Showing 1 - 20 results of 93 for search '"МИКРОБНОЕ СООБЩЕСТВО"', query time: 0.74s Refine Results
  1. 1
  2. 2
    Academic Journal

    Contributors: Исследование выполнено на средства гранта Российского научного фонда № 21-79-10153. (https://rscf.ru/project/21-79-10153/). Е. А. Журавлева, А. А. Лайкова и Ю. В. Литти были поддержаны Министерством науки и высшего образования Российской Федерации.

    Source: Alternative Energy and Ecology (ISJAEE); № 7 (2024); 92-120 ; Альтернативная энергетика и экология (ISJAEE); № 7 (2024); 92-120 ; 1608-8298

    File Description: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/2451/1990; Srisowmeya G., Chakravarthy M., Bakshi A., Devi G. N. Improving process stability, biogas production and energy recovery using two-stage mesophilic anaerobic codigestion of rice wastewater with cow dung slurry. Biomass Bioenergy, 2021, 152, 106184. https://doi.org/10.1016/j.biombioe.2021.106184.; Wang T., Wang J., Pu J., Bai C., Peng C., Shi H., Wu R., Xu Z., Zhang Y., Luo D., Yang L., Zhang Q. Comparison of Thermophilic-Mesophilic and Mesophilic-Thermophilic Two-Phase High-Solid Sludge Anaerobic Digestion at Different Inoculation Proportions: Digestion Performance and Microbial Diversity. Microorganisms, 2023, 11, 2409. https://doi.org/10.3390/micro-organisms11102409.; Paranjpe A., Saxena S., Jain P. Biogas yield using single and two stage anaerobic digestion: An experimental approach. Energy Sustain. Dev. – 2023, 74, 6-19. https://doi.org/10.1016/j.esd.2023.03.005.; Mishra P., Balachandar G., Das D. Improvement in biohythane production using organic solid waste and distillery effluent. Waste Manage. – 2017, 66, 70-78. https://doi.org/10.1016/j.wasman.2017.04.040.; Qin Y., Wu J., Xiao B., Cong M., Hojo T., Cheng J., Li Y. Y. Strategy of adjusting recirculation ratio for biohythane production via recirculated temperature-phased anaerobic digestion of food waste. Energy, 2019, 179, 1235-1245. https://doi.org/10.1016/j.energy.2019.04.182.; Seengenyoung J., Mamimin C., Prasertsan P., Sompong O. Pilot-scale of biohythane production from palm oil mill effluent by two-stage thermophilic anaerobic fermentation. Int. J. Hydrog. Energy, 2019, 44, 3347-3355. https://doi.org/10.1016/j.ijhydene.2018.08.021.; Levin D. B., Chahine R. Challenges for renewable hydrogen production from biomass. Int. J. Hydrog. Energy, 2010, 35, 4962-4969. https://doi.org/10.1016/J.IJHYDENE.2009.08.067.; Yuan Y., Hu X., Chen H., Zhou Y., Zhou Y., Wang D. Advances in enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge. Sci. Total Environ, 2019, 694, 133741. https://doi.org/10.1016/j.scitotenv.2019.133741.; Pan H., Feng Q., Zhao Y., Li X., Zi H. Influence of Organic Loading Rate on Methane Production from Brewery Wastewater in Bioelectrochemical Anaerobic Digestion. Fermentation, 2023, 9, 932. https://doi.org/10.3390/fermentation9110932.; Wang S., Ma F., Ma W., Wang P., Zhao G., Lu X. Influence of temperature on biogas production efficiency and microbial community in a two-phase anaerobic digestion system. Water, 2019, 11, 133. https://doi.org/10.3390/w11010133.; Rademacher A., Nolte C., Schönberg M.,Klocke M. Temperature increases from 55 to 75 C in a two-phase biogas reactor result in fundamental alterations within the bacterial and archaeal community structure. Appl. Microbiol. Biotechnol. – 2012, 96, 565-576. https://doi.org/10.1007/s00253-012-4348-x.; Li W., Guo J., Cheng H., Wang W., Dong R. Two-phase anaerobic digestion of municipal solid wastes enhanced by hydrothermal pretreatment: Viability, performance and microbial community evaluation. Appl. Energy, 2017, 189, 613-622. https://doi.org/10.1016/j.apenergy.2016.12.101.; Meng X., Yuan X., Ren J., Wang X., Zhu W., Cui Z. Methane production and characteristics of the microbial community in a two-stage fixed-bed anaerobic reactor using molasses. Bioresour. Technol., 2017, 241, 1050- 1059. https://doi.org/10.1016/j.biortech.2017.05.181.; Sanz J. L., Rojas P., Morato A., Mendez L., Ballesteros M., González-Fernández C. Microbial communities of biomethanization digesters fed with raw and heat pre-treated microalgae biomasses. Chemosphere, 2017, 168, 1013-1021. https://doi.org/10.1016/j.chemo-sphere.2016.10.109.; Moset V., Poulsen M., Wahid R., Højberg O., Møller H. B. Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology. Microb. Biotechnol. – 2015, 8, 787-800. https://doi.org/10.1111/1751-7915.12271.; Wang M., Wang Y., Peng J., Wang L., Yang J., Kou X., Chai B., Gao L., Han X. A comparative study on Mesophilic and thermophilic anaerobic digestion of different total solid content sludges produced in a long sludge-retention-time system. Results in Engineering, 2023, 19, 101228. https://doi.org/10.1016/j.rineng.2023.101228.; Sompong O., Hniman A., Prasertsan P., Imai T. Biohydrogen production from cassava starch processing wastewater by thermophilic mixed cultures. Int. J. Hydrog. Energy, 2011, 36, 3409-3416. https://doi.org/10.1016/j.ijhydene.2010.12.053.; Noike T., Mizuno O. Hydrogen fermentation of organic municipal wastes. Water Sci. Technol. – 2000, 42, 155-162. https://doi.org/10.2166/wst.2000.0261.; Sompong O., Prasertsan P., Intrasungkha N., Dhamwichukorn S., Birkeland N. K. Optimization of simultaneous thermophilic fermentative hydrogen production and COD reduction from palm oil mill effluent by Thermoanaerobacterium-rich sludge. Int. J. Hydrog. Energy, 2008, 33, 1221-1231. https://doi.org/10.1016/j.ijhydene.2007.12.017.; Cheong D. Y., Hansen C. L. Feasibility of hydrogen production in thermophilic mixed fermentation by natural anaerobes. Bioresour. Technol. – 2007, 98, 2229- 2239. https://doi.org/10.1016/j.biortech.2006.09.039.; Cho S. K., Im W. T., Kim D. H., Kim M. H., Shin H. S., Oh S. E. Dry anaerobic digestion of food waste under mesophilic conditions: Performance and methanogenic community analysis. Bioresour. Technol. – 2013, 131, 210-217. https://doi.org/10.1016/j.biortech.2012.12.100.; Khongkliang P., Kongjan P., Sompong O. Hydrogen and methane production from starch processing wastewater by thermophilic two-stage anaerobic digestion. Energy Procedia, 2015, 79, 827-832. https://doi.org/10.1016/j.egypro.2015.11.573.; Chu C. F., Li Y. Y., Xu K. Q., Ebie Y., Inamori Y., Kong H. N. A pH-and temperature-phased two-stage process for hydrogen and methane production from food waste. Int. J. Hydrog. Energy, 2008, 33, 4739-4746. https://doi.org/10.1016/j.ijhydene.2008.06.060.; Chookaew T., Sompong O., Prasertsan P. Fermentative production of hydrogen and soluble metabolites from crude glycerol of biodiesel plant by the newly isolated thermotolerant Klebsiella pneumoniae TR17. Int. J. Hydrog. Energy. – 2012, 37, 13314-13322. https://doi.org/10.1016/j.ijhydene.2012.06.022.; Pan J., Zhang R., El-Mashad H. M., Sun H., Ying Y. Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. Int. J. Hydrog. Energy. – 2008, 33, 6968-6975. https://doi.org/10.1016/j.ijhydene.2008.07.130.; Kumar G., Buitrón, G. Fermentative biohydrogen production in fixed bed reactors using ceramic and polyethylene carriers as supporting material. Energy Procedia. – 2017, 142, 743-748. https://doi.org/10.1016/j.egypro.2017.12.121.; Zhao C. Development of fixed-bed bioreactor for higher bio-hydrogen production. The Degree of Doctor of Philosophy in Biotechnology, the Graduate School of Life and Environmental Sciences, the University of Tsukuba, 2019.; Chang J. S., Lee K. S., Lin P. J. Biohydrogen production with fixed-bed bioreactors. Int. J. Hydrog. Energy. – 2002, 27, 1167-1174. https://doi.org/10.1016/S0360-3199(02)00130-1.; Zheng H., Li D., Stanislaus M. S., Zhang N., Zhu Q., Hu X., Yang Y. Development of a bio-zeolite fixed-bed bioreactor for mitigating ammonia inhibition of anaerobic digestion with extremely high ammonium concentration livestock waste. Chem. Eng. J. – 2015, 280, 106-114. https://doi.org/10.1016/j.cej.2015.06.024.; Hernández, E.S.; Rodriguez, X. Treatment of settled cattle-wastewaters by downflow anaerobic filter. Bioresour. Technol. 