-
1Academic Journal
Source: Российские биомедицинские исследования, Vol 10, Iss 3 (2025)
Subject Terms: микрохимеризм, инвазия, опухоли, фетальные клетки, метастазирование, Medicine (General), R5-920
File Description: electronic resource
-
2Academic Journal
Source: Высшая школа: научные исследования.
Subject Terms: кофилин, немелкоклеточный рак легкого (НМРЛ), аденилилциклаза-ассоциированный протеина 1 (CAP1), профилин, метастазирование
-
3Academic Journal
Authors: E. G. Romanov, K. A. Kokurina, A. A. Fedotova, Zh.E.A.K. Massolu, A. I. Andreeva, T. S. Khristoforova, R. A. Ivanova, K. V. Tarasova, M. A. Ivanov, A. E. Klyukina, M. A. Sharafan, E. V. Medvedko, M. P. Modenova, Е. Г. Романов, К. А. Кокурина, А. А. Федотова, Ж.Э.А.К. Массолу, А. И. Андреева, Т. С. Христофорова, Р. А. Иванова, К. В. Тарасова, М. А. Иванов, А. Э. Клюкина, М. А. Шарафан, Е. В. Медведько, М. П. Моденова
Source: Obstetrics, Gynecology and Reproduction; Online First ; Акушерство, Гинекология и Репродукция; Online First ; 2500-3194 ; 2313-7347
Subject Terms: персонализированная медицина, gynecologic cancer, ovarian cancer, endometrial cancer, cervical cancer, theranostic biomarker, cell adhesion, monoclonal antibodies, cancer antigen 125, CA-125, antibody-drug conjugates, ADCs, metastasis, chemoresistance, endometriosis, preeclampsia, personalized medicine, гинекологический рак, рак яичников, рак эндометрия, рак шейки матки, тераностический биомаркер, клеточная адгезия, моноклональные антитела, раковый антиген 125, СА-125, антитело-лекарственные конъюгаты, метастазирование, химиорезистентность, эндометриоз
File Description: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2442/1332; Аверченко Р.Р. Медико-социальные риск-факторы возникновения онкогинекологической патологии. Современные проблемы здравоохранения и медицинской статистики. 2024;(1):561–77. https://doi.org/10.24412/2312-2935-2024-1-561-577.; Сабанцев М.А., Шрамко С.В., Жилина Н.М. и др. Рак эндометрия: динамика заболеваемости и распространенности за период 2004-2021 гг. в России и Новокузнецке. Бюллетень медицинской науки. 2023;1(29):16–23.; Саевец В.В., Важенин А.В., Ульрих Е.А. и др. Диагностика и лечение распространенных форм рака яичников III–IV стадии. Злокачественные опухоли. 2020;10(3s1):15–20. https://doi.org/10.18027/2224-5057-2019-10-3s1-15-20.; Кулиева Г.З., Мкртчян Л.С., Крикунова Л.И. и др. Эпидемиологические аспекты заболеваемости раком шейки матки и смертности от него (обзор литературы). Опухоли женской репродуктивной системы. 2023;19(3):77–84. https://doi.org/10.17650/1994-4098-2023-19-3-77-84.; Сафронова К.В., Артемьева А.С., Нюганен А.О. и др. Саркомы нижнего женского полового тракта (вульвы, влагалища и шейки матки): обзор литературы и собственные наблюдения. Опухоли женской репродуктивной системы. 2019;15(3):54–63. https://doi.org/10.17650/1994-4098-2019-15-3-54-63.; Клюкина Л.А., Соснова Е.А., Ищенко А.А., Давыдов М.М. Возможности прогнозирования индивидуального риска развития рака шейки матки у женщин репродуктивного возраста с помощью математического моделирования. Опухоли женской репродуктивной системы. 2024;20(2):90–8. https://doi.org/10.17650/1994-4098-2024-16-2-90-98.; Садовая Н.Д., Безменко А.А. Стратегии скрининга и профилактики рака шейки матки. Известия Российской военно-медицинской академии. 2024;43(1):77–85. https://doi.org/10.17816/rmmar623153.; Семенкин А.А., Сапроненко В.С., Логинова Е.Н., Надей Е.В. Таргетная терапия в онкологии. Экспериментальная и клиническая гастроэнтерология. 2022;9(205):222–8. https://doi.org/10.31146/1682-8658-ecg-205-9-222-228.; Боденко В.В., Ларькина М.С., Прач А.А. и др. Молекулярные мишени таргетной терапии злокачественных новообразований. Бюллетень сибирской медицины. 2024;23(2):101–13. https://doi.org/10.20538/1682-0363-2024-2-101-113.; Pavlova N.N., Pallasch C., Elia A.E. et al. A role for PVRL4-driven cell-cell interactions in tumorigenesis. Elife. 2013;2:e00358. https://doi.org/10.7554/eLife.00358.; Шевлюк Н.Н., Халикова Л.В., Халиков А.А. и др. Участие молекул адгезии в изменении взаимодействий клеток при развитии метастазирования. Гены и Клетки. 2020;15(4):27–32. https://doi.org/10.23868/202012004.; Samanta D., Almo S.C. Nectin family of cell-adhesion molecules: structural and molecular aspects of function and specificity. Cell Mol Life Sci. 2015;72(4):645–58. https://doi.org/10.1007/s00018-014-1763-4.; Miyoshi J., Takai Y. Nectin and nectin-like molecules: biology and pathology. Am J Nephrol. 2007;27(6):590–604. https://doi.org/10.1159/000108103.; Derycke M.S., Pambuccian S.E., Gilks C.B. et al. Nectin 4 overexpression in ovarian cancer tissues and serum: potential role as a serum biomarker. Am J Clin Pathol. 2010;134(5):835–45. https://doi.org/10.1309/AJCPGXK0FR4MHIHB.; Takai Y., Ikeda W., Ogita H., Rikitake Y. The immunoglobulin-like cell adhesion molecule nectin and its associated protein afadin. Annu Rev Cell Dev Biol. 2008;24:309–42. https://doi.org/10.1146/annurev.cellbio.24.110707.175339.; Liu Y., Han X., Li L. et al. Wang G. Role of Nectin-4 protein in cancer (Review). Int J Oncol. 2021;59(5):93. https://doi.org/10.3892/ijo.2021.5273.; Chatterjee S., Sinha S., Kundu C.N. Nectin cell adhesion molecule-4 (NECTIN-4): A potential target for cancer therapy. Eur J Pharmacol. 2021;911:174516. https://doi.org/10.1016/j.ejphar.2021.174516.; Fabre-Lafay S., Monville F., Garrido-Urbani S. et al. Nectin-4 is a new histological and serological tumor associated marker for breast cancer. BMC Cancer. 2007;7:73. https://doi.org/10.1186/1471-2407-7-73.; Liu Y., Li G., Zhang Y. et al. Nectin-4 promotes osteosarcoma progression and metastasis through activating PI3K/AKT/NF-κB signaling by down-regulation of miR-520c-3p. Cancer Cell Int. 2022;22(1):252. https://doi.org/10.1186/s12935-022-02669-w.; Deng H., Shi H., Chen L. et al. Over-expression of Nectin-4 promotes progression of esophageal cancer and correlates with poor prognosis of the patients. Cancer Cell Int. 2019;19:106. https://doi.org/10.1186/s12935-019-0824-z.; Takano A., Ishikawa N., Nishino R. et al. Identification of nectin-4 oncoprotein as a diagnostic and therapeutic target for lung cancer. Cancer Res. 2009;69(16):6694–703. https://doi.org/10.1158/0008-5472.CAN-09-0016.; Nishiwada S., Sho M., Yasuda S. et al. Nectin-4 expression contributes to tumor proliferation, angiogenesis and patient prognosis in human pancreatic cancer. J Exp Clin Cancer Res. 2015;34(1):30. https://doi.org/10.1186/s13046-015-0144-7.; Challita-Eid P.M., Satpayev D., Yang P. et al. Enfortumab vedotin antibody-drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Cancer Res. 2016;76(10):3003–13. https://doi.org/10.1158/0008-5472.CAN-15-1313.; Boylan K.L.M., Manion R.D., Shah H. et al. Inhibition of ovarian cancer cell spheroid formation by synthetic peptides derived from nectin-4. Int J Mol Sci. 2020;21(13):4637. https://doi.org/10.3390/ijms21134637.; Chatterjee S., Kundu C.N. Nanoformulated quinacrine regulates NECTIN-4 domain specific functions in cervical cancer stem cells. Eur J Pharmacol. 2020;883:173308. https://doi.org/10.1016/j.ejphar.2020.173308.; Hoffman-Censits J., Maldonado L. Targeted treatment of locally advanced and metastatic urothelial cancer: enfortumab vedotin in context. Onco Targets Ther. 2022;15:1519–29. https://doi.org/10.2147/OTT.S370900.; Wu Y., Zhu M., Sun B. et al. A humanized trivalent Nectin-4-targeting nanobody drug conjugate displays potent antitumor activity in gastric cancer. J Nanobiotechnology. 2024;22(1):256. https://doi.org/10.1186/s12951-024-02521-5.; Пожарисский К.М., Раскин Г.А., Винокуров В.Л. и др. Иммуногистохимические особенности клеток серозной аденокарциномы яичников, определяющие клиническое течение заболевания и выживаемость больных. Архив патологии. 2015;77(1):38–40. https://doi.org/10.17116/patol201577138.; Bekos C., Muqaku B., Dekan S. et al. NECTIN4 (PVRL4) as putative therapeutic target for a specific subtype of high grade serous ovarian cancer – an integrative multi-omics approach. Cancers (Basel). 2019;11(5):698. https://doi.org/10.3390/cancers11050698.; Klymenko Y., Nephew K.P. Epigenetic crosstalk between the tumor microenvironment and ovarian cancer cells: a therapeutic road less traveled. Cancers (Basel). 2018;10(9):295. https://doi.org/10.3390/cancers10090295.; Gong W., Liu Y., Diamandis E.P. et al. Prognostic value of kallikrein-related peptidase 7 (KLK7) mRNA expression in advanced high-grade serous ovarian cancer. J Ovarian Res. 2020;13(1):125. https://doi.org/10.1186/s13048-020-00725-5.; Dong Y., Loessner D., Irving-Rodgers H. et al. Metastasis of ovarian cancer is mediated by kallikrein related peptidases. Clin Exp Metastasis. 2014;31(1):135–47. https://doi.org/10.1007/s10585-013-9615-4.; Boylan K.L., Buchanan P.C., Manion R.D. et al. The expression of Nectin-4 on the surface of ovarian cancer cells alters their ability to adhere, migrate, aggregate, and proliferate. Oncotarget. 2017;8(6):9717–38. https://doi.org/10.18632/oncotarget.14206.; Nabih E.S., Motaleb F.I.A., Salama F.A. The diagnostic efficacy of nectin 4 expression in ovarian cancer patients. Biomarkers. 2014;19(6):498–504. https://doi.org/10.3109/1354750X.2014.940503.; Klinkebiel D., Zhang W., Akers S.N. et al. DNA methylome analyses implicate fallopian tube epithelia as the origin for high-grade serous ovarian cancer. Mol Cancer Res. 2016;14(9):787–94. https://doi.org/10.1158/1541-7786.MCR-16-0097.; Giancontieri P., Turetta C., Barchiesi G. et al. High-grade serous carcinoma of unknown primary origin associated with STIC clinically presented as isolated inguinal lymphadenopathy: a case report. Front Oncol. 2024;13:1307573. https://doi.org/10.3389/fonc.2023.1307573.; Rogmans C., Feuerborn J., Treeck L. et al. Nectin-4 as blood-based biomarker enables detection of early ovarian cancer stages. Cancers (Basel). 2022;14(23):5867. https://doi.org/10.3390/cancers14235867.; Nayak A., Das S., Nayak D. et al. Nanoquinacrine sensitizes 5-FU-resistant cervical cancer stem-like cells by down-regulating Nectin-4 via ADAM-17 mediated NOTCH deregulation. Cell Oncol (Dordr). 2019;42(2):157–71. https://doi.org/10.1007/s13402-018-0417-1.; Satapathy S.R., Siddharth S., Das D. et al. Enhancement of cytotoxicity and inhibition of angiogenesis in oral cancer stem cells by a hybrid nanoparticle of bioactive quinacrine and silver: implication of base excision repair cascade. Mol Pharm. 2015;12(11):4011–25. https://doi.org/10.1021/acs.molpharmaceut.5b00461.; Das D., Satapathy S.R., Siddharth S. et al. NECTIN-4 increased the 5-FU resistance in colon cancer cells by inducing the PI3K-AKT cascade. Cancer Chemother Pharmacol. 2015;76(3):471–9. https://doi.org/10.1007/s00280-015-2794-8.; Nayak A., Satapathy S.R., Das D. et al. Nanoquinacrine induced apoptosis in cervical cancer stem cells through the inhibition of hedgehog-GLI1 cascade: role of GLI-1. Sci Rep. 2016;6:20600. https://doi.org/10.1038/srep20600.; Fang P., You M., Cao Y. et al. Development and validation of bioanalytical assays for the quantification of 9MW2821, a nectin-4-targeting antibody-drug conjugate. J Pharm Biomed Anal. 2024;248:116318. https://doi.org/10.1016/j.jpba.2024.116318.; Zhou W., Fang P., Yu D. et al. Preclinical evaluation of 9MW2821, a site-specific monomethyl auristatin E-based antibody-drug conjugate for treatment of Nectin-4-expressing cancers. Mol Cancer Ther. 2023;22(8):913–25. https://doi.org/10.1158/1535-7163.MCT-22-0743.; A phase 1a/b study ADRX-0706 in subjects with select advanced solid tumors. 2024. Режим доступа: https://clinicaltrials.gov/study/NCT06036121. [Дата доступа: 23.02.2025].; Cancer Genome Atlas Research Network; Kandoth C., Schultz N., Cherniack A.D. et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73. https://doi.org/10.1038/nature12113.; Mahdy H., Vadakekut E.S., Crotzer D. Endometrial cancer. 2024 Apr 20. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2025 Jan. 2024 Apr 20.; Brianso-Llort L., Saéz-Lopez C., Alvarez-Guaita A. et al. Recent advances on sex hormone-binding globulin regulation by nutritional factors: clinical implications. Mol Nutr Food Res. 2024;68(14):e2400020. https://doi.org/10.1002/mnfr.202400020.; Huang-Doran I., Kinzer A.B., Jimenez-Linan M. et al. Ovarian hyperandrogenism and response to gonadotropin-releasing hormone analogues in primary severe insulin resistance. J Clin Endocrinol Metab. 2021;106(8):2367–83. https://doi.org/10.1210/clinem/dgab275.; Wang L., Yang M., Guo X. et al. Estrogen-related receptor-α promotes gallbladder cancer development by enhancing the transcription of Nectin-4. Cancer Sci. 2020;111(5):1514–27. https://doi.org/10.1111/cas.14344.; Chen L., Mao X., Huang M. et al. PGC-1α and ERRα in patients with endometrial cancer: a translational study for predicting myometrial invasion. Aging (Albany NY). 