоновых кислот в сыворотке крови челове ка. Биохимия. 2015; 80 (3): 449–455. http://dx.doi.org/10.1134/ S0006297915030128. PMID: 25761691
    Белобородова Н.В., Оленин А.Ю., Ходакова А.С., Черневская Е.А., Хабиб О.Н. Происхождение и клиническое значение низкомолеку лярных фенольных метаболитов в сыворотке крови человека. Ане стезиология и реаниматология. 2012; 5: 65–72.