1992, 40, 77-79. https://doi.org/10.1016/0960-8524(92)90123-F.; Yang Y., Tada C., Miah M. S., Tsukahara K., Yagishita T., Sawayama S. Influence of bed materials on methanogenic characteristics and immobilized microbes in anaerobic digester. Mater. Sci. Eng. C. – 2004, 24, 413-419. https://doi.org/10.1016/j.msec.2003.11.005.; Yang Y., Tada C., Tsukahara K., Sawayama S. Methanogenic community and performance of fixed-and fluidized-bed reactors with reticular polyurethane foam with different pore sizes. Mater. Sci. Eng. C. – 2004, 24, 803-813. https://doi.org/10.1016/j.msec.2004.08.022.; Nozhevnikova A. N., Russkova Y. I., Litti Y. V., Parshina S. N., Zhuravleva E. A., Nikitina A. A. Syntrophy and interspecies electron transfer in methanogenic microbial communities. Microbiology, 2020, 89, 129-147. https://doi.org/10.1134/S0026261720020101.; Baek G., Kim J., Kim J., Lee C. Role and potential of direct interspecies electron transfer in anaerobic digestion. Energies, 2018, 11, 107. https://doi.org/10.3390/en11010107.; Gokfiliz P., Karapinar I. The effect of support particle type on thermophilic hydrogen production by immobilized batch dark fermentation. Int. J. Hydrog. Energy, 2017, 42, 2553-2561. https://doi.org/10.1016/j.ijhydene.2016.03.041.; Escalante H., Castro L., Amaya M. P., Jaimes L., Jaimes-Estévez J. Anaerobic digestion of cheese whey: Energetic and nutritional potential for the dairy sector in developing countries. Waste Manage. – 2018, 71, 711-718. https://doi.org/10.1016/j.wasman.2017.09.026.; Bella K., Rao P. V. Anaerobic co-digestion of cheese whey and septage: Effect of substrate and inoculum on biogas production. J. Environ. Manage. – 2022, 308, 114581. https://doi.org/10.1016/j.jenvman.2022.114581.; Slavov A. K. General characteristics and treatment possibilities of dairy wastewater – a review. Food Technol. Biotechnol. – 2017, 55, 14. doi:10.17113/ftb.55.01.17.4520.; Rincón-Catalán N. I., Pérez-Fabiel S., Mejía-González G., Herrera-López D., Castro-Chan R., Cruz-Salomón A., Sebastian P. J. Power generation from cheese whey treatment by anaerobic digestion and microbial fuel cell. Waste Biomass Valorization. – 2022, 13, 3221-3231. https://doi.org/10.1007/s12649-022-01720-1.; Fernández C., Cuetos M. J., Martínez E. J., Gómez X. Thermophilic anaerobic digestion of cheese whey: Coupling H2 and CH4 production. Biomass Bioenergy. – 2015, 81, 55-62. https://doi.org/10.1016/j.biombioe.2015.05.024.; Dębowski M., Zieliński M., Kisielewska M., Kazimierowicz J. Evaluation of anaerobic digestion of dairy wastewater in an innovative multi-section horizontal flow reactor. Energies. – 2020, 13, 2392. https://doi.org/10.3390/en13092392.; Kargi F., Eren N. S., Ozmihci S. Bio-hydrogen production from cheese whey powder (CWP) solution: comparison of thermophilic and mesophilic dark fermentations. Int. J. Hydrog. Energy. – 2012, 37, 8338-8342. https://doi.org/10.1016/j.ijhydene.2012.02.162.; Mikheeva E. R., Katraeva I. V., Kovalev A. A., Kovalev D. A., Nozhevnikova A. N., Panchenko V., Fiore U., Litti Y. V. The start-up of continuous biohydrogen production from cheese whey: comparison of inoculum pretreatment methods and reactors with moving and fixed polyurethane carriers. Appl. Sci. – 2021, 11, 510. https://doi.org/10.3390/app11020510.; Mikheeva E. R., Katraeva I. V., Vorozhtsov D. L., Litti Y. V., Nozhevnikova A. N. Efficiency of two-phase anaerobic fermentation and the physicochemical properties of the organic fraction of municipal solid waste processed in a vortex-layer apparatus. Appl. Biochem. Microbiol. – 2020, 56, 736-742. https://doi.org/10.1134/S0003683820060113.; Mikheeva E. R., Katraeva I. V., Kovalev A. A., Biryuchkova P. D., Zhuravleva E. A., Vishnyakova A.V., Litti Y. V. Pretreatment in vortex layer apparatus boosts dark fermentative hydrogen production from cheese whey. Fermentation, 2022, 8, 674. https://doi.org/10.3390/fermentation8120674.; Fadrosh D. W., Ma B., Gajer P., Sengamalay N., Ott S., Brotman R. M., Ravel J. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2014, 2, 1-7. https://doi.org/10.1186/2049-2618-2-6.; Gohl D., MacLean A., Hauge A., Becker A., Walek D., Beckman K. An optimized protocol for high-throughput amplicon-based microbiome profiling. Protoc. Exch. – 2016. https://doi.org/10.1038/protex.2016.030.; Menzel T., Neubauer P., Junne S. Role of microbial hydrolysis in anaerobic digestion. Energies, 2020, 13, 5555. https://doi.org/10.3390/en13215555.; Dyksma S., Jansen L., Gallert C. Syntrophic acetate oxidation replaces acetoclastic methanogenesis during thermophilic digestion of biowaste. Microbiome, 2020, 8, 1-14. https://doi.org/10.1186/s40168-020-00862-5.; Lee J., Koo T., Yulisa A., Hwang S. Magnetite as an enhancer in methanogenic degradation of volatile fatty acids under ammonia-stressed condition. J. Environ. Manage. – 2019, 241, 418-426. https://doi.org/10.1016/j.jenvman.2019.04.038.; Cai C., Li L., Hua Y., Liu H., Dai X. Ferroferric oxide promotes metabolism in Anaerolineae other than microbial syntrophy in anaerobic methanogenesis of antibiotic fermentation residue. Sci. Total Environ. – 2021, 758, 143601. https://doi.org/10.1016/j.scitotenv.2020.143601.; Venetsaneas N., Antonopoulou G., Stamatelatou K., Kornaros M., Lyberatos G. Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresour. Technol. – 2009, 100, 3713-3717. https://doi.org/10.1016/j.biortech.2009.01.025.; Yang P., Zhang R., McGarvey J. A., Benemann J. R. Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities. Int. J. Hydrog. Energy, 2007, 32, 4761-4771. https://doi.org/10.1016/j.ijhydene.2007.07.038.; Ozyurt B., Hitit Z. Y., Ertunc S., Hapoglu H., Akay B., Demirtas G. F. Biological hydrogen production: effects of inoculation and production media. Int. J. Glob. Warm. – 2014, 6, 350-365. https://doi.org/10.1504/IJGW.2014.061036.; Ozyurt B., Soysal F., Hitit Z. Y., Camcioglu S., Akay B., Ertunc S. An efficient dark fermentative hydrogen production by GMV control of pH. Int. J. Hydrog.Energy, 2019, 44, 19709-19718. https://doi.org/10.1016/j.ijhydene.2019.06.048.; Penniston J., Gueguim Kana E. B. Impact of medium pH regulation on biohydrogen production in dark fermentation process using suspended and immobilized microbial cells. Biotechnol. Biotechnol. Equip. – 2018, 32, 204-212. https://doi.org/10.1080/13102818.2017.1408430.; Ziara R. M., Miller D. N., Subbiah J., Dvorak B. I. Lactate wastewater dark fermentation: the effect of temperature and initial pH on biohydrogen production and microbial community. Int. J. Hydrog. Energy, 2019, 44, 661-673. https://doi.org/10.1016/j.ijhydene.2018.11.045.; Dareioti M. A., Vavouraki A. I., Tsigkou K., Zafiri C., Kornaros M. Dark fermentation of sweet sorghum stalks, cheese whey and cow manure mixture: Effect of pH, pretreatment and organic load. Processes, 2021, 9, 1017. https://doi.org/10.3390/pr9061017.; Gadhamshetty V., Johnson D. C., Nirmalakhandan N., Smith G. B., Deng S. Dark and acidic conditions for fermentative hydrogen production. Int. J. Hydrog. Energy, 2009, 34, 821-826. https://doi.org/10.1016/j.ijhydene.2008.11.040.; Jariyaboon R., Hayeeyunu S., Usmanbaha N., Ismail S. B., O-Thong S., Mamimin C., Kongjan P. Thermophilic Dark Fermentation for Simultaneous Mixed Volatile Fatty Acids and Biohydrogen Production from Food Waste. Fermentation, 2023, 9, 636. https://doi.org/10.3390/fermentation9070636.; Zhang F., Chen Y., Dai K., Shen N., Zeng R. J. The glucose metabolic distribution in thermophilic (55°C) mixed culture fermentation: A chemostat study. Int. J. Hydrog. Energy, 2015, 40, 919-926. https://doi.org/10.1016/j.ijhydene.2014.11.098.; Rogers P. Genetics and biochemistry of Clostridium relevant to development of fermentation processes. Adv. Appl. Microbiol. – 1986, 31, 1-60. https://doi.org/10.1016/S0065-2164(08)70438-6.; Valdez-Vazquez I., Poggi-Varaldo H. M. Hydrogen production by fermentative consortia. Renew. Sust. Energ. Rev. – 2009, 13, 1000-1013. https://doi.org/10.1016/j.rser.2008.03.003.; Giuliano A., Zanetti L., Micolucci F., Cavinato C. Thermophilic two-phase anaerobic digestion of source-sorted organic fraction of municipal solid waste for bio-hythane production: effect of recirculation sludge on process stability and microbiology over a long-term pilot-scale experience. Water Sci. Technol. – 2014, 69, 2200-2209. https://doi.org/10.2166/wst.2014.137.; Guo X. M., Trably E., Latrille E., Carrère H., Steyer J. P. Hydrogen production from agricultural waste by