2020;12(17):16963–80. https://doi.org/10.18632/aging.103611.; Chang H.K., Park Y.H., Choi J.A. et al. Nectin-4 as a predictive marker for poor prognosis of endometrial cancer with mismatch repair impairment. Cancers (Basel). 2023;15(10):2865. https://doi.org/10.3390/cancers15102865.; Bell D.W., Ellenson L.H. Molecular genetics of endometrial carcinoma. Annu Rev Pathol. 2019;14:339–67. https://doi.org/10.1146/annurev-pathol-020117-043609.; Calandrella M.L., Francesconi S., Caprera C. et al. Nectin-4 and DNA mismatch repair proteins expression in upper urinary tract urothelial carcinoma (UTUC) as a model for tumor targeting approaches: an ImGO pilot study. BMC Cancer. 2022;22(1):168. https://doi.org/10.1186/s12885-022-09259-z.; Dixit G., Gonzalez-Bosquet J., Skurski J. et al. FGFR2 mutations promote endometrial cancer progression through dual engagement of EGFR and Notch signalling pathways. Clin Transl Med. 2023;13(5):e1223. https://doi.org/10.1002/ctm2.1223.; Левченко Н.Е., Муштенко С.В., Савостикова М.В., Захарова Т.И. Проблемы диагностики и лечения рака маточной трубы (клинический случай). Опухоли женской репродуктивной системы. 2016;12(3):80–6. https://doi.org/10.17650/1994-4098-2016-12-3-80-86.; Лушникова П.А., Сухих Е.С., Старцева Ж.А. Рак вульвы. Вклад лучевой терапии в лечение заболевания. Сибирский онкологический журнал. 2024;23(3):150–8. https://doi.org/10.21294/1814-4861-2024-23-3-150-158.; Kaltenecker B., Dunton C.J., Tikaria R. Vaginal Cancer. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2025 Jan. 2023 Mar 1.; Gandhi T., Zubair M., Bhatt H. Cancer Antigen 125. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2025 Jan. 2024 May 2.; Адамян Л.В., Андреева Е.Н. Эндометриоз и его глобальное влияние на организм женщины. Проблемы репродукции. 2022;28(1):54–64. https://doi.org/10.17116/repro20222801154.; Bedir R., Sehitoglu I., Balik G. et al. The role of the adhesion molecule Nectin-4 in the pathogenesis of endometriosis. Clin Exp Obstet Gynecol. 2016;43(3):463–6.; Ballester M., Gonin J., Rodenas A. et al. Eutopic endometrium and peritoneal, ovarian and colorectal endometriotic tissues express a different profile of nectin-1, -3, -4 and nectin-like molecule 2. Hum Reprod. 2012;27(11):3179–86. https://doi.org/10.1093/humrep/des304.; Ito M., Nishizawa H., Tsutsumi M. et al. Potential role for nectin-4 in the pathogenesis of pre-eclampsia: a molecular genetic study. BMC Med Genet. 2018;19(1):166. https://doi.org/10.1186/s12881-018-0681-y.; Yoshizawa H., Nishizawa H., Ito M. et al. Increased levels of nectin-4 as a serological marker for pre-eclampsia. Fujita Med J. 2023;9(3):200–5. https://doi.org/10.20407/fmj.2022-027.; Грекова Ю.Н., Зильберберг Н.В., Кузнецова Е.И. Экстрамаммарная болезнь Педжета. Акушерство и гинекология. 2022;(6):176–9. https://doi.org/10.18565/aig.2022.6.176-179.; Murata M., Ito T., Tanaka Y. et al. NECTIN4 expression in extramammary Paget's disease: implication of a new therapeutic target. Int J Mol Sci. 2020;21(16):5891. https://doi.org/10.3390/ijms21165891.; https://www.gynecology.su/jour/article/view/2442
-
4Academic Journal
Authors: A. V. Vorobev, V. O. Bitsadze, J. Kh. Khizroeva, A. G. Solopova, D. M. Mamchich, E. D. Mun, D. V. Blinov, J.-C. Gris, I. Elalamy, G. Gerotziafas, P. Van Dreden, A. D. Makatsariya, А. В. Воробьев, В. О. Бицадзе, Д. Х. Хизроева, А. Г. Солопова, Д. М. Мамчич, Э. Д. Мун, Д. В. Блинов, Ж.-К. Гри, И. Элалами, Г. Геротзиафас, П. Ван Дреден, А. Д. Макацария
Contributors: The authors declare no funding, Авторы заявляют об отсутствии финансовой поддержки
Source: Obstetrics, Gynecology and Reproduction; Vol 19, No 3 (2025); 351-359 ; Акушерство, Гинекология и Репродукция; Vol 19, No 3 (2025); 351-359 ; 2500-3194 ; 2313-7347
Subject Terms: противоопухолевый эффект, АСТ, ovarian cancer, OC, relapse, metastasis, venous thromboembolism, direct oral anticoagulants, thrombin, fibrin matrix, thrombosis, tumor invasion, antitumor effect, АКТ, рак яичников, РЯ, рецидив, метастазирование, венозная тромбоэмболия, прямые оральные антикоагулянты, тромбин, фибриновый матрикс, тромбоз, инвазия опухоли
File Description: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2493/1343; Sung H., Ferlay J., Siegel R.L. at al. Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660; Бредихин Р.А., Ахметзянов Р.В., Хайруллин Р.Н. Расширение возможностей лечения и профилактики венозных тромбоэмболических осложнений у пациентов с онкологическими заболеваниями. Роль пероральных антикоагулянтов. Клиницист. 2022;16(2):17–26. https://doi.org/10.17650/1818-8338-2022-16-2-К667.; Mulder F.I., Horváth-Puhó E., van Es N. et al. Venous thromboembolism in cancer patients: a population-based cohort study. Blood. 2021;137(14):1959–69. https://doi.org/10.1182/blood.2020007338.; Streiff M.B. Thrombosis in the setting of cancer. Hematology Am Soc Hematol Educ Program. 2016;2016(1):196–205. https://doi.org/10.1182/asheducation-2016.1.196.; Guo J., Gao Y., Gong Z. et al. Plasma D-dimer level correlates with age, metastasis, recurrence, tumor-node-metastasis classification (TNM), and treatment of non-small-cell lung cancer (NSCLC) patients. Biomed Res Int. 2021;2021:9623571. https://doi.org/10.1155/2021/9623571.; Hisada Y., Mackman N. Tissue factor and cancer: regulation, tumor growth and metastasis. Semin Thromb Hemost. 2019;45(4):385–95. https://doi.org/10.1055/s-0039-1687894.; Zhao B., Wu M., Hu Z. et al. A novel oncotherapy strategy: direct thrombin inhibitors suppress progression, dissemination and spontaneous metastasis in non-small cell lung cancer. Br J Pharmacol. 2022;179(22):5056–73. https://doi.org/10.1111/bph.15384.; Hisada Y., Mackman N. Cancer-associated pathways and biomarkers of venous thrombosis. Blood. 2017;130(13):1499–506. https://doi.org/10.1182/blood-2017-03-743211.; Слуханчук Е.В., Бицадзе В.О., Хизроева Д.Х. и др. Тромбоциты, тромбовоспаление и онкологический процесс. Акушерство, Гинекология и Репродукция. 2021;15(6):755–76. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.274.; Stone R.L., Nick A.M., McNeish I.A. et al. Paraneoplastic thrombocytosis in ovarian cancer. N Engl J Med. 2012;366(7):610–8. https://doi.org/10.1056/NEJMoa1110352.; Zhou L., Zhang Z., Tian Y. et al. The critical role of platelet in cancer progression and metastasis. Eur J Med Res. 2023;28(1):385. https://doi.org/10.1186/s40001-023-01342-w.; Miyazaki M., Nakabo A., Nagano Y. et al. Tissue factor-induced fibrinogenesis mediates cancer cell clustering and multiclonal peritoneal metastasis. Cancer Lett. 2023;553:215983. https://doi.org/10.1016/j.canlet.2022.215983.; Cohen A.T., Hamilton M., Mitchell S.A. et al. Comparison of the novel oral anticoagulants apixaban, dabigatran, edoxaban, and rivaroxaban in the initial and long-term treatment and prevention of venous thrombo-embolism: systematic review and network meta-analysis. PLoS One. 2015;10(12):e0144856. https://doi.org/10.1371/journal.pone.0144856.; Farge D., Frere C., Connors J.M. et al.; International Initiative on Thrombosis and Cancer (ITAC) advisory panel. 2022 international clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer, including patients with COVID-19. Lancet Oncol. 2022;23(7):e334–e347. https://doi.org/10.1016/S1470-2045(22)00160-7.; Key N.S., Khorana A.A., Kuderer N.M. et al. Venous thromboembolism prophylaxis and treatment in patients with cancer: ASCO Guideline Update. J Clin Oncol. 2023;41(16):3063–71. https://doi.org/10.1200/JCO.23.00294.; Kurube I., Ambari E., Iskandar T. et al. Factors associated with recurrence of epithelial ovarian cancer In RSUP Dr. Kariadi Semarang. DIMJ. 2022;3(2):74–80. https://doi.org/10.14710/dimj.v3i2.15448.; Joy J., Kumar J., Kumar S., Arshad M. Clinical profiles and survival outcomes of patients with relapsed ovarian cancer: a single-center study. Cureus. 2024;16(11):e74724. https://doi.org/10.7759/cureus.74724.; Al-Azzawi H.M.A., Hamza S.A., Paolini R. et al. Towards an emerging role for anticoagulants in cancer therapy: a systematic review and meta-analysis. Front Oral Health. 2024;5:1495942. https://doi.org/10.3389/froh.2024.1495942.; Najidh S., Versteeg H.H., Buijs J.T. A systematic review on the effects of direct oral anticoagulants on cancer growth and metastasis in animal models. Thromb Res. 2020;187:18–27. https://doi.org/10.1016/j.thromres.2019.12.022.; https://www.gynecology.su/jour/article/view/2493
-
5Academic Journal
Authors: I. S. Panchenko, V. V. Rodionov, V. V. Kometova, S. V. Panchenko, M. G. Sharafutdinov, I. A. Lavrentieva, И. С. Панченко, В. В. Родионов, В. В. Кометова, С. В. Панченко, М. Г. Шарафутдинов, И. А. Лаврентьева
Source: Siberian journal of oncology; Том 24, № 1 (2025); 70-78 ; Сибирский онкологический журнал; Том 24, № 1 (2025); 70-78 ; 2312-3168 ; 1814-4861
Subject Terms: отдаленное метастазирование, TNBC, PGR, AR, FOXA1, locoregional relapse, distant metastasis, ТНРМЖ, локорегионарный рецидив
File Description: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/3464/1323; Kennecke H., Yerushalmi R., Woods R., Cheang M.С.U., Voduc D., Speers C.H., Nielsen T.O., Gelmon K. Metastatic behavior of breast cancer subtypes. J. Clin Oncol. 2010; 28(20): 3271–77. doi:10.1200/JCO.2009.25.9820.; Li X., Yang J., Peng L., Sahin A.A., Huo L., Ward K.C., O’Regan R., Torres M.A., Meisel J.L. Triple-negative breast cancer has worse over-all survival and cause-specific survival than non-triple-negative breast cancer. Breast Cancer Res Treat. 2017; 161(2): 279–87. doi:10.1007/s10549-016-4059-6.; Sporikova Z., Koudelakova V., Trojanec R., Hajduch M. Genetic Markers in Triple-Negative Breast Cancer. Clin Breast Cancer. 2018; 18(5): 841–50. doi:10.1016/j.clbc.2018.07.023.; Howard F.M., Olopade O.I. Epidemiology of Triple-Negative Breast Cancer: A Review. Cancer J. 2021; 27(1): 8–16. doi:10.1097/PPO.0000000000000500.; Cortazar P., Zhang L., Untch M., Mehta K., Costantino J.P., Wolmark N., Bonnefoi H., Cameron D., Gianni L., Valagussa P., Swain S.M., Prowell T., Loibl S., Wickerham D.L., Bogaerts J., Baselga J., Perou C., Blumenthal G., Blohmer J., Mamounas E.P., Bergh J., Semiglazov V., Justice R., Eidtmann H., Paik S., Piccart M., Sridhara R., Fasching P.A., Slaets L., Tang S., Gerber B., Geyer C.E. Jr, Pazdur R., Ditsch N., Rastogi P., Eiermann W., von Minckwitz G. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014; 384(9938): 164–72. doi:10.1016/S0140-6736(13)62422-8. Erratum in: Lancet. 2019; 393(10175): 986. doi:10.1016/S0140-6736(18)32772-7.; Liedtke C., Mazouni C., Hess K.R., André F., Tordai A., Mejia J.A., Symmans W.F., Gonzalez-Angulo A.M., Hennessy B., Green M., Cristofanilli M., Hortobagyi G.N., Pusztai L. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008; 26(8): 1275–81. doi:10.1200/JCO.2007.14.4147.; Metzger-Filho O., Tutt A., de Azambuja E., Saini K.S., Viale G., Loi S., Bradbury I., Bliss J.M., Azim H.A. Jr, Ellis P., Di Leo A., Baselga J., Sotiriou C., Piccart-Gebhart M. Dissecting the heterogeneity of triple-negative breast cancer. J Clin Oncol. 2012; 30(15): 1879–87. doi:10.1200/JCO.2011.38.2010.; Won K.A., Spruck C. Triple-negative breast cancer therapy: Current and future perspectives (Review). Int J Oncol. 2020; 57(6): 1245–61. doi:10.3892/ijo.2020.5135.; Burstein M.D., Tsimelzon A., Poage G.M., Covington K.R., Contreras A., Fuqua S.A., Savage M.I., Osborne C.K., Hilsenbeck S.G., Chang J.C., Mills G.B., Lau C.C., Brown P.H. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2015; 21(7): 1688–98. doi:10.1158/1078-0432.CCR-14-0432.; Lehmann B.D., Bauer J.A., Chen X., Sanders M.E., Chakravarthy A.B., Shyr Y., Pietenpol J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011; 121(7): 2750–67. doi:10.1172/JCI45014.; Liu Y.R., Jiang Y.Z., Xu X.E., Yu K.D., Jin X., Hu X., Zuo W.J., Hao S., Wu J., Liu G.Y., Di G.H., Li D.Q., He X.H., Hu W.G., Shao Z.M. Comprehensive transcriptome analysis identifies novel molecular subtypes and subtype-specific RNAs of triple-negative breast cancer. Breast Cancer Res. 2016; 18(1): 33. doi:10.1186/s13058-016-0690-8.; Perou C.M., Sørlie T., Eisen M.B., van de Rijn M., Jeffrey S.S., Rees C.A., Pollack J.R., Ross D.T., Johnsen H., Akslen L.A., Fluge O., Pergamenschikov A., Williams C., Zhu S.X., Lønning P.E., Børresen-Dale A.L., Brown P.O., Botstein D. Molecular portraits of human breast tumours. Nature. 2000; 406(6797): 747–52. doi:10.1038/35021093.; Lehmann B .D., Colaprico A., Silva T.C., Chen J., Hanbing A., Yunguang B., Huang H., Wang L., James J.L., Balko J.M., Gonzales-Ericsson P.I., Sanders M.E., Zhang B., Pietenpol J.A., Chen X.S. Milti-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes. Nat Commun. 2021; 12. doi:10.1038/s41467-021-26502-6.; Вторушин С.В., Крахмаль Н.В., Завьялова М.В. Тройной негативный рак молочной железы. Современные молекулярно-генетические представления и их клиническое значение. Архив патологии. 