dark fermentation: a review. Int. J. Hydrog. Energy, 2010, 35, 10660-10673. https://doi.org/10.1016/j.ijhydene.2010.03.008.; Lindner J., Zielonka S., Oechsner H., Lemmer A. Is the continuous two-stage anaerobic digestion process well suited for all substrates? Bioresour. Technol. – 2016, 200, 470-476. https://doi.org/10.1016/j.biortech.2015.10.052.; Garcia-Aguirre J., Aymerich E., de González-Mtnez Goñi J., Esteban-Gutiérrez M. Selective VFA Production Potential from Organic Waste Streams: Assessing Temperature and PH Influence. Bioresour. Technol. – 2017, 244, 1081-1088. https://doi.org/10.1016/j.biortech.2017.07.187.; Fernández-Rodríguez J., Pérez M., Romero L. I. Semicontinuous Temperature-Phased Anaerobic Digestion (TPAD) of Organic Fraction of Municipal Solid Waste (OFMSW). Comparison with Single-Stage Processes. Chem. Eng. J. – 2016, 285, 409-416. https://doi.org/10.1016/j.cej.2015.10.027.; Litti Y. V., Potekhina M. A., Zhuravleva E. A., Vishnyakova A. V., Gruzdev D. S., Kovalev A. A., Kovalev D. A., Katraeva I. V., Parshina S. N. Dark fermentative hydrogen production from simple sugars and various wastewaters by a newly isolated Thermoanaerobacterium thermosaccharolyticum SP-H2. Int. J. Hydrog. Energy, 2022, 47, 24310-24327. https://doi.org/10.1016/j.ijhydene.2022.05.235.; Eng F., Fuess L. T., Bovio-Winkler P., Etchebehere C., Sakamoto I. K., Zaiat M. Optimization of volatile fatty acid production by sugarcane vinasse dark fermentation using a response surface methodology. Links between performance and microbial community composition. Sustain. Energy Technol. Assess. – 2022, 53, 102764. https://doi.org/10.1016/j.seta.2022.102764.; Couto P. T., Eng F., Bovio-Winkler P., Cavalcante W. A., Etchebehere C., Fuentes L., Nopens I., Zaiat M., Ribeiro R. Modeling of hydrogen and organic acid production using different concentrations of sugarcane vinasse under thermophilic conditions and a link with microbial community 16S rRNA gene sequencing data. J. Clean. Prod. – 2022, 370, 133437. https://doi.org/10.1016/j.jclepro.2022.133437.; Luo L., Sriram S., Johnravindar D., Martin T. L. P., Wong J. W., Pradhan N. Effect of inoculum pretreatment on the microbial and metabolic dynamics of food waste dark fermentation. Bioresour. Technol. – 2022, 358, 127404. https://doi.org/10.1016/j.biortech.2022.127404.; Song Z. X., Dai Y., Fan Q. L., Li X. H., Fan Y. T., Hou H. W. Effects of pretreatment method of natural bacteria source on microbial community and bio-hydrogen production by dark fermentation. Int. J. Hydrog. Energy, 2012, 37, 5631-5636. https://doi.org/10.1016/j.ijhydene.2012.01.010.; Sittijunda S., Baka S., Jariyaboon R., Reungsang A., Imai T., Kongjan P. Integration of Dark Fermentation with Microbial Electrolysis Cells for Biohydrogen and Methane Production from Distillery Wastewater and Glycerol Waste Co-Digestion. Fermentation, 2022, 8, 537. https://doi.org/10.3390/fermentation8100537.; Bo Z., Wei-min C. A. I., Pin-Jing H. E. Influence of lactic acid on the two-phase anaerobic digestion of kitchen wastes. J. Environ. Sci. – 2007, 19, 244-249.https://doi.org/10.1016/S1001-0742(07)60040-0.; Detman A., Mielecki D., Pleśniak Ł., Bucha M., Janiga M., Matyasik I., Chojnacka A., Jędrysek M. O., Błaszczyk M. K., Sikora A. Methane-yielding microbial communities processing lactate-rich substrates: a piece of the anaerobic digestion puzzle. Biotechnol. Biofuels, 2018, 11, 1-18. https://doi.org/10.1186/s13068-018-1106-z.; Yang K., Yu Y., Hwang S. Selective optimization in thermophilic acidogenesis of cheese-whey wastewater to acetic and butyric acids: partial acidification and methanation. Water Res. – 2003, 37, 2467-2477. https://doi.org/10.1016/S0043-1354(03)00006-X.; Ince O. Performance of a two-phase anaerobic digestion system when treating dairy wastewater. Water Res. – 1998, 32, 2707-2713. https://doi.org/10.1016/S0043-1354(98)00036-0.; Kovalev A. A., Mikheeva E. R., Panchenko V., Katraeva I. V., Kovalev D. A., Zhuravleva E. A., Litti Y. V. Optimization of Energy Production from Two-Stage Mesophilic-Thermophilic Anaerobic Digestion of Cheese Whey Using a Response Surface Methodology Approach. Energies, 2022, 15, 8928. https://doi.org/10.3390/en15238928.; Fink C., Beblawy S., Enkerlin A. M., Mühling L., Angenent L. T., Molitor B. A shuttle-vector system allows heterologous gene expression in the thermophilic methanogen Methanothermobacter thermautotrophicus ΔH. MBio, 2021, 12, e02766-21. https://doi.org/10.1128/mBio.02766-21.; Gies E. A., Konwar K. M., Beatty J. T., Hallam S. J. Illuminating microbial dark matter in meromictic Sakinaw Lake. Appl. Environ. Microbiol. – 2014, 80, 6807-6818. https://doi.org/10.1128/AEM.01774-14.; Yi Y., Wang H., Chen Y., Gou M., Xia Z., Hu B., Nie Y., Tang Y. Identification of novel butyrate-and acetate-oxidizing bacteria in butyrate-fed mesophilic anaerobic chemostats by DNA-based stable isotope probing. Microb. Ecol. – 2020, 79, 285-298. https://doi.org/10.1007/s00248-019-01400-z.; Dyksma S., Gallert C. Candidatus Syntrophosphaera thermopropionivorans: a novel player in syntrophic propionate oxidation during anaerobic digestion. Environ. Microbiol. Rep. – 2019, 11, 558-570. https://doi.org/10.1111/1758-2229.12759.; Serna-García R., Borrás L., Bouzas A., Seco A. Insights into the biological process performance and microbial diversity during thermophilic microalgae co-digestion in an anaerobic membrane bioreactor (AnMBR). Algal Res. – 2020, 50, 101981. https://doi.org/10.1016/j.algal.2020.101981.; Wang G., Li Q., Gao X., Wang X. C. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: Performance and associated mechanisms. Bioresour. Technol. – 2018, 250, 812-820. https://doi.org/10.1016/j.biortech.2017.12.004.; Wang Z., Zhang C., Watson J., Sharma B. K., Si B., Zhang Y. Adsorption or direct interspecies electron transfer? A comprehensive investigation of the role of biochar in anaerobic digestion of hydrothermal liquefaction aqueous phase. Chem. Eng. J. – 2022, 435, 135078. https://doi.org/10.1016/j.cej.2022.135078.; Kuroda K., Shinshima F., Tokunaga S., Noguchi T. Q., Yamauchi M., Nobu M. K., Narihiro T., Yamada M. Assessing the effect of green tuff as a novel natural inorganic carrier on methane-producing activity of an anaerobic sludge microbiome. Environ. Technol. Innov. – 2021, 24, 101835. https://doi.org/10.1016/j.eti.2021.101835; https://www.isjaee.com/jour/article/view/2451

  3. 3
  4. 4
  5. 5
    Academic Journal

    Contributors: The research was funded by Russian Foundation for Basic Research, project number 20-45-596018 (RFBR competition r_NOTs_Perm region), Исследования выполнены при поддержке Российского фонда фундаментальных исследований (проект №20-45-596018, конкурс РФФИ р_НОЦ_Пермский край)

    Source: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 78, № 1 (2023); 17-24 ; Вестник Московского университета. Серия 16. Биология; Том 78, № 1 (2023); 17-24 ; 0137-0952

    File Description: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1208/613; Johnston J.E., Lim E., Roh H. Impact of upstream oil extraction and environmental public health: a review of the evidence // Sci. Total. Environ. 2019. Vol. 657. P. 187–199.; Костарев С.М. Формирование техногенных скоплений компонентов глубинных флюидов в приповерхностных массивах горных пород (на примере районов нефтедобычи Пермской области) // Известия ВУЗов. Нефть и газ. 2004. № 5. C. 132–143.; Костарев С.М., Бачурин Б.А., Одинцова Т.А. Методические проблемы оценки нефтяного загрязнения подземных вод // Нефтепромысловое дело. 2016. № 12. С. 52–56; Rodríguez-Urine M.L., Peña-Cabriales J.J., RiveraCruz M.C., Délano-Frier J.P. Native bacteria isolated from weathered petroleum oil-contaminated soils in Tabasco, Mexico, accelerate the degradation petroleum hydrocarbons in saline soil microcosms // Env. Tech. Innov. 2021. Vol. 23: 101781.; Kingston P. Long-term environmental impact of oil spills // Spill. Sci. Technol. Bull. 2002. Vol. 7. N 1–2. P. 53–61.; Fahrenfeld N.L., Reyes H.D., Eramo A., Akob D.M., Mumford A.C., Cozzarelli I.M. Shifts in microbial community structure and function in surface waters impacted by unconventional oil and gas wastewater revealed by metagenomics // Sci. Total Environ. 