2021; 83(2): 46–51. doi:10.17116/patol20218302146. EDN: DHFZXP.; Панченко И.С., Родионов В.В., Бурменская О.В., Кометова В.В., Боженко В.К., Шарафутдинов М.Г., Панченко С.В., Матвеева Л.В. Клинико-морфологические особенности молекулярно-генетических кластеров трижды негативного рака молочной железы. Поволжский онкологический вестник. 2022; 13(1): 8–17. doi:10.32000/2078-1466-2022-1-8-17. EDN: JEDDYS.; Панченко И.С., Родионов В.В., Бурменская О.В., Кометова В.В., Боженко В.К. Молекулярно-генетические кластеры трижды негативного рака молочной железы и их прогностическая значимость. Казанский медицинский журнал. 2023; 104(2): 198–206. doi:10.17816/KMJ104784. EDN: FWKMTY.; Молчанов О.Е., Майстренко Д.Н., Станжевский А.А. Тераностика трижды негативного рака молочной железы: обзор. Лучевая диагностика и терапия. 2023; 14(2): 15–30. doi:10.22328/2079-5343-2023-14-2-15-30. EDN: PSSHHJ.; Sanges F., Floris M., Cossu-Rocca P., Muroni M.R., Pira G., Urru S.A.M., Barrocu R., Gallus S., Bosetti C., D’Incalci M., Manca A., Uras M.G., Medda R., Sollai E., Murgia A., Palmas D., Atzori F., Zinellu A., Cambosu F., Moi T., Ghiani M., Marras V., Santona M.C., Canu L., Valle E., Sarobba M.G., Onnis D., Asunis A., Cossu S., Orrù S., De Miglio M.R. Histologic subtyping affecting outcome of triple negative breast cancer: a large Sardinian population-based analysis. BMC Cancer. 2020; 20(1): 491. doi:10.1186/s12885-020-06998-9.; Ma J., Chen C., Liu S., Ji J., Wu D., Huang P., Wei D., Fan Z., Ren L. Identification of a five genes prognosis signature for triple-negative breast cancer using multi-omics methods and bioinformatics analysis. Cancer Gene Ther. 2022; 29(11): 1578–89. doi:10.1038/s41417-022-00473-2. Erratum in: Cancer Gene Ther. 2022; 29(11): 1803. doi:10.1038/s41417-022-00498-7.; Hu X.Q., Chen W.L., Ma H.G., Jiang K. Androgen receptor expression identifies patient with favorable outcome in operable triple negative breast cancer. Oncotarget. 2017; 8(34): 56364–74. doi:10.18632/oncotarget.16913.; Grellety T. Cancer du sein triple négatif exprimant le récepteur aux androgènes: de la biologie à la thérapeutique [Androgen receptor-positive triple negative breast cancer: From biology to therapy]. Bull Cancer. 2020; 107(4): 506–16. French. doi:10.1016/j.bulcan.2019.12.012.; Qiu P., Guo Q., Yao Q., Chen J., Lin J. Hsa-mir-3163 and CCNB1 may be potential biomarkers and therapeutic targets for androgen receptor positive triple-negative breast cancer. PLoS One. 2021; 16(11). doi:10.1371/journal.pone.0254283.; Sghaier I., Zidi S., El-Ghali R.M., Daldoul A., Aimagambetova G., Almawi W.Y. Unique ESR1 and ESR2 estrogen receptor gene variants associated with altered risk of triple-negative breast cancer: A case-control study. Gene. 2023; 851. doi:10.1016/j.gene.2022.146969.; Kahl I., Mense J., Finke C., Boller A.L., Lorber C., Győrffy B., Greve B., Götte M., Espinoza-Sánchez N.A. The cell cycle-related genes RHAMM, AURKA, TPX2, PLK1, and PLK4 are associated with the poor prognosis of breast cancer patients. J Cell Biochem. 2022; 123(3): 581–600. doi:10.1002/jcb.30205.; Perez-Balaguer A., Ortiz-Martínez F., García-Martínez A., Pomares-Navarro C., Lerma E., Peiró G. FOXA2 mRNA expression is associated with relapse in patients with Triple-Negative/Basal-like breast carcinoma. Breast Cancer Res Treat. 2015; 153(2): 465–74. doi:10.1007/s10549-015-3553-6.; Yuan Q., Zheng L., Liao Y., Wu G. Overexpression of CCNE1 confers a poorer prognosis in triple-negative breast cancer identified by bioinformatic analysis. World J Surg Oncol. 2021; 19(1): 86. doi:10.1186/s12957-021-02200-x.; Bai Y., Yuan F., Yu J., Si Y., Zheng Y., Li D. A BIRC5High COD1Low Cancer Tissue Phenotype Indicates Poorer Prognosis of Metastatic Breast Cancer Patients. Cancer Inform. 2022; 21. doi:10.1177/11769351221096655.; Zimmerli D., Brambillasca C.S., Talens F., Bhin J., Linstra R., Romanens L., Bhattacharya A., Joosten S.E.P., Da Silva A.M., Padrao N., Wellenstein M.D., Kersten K., de Boo M., Roorda M., Henneman L., de Bruijn R., Annunziato S., van der Burg E., Drenth A.P., Lutz C., Endres T., van de Ven M., Eilers M., Wessels L., de Visser K.E., Zwart W., Fehrmann R.S.N., van Vugt M.A.T.M., Jonkers J. MYC promotes immune-suppression in triple-negative breast cancer via inhibition of interferon signaling. Nat Commun. 2022; 13(1): 6579. doi:10.1038/s41467-022-34000-6.; Liu Y., Zhang A., Bao P.P., Lin L., Wang Y., Wu H., Shu X.O., Liu A., Cai Q. MicroRNA-374b inhibits breast cancer progression through regulating CCND1 and TGFAgenes. Carcinogenesis. 2021; 42(4): 528–36. doi:10.1093/carcin/bgab005.; Cui N.P., Qiao S., Jiang S., Hu J.L., Wang T.T., Liu W.W., Qin Y., Wang Y.N., Zheng L.S., Zhang J.C., Ma Y.P., Chen B.P., Shi J.H. Protein Tyrosine Kinase 7 Regulates EGFR/Akt Signaling Pathway and Correlates With Malignant Progression in Triple-Negative Breast Cancer. Front Oncol. 2021; 11. doi:10.3389/fonc.2021.699889.; Wang Q., Li Z., Hu Y., Zheng W., Tang W., Zhai C., Gu Z., Tao J., Wang H. Retraction Note to: Circ-TFCP2L1 Promotes the Proliferation and Migration of Triple Negative Breast Cancer through Sponging miR-7 by Inhibiting PAK1. J Mammary Gland Biol Neoplasia. 2021; 26(1): 87. doi:10.1007/s10911-021-09481-8.; https://www.siboncoj.ru/jour/article/view/3464
-
6Academic Journal
Authors: E. I. Surikova, E. M. Frantsiyants, I. V. Kaplieva, I. V. Neskubina, E. G. Shakaryan, A. V. Snezhko, E. N. Kolesnikov, V. A. Bandovkina, L. K. Trepitaki, Yu. A. Petrova, N. S. Lesovaya, M. A. Engibaryan, V. L. Volkova, Е. И. Сурикова, Е. М. Франциянц, И. В. Каплиева, И. В. Нескубина, Е. Г. Шакарян, А. В. Снежко, Е. Н. Колесников, В. А. Бандовкина, Л. К. Трепитаки, Ю. А. Петрова, Н. С. Лесовая, М. А. Енгибарян, В. Л. Волкова
Source: Research and Practical Medicine Journal; Том 12, № 1 (2025); 40-51 ; Research'n Practical Medicine Journal; Том 12, № 1 (2025); 40-51 ; 2410-1893 ; 10.17709/2410-1893-2025-12-1
Subject Terms: редокс-регуляция, metastasis, latent period, experimental model, sarcoma 45, spleen, liver, thioredoxin 1, thioredoxin reductase 1, glutathione-S-transferase Pi, redox regulation, метастазирование, латентный период, экспериментальная модель, саркома 45, селезенка, печень, тиоредоксин 1,тиоредоксинредуктаза 1, глутатион-S-трансфераза Pi
File Description: application/pdf
Relation: https://www.rpmj.ru/rpmj/article/view/1059/674; Каплиева И. В., Франциянц Е. М., Кит О. И. Патогенетические аспекты метастатического поражения печени (экспериментальное исследование). М.: Общество с ограниченной ответственностью «Кредо»; 2022, 356 с. EDN: https://elibrary.ru/CCLUYR; Кит О. И., Геворкян Ю. А., Солдаткина Н. В., Колесников В. Е., Бондаренко О. К., Дашков А. В. Современные хирургические стратегии лечения метастатического колоректального рака (обзор литературы). Южно-Российский онкологический журнал. 2024;5(3):102–110. https://doi.org/10.37748/2686-9039-2024-5-3-9; Ahmed O, Robinson MW, O'Farrelly C. Inflammatory processes in the liver: divergent roles in homeostasis and pathology. Cell Mol Immunol. 2021 Jun;18(6):1375–1386. https://doi.org/10.1038/s41423-021-00639-2; Zhang S, Lu S, Li Z. Extrahepatic factors in hepatic immune regulation. Front Immunol. 2022 Aug 16;13:941721. https://doi.org/10.3389/fimmu.2022.941721; Vairetti M, Di Pasqua LG, Cagna M, Richelmi P, Ferrigno A, Berardo C. Changes in Glutathione Content in Liver Diseases: An Update. Antioxidants (Basel). 2021 Feb 28;10(3):364. https://doi.org/10.3390/antiox10030364; Parlar YE, Ayar SN, Cagdas D, Balaban YH. Liver immunity, autoimmunity, and inborn errors of immunity. World J Hepatol. 2023 Jan 27;15(1):52–67. https://doi.org/10.4254/wjh.v15.i1.52; Lee J, Kim J, Lee R, Lee E, Choi TG, Lee AS, et al. Therapeutic strategies for liver diseases based on redox control systems. Biomed Pharmacother. 2022 Dec:156:113764. https://doi.org/10.1016/j.biopha.2022.113764; Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol. 2023 Oct;97(10):2499–2574. https://doi.org/10.1007/s00204-023-03562-9; Oberacker T, Kraft L, Schanz M, Latus J, Schricker S. The Importance of Thioredoxin-1 in Health and Disease. Antioxidants (Basel). 2023 May 11;12(5):1078. https://doi.org/10.3390/antiox12051078; Mazari AMA, Zhang L, Ye ZW, Zhang J, Tew KD, Townsend DM. The Multifaceted Role of Glutathione S-Transferases in Health and Disease. Biomolecules. 2023 Apr 18;13(4):688. https://doi.org/10.3390/biom13040688; Dong SC, Sha HH, Xu XY, Hu TM, Lou R, Li H. et al. Glutathione S-transferase π: a potential role in antitumor therapy. Drug Des Devel Ther. 2018 Oct 23;12:3535–3547. https://doi.org/10.2147/DDDT.S169833; Zhang J, Ye Z-W, Singh S, Townsend DM, Tew KD. An evolving understanding of the S-glutathionylation cycle in pathways of redox regulation. Free. Radic. Biol. Med. 2018;120:204–216. https://doi.org/10.1016/j.freeradbiomed.2018.03.038; Франциянц E. М., Каплиева И. В., Бандовкина В. А., Сурикова Е. И., Нескубина И. В., Трипитаки Л. К., и др. Моделирование первично-множественных злокачественных опухолей в эксперименте. Южно-Российский онкологический журнал. 2022;3(2):14–21. https://doi.org/10.37748/2686-9039-2022-3-2-2; Франциянц Е. М, Сурикова Е. И., Каплиева И. В., Нескубина И. В., Шакарян Э. Г., Снежко А. В., и др. Динамика свободно-радикальных окислительных процессов в латентный период экспериментального метастазирования в печень. Уральский медицинский журнал. 2024;23(5):89–103. https://doi.org/10.52420/umj.23.5.89; Kit OI, Frantsiyants EM, Kaplieva IV, Trepitaki LK, Evstratova OF. A method for reproduction of metastases in the liver. Bull Exp Biol Med. 2014 Oct;157(6):773–775. https://doi.org/10.1007/s10517-014-2664-0; Seen S. Chronic liver disease and oxidative stressa narrative review. Expert Rev Gastroenterol Hepatol. 2021 Sep;15(9):1021–1035. https://doi.org/10.1080/17474124.2021.1949289; Couto N, Wood J, Barber J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med. 2016 Jun;95:27–42. https://doi.org/10.1016/j.freeradbiomed.2016.02.028; Santacroce G, Gentile A, Soriano S, Novelli A, Lenti MV, Di Sabatino A. Glutathione: Pharmacological aspects and implications for clinical use in non-alcoholic fatty liver disease. Front Med (Lausanne). 2023 Mar 22;10:1124275. https://doi.org/10.3389/fmed.2023.1124275; Shcholok T, Eftekharpour E. Insights into the Multifaceted Roles of Thioredoxin-1 System: Exploring Knockout Murine Models. Biology (Basel). 2024 Mar 12;13(3):180. https://doi.org/10.3390/biology13030180; Prigge JR, Coppo L, Martin SS, Ogata F, Miller CG, Bruschwein MD, et al. Hepatocyte Hyperproliferation upon Liver-Specific Co-disruption of Thioredoxin-1, Thioredoxin Reductase-1, and Glutathione Reductase. Cell Rep. 2017 Jun 27;19(13):2771–2781. https://doi.org/10.1016/j.celrep.2017.06.019; Shearn CT, Anderson AL, Miller CG, Noyd RC, Devereaux MW, Balasubramaniyan N, et al. Thioredoxin reductase 1 regulates hepatic inflammation and macrophage activation during acute cholestatic liver injury. Hepatol Commun. 2023 Jan 10;7(1):e0020. https://doi.org/10.1097/HC9.0000000000000020; Iverson SV, Eriksson S, Xu J, Prigge JR, Talago EA, Meade TA, et al. A Txnrd1-dependent metabolic switch alters hepatic lipogenesis, gly cogen storage, and detoxification. Free Radic Biol Med. 2013 Oct;63:369–380. https://doi.org/10.1016/j.freeradbiomed.2013.05.028; Singh RR, Reindl KM. Glutathione S-Transferases in Cancer. Antioxidants. 2021;10(5):701. https://doi.org/10.3390/antiox10050701; Georgiou-Siafis SK, Tsiftsoglou AS. The Key Role of GSH in Keeping the Redox Balance in Mammalian Cells: Mechanisms and Sig nificance of GSH in Detoxification via Formation of Conjugates. Antioxidants. 2023;12(11):1953. https://doi.org/10.3390/antiox12111953; Косова А. А., Ходырева С. Н., Лаврик О. И. Роль глицеральдегид-3-фосфатдегидрогеназы (GAPDH) в репарации ДНК. Биохимия. 2017;82(6):859–872.; Гарбуз Д. Г., Зацепина О. Г, Евгеньев М. Б. Основной стрессовый белок человека (HSP70) как фактор белкового гомеостаза и цитокин-подобный регулятор. Молекулярная биология. 2019;53(2):200–217. https://doi.org/10.1134/S0026898419020058; Lee S, Kim SM, Lee RT. Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Anti oxid Redox Signal. 2013 Apr 1;18(10):1165–1207. https://doi.org/10.1089/ars.2011.4322; Chakraborty S, Sircar E, Bhattacharyya C, Choudhuri A, Mishra A, Dutta S. et al. S-Denitrosylation: A Crosstalk between Glutathi one and Redoxin Systems. Antioxidants (Basel). 2022 Sep 28;11(10):1921. https://doi.org/10.3390/antiox11101921; Zhang J, Li X, Zhao Z, Cai W, Fang J. Thioredoxin Signaling Pathways in Cancer. Antioxid Redox Signal. 2023 Feb;38(4-6):403–424. https://doi.org/10.1089/ars.2022.0074; https://www.rpmj.ru/rpmj/article/view/1059
-
7Academic Journal
Authors: Zhidkova E.M., Maksimova V.P., Grigoreva D.D., Shirinian V.Z., Yakubovskaya M.G., Lesovaya E.A.
Source: Advances in Molecular Oncology; Vol 11, No 3 (2024); 92-102 ; Успехи молекулярной онкологии; Vol 11, No 3 (2024); 92-102 ; 2413-3787 ; 2313-805X
Subject Terms: breast cancer, glucocorticoid, glucocorticoid receptor, metastasis, selective glucocorticoid receptor agonist, chemotherapy, side effect, рак молочной железы, глюкокортикоид, глюкокортикоидный рецептор, метастазирование, селективный агонист глюкокортикоидного рецептора, химиотерапия, побочный эффект
File Description: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/711/364; https://umo.abvpress.ru/jour/article/view/711
-
8Academic Journal
Authors: Vasileva M.V., Khromova N.V., Boichuk S.V., Kopnin P.B.
Contributors: This research was funded by the Russian Scientific Foundation (grant No. 23-15-00433, https://rscf.ru/en/project/23-15-00433), Исследование выполнено за счет гранта Российского научного фонда (грант № 23-15-00433, https://rscf.ru/ project/23-15-00433)
Source: Advances in Molecular Oncology; Vol 11, No 2 (2024); 97-105 ; Успехи молекулярной онкологии; Vol 11, No 2 (2024); 97-105 ; 2413-3787 ; 2313-805X
Subject Terms: lung cancer, colorectal cancer, Notch signaling pathway, tumor progression, metastasis, cancer stem cells, рак легкого, колоректальный рак, сигнальный путь Notch, опухолевая прогрессия, метастазирование, опухолевые стволовые клетки
File Description: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/680/356; https://umo.abvpress.ru/jour/article/view/680
-
9Academic Journal
Authors: V. A. Alimov, S. A. Skugarev, D. N. Grekov, E. G. Novikova, D. S. Lantsov, A. M. Danilov, A. V. Sazhina, P. N. Afanasova, В. А. Алимов, С. А. Скугарев, Д. Н. Греков, Е. Г. Новикова, Д. С. Ланцов, А. М. Данилов, А. В. Сажина, П. Н. Афанасова
Source: Siberian journal of oncology; Том 22, № 6 (2023); 35-44 ; Сибирский онкологический журнал; Том 22, № 6 (2023); 35-44 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2017-0-31-36
Subject Terms: ICG-картирование, microstaging, lymphatic metastasis, sentinel lymph node biopsy, pelvic lymphadenectomy, hysterectomy, ICG mapping, микростадирование, лимфогенное метастазирование, биопсия сторожевых лимфоузлов, тазовая лимфаденэктомия, гистерэктомия
File Description: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/2833/1178; Саевец В.В., Семенов Ю.А., Мухин А.А., Таратонов А.В., Ивахно М.Н., Шмидт А.В. Лимфаденэктомия при онкогинекологической патологии: оценка формирования лимфатических кист и выявления метастазов в зависимости от количества удаленных лимфатических узлов. Уральский медицинский журнал. 2021; 20(4): 31–7. doi:10.52420/2071-5943-2021-20-4-31-37.; Состояние онкологической помощи населению России в 2020 году. Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М., 2021. 252 с.; Кравец О.А., Морхов К.Ю., Нечушкина В.М., Новикова Е.Г., Новикова О.В., Хохлова С.В., Чулкова О.В. Клинические рекомендации по диагностике и лечению больных раком эндометрия. Общероссийский союз общественных объединений. Ассоциация онкологов России. 15 с.; Анпилогов С.В., Шевчук А.С., Новикова Е.Г. Лапароскопическая экстирпация матки с тазовой лимфаденэктомией как альтернатива лапаротомии при лечении рака эндометрия. Злокачественные опухоли. 2016; (4): 41–7. doi:10.18027/2224-5057-2016-4-41-47.; Нечушкина В.М., Морхов К.Ю., Егорова А.В. Выбор объема хирургического лечения у больных раком тела матки. Злокачественные опухоли. 2020; 3s1: 3–10. doi:10.18027/2224-5057-2019-10-3s1-3-10.; Colombo N., Creutzberg C., Amant F., Bosse T., González-Martín A., Ledermann J., Marth C., Nout R., Querleu D., Mirza M.R., Sessa C.; ESMO-ESGO-ESTRO Endometrial Consensus Conference Working Group. ESMO-ESGO-ESTRO Consensus Conference on Endometrial Cancer: diagnosis, treatment and follow-up. Ann Oncol. 2016; 27(1): 16–41. doi:10.1093/annonc/mdv484.; Очиров М.О., Кишкина А.Ю., Коломиец Л.А., Чернов В.И. Биопсия сторожевых лимфатических узлов при хирургическом лечении рака эндометрия: история и современность. Опухоли женской репродуктивной системы. 2018; 14(4): 65–71. doi:10.17650/1994-4098-2018-14-4-65-71.; Нечушкина В.М., Коломиец Л.А., Кравец О.А., Морхов К.Ю., Новикова Е.Г., Новикова О.В., Тюляндина А.С., Ульрих Е.А., Феденко А.А., Хохлова С.В. Практические рекомендации по лекарственному лечению рака тела матки и сарком матки. Злокачественные опухоли. 2021; 11(3s2): 218–32. doi:10.18027/2224-5057-2021-11-3s2-14.; Todo Y., Kato H., Kaneuchi M., Watari H., Takeda M., Sakuragi N. Survival efect of para-aortic lymphadenectomy in endometrial cancer (SEPAL study): a retrospective cohort analysis. Lancet. 2010; 375(9721): 1165–72. doi:10.1016/S0140-6736(09)62002-X.; Petousis S., Christidis P., Margioula-Siarkou C., Papanikolaou A., Dinas K., Mavromatidis G., Guyon F., Rodolakis A., Vergote I., Kalogiannidi I. Combined pelvic and para-aortic is superior to only pelvic lymphadenectomy in intermediate and high-risk endometrial cancer: a systematic review and meta-analysis. Arch Gynecol Obstet. 2020; 302(1): 249–63. doi:10.1007/s00404-020-05587-2.; Guo W., Cai J., Li M., Wang H., Shen Y. Survival benefits of pelvic lymphadenectomy versus pelvic and para-aortic lymphadenectomy in patients with endometrial cancer: A meta-analysis. Medicine (Baltimore). 2018; 97(1). doi:10.1097/MD.0000000000009520.; Frost J.A., Webster K.E., Bryant A., Morrison J. Lymphadenectomy for the management of endometrial cancer. Cochrane Database Syst Rev. 2017; 10(10). doi:10.1002/14651858.CD007585.pub4.; Беришвили А.И., Ли О.В., Кочоян Т.М., Левкина Н.В., Керимов Р.А., Поликарпова С.Б. Сторожевые лимфатические узлы при раке тела матки. Опухоли женской репродуктивной системы. 2017; 17(2): 68–74. doi:10.17650/1994-4098-2017-13-2-68-74.; Антонова И.Б., Алешикова О.И., Ригер А.Н., Мамурова Г.А. Диагностическая значимость лимфаденэктомии и биопсии сторожевого лимфоузла у пациенток с I и II стадией рака тела матки. Доктор. Ру. 2021; 20(8): 59–63. doi:10.31550/1727-2378-2021-20-8-59-63.; Кочатков А.В., Харлов Н.С. Биопсия сторожевых лимфатических узлов, маркированных индоцианином зеленым, в хирургическом лечении рака эндометрия: обзор литературы и собственный опыт. Сибирский онкологический журнал. 2019; 18(2): 52–7. doi:/10.21294/1814-4861-2019-18-2-52-57.; Bogani G., Murgia F., Ditto A., Raspagliesi F. Sentinel node mapping vs. lymphadenectomy in endometrial cancer: A systematic review and meta-analysis. Gynecol Oncol. 2019; 153(3): 676–83. doi:10.1016/j.ygyno.2019.03.254.; Accorsi G.S., Paiva L.L., Schmidt R., Vieira M., Reis R., Andrade C. Sentinel Lymph Node Mapping vs Systematic Lymphadenectomy for Endometrial Cancer: Surgical Morbidity and Lymphatic Complications. J Minim Invasive Gynecol. 2020; 27(4): 938–45. doi:10.1016/j.jmig.2019.07.030.; Grassi T., Dell’Orto F., Jaconi M., Lamanna M., De Ponti E., Paderno M., Landoni F., Leone B.E., Fruscio R., Buda A. Two ultrastaging protocols for the detection of lymph node metastases in early-stage cervical and endometrial cancers. Int J Gynecol Cancer. 2020; 30(9): 1404–10. doi:10.1136/ijgc-2020-001298.; Берлев И.В., Ульрих Е.А., Ибрагимов З.Н., Гусейнов К.Д., Городнова Т.В., Новиков С.Н., Крживицкий П.И., Роговская Т.Т., Мкртчян Г.Б., Трифанов Ю.Н., Некрасова Е.А., Бежанова Е.Г., Ахмеров Р.Д., Микая Н.А., Урманчеева А.Ф., Канаев С.В. Возможности детекции сигнальных лимфатических узлов при раке эндометрия радиоизотопным и флуоресцентным (ICG). Вопросы онкологии. 2017; 63(2): 304–8.; Мкртчян Г.Б., Ибрагимов З.Н., Бежанова Е.Г., Ульрих Е.А., Урманчеева А.Ф., Берлев И.В. Эффективность флуоресцентного метода с использованием индоцианин сигнальных лимфатических узлов у больных с раком шейки матки. Доктор.Ру. 2018; 146(2): 41–5.; Berek J.S., Matias-Guiu X., Creutzberg C., Fotopoulou C., Gaffney D., Kehoe S., Lindemann K., Mutch D., Concin N.; Endometrial Cancer Staging Subcommittee, FIGO Women’s Cancer Committee. FIGO staging of endometrial cancer: 2023. Int J Gynaecol Obstet. 2023; 162(2): 383–94. doi:10.1002/ijgo.14923.; https://www.siboncoj.ru/jour/article/view/2833
-
10Academic Journal
Authors: N. Yu. Germanovich, M. Yu. Pikunov, T. A. Shchegolkova, I. M. Mishchenko, Н. Ю. Германович, М. Ю. Пикунов, Т. А. Щеголькова, И. М. Мищенко
Source: Obstetrics, Gynecology and Reproduction; Vol 18, No 5 (2024); 735–742 ; Акушерство, Гинекология и Репродукция; Vol 18, No 5 (2024); 735–742 ; 2500-3194 ; 2313-7347
Subject Terms: солитарная фиброзная опухоль, ВС, distant metastasis, pulmonary adenofibroma, solitary fibrous tumor, РМЖ, отдаленное метастазирование, аденофиброма легкого
File Description: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2233/1261; Cardoso F., Costa A., Senkus E. et al. 3-rd ESO-ESMO International Consensus Guidelines for Advanced Breast Cancer (ABC 3). Ann Oncol. 2017;28(1):16–33. https://doi.org/10.1093/annonc/mdw544.; Основы и принципы онкопластической хирургии при раке молочной железы. Под ред. З. Матрая, Г. Гуляша, Т. Ковача, М. Каслера; пер. с англ. К.С. Николаева, А.В. Комяхова, Р.С. Песоцкого, Ш.А. Джалиловой; под ред. А.А. Бессонова, А.С. Емельянова, М.А. Джеляловой, В.С. Аполлоновой. Санкт-Петербург: МедЛит, 2021. 767 с.; Пикин О.В., Трахтенберг А.Х., Осипов В.В. и др. Хирургический метод в диагностике и лечении больных с очаговыми образованиями в легких при раке молочной железы. Сибирский онкологический журнал. 2012;(6):21–5.; Medeiros B., Allan A.L. Molecular mechanisms of breast cancer metastasis to the lung: clinical and experimental perspectives. Int J Mol Sci. 2019;20(9):2272. https://doi.org/10.3390/ijms20092272.; Fan J., Chen D., Du H. et al. Prognostic factors for resection of isolated pulmonary metastases in breast cancer patients: a systematic review and meta-analysis. J Thorac Dis. 2015;7(8):1441–51. https://doi.org/10.3978/j.issn.2072-1439.2015.08.10.; Никулин М.П. Олигометастазы рака молочной железы и рака предстательной железы: целесообразность хирургического лечения. Практическая онкология. 2016;17(3):200–11.; Bafford A.C., Burstein H.J., Barkley C.R. et al. Breast surgery in stage IV breast cancer: impact of staging and patient selection on overall survival. Breast Cancer Res Treat. 2009;115(1):7–12. https://doi.org/10.1007/s10549-008-0101-7.; Tanaka F., Li M., Hanaoka N. et al. Surgery for pulmonary nodules in breast cancer patients. Ann Thorac Surg. 2005;79(5):1711–4. https://doi.org/10.1016/j.athoracsur.2004.10.033.; Al-Amer M., Abdeen Y., Shaaban H., Alderink C. Solitary pulmonary adenofibroma in a middle-aged man with bladder cancer. Lung India. 2017;34(6):570–2. https://doi.org/10.4103/lungindia.lungindia_167_17.; Liang Z., Zhou P., Wang Y. et al. Pulmonary adenofibroma: clinicopathological and genetic analysis of 7 cases with literature review. Front Oncol. 2021;11:667111. https://doi.org/10.3389/fonc.2021.667111.; Olson N.J., Czum J.M., de Abreu F.B. et al. Synchronous pulmonary adenofibroma and solitary fibrous tumor: case report and review of the literature. Int J Surg Pathol. 2019;27(3):322–7. https://doi.org/10.1177/1066896918807302.; Двораковская И.В., Ариэль Б.М., Платонова И.С. и др. Солитарная фиброзная опухоль грудной полости. Пульмонология. 2014;(5):20–6.; Saynak M., Veeramachaneni N.K., Hubbs J.L. et al. Solitary fibrous tumors of chest: another look with the oncologic perspective. Balkan Med J. 2017;34(3):188–99. https://doi.org/10.4274/balkanmedj.2017.0350.; Klemperer P., Rabin C.B. Primary neoplasms of the pleura. A report of five cases. Arch Pathol. 1931;11:385–412.; Thway K., Ng W., Noujaim J. et al. The current status of solitary fibrous tumor: diagnostic features, variants, and genetics. Int J Surg Pathol. 2016;24(4):281–92. https://doi.org/10.1177/1066896915627485.; England D.M., Hochholzer L., McCarthy M.J. Localized benign and malignant fibrous tumors of the pleura. A clinicopathologic review of 223 cases. Am J Surg Pathol. 1989;13(8):640–58. https://doi.org/10.1097/00000478-198908000-00003.; https://www.gynecology.su/jour/article/view/2233
-
11Academic Journal
Authors: V. О. Bitsadze, Е. V. Slukhanchuk, А. G. Solopova, J. Kh. Khizroeva, F. E. Yakubova, Е. А. Orudzhova, N. D. Degtyareva, Е. S. Egorova, N. А. Makatsariya, N. V. Samburova, V. N. Serov, L. А. Ashrafyan, Z. D. Aslanova, А. V. Lazarchuk, Е. S. Kudryavtseva, А. Е. Solopova, D. L. Kapanadze, J.-C. Gris, I. Elalamy, С. Ay, А. D. Makatsariya, В. О. Бицадзе, Е. В. Слуханчук, А. Г. Солопова, Д. Х. Хизроева, Ф. Э. Якубова, Э. А. Оруджова, Н. Д. Дегтярева, Е. С. Егорова, Н. А. Макацария, Н. В. Самбурова, В. Н. Серов, Л. А. Ашрафян, З. Д. Асланова, А. В. Лазарчук, Е. С. Кудрявцева, А. Е. Солопова, Д. Л. Капанадзе, Ж.-К. Гри, И. Элалами, Д. Ай, А. Д. Макацария
Source: Obstetrics, Gynecology and Reproduction; Vol 18, No 1 (2024); 96-111 ; Акушерство, Гинекология и Репродукция; Vol 18, No 1 (2024); 96-111 ; 2500-3194 ; 2313-7347
Subject Terms: метастазирование, TME, tumor progression, tumor growth, cancer, metastasis, МОО, прогрессия опухоли, рост опухоли, рак
File Description: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1955/1182; https://www.gynecology.su/jour/article/view/1955/1188; LeBleu V. Imaging the tumor microenvironment. Cancer J. 2015;21(3):174–8. https://doi.org/10.1097/PPO.0000000000000118.; Del Prete A., Schioppa T., Tiberio L. et al. Leukocyte trafficking in tumor microenvironment. Curr Opin Pharmacol. 2017;35:40–7. https://doi.org/10.1016/j.coph.2017.05.004.; Desai A., Small E.J. Treatment of advanced renal cell carcinoma patients with cabozantinib, an oral multityrosine kinase inhibitor of MET, AXL and VEGF receptors. Future Oncol. 2019;15(20):2337–48. https://doi.org/10.2217/fon-2019-0021.; Mantovani A., Allavena P., Sica A., Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44. https://doi.org/10.1038/nature07205.; Torre L.A., Bray F., Siegel R.L. et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. https://doi.org/10.3322/caac.21262.; Hanahan D., Coussens L.M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309– 22. https://doi.org/10.1016/j.ccr.2012.02.022.; Hinshaw D.C., Shevde L.A. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019;79(18):4557–66. https://doi.org/10.1158/0008-5472.CAN-18-3962.; Pottier C., Wheatherspoon A., Roncarati P. et al. The importance of the tumor microenvironment in the therapeutic management of cancer. Expert Rev Anticancer Ther. 2015;15(8):943–54. https://doi.org/10.1586/14737140.2015.1059279.; Angell H., Galon J. From the immune contexture to the Immunoscore: the role of prognostic and predictive immune markers in cancer. Curr Opin Immunol. 2013;25(2):261–7. https://doi.org/10.1016/j.coi.2013.03.004.; Wang T., Niu G., Kortylewski M. et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med. 2004;10(1):48–54. https://doi.org/10.1038/nm976.; Maimela N.R., Liu S., Zhang Y. Fates of CD8+ T cells in tumor microenvironment. Comput Struct Biotechnol J. 2019;17:1–13. https://doi.org/10.1016/j.csbj.2018.11.004.; Lv L., Pan K., Li X.-d. et al. The accumulation and prognosis value of tumor infiltrating IL-17 producing cells in esophageal squamous cell carcinoma. PloS One. 2011;6(3):e18219. https://doi.org/10.1371/journal.pone.0018219.; Plitas G., Rudensky A.Y. Regulatory T cells in cancer. Annu Rev Cancer Biol. 2020;4(1):459–77. https://doi.org/10.1146/annurevcancerbio-030419-033428.; Curiel T.J., Coukos G., Zou L. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10(9):942–9. https://doi.org/10.1038/nm1093.; Fozza C., Longinotti M. T-cell traffic jam in Hodgkin's lymphoma: pathogenetic and therapeutic implications. Adv Hematol. 2011;2011:501659. https://doi.org/10.1155/2011/501659.; Koreishi A.F., Saenz A.J., Persky D.O. et al. The role of cytotoxic and regulatory T-cells in relapsed/refractory Hodgkin lymphoma. Appl Immunohistochem Mol Morphol. 2010;18(3):206–11. https://doi.org/10.1097/PAI.0b013e3181c7138b.; Gomes A.Q., Martins D.S., Silva-Santos B. Targeting γδ T lymphocytes for cancer immunotherapy: from novel mechanistic insight to clinical application. Cancer Res. 2010;70(24):10024–7. https://doi.org/10.1158/0008-5472.CAN-10-3236.; Tanaka M., Iwakiri Y. The hepatic lymphatic vascular system: structure, function, markers, and lymphangiogenesis. Cell Mol Gastroenterol Hepatol. 2016;2(6):733–49. https://doi.org/10.1016/j.jcmgh.2016.09.002.; Milne K., Köbel M., Kalloger S.E. et al. Systematic analysis of immune infiltrates in high-grade serous ovarian cancer reveals CD20, FoxP3 and TIA-1 as positive prognostic factors. PloS One. 2009;4(7):e6412. https://doi.org/10.1371/journal.pone.0006412.; Andreu P., Johansson M., Affara N.I. et al. FcRγ activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell. 2010;17(2):121–34. https://doi.org/10.1016/j.ccr.2009.12.019.; Mauri C., Bosma A. Immune regulatory function of B cells. Annu Rev Immunol. 2012;30:221–41. https://doi.org/10.1146/annurevimmunol-020711-074934.; Horikawa M., Minard-Colin V., Matsushita T., Tedder T. F. Regulatory B cell production of IL-10 inhibits lymphoma depletion during CD20 immunotherapy in mice. J Clin Invest. 2011;121(11):4268–80. https://doi.org/10.1172/JCI59266.; Sharonov G.V., Serebrovskaya E.O., Yuzhakova D.V. et al. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat Rev Immunol. 2020;20(5):294–307. https://doi.org/10.1038/s41577-019-0257-x.; Marcus A., Gowen B. G., Thompson T.W. et al. Recognition of tumors by the innate immune system and natural killer cells. Adv Immunol. 2014;122:91–128. https://doi.org/10.1016/B978-0-12-800267-4.00003-1.; Qian B.-Z., Pollard J.W. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51. https://doi.org/10.1016/j.cell.2010.03.014.; Condeelis J., Pollard J.W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124(2):263–6. https://doi.org/10.1016/j.cell.2006.01.007.; Wang S.-C., Hong J.-H., Hsueh C., Chiang C.-S. Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model. Lab Invest. 2012;92(1):151–62. https://doi.org/10.1038/labinvest.2011.128.; Franklin R.A., Liao W., Sarkar A. et al. The cellular and molecular origin of tumor-associated macrophages. Science. 2014;344(6186):921–5. https://doi.org/10.1126/science.1252510.; Gabrilovich D.I., Ostrand-Rosenberg S., Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12(4):253–68. https://doi.org/10.1038/nri3175.; Meredith M.M., Liu K., Darrasse-Jeze G. et al. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J Exp Med. 2012;209(6):1153–65. https://doi.org/10.1084/jem.20112675.; Nozawa H., Chiu C., Hanahan D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci U S A. 2006;103(33):12493–8. https://doi.org/10.1073/pnas.0601807103.; Youn J.-I., Gabrilovich D.I. The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol. 2010;40(11):2969–75. https://doi.org/10.1002/eji.201040895.; Erler J.T., Bennewith K.L., Cox T.R. et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell. 2009;15(1):35–44. https://doi.org/10.1016/j.ccr.2008.11.012.; Granot Z., Henke E., Comen E.A. et al. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell. 2011;20(3):300–14. https://doi.org/10.1016/j.ccr.2011.08.012.; Walker C., Mojares E., del Río Hernández A. Role of extracellular matrix in development and cancer progression. Int J Mol Sci. 2018;19(10):3028. https://doi.org/10.3390/ijms19103028.; Nieman K.M., Kenny H.A., Penicka C.V. et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17(11):1498–503. https://doi.org/10.1038/nm.2492.; Alitalo K. The lymphatic vasculature in disease. Nat Med. 2011;17(11):1371–80. https://doi.org/10.1038/nm.2545.; Swartz M.A., Lund A.W. Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer. 2012;12(3):210–9. https://doi.org/10.1038/nrc3186.; Erez N., Truitt M., Olson P. et al. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-κB-dependent manner. Cancer Cell. 2010;17(2):135–47. https://doi.org/10.1016/j.ccr.2009.12.041.; Xing F., Saidou J., Watabe K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci. 2010;15(1):166–79. https://doi.org/10.2741/3613.; Korneev K.V., Atretkhany K.-S. N., Drutskaya M. S. et al. TLR-signaling and proinflammatory cytokines as drivers of tumorigenesis. Cytokine. 2017;89:127–35. https://doi.org/10.1016/j.cyto.2016.01.021.; Shiga K., Hara M., Nagasaki T. et al. Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers. 2015;7(4):2443– 58. https://doi.org/10.3390/cancers7040902.; Li B., Wang J. H.-C. Fibroblasts and myofibroblasts in wound healing: force generation and measurement. J Tissue Viability. 2011;20(4):108–20. https://doi.org/10.1016/j.jtv.2009.11.004.; Kraman M., Bambrough P.J., Arnold J.N. et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-α. Science. 2010;330(6005):827–30. https://doi.org/10.1126/science.1195300.; Armulik A., Genové G., Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21(2):193–215. https://doi.org/10.1016/j.devcel.2011.07.001.; Cooke V.G., LeBleu V.S., Keskin D.N et al. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell. 2012;21(1):66–81. https://doi.org/10.1016/j.ccr.2011.11.024.; Turley S.J., Cremasco V., Astarita J.L. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol. 2015;15(11):669–82. https://doi.org/10.1038/nri3902.; McAndrews K.M., McGrail D.J., Ravikumar N., Dawson M.R. Mesenchymal stem cells induce directional migration of invasive breast cancer cells through TGF-β. Sci Rep. 2015;5(1):16941. https://doi.org/10.1038/srep16941.; Lam P.Y. Biological effects of cancer-secreted factors on human mesenchymal stem cells. Stem Cell Res Ther. 2013;4(6):138. https://doi.org/10.1186/scrt349.; Hu Y., Li D., Wu A. et al. TWEAK-stimulated macrophages inhibit metastasis of epithelial ovarian cancer via exosomal shuttling of microRNA. Cancer Lett. 2017;393:60–7. https://doi.org/10.1016/j.canlet.2017.02.009.; Farnie G., Sotgia F., Lisanti M.P. High mitochondrial mass identifies a sub-population of stem-like cancer cells that are chemo-resistant. Oncotarget. 2015;6(31):30472–86. https://doi.org/10.18632/oncotarget.5401.; Feig C., Jones J.O., Kraman M. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with antiPD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A. 2013;110(50):20212–7. https://doi.org/10.1073/pnas.1320318110.; Henke E., Nandigama R., Ergün S. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci. 2020;6:160. https://doi.org/10.3389/fmolb.2019.00160.; Vaupel P., Mayer A. Hypoxia in tumors: pathogenesis-related classification, characterization of hypoxia subtypes, and associated biological and clinical implications. Adv Exp Med Biol. 2014;812:19–24. https://doi.org/10.1007/978-1-4939-0620-8_3.; Elinav E., Garrett W.S., Trinchieri G., Wargo J. The cancer microbiome. Nat Rev Cancer. 2019;19(7):371–6. https://doi.org/10.1038/s41568-019-0155-3.; Hofer H.R., Tuan R.S. Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Res Ther. 2016;7(1):131. https://doi.org/10.1186/s13287-016-0394-0.; Altman J.B., Benavides A.D., Das R., Bassiri H. Antitumor responses of invariant natural killer T cells. J Immunol Res. 2015;2015:652875. https://doi.org/10.1155/2015/652875.; Keely P.J. Mechanisms by which the extracellular matrix and integrin signaling act to regulate the switch between tumor suppression and tumor promotion. J Mammary Gland Biol Neoplasia. 2011;16(3):205–19. https://doi.org/10.1007/s10911-011-9226-0.; Guan J., Chen J. Mesenchymal stem cells in the tumor microenvironment. Biomed Rep. 2013;1(4):517–21. https://doi.org/10.3892/br.2013.103.; Metzler K.D., Fuchs T.A., Nauseef W.M. et al. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood. 2011;117(3):953–9. https://doi.org/10.1182/blood2010-06-290171.; Acuff H.B., Carter K.J., Fingleton B. et al. Matrix metalloproteinase-9 from bone marrow-derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Res. 2006;66(1):259–66. https://doi.org/10.1158/0008-5472.CAN-05-2502.; Pahler J.C., Tazzyman S., Erez N. et al. Plasticity in tumor-promoting inflammation: impairment of macrophage recruitment evokes a compensatory neutrophil response. Neoplasia. 2008;10(4):329–40. https://doi.org/10.1593/neo.07871.; Cools-Lartigue J., Spicer J., McDonald B. et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest. 2013;123(8):3446–58. https://doi.org/10.1172/JCI67484.; Romson J.L., Hook B., Rigot V. et al. The effect of ibuprofen on accumulation of indium-111-labeled platelets and leukocytes in experimental myocardial infarction. Circulation. 1982;66(5):1002–11. https://doi.org/10.1161/01.cir.66.5.1002.; Goh C.Y., Patmore S., Smolenski A. et al. The role of von Willebrand factor in breast cancer metastasis. Transl Oncol. 2021;14(4):101033. https://doi.org/10.1016/j.tranon.2021.101033.; Price L.C., Wort S.J. Earlier diagnosis and international registries may improve outcomes in pulmonary tumour thrombotic microangiopathy. Eur Respir J. 2016;47(2):690–1. https://doi.org/10.1183/13993003.01736-2015.; Farge D., Bounameaux H., Brenner B. et al. International clinical practice guidelines including guidance for direct oral anticoagulants in the treatment and prophylaxis of venous thromboembolism in patients with cancer. Lancet Oncol. 2016;17(10):e452–e466. https://doi.org/10.1016/S1470-2045(16)30369-2.; Tinholt M., Viken M.K., Dahm A.E. et al. Increased coagulation activity and genetic polymorphisms in the F5, F10 and EPCR genes are associated with breast cancer: a case-control study. BMC Cancer. 2014;14:845. https://doi.org/10.1186/1471-2407-14-845.; Pihusch R., Danzl G., Scholz M. et al. Impact of thrombophilic gene mutations on thrombosis risk in patients with gastrointestinal carcinoma. Cancer. 2002;94(12):3120–6. https://doi.org/10.1002/cncr.10590.; Tavares V., Pinto R., Assis J. et al. Dataset of GWAS-identified variants underlying venous thromboembolism susceptibility and linkage to cancer aggressiveness. Data Brief. 2020;30:105399. https://doi.org/10.1016/j.dib.2020.105399.; Vossen C.Y., Hoffmeister M., Chang-Claude J.C. et al. Clotting factor gene polymorphisms and colorectal cancer risk. J Clin Oncol. 2011;29(13):1722–7. https://doi.org/10.1200/JCO.2010.31.8873.; de Haas E.C., Zwart N., Meijer C. et al. Association of PAI-1 gene polymorphism with survival and chemotherapy-related vascular toxicity in testicular cancer. Cancer. 2010;116(24):5628–36. https://doi.org/10.1002/cncr.25300.; Duffy M.J., McGowan P.M., Harbeck N. et al. uPA and PAI-1 as biomarkers in breast cancer: validated for clinical use in level-of-evidence-1 studies. Breast Cancer Res. 2014;16(4):428. https://doi.org/10.1186/s13058-014-0428-4.; Tavares V., Pinto R., Assis J. et al. Venous thromboembolism GWAS reported genetic makeup and the hallmarks of cancer: Linkage to ovarian tumour behaviour. Biochim Biophys Acta Rev Cancer. 2020;1873(1):188331. https://doi.org/10.1016/j.bbcan.2019.188331.; Vila P., Hernandez M., Lopez-Fernandez M., Batlle J. Prevalence, follow-up and clinical significance of the anticardiolipin antibodies in normal subjects. Thromb Haemost. 1994;72(8):209–13.; Vassalo J., Spector N., de Meis E. et al. Antiphospholipid antibodies in critically ill patients with cancer: a prospective cohort study. J Crit Care. 2014;29(4):533–8. https://doi.org/10.1016/j.jcrc.2014.02.005.; Abdel-Wahab N., Tayar J.H., Fa'ak F. et al. Systematic review of observational studies reporting antiphospholipid antibodies in patients with solid tumors. Blood Adv. 2020;4(8):1746–55. https://doi.org/10.1182/bloodadvances.2020001557.; Cervera R., Rodríguez-Pintó I., Colafrancesco S. et al. 14th international congress on antiphospholipid antibodies task force report on catastrophic antiphospholipid syndrome. Autoimmun Rev. 2014;13(7):699–707. https://doi.org/10.1016/j.autrev.2014.03.002.; https://www.gynecology.su/jour/article/view/1955
-
12Academic Journal
Authors: J. Kh. Khizroeva, Z. D. Aslanova, A. G. Solopova, V. O. Bitsadze, А. V. Vorobev, А. Yu. Tatarintseva, J.-С. Gris, I. Elalamy, N. А. Makatsariya, D. V. Blinov, Д. Х. Хизроева, З. Д. Асланова, А. Г. Солопова, В. О. Бицадзе, А. В. Воробьев, А. Ю. Татаринцева, Ж.-К. Гри, И. Элалами, Н. А. Макацария, Д. В. Блинов
Source: Obstetrics, Gynecology and Reproduction; Vol 18, No 1 (2024); 55-67 ; Акушерство, Гинекология и Репродукция; Vol 18, No 1 (2024); 55-67 ; 2500-3194 ; 2313-7347
Subject Terms: прогрессия и метастазирование опухоли, NETs, inflammation and cancer, NETs and thrombosis, tumor progression and metastasis, воспаление и рак, NETs и тромбозы
File Description: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1960/1181; Brinkmann V., Reichard U., Goosmann C. et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5. https://doi.org/10.1126/science.1092385.; Snoderly H.T., Boone B.A., Bennewitz M.F. Neutrophil extracellular traps in breast cancer and beyond: current perspectives on NET stimuli, thrombosis and metastasis, and clinical utility for diagnosis and treatment. Breast Cancer Res. 2019;21(1):145. https://doi.org/10.1186/s13058-019-1237-6.; Papayannopoulos V., Metzler K.D., Hakkim A., Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 2010;191(3):677–91. https://doi.org/10.1083/jcb.201006052.; Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.; Balkwill F., Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539–45. https://doi.org/10.1016/S0140-6736(00)04046-0.; Bonavita E., Galdiero M.R., Jaillon S., Mantovani A. Phagocytes as сorrupted зolicemen in сancer-кelated шnflammation. Adv Cancer Res. 2015;128:141–71. https://doi.org/10.1016/bs.acr.2015.04.013.; Coffelt S., Wellenstein M., de Visser K. Neutrophils in cancer: neutral no more. Nat Rev Cancer. 2016;16(7):431–46. https://doi.org/10.1038/nrc.2016.52.; Colotta F., Re F., Polentarutti N. et al. Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood. 1992;80(8):2012–20.; Carnevale S., Ghasemi S., Rigatelli A., Jaillon S. The complexity of neutrophils in health and disease: focus on cancer. Semin Immunol. 2020;48:101409. https://doi.org/10.1016/j.smim.2020.101409.; De Meo M.L., Spicer J.D. The role of neutrophil extracellular traps in cancer progression and metastasis. Semin Immunol. 2021;57:101595. https://doi.org/10.1016/j.smim.2022.101595.; Слуханчук Е.В., Бицадзе В.О., Солопова А.Г. и др. Маркеры внеклеточных ловушек нейтрофилов у женщин со злокачественными новообразованиями репродуктивной системы, получавших хирургическое лечение и адъювантную химиотерапию. Акушерство, Гинекология и Репродукция. 2023;17(4):420–32. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.432.; Cristinziano L., Modestino L., Antonelli A. et al. Neutrophil extracellular traps in cancer. Semin Cancer Biol. 2022;79:91–104. https://doi.org/10.1016/j.semcancer.2021.07.011.; Sosa M.S., Bragado P., Aguirre-Ghiso J.A. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer. 2014;14(9):611–22. https://doi.org/10.1038/nrc3793.; Albrengues J., Shields M.A., Ng D. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361(6409):eaao4227. https://doi.org/10.1126/science.aao4227.; Poto R., Cristinziano L, Modestino L. et al. Neutrophil extracellular traps, angiogenesis and cancer. Biomedicines. 2022;10(2):431. https://doi.org/10.3390/biomedicines10020431.; Szczerba M.B., Castro-Giner F., Vetter M. et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature. 2019;566(7745):553–7. https://doi.org/10.1038/s41586-019-0915-y.; Shaul M.E., Fridlender Z.G. Tumour-associated neutrophils in patients with cancer. Nat Rev Clinical Oncol. 2019;16(10):601–20. https://doi.org/10.1038/s41571-019-0222-4.; Li P., Lu M., Shi J. et al. Lung mesenchymal cells elicit lipid storage in neutrophils that fuel breast cancer lung metastasis. Nat Immunol. 2020;21(11):1444–55. https://doi.org/10.1038/s41590-020-0783-5.; Tohme S., Yazdani H.O., Al-Khafaji A.B. et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 2016;76(6):1367–80. https://doi.org/10.1158/0008-5472.CAN-15-1591.; Mauracher L.M., Posch F., Martinod K. et al. Citrullinated histone H3, a biomarker of neutrophil extracellular trap formation, predicts the risk of venous thromboembolism in cancer patients. J Thromb Haemost. 2018;16(3):508–18. https://doi.org/10.1111/jth.13951.; Слуханчук Е.В., Бицадзе В.О., Солопова А.Г. и др. Иммунотромбоз, прогрессия опухоли и метастазирование. Роль интерлейкина-8 и внеклеточных ловушек нейтрофилов. Вопросы гинекологии, акушерства и перинатологии. 2023;22(4):48–56. https://doi.org/10.20953/1726-1678-2023-4-48-56.; North R.J., Neubauer R.H., Huang J.J. et al. Interleukin 1-induced, T cellmediated regression of immunogenic murine tumors. Requirement for an adequate level of already acquired host concomitant immunity. J Exp Med. 1988;168(6):2031–43. https://doi.org/10.1084/jem.168.6.2031.; Rébé C., Ghiringhelli F. Interleukin-1β and cancer. Cancers (Basel). 2020;12(7):1791. https://doi.org/10.3390/cancers12071791.; Zahorec R. Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratisl Lek Listy. 2021;122(7):474–88. https://doi.org/10.4149/BLL_2021_078.; Forget P., Khalifa C., Defour J.P. et al. What is the normal value of the neutrophil-to-lymphocyte ratio? BMC Res Notes. 2017;10(1):12. https://doi.org/10.1186/s13104-016-2335-5.; https://www.gynecology.su/jour/article/view/1960
-
13Academic Journal
Authors: P. V. Kralichkin, D. Yu. Kachanov, A. V. Pshonkin, P. A. Zharkov, П. В. Краличкин, Д. Ю. Качанов, А. В. Пшонкин, П. А. Жарков
Contributors: The study was performed without external funding., Исследование проведено без спонсорской поддержки.
Source: Russian Journal of Pediatric Hematology and Oncology; Том 11, № 2 (2024); 61-66 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 11, № 2 (2024); 61-66 ; 2413-5496 ; 2311-1267
Subject Terms: ангиогенез, hemostasis, metastasis, proliferation, angiogenesis, гемостаз, метастазирование, пролиферация
File Description: application/pdf
Relation: https://journal.nodgo.org/jour/article/view/1040/909; Lefrancais E., Ortiz-Munoz G., Caudrillier A., Mallavia B., Liu F., Sayah D.M. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017;544(7648):105–9. doi:10.1038/nature21706.; Holinstat M. Normal platelet function. Cancer Metastasis Rev. 2017;36:195–8. doi:10.1007/s10555-017-9677-x.; Holinstat M., Tourdot B.E. Coronary heart disease risk factors take a disproportional toll on women. Arterioscler Thromb Vasc Biol. 2015;35(4):750–1. doi:10.1161/ATVBAHA.115.305466.; Koupenova M., Mick E., Mikhalev E., Benjamin E.J., Tanriverdi K., Freedman J.E. Sex diff erences in platelet toll-like receptors and their association with cardiovascular risk factors. Arterioscler Thromb Vasc Biol. 2015;35(4):1030–7. doi:10.1161/ATVBAHA.114.304954.; Clemetson K.J. Platelets and pathogens. Cell Mol Life Sci. 2010;67(4):495–8. doi:10.1007/s00018-009-0204-2.; Stark R.J., Aghakasiri N., Rumbaut R.E. Platelet-derived Toll-like receptor 4 (Tlr-4) is suffi cient to promote microvascular thrombosis in endotoxemia. PLoS One. 2012;7(7):e41254. doi:10.1371/journal.pone.0041254.; Cox D., Kerrigan S.W., Watson S.P. Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation. J Thromb Haemost. 2011;9(6):1097–107. doi:10.1111/j.1538-7836.2011.04264.x.; Elgueta R., Benson M.J., de Vries V.C., Wasiuk A., Guo Y., Noelle R.J. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev. 2009;229(1):152–72. doi:10.1111/j.1600-065X.2009.00782.x.; Danese S., Katz J.A., Saibeni S., Papa A., Gasbarrini A., Vecchi M., Fiocchi C. Activated platelets are the source of elevated levels of soluble CD40 ligand in the circulation of infl ammatory bowel disease patients. Gut. 2003;52(10):1435–41. doi:10.1136/gut.52.10.1435.; Yacoub D., Hachem A., Théorêt J.F., Gillis M.A., Mourad W., Merhi Y. Enhanced levels of soluble CD40 ligand exacerbate platelet aggregation and thrombus formation through a CD40-dependent tumor necrosis factor receptor-associated factor-2/Rac1/p38 mitogen-activated protein kinase signaling pathway. Arterioscler Thromb Vasc Biol. 2010;30(12):2424–33. doi:10.1161/ATVBAHA.110.216143.; Semple J.W., Italiano J.E. Jr, Freedman J. Platelets and the immune continuum. Nat Rev Immunol. 2011;11(4):264–74. doi:10.1038/nri2956.; Youssefi an T., Drouin A., Massé J.M., Guichard J., Cramer E.M. Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs in a specifi c subcellular compartment and is enhanced by platelet activation. Blood. 2002;99(11):4021–9. doi:10.1182/blood-2001-12-0191.; Maouia A., Rebetz J., Kapur R., Semple J.W. The Immune Nature of Platelets Revisited. Transfus Med Rev. 2020;34(4):209–20. doi:10.1016/j.tmrv.2020.09.005.; Wong C.H., Jenne C.N., Petri B., Chrobok N.L., Kubes P. Nucleation of platelets with blood-borne pathogens on Kupff er cells precedes other innate immunity and contributes to bacterial clearance. Nat Immunol. 2013;14(8):785–92. doi:10.1038/ni.2631.; Mishan M.A., Ahmadiankia N., Bahrami A.R. CXCR4 and CCR7: Two eligible targets in targeted cancer therapy. Cell Biol Int. 2016;40(9):955–67. doi:10.1002/cbin.10631.; Seyfried T.N., Huysentruyt L.C. On the origin of cancer metastasis. Crit Rev Oncog. 2013;18(1–2):43–73. doi:10.1615/critrevoncog.v18.i1-2.40.; Gay L.J., Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011;11(2):123–34. doi:10.1038/nrc3004.; Elaskalani O., Berndt M.C., Falasca M., Metharom P. Targeting Platelets for the Treatment of Cancer. Cancers (Basel). 2017;9(7):94. doi:10.3390/cancers9070094.; Melki I., Tessandier N., Zuff erey A., Boilard E. Platelet microvesicles in health and disease. Platelets. 2017;28(3):214–21. doi:10.1080/09537104.2016.1265924.; Naderi-Meshkin H., Ahmadiankia N. Cancer metastasis versus stem cell homing: Role of platelets. J Cell Physiol. 2018;233(12):9167–78. doi:10.1002/jcp.26937.; Reneman R.S., Hoeks A.P. Wall shear stress as measured in vivo: consequences for the design of the arterial system. Med Biol Eng Comput. 2008;46(5):499–507. doi:10.1007/s11517-008-0330-2.; Erpenbeck L., Schön M.P. Deadly allies: the fatal interplay between platelets and metastasizing cancer cells. Blood. 2010;115(17):3427–36. doi:10.1182/blood-2009-10-247296.; Gay L.J., Felding-Habermann B. Platelets alter tumor cell attributes to propel metastasis: programming in transit. Cancer Cell. 2011;20(5):553–4. doi:10.1016/j.ccr.2011.11.001.; Kitamura T., Qian B.Z., Pollard J.W. Immune cell promotion of metastasis. Nat Rev Immunol. 2015;15(2):73–86. doi:10.1038/nri3789.; Palumbo J.S., Degen J.L. Mechanisms linking tumor cell-associated procoagulant function to tumor metastasis. Thromb Res. 2007;120 Suppl 2: S22–8. doi:10.1016/S0049-3848(07)70127-5.; Borsig L. The role of platelet activation in tumor metastasis. Expert Rev Anticancer Ther. 2008;8(8):1247–55. doi:10.1586/14737140.8.8.1247.; Placke T., Örgel M., Schaller M., Jung G., Rammensee H.G., Kopp H.G., Salih H.R. Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res. 2012;72(2):440–8. doi:10.1158/0008-5472.CAN-11-1872.; Gabrilovich D., Ishida T., Oyama T., Ran S., Kravtsov V., Nadaf S., Carbone D.P. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically aff ects the diff erentiation of multiple hematopoietic lineages in vivo. Blood. 1998;92(11):4150–66. PMID: 9834220.; Laxmanan S., Robertson S.W., Wang E., Lau J.S., Briscoe D.M., Mukhopadhyay D. Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways. Biochem Biophys Res Commun. 2005;334(1):193–8. doi:10.1016/j.bbrc.2005.06.065.; Reddig P.J., Juliano R.L. Clinging to life: cell to matrix adhesion and cell survival. Cancer Metastasis Rev. 2005;24(3):425–39. doi:10.1007/s10555-005-5134-3.; Alfano D., Iaccarino I., Stoppelli M.P. Urokinase signaling through its receptor protects against anoikis by increasing BCL-xL expression levels. J Biol Chem. 2006;281(26):17758–67. doi:10.1074/jbc.M601812200.; Douma S., Van Laar T., Zevenhoven J., Meuwissen R., Van Garderen E., Peeper D.S. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature. 2004;430(7003):1034–9. doi:10.1038/nature02765.; Golebiewska E.M., Poole A.W. Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev. 2015;29(3):153–62. doi:10.1016/j.blre.2014.10.003.; Sharma S.V., Bell D.W., Settleman J., Haber D.A. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169–81. doi:10.1038/nrc2088.; Tanaka K., Okugawa Y., Toiyama Y., Inoue Y., Saigusa S., Kawamura M., Araki T., Uchida K., Mohri Y., Kusunoki M. Brainderived neurotrophic factor (BDNF)-induced tropomyosin-related kinase B (Trk B) signaling is a potential therapeutic target for peritoneal carcinomatosis arising from colorectal cancer. PLoS One. 2014;9(5):e96410. doi:10.1371/journal.pone.0096410.; Xiao Y.C., Yang Z.B., Cheng X.S., Fang X.B., Shen T., Xia C.F., Liu P., Qian H.H., Sun B., Yin Z.F., Li Y.F. CXCL8, overexpressed in colorectal cancer, enhances the resistance of colorectal cancer cells to anoikis. Cancer Lett. 2015;361(1):22–32. doi:10.1016/j.canlet.2015.02.021.; Zeng Q., McCauley L.K., Wang C.Y. Hepatocyte growth factor inhibits anoikis by induction of activator protein 1-dependent cyclooxygenase-2. Implication in head and neck squamous cell carcinoma progression. J Biol Chem. 2002;277(51):50137–42. doi:10.1074/jbc.M208952200.; Luey B.C., May F.E. Insulin-like growth factors are essential to prevent anoikis in oestrogen-responsive breast cancer cells: importance of the type I IGF receptor and PI3-kinase/Akt pathway. Mol Cancer. 2016;15:8. doi:10.1186/s12943-015-0482-2.; Freedman J.E., Loscalzo J., Barnard M.R., Alpert C., Keaney J.F., Michelson A.D. Nitric oxide released from activated platelets inhibits platelet recruitment. J Clin Invest. 1997;100(2):350–6. doi:10.1172/JCI119540.; Chanvorachote P., Pongrakhananon V., Chunhacha P. Prolonged nitric oxide exposure enhances anoikis resistance and migration through epithelial-mesenchymal transition and caveolin-1 upregulation. Biomed Res Int. 2014;2014:941359. doi:10.1155/2014/941359.; Bao W., Qiu H., Yang T., Luo X., Zhang H., Wan X. Upregulation of TrkB promotes epithelial-mesenchymal transition and anoikis resistance in endometrial carcinoma. PLoS One. 2013;8(7):e70616. doi:10.1371/journal.pone.0070616.; Jie X.X., Zhang X.Y., Xu C.J. Epithelial-to-mesenchymal transition, circulating tumor cells and cancer metastasis: Mechanisms and clinical applications. Oncotarget. 2017;8(46):81558–71. doi:10.18632/oncotarget.18277.; Moustakas A., Heldin C.H. Signaling networks guiding epithelialmesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 2007;98(10):1512–20. doi:10.1111/j.1349-7006.2007.00550.x.; Palena C., Hamilton D.H., Fernando R.I. Infl uence of IL-8 on the epithelial-mesenchymal transition and the tumor microenvironment. Future Oncol. 2012;8(6):713–22. doi:10.2217/fon.12.59.; Li N. Platelets in cancer metastasis: To help the “villain” to do evil. Int J Cancer. 2016;138(9):2078–87. doi:10.1002/ijc.29847.; McCarty O.J., Mousa S.A., Bray P.F., Konstantopoulos K. Immobilized platelets support human colon carcinoma cell tethering, rolling, and fi rm adhesion under dynamic fl ow conditions. Blood. 2000;96(5):1789–97. PMID: 10961878.; Janowska-Wieczorek A., Wysoczynski M., Kijowski J., MarquezCurtis L., Machalinski B., Ratajczak J., Ratajczak M.Z. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer. 2005;113(5):752–60. doi:10.1002/ijc.20657.; Коваленко Т.А., Пантелеев М.А., Свешникова А.Н. Роль тканевого фактора в метастазировании, неоангиогенезе и гемостазе при онкологических заболеваниях. Онкогематология. 2019;14(2):70–85. doi:10.17650/1818-8346-2019-14-2-70-85.; Бутылин А.А., Пантелеев М.А., Атауллаханов Ф.И. Пространственная динамика свертывания крови. Российский химический журнал. 2007;51(1):45–50.; Подоплелова Н.А., Сулимов В.Б., Тащилова А.С., Ильин И.С., Пантелеев М.А., Ледeнева И.В., Шихалиев Х.С. Свертывание крови в XXI веке: новые знания, методы и перспективы для терапии. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2020;19(1):139–57. doi:10.24287/1726-1708-2020-19-1-139-157.; Fischer E.G., Riewald M., Huang H.Y., Miyagi Y., Kubota Y., Mueller B.M., Ruf W. Tumor cell adhesion and migration supported by interaction of a receptor-protease complex with its inhibitor. J Clin Invest. 1999;104(9):1213–21. doi:10.1172/JCI7750.; Orellana R., Kato S., Erices R., Bravo M.L., Gonzalez P., Oliva B., Cubillos S., Valdivia A., Ibañez C., Brañes J., Barriga M.I., Bravo E., Alonso C., Bustamente E., Castellon E., Hidalgo P., Trigo C., Panes O., Pereira J., Mezzano D., Cuello M.A., Owen G.I. Platelets enhance tissue factor protein and metastasis initiating cell markers, and act as chemoattractants increasing the migration of ovarian cancer cells. BMC Cancer. 2015;15:290. doi:10.1186/s12885-015-1304-z.; Läubli H., Spanaus K.S., Borsig L. Selectin-mediated activation of endothelial cells induces expression of CCL5 and promotes metastasis through recruitment of monocytes. Blood. 2009;114(20):4583–91. doi:10.1182/blood-2008-10-186585.; Labelle M., Begum S., Hynes R.O. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011;20(5):576–90. doi:10.1016/j.ccr.2011.09.009.; Padua D., Zhang X.H., Wang Q., Nadal C., Gerald W.L., Gomis R.R., Massagué J. TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 2008;133(1):66–77. doi:10.1016/j.cell.2008.01.046.; Bielenberg D.R., Zetter B.R. The Contribution of Angiogenesis to the Process of Metastasis. Cancer J. 2015;21(4):267–73. doi:10.1097/PPO.0000000000000138.; Wojtukiewicz M.Z., Sierko E., Hempel D., Tucker S.C., Honn K.V. Platelets and cancer angiogenesis nexus. Cancer Metastasis Rev. 2017;36(2):249–62. doi:10.1007/s10555-017-9673-1.; He A.D., Xie W., Song W., Ma Y.Y., Liu G., Liang M.L., Da X.W., Yao G.Q., Zhang B.X., Gao C.J., Xiang J.Z., Ming Z.Y. Platelet releasates promote the proliferation of hepatocellular carcinoma cells by suppressing the expression of KLF6. Sci Rep. 2017;7(1):3989. doi:10.1038/s41598-017-02801-1.; Banskota S., Gautam J., Regmi S.C., Gurung P., Park M.H., Kim S.J., Nam T.G., Jeong B.S., Kim J.A. BJ-1108, a 6-Amino-2,4,5- Trimethylpyridin-3-ol Analog, Inhibits Serotonin-Induced Angiogenesis and Tumor Growth through PI3K/NOX. Pathway. PLoS One. 2016;11(1):e0148133. doi:10.1371/journal.pone.0148133.; Wang S., Li Z., Xu R. Human Cancer and Platelet Interaction, a Potential Therapeutic Target. Int J Mol Sci. 2018;19(4):1246. doi:10.3390/ijms19041246.; https://journal.nodgo.org/jour/article/view/1040
-
14Academic Journal
Authors: A. Yu. Goryainova, S. V. Sharov, O. I. Kirsanova, O. A. Goncharova, R. A. Murashko, А. Ю. Горяинова, С. В. Шаров, О. И. Кирсанова, О. А. Гончарова, Р. А. Мурашко
Source: Meditsinskiy sovet = Medical Council; № 10 (2024); 46-53 ; Медицинский Совет; № 10 (2024); 46-53 ; 2658-5790 ; 2079-701X
Subject Terms: трастузумаб дерукстекан, HER2/neu, brain metastases, leptomeningeal metastasis, trastuzumab deruxtecan, метастазы в головной мозг, лептоменингеальное метастазирование
File Description: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/8393/7383; Lin NU, Claus E, Sohl J, Razzak AR, Arnaout A, Winer EP. Sites of distant recurrence and clinical outcomes in patients with metastatic triplenegative breast cancer: high incidence of central nervous system metastases. Cancer. 2008;113(10):2638–2645. https://doi.org/10.1002/cncr.23930.; Arvold ND, Oh KS, Niemierko A, Taghian AG, Lin NU, Abi-Raad RF et al. Brain metastases after breast-conserving therapy and systemic therapy: incidence and characteristics by biologic subtype. Breast Cancer Res Treat. 2012;136(1):153–160. https://doi.org/10.1007/s10549-012-2243-x.; Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Speers CH, Nielsen TO, Gelmon K. Metastatic behavior of breast cancer subtypes. J Clin Oncol. 2010;28(20):3271–3277. https://doi.org/10.1200/JCO.2009.25.9820.; Pestalozzi BC, Holmes E, de Azambuja E, Metzger-Filho O, Hogge L, Scullion M et al. CNS relapses in patients with HER2-positive early breast cancer who have and have not received adjuvant trastuzumab: a retrospective substudy of the HERA trial (BIG 1-01). Lancet Oncol. 2013;14(3):244–248. https://doi.org/10.1016/S1470-2045(13)70017-2.; DeSantis C, Jemal A, Ward E. Disparities in breast cancer prognostic factors by race, insurance status, and education. Cancer Causes Control. 2010;21(9):1445–1450. https://doi.org/10.1007/s10552-010-9572-z.; Lobbezoo DJ, van Kampen RJ, Voogd AC, Dercksen MW, van den Berkmortel F, Smilde TJ et al. Prognosis of metastatic breast cancer subtypes: the hormone receptor/HER2-positive subtype is associated with the most favorable outcome. Breast Cancer Res Treat. 2013;141(3):507–514. https://doi.org/10.1007/s10549-013-2711-y.; Tripathy D, Brufsky A, Cobleigh M, Jahanzeb M, Kaufman PA, Mason G et al. De Novo Versus Recurrent HER2-Positive Metastatic Breast Cancer: Patient Characteristics, Treatment, and Survival from the SystHERs Registry. Oncologist. 2020;25(2):e214-e222. https://doi.org/10.1634/theoncologist.2019-0446.; Chen X, Wang J, Fan Y, Luo Y, Zhang P, Li Q et al. Primary Trastuzumab Resistance After (Neo)adjuvant Trastuzumab-containing Treatment for Patients With HER2-positive Breast Cancer in Real-world Practice. Clin Breast Cancer. 2021;21(3):191–198. https://doi.org/10.1016/j.clbc.2020.09.003.; Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–792. https://doi.org/10.1056/NEJM200103153441101.; Cameron D, Casey M, Oliva C, Newstat B, Imwalle B, Geyer CE. Lapatinib plus capecitabine in women with HER-2-positive advanced breast cancer: final survival analysis of a phase III randomized trial. Oncologist. 2010;15(9):924–934. https://doi.org/10.1634/theoncologist.2009-0181.; Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J et al.; EMILIA Study Group. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–1791. https://doi.org/10.1056/NEJMoa1209124.; Blackwell KL, Burstein HJ, Storniolo AM, Rugo H, Sledge G, Koehler M et al. Randomized study of Lapatinib alone or in combination with trastuzumab in women with ErbB2-positive, trastuzumab-refractory metastatic breast cancer. J Clin Oncol. 2010;28(7):1124–1130. https://doi.org/10.1200/JCO.2008.21.4437.; Ibragimova KIE, Geurts SME, Croes S, Erdkamp F, Heijns JB, Tol J et al. Survival before and after the introduction of pertuzumab and T-DM1 in HER2-positive advanced breast cancer, a study of the SONABRE Registry. Breast Cancer Res Treat. 2021;188(2):571–581. https://doi.org/10.1007/s10549-021-06178-8.; Diaby V, Adunlin G, Ali AA, Zeichner SB, de Lima Lopes G, Kohn CG, Montero AJ. Cost-effectiveness analysis of 1st through 3rd line sequential targeted therapy in HER2-positive metastatic breast cancer in the United States. Breast Cancer Res Treat. 2016;160(1):187–196. https://doi.org/10.1007/s10549-016-3978-6.; Mendes D, Alves C, Afonso N, Cardoso F, Passos-Coelho JL, Costa L et al. The benefit of HER2-targeted therapies on overall survival of patients with metastatic HER2-positive breast cancer – a systematic review. Breast Cancer Res. 2015;17:140. https://doi.org/10.1186/s13058-015-0648-2.; Trail PA, Dubowchik GM, Lowinger TB. Antibody drug conjugates for treatment of breast cancer: Novel targets and diverse approaches in ADC design. Pharmacol Ther. 2018;181:126–142. https://doi.org/10.1016/j.pharmthera.2017.07.013.; Ogitani Y, Aida T, Hagihara K, Yamaguchi J, Ishii C, Harada N et al. DS-8201a, A Novel HER2-Targeting ADC with a Novel DNA Topoisomerase I Inhibitor, Demonstrates a Promising Antitumor Efficacy with Differentiation from T-DM1. Clin Cancer Res. 2016;22(20):5097–5108. https://doi.org/10.1158/1078-0432.CCR-15-2822.; Ku GY, Ilson DH. Chemotherapeutic options for gastroesophageal junction tumors. Semin Radiat Oncol. 2013;23(1):24–30. https://doi.org/10.1016/j.semradonc.2012.09.003.; Stintzing S. Management of colorectal cancer. F1000Prime Rep. 2014;6:108. https://doi.org/10.12703/P6-108.; Sudo K, Yamada Y. Advancing pharmacological treatment options for advanced gastric cancer. Expert Opin Pharmacother. 2015;16(15):2293–2305. https://doi.org/10.1517/14656566.2015.1080238.; Pommier Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer. 2006;6(10):789–802. https://doi.org/10.1038/nrc1977.; Nakada T, Sugihara K, Jikoh T, Abe Y, Agatsuma T. The Latest Research and Development into the Antibody-Drug Conjugate, [fam-] Trastuzumab Deruxtecan (DS-8201a), for HER2 Cancer Therapy. Chem Pharm Bull (Tokyo). 2019;67(3):173–185. https://doi.org/10.1248/cpb.c18-00744.; Ogitani Y, Hagihara K, Oitate M, Naito H, Agatsuma T. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci. 2016;107(7):1039–1046. https://doi.org/10.1111/cas.12966.; Yin O, Iwata H, Lin CC, Tamura K, Watanabe J, Wada R et al. ExposureResponse Relationships in Patients With HER2-Positive Metastatic Breast Cancer and Other Solid Tumors Treated With Trastuzumab Deruxtecan. Clin Pharmacol Ther. 2021;110(4):986–996. https://doi.org/10.1002/cpt.2291.; Tamura K, Tsurutani J, Takahashi S, Iwata H, Krop IE, Redfern C et al. Trastuzumab deruxtecan (DS-8201a) in patients with advanced HER2positive breast cancer previously treated with trastuzumab emtansine: a dose-expansion, phase 1 study. Lancet Oncol. 2019;20(6):816–826. https://doi.org/10.1016/S1470-2045(19)30097-X.; Modi S, Saura C, Yamashita T, Park YH, Kim SB, Tamura K et al.; DESTINYBreast01 Investigators. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Breast Cancer. N Engl J Med. 2020;382(7):610–621. https://doi.org/10.1056/NEJMoa1914510.; Saura C, Modi S, Krop I, Park YH, Kim S, Tamura K et al. 279P – Trastuzumab deruxtecan (T-DXd) in patients with HER2-positive metastatic breast cancer (MBC): Updated survival results from a phase II trial (DESTINY-Breast01). Ann Oncol. 2021;32(Suppl. 5):S485–S486. https://doi.org/10.1016/j.annonc.2021.08.562.; Hamilton E, Hurvitz SA, Im SA, Iwata H, Curigliano G, Kim SB et al. Trastuzumab deruxtecan (T-DXd) vs trastuzumab emtansine (T-DM1) in patients (pts) with HER2+ metastatic breast cancer (mBC): Updated survival results of DESTINY-Breast03. J Clin Oncol. 2024;42(16 Suppl):1025. https://doi.org/10.1200/JCO.2024.42.16_suppl.1025.; Hurvitz SA, Hegg R, Chung WP, Wei-Pang, Im SA, Jacot W et al. Abstract GS2-02: GS2-02 Trastuzumab deruxtecan versus trastuzumab emtansine in patients with HER2-positive metastatic breast cancer: Updated survival results of the randomized, phase 3 study DESTINY-Breast03. Cancer Res. 2023;83(5 Suppl):GS2-02. https://doi.org/10.1158/1538-7445.SABCS22-GS2-02.; Cortés J, Kim SB, Chung WP, Im SA, Park YH, Hegg R et al.; DESTINYBreast03 Trial Investigators. Trastuzumab Deruxtecan versus Trastuzumab Emtansine for Breast Cancer. N Engl J Med. 2022;386(12):1143–1154. https://doi.org/10.1056/NEJMoa2115022.; Nguyen A, Nguyen A, Dada OT, Desai PD, Ricci JC, Godbole NB et al. Leptomeningeal Metastasis: A Review of the Pathophysiology, Diagnostic Methodology, and Therapeutic Landscape. Curr Oncol. 2023;30(6):5906–5931. https://doi.org/10.3390/curroncol30060442.; Le Rhun E, Preusser M, van den Bent M, Andratschke N, Weller M. How we treat patients with leptomeningeal metastases. ESMO Open. 2019;4(Suppl. 2):e000507. https://doi.org/10.1136/esmoopen-2019-000507.; de Bernardi A, Bachelot T, Larrouquère L. Long-term response to sequential anti-HER2 therapies including trastuzumab-deruxtecan in a patient with HER2-positive metastatic breast cancer with leptomeningeal metastases: a case report and review of the literature. Front Oncol. 2024;13:1210873. https://doi.org/10.3389/fonc.2023.1210873.; Bachelot T, Romieu G, Campone M, Diéras V, Cropet C, Dalenc F et al. Lapatinib plus capecitabine in patients with previously untreated brain metastases from HER2-positive metastatic breast cancer (LANDSCAPE): a single-group phase 2 study. Lancet Oncol. 2013;14(1):64–71. https://doi.org/10.1016/S1470-2045(12)70432-1.; Sutherland S, Ashley S, Miles D, Chan S, Wardley A, Davidson N et al. Treatment of HER2-positive metastatic breast cancer with lapatinib and capecitabine in the lapatinib expanded access programme, including efficacy in brain metastases--the UK experience. Br J Cancer. 2010;102(6):995–1002. https://doi.org/10.1038/sj.bjc.6605586.; Wilcox JA, Li MJ, Boire AA. Leptomeningeal Metastases: New Opportunities in the Modern Era. Neurotherapeutics. 2022;19(6):1782–1798. https://doi.org/10.1007/s13311-022-01261-4.
-
15Academic Journal
Authors: Раджапов , Адильбек
Source: International Journal of Scientific Pediatrics; Vol. 3 No. 6 (2024): june; 623-626 ; Международный журнал научной педиатрии; Том 3 № 6 (2024): июнь; 623-626 ; Xalqaro ilmiy pediatriya jurnali; Nashr soni. 3 No. 6 (2024): iyun; 623-626 ; 2181-2926
Subject Terms: опухоль щитовидной железы, морфометрический метод, морфология, метастазирование, онкомаркер, thyroid tumor, morphometric method, morphology, metastasis, tumor marker, qalqonsimon bez o'smasi, morfometrik usul, morfologiya, metastaz, o'simta markeri
File Description: application/pdf
Relation: https://ijsp.uz/index.php/journal/article/view/257/208; https://ijsp.uz/index.php/journal/article/view/257
Availability: https://ijsp.uz/index.php/journal/article/view/257
-
16Academic Journal
Authors: Burdenny A.M., Lukina S.S., Filippova E.A., Ivanova N.A., Pronina I.V., Loginov V.I., Kazubskaya T.P., Kushlinsky D.N., Tsekatunov D.A., Zhordania K.I., Braga E.A.
Contributors: 0
Source: Almanac of Clinical Medicine; Vol 52, No 3 (2024); 149-161 ; Альманах клинической медицины; Vol 52, No 3 (2024); 149-161 ; 2587-9294 ; 2072-0505
Subject Terms: ovarian cancer, peritoneal metastasis, omentum, ascites, non-coding RNA, regulatory factor, рак яичников, перитонеальное метастазирование, большой сальник, асцит, некодирующая РНК, регуляторный фактор
File Description: application/pdf
Relation: https://almclinmed.ru/jour/article/view/17246/1678; https://almclinmed.ru/jour/article/view/17246/1680; https://almclinmed.ru/jour/article/downloadSuppFile/17246/159873; https://almclinmed.ru/jour/article/downloadSuppFile/17246/159874; https://almclinmed.ru/jour/article/downloadSuppFile/17246/159875; https://almclinmed.ru/jour/article/downloadSuppFile/17246/160115; https://almclinmed.ru/jour/article/downloadSuppFile/17246/160116; https://almclinmed.ru/jour/article/view/17246
-
17Academic Journal
Authors: Hande Peynirci, Canan Ersoy, Pınar Sisman, Ozlem Saraydaroglu, Coskun Ozer Demirtas, Ozen Oz Gul
Source: Mìžnarodnij Endokrinologìčnij Žurnal, Vol 16, Iss 6, Pp 496-501 (2020)
Міжнародний ендокринологічний журнал-Mìžnarodnij endokrinologìčnij žurnal; Том 16, № 6 (2020); 496-501
Международный эндокринологический журнал-Mìžnarodnij endokrinologìčnij žurnal; Том 16, № 6 (2020); 496-501
INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine); Том 16, № 6 (2020); 496-501Subject Terms: 0301 basic medicine, папиллярный рак щитовидной железы, эндокан, фактор роста сосудистого эндотелия, рецидив, метастазирование, endocan, recurrence, vascular endothelial growth factor, thyroid papillary cancer, metastasis, RC648-665, Diseases of the endocrine glands. Clinical endocrinology, 3. Good health, 03 medical and health sciences, 0302 clinical medicine, папілярний рак щитоподібної залози, ендокан, фактор росту судинного ендотелію, метастазування
File Description: application/pdf
-
18
-
19Academic Journal
Authors: V. V. Alifanov, L. A. Tashireva, M. V. Zavyalova, V. M. Perelmuter, В. В. Алифанов, Л. А. Таширева, М. В. Завьялова, В. М. Перельмутер
Contributors: The study was carried out using the equipment of the Center for Collective Use “Medical Genomics” of the Tomsk National Research Medical Center, Работа выполнена с использованием оборудования ЦКП «Медицинская геномика» Томского НИМЦ
Source: Siberian journal of oncology; Том 22, № 1 (2023); 74-81 ; Сибирский онкологический журнал; Том 22, № 1 (2023); 74-81 ; 2312-3168 ; 1814-4861
Subject Terms: морфологическая гетерогенность, breast cancer, lymph node metastasis, invasion, morphological heterogeneity, рак молочной железы, лимфогенное метастазирование, инвазия
File Description: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/2433/1078; Шевченко Ю.А., Кузнецова М.С., Христин А.А., Сидоров С.В., Сенников С.В. Современная терапия рака молочной железы: от тамоксифена до Т-клеточной инженерии. Сибирский онкологический журнал. 2022; 21(5): 109–22. doi:10.21294/1814-4861-2022-21-5-109-122.; Graziani V., Rodriguez-Hernandez I., Maiques O., Sanz-Moreno V. The amoeboid state as part of the epithelial-to-mesenchymal transition programme. Trends Cell Biol. 2022; 32(3): 228–42. doi:10.1016/j.tcb.2021.10.004.; Wong S.Y., Hynes R.O. Lymphatic or hematogenous dissemination: how does a metastatic tumor cell decide? Cell Cycle. 2006; 5(8): 812–7. doi:10.4161/cc.5.8.2646.; Zavyalova M.V., Denisov E.V., Tashireva L.A., Savelieva O.E., Kaigorodova E.V., Krakhmal N.V., Perelmuter V.M. Intravasation as a Key Step in Cancer Metastasis. Biochemistry (Mosc). 2019; 84(7): 762–72. doi:10.1134/S0006297919070071.; Yang Y., Zheng H., Zhan Y., Fan S. An emerging tumor invasion mechanism about the collective cell migration. Am J Transl Res. 2019; 11(9): 5301–12.; Pearson G.W. Control of Invasion by Epithelial-to-Mesenchymal Transition Programs during Metastasis. J Clin Med. 2019; 8(5): 646. doi:10.3390/jcm8050646.; Lin Y.H., Zhen Y.Y., Chien K.Y., Lee I.C., Lin W.C., Chen M.Y., Pai L.M. LIMCH1 regulates nonmuscle myosin-II activity and suppresses cell migration. Mol Biol Cell. 2017; 28(8): 1054–65. doi:10.1091/mbc.E15-04-0218.; Zavyalova M.V., Denisov E.V., Tashireva L.A., Gerashchenko T.S., Litviakov N.V., Skryabin N.A., Vtorushin S.V., Telegina N.S., Slonimskaya E.M., Cherdyntseva N.V., Perelmuter V.M. Phenotypic drift as a cause for intratumoral morphological heterogeneity of invasive ductal breast carcinoma not otherwise specified. Biores Open Access. 2013; 2(2): 148–54. doi:10.1089/biores.2012.0278.; Wittekind C. Diagnosis and staging of lymph node metastasis. Recent Results Cancer Res. 2000; 157: 20–8. doi:10.1007/978-3-64257151-0_3.; Alifanov V.V., Tashireva L.A., Zavyalova M.V., Perelmuter V.M. LIMCH1 as a New Potential Metastasis Predictor in Breast Cancer. Asian Pac J Cancer Prev. 2022; 23(11): 3947–52. doi:10.31557/APJCP.2022.23.11.3947.; https://www.siboncoj.ru/jour/article/view/2433
-
20Academic Journal
Authors: E. S. Andryukhova, N. V. Krakhmal, L. A. Tashireva, S. V. Vtorushin, M. V. Zavyalova, V. M. Perelmuter, Е. С. Андрюхова, Н. В. Крахмаль, Л. А. Таширева, С. В. Вторушин, М. В. Завьялова, В. М. Перельмутер
Source: Siberian journal of oncology; Том 22, № 5 (2023); 180-189 ; Сибирский онкологический журнал; Том 22, № 5 (2023); 180-189 ; 2312-3168 ; 1814-4861
Subject Terms: лимфогенное метастазирование, novel coronavirus infection, COVId-19, lung disease, lymph node metastasis, новая коронавирусная инфекция, поражение легких
File Description: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/2772/1168; Klimek M. Pulmonary lymphangitis carcinomatosis: systematic review and meta-analysis of case reports, 1970–2018. Postgrad Med. 2019 Jun; 131(5): 309–18. doi:10.1080/00325481.2019.1595982.; Doyle L. Gabriel Andral (1797–1876) and the first reports of lymphangitis carcinomatosa. J R Soc Med. 1989; 82(8): 491–3. doi:10.1177/014107688908200814.; Trapnell D.H. Radiological Appearances of Lymphangitis Carcinomatosa of the Lung. Thorax. 1964; 19: 251–60. doi:10.1136/thx.19.3.251.; Babu S., Satheeshan B., Geetha M., Salih S. A rare presentation of pulmonary lymphangitic carcinomatosis in cancer of lip: case report. World J Surg Oncol. 2011; 9: 77. doi:10.1186/1477-7819-9-77.; Yamamoto T., Nakane T., Kimura T., Osaki T. Pulmonary lymphangitic carcinomatosis from an oropharyngeal squamous cell carcinoma: a case report. Oral Oncol. 2000; 36(1): 125–8. doi:10.1016/s1368-8375(99)00060-3.; Tighe D., Cavilla S., Simcock R. Pulmonary lymphangitic carcinomatosis from head and neck squamous cell carcinoma. Int J Oral Maxillofac Surg. 2014; 43(7): 806–10. doi:10.1016/j.ijom.2013.12.003.; Iguchi H., Hashimoto K., Sunami K., Yamane H. A case