2016. Vol. 580. P. 1205–1213.; Avona A., Capadici M., Trapani D.Di., Giustra M.G., Lucchina P.G., Lumia L., Di Bella G., Rossetti S., Tonazi B., Viviani G. Hydrocarbons removal from real marine sediments: Analysis of degradation pathways and microbial community development during // Sci. Total Environ. 2022. Vol. 838: 156458.; Shaoping K., Zhiwewi D., Bingchen W., Huihui W., Jialiang L., Hongbo S. Changes of sensitive microbial community in oil polluted soil in the coastal area in Shandong, China for ecorestoration // Ecotox. Environ. Saf. 2021. Vol. 207: 111551.; Khan M.A.I., Biswas B., Smith E., Mahmud S.A., Hasan N.A., Khan M.A.W., Naidu R., Megharaj M. Microbial diversity changes with rhizosphere and hydrocarbons in contrasting soils // Ecotox. Environ. Saf. 2018. Vol. 156. P. 434–442; Liu Q., Tang J., Gao K., Gurav R., Giesy J.P. Aerobic degradation of crude oil by microorganisms in soils from four geographic regions of China // Sci. Rep. 2017. Vol. 7: 14856.; Huang L., Te J., Jiang K., Wang Y., Li Y. Oil contamination drives the transformation of soil microbial communities: Co-occurrence pattern, metabolic enzymes and culturable // Ecotox. Environ. Saf. 2021. Vol. 225: 112740.; Зырин Н.Г., Орлов Д.С. Физико-химические методы исследования почв. М.: Изд-во Моск. ун-та, 1964. 348 с.; Bates S.T., Berg-Lyons J.G., Caporaso W.A., Walters W.A., Knight R., Fierer N. Examining the global distribution of dominant archaeal populations in soil // ISME J. 2010. Vol. 5. N 5. Р. 908–917.; Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: Highresolution sample inference from Illumina amplicon data // Nat. Methods. 2016. Vol. 13. N 7. P. 581–583.; McMurdie P.J., Holmes S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data // PLoS One. 2013. Vol. 8. N 4: e61217; Wright E.S. Using DECIPHER v2.0 to Analyze big biological sequence data in R // R J. 2016. Vol. 8. N. 1. P. 352–359.; Caporaso J.G, Kuczynski J., Stombaugh J. et. al. QIIME allows analysis of highthroughput community sequencing data // Nat. Methods. 2010. Vol. 7. N 5. P. 335–336.; King G.M., Kostka J.E., Hazen T.C., Sobecky P.A. Microbial responses to the deepwater horizon oil spill: from coastal wetlands to the deep sea // Ann. Rev. Mar. Sci. 2015. Vol. 7. P. 377–401.; Cabello-Yeves P.J., Callieri C., Picazo A., Mehrshad M., Haro-Moreno J.M., Roda-Garcia J.J., Dzhembekova N., Slabakova V., Slabakova N., Moncheva S., Rodriguez-Valera F. The microbiome of the Black Sea water column analyzed by shotgun and genome centric metagenomics // Environ. Microbiol. 2021. Vol. 16: 5.; Schwab L., Popp D., Nowack G., Bombach P., Vogt C., Richnow H.H. Structural analysis of microbiomes from salt caverns used for underground gas storage // Int. J. Hydrogen Energy. 2022. Vol. 47. N 47. P. 20684–20694.; Gillan D.C., Danis B. The archaebacterial communities in Antarctic bathypelagic sediments // DeepSea Res. II. 2007. Vol. 54. N 16–17. P. 1682–1690.; Ganesan M., Mani R., Sai S., Kasivelu G., Awasthi M.K., Rajagopal R., Azelee N.I.W., Selvi P.K., Chang S.W., Ravindra B. Bioremediation by oil degrading marine bacteria: An overview of supplements and pathways in key processes // Chemosphere. 2022. Vol. 303: 134956.; Hou Y., Li S., Dong W., Yuan Y., Wang Y., Shen W., Li J., Cui Z. Community structure of a propanil-degrading consortium and the metabolic pathway of Microbacterium sp. Strain T4-7 // Int. Biodeter. Biodegrad. 2015. Vol. 105. P. 80–89.; Iminova L., Delegan Y., Frantsuzova E., Bogun A., Zvonarev A., Suzina N., Anbumani S., Solyanikova I. Physiological and biochemical characterization and genome analysis of Rhodococcus qingshengii strain 7B capable of crude oil degradation and plant stimulation // Biotech. Rep. 2022. Vol. 35: e00741.; Petrikov K., Delegan Y., Surin A., Ponamoreva O., Puntus I., Filonov A., Boronin A. Glycolipids of Pseudomonas and Rhodococcus oil-degrading bacteria used in bioremediation preparations: formation and structure // Proc. Biochem. 2013. Vol. 48. N 5–6. P. 931–935.; Ma Y., Wang L., Shao Z. Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer // Environ. Microbiol. 2006. Vol. 8. N 3. P. 455–465.

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal

    Source: Vavilov Journal of Genetics and Breeding; Том 21, № 8 (2017); 959-963 ; Вавиловский журнал генетики и селекции; Том 21, № 8 (2017); 959-963 ; 2500-3259

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/1274/1017; Andrade C.M., Aguiar W.B., Antranikian G. Physiological aspects involved in production of xylanolytic ensymes by deep-sea hyperthermophilic archaeon Pyrodictium abyssi. Appl. Biochem. Biothechnol. 2001;91-93:655-669.; Barkhutova D.D., Tsyrenova D.D., Bryanskaya A.V., Danilova E.V., Zaitseva S.V., Namsaraev Z.B. Mikrobnye maty. Geokhimicheskaya deyatel’nost’ mikroorganizmov gidroterm Baykal’skoy riftovoy zony [Microbial mats. Geochemical activity of microorganisms in thermal springs of the Baikal Rift zone]. Novosibirsk: Acad. Publ. House “Geo”, 2011. (in Russian); Bergquist P.L., Gibbs M.D., Morris D.D., Teʼo V.S.J., Saul D.J., Morgan H.W. Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria. FEMS Microbiol. Ecol. 1999;28:99-110.; Bonch-Osmolovskaya E.A. Thermophilic microorganisms: a general overview. Trudy Instituta mikrobiologii im. S.N. Vinogradskogo. [Gal’chenko V.F. (Ed.) Proceeding of the Winogradsky Institute of Microbiology]. Moscow: Nauka Publ., 2011;5-14. (in Russian); Grady E.N., MacDonald J., Liu L., Richman A., Yuan Z.-C. Current knowledge and perspectives of Paenibacillus: a review. Microb. Cell Factories. 2016;15:203. DOI 10.1186/s12934-016-0603-7.; Gupta R., Beg Q., Lorenz P. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 2003;59(1):15-32.; Kozina I.V., Kublanov I.V., Kolganova T.V., Chernyh N.V., BonchOsmolovskaya E.A. Caldanaerobacter uzonensis sp. nov., an anaerobic, thermophilic, heterotrophic bacterium isolated from a hot spring. Int. J. Syst. Evol. Microbiol. 2010;60:1372-1375.; Krishnan T., Chandra A.K. Purification and characterization of α-amylase from Bacillus licheniformis CUMC305. Appl. Environ. Microbiol. 1983;46:430-437.; Kublanov I.V., Podosokorska O.A. Thermophilic microorganisms decomposing biopolymers. Trudy Instituta mikrobiologii im. S.N. Vinogradskogo. [Gal’chenko V.F. (Ed.) Proceeding of the Winogradsky Institute of Microbiology]. Moscow: Nauka Publ., 2011;315342. (in Russian); Lomonosov I.S. Geokhimiya i formirovanie sovremennykh gidroterm Baykalskoy riftovoy zony [Geochemistry and Formation of Modern Thermal Springs in the Baikal Rift Zone]. Novosibirsk: Nauka Publ., 1974. (in Russian); Mackenzie R., Pedrós-Alió C., Díez B. Bacterial composition of microbial mats in hot springs in Northern Patagonia: variations with seasons and temperature. Extremophiles. 2013;17:123-136. DOI 10.1007/s00792-012-0499-z.; Madigan M.T. Bacterial habitats in extreme environments. Journey to Diverse Microbial. Worlds. 2000; 2:61-72.; Namsaraev Z.B., Zaitseva S.V., Dmitrieva O.M., Barkhutova D.D. Structure and functional activity of microbial mats of the Garga thermal spring (Barguzin valley). Vestnik Buryatskogo gosudarstvennogo universiteta = Bulletin of the Buryat State University. 2011;14а: 231-239. (in Russian); Oliveira A.S., Xavier-Filho J., Sales M.P. Cysteine proteinases and cystatins. Brazil. Arch. Biol. Technol. 2003;46(1):91-104.; Portillo M.C., Sririn V., Kanoksilapatham W., Gonzalez J.M. Differential microbial communities in hot spring mats from Western Thailand. Extremophiles. 2009; 13(2):321-331. DOI 10.1007/s00792008-0219-x.; Radnagurueva A.A., Lavrentieva E.V., Budagaeva V.G., Barkhutova D.D., Namsaraev B.B., Dunaevsky Y.E. Organotrophic bacteria of the Baikal Rift Zone hot springs. Microbiology (Mikrobiologiya). 2016;85(3):367-378.; Rao M.B., Tanksale A.M., Ghatge M.S., Deshpande V.V. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 1998;62(3):597-635.; Thibault V., Lovejoy C., Jungblut A.D., Vincent W.F., Corbeil J. Metagenomic profiling of Arctic microbial mat communities as nutrient scavenging and recycling systems. Limnol. Oceanogr. 2010; 55(5):1901-1911. DOI 10.4319/lo.2010.55.5.190.; Uhl A.M., Daniel R.M. The first description of an archaeal hemicellulase: the xylanase from Thermococcus zilligii AN1. Extremophiles. 1999;3:263-267.; Ward D.E., Shockley K.R., Chang L.S., Levy R.D., Michel J.K., Conners S.B., Kelly R.M. Proteolysis in hyperthermophilic microorganisms. Archaea. 2002;1:63-74.; Zamana L.V., Khakhinov V.V., Danilova E.V., Barkhutova D.D. Hydrochemistry of mineral waters. Geokhimicheskaya deyatelnost mikroorganizmov gidroterm Baykalskoy riftovoy zony [Geochemical activity of microorganisms in thermal springs of the Baikal Rift zone]. Novosibirsk: Acad. Publ. House “Geo”, 2011;62-101. (in Russian); https://vavilov.elpub.ru/jour/article/view/1274

  19. 19
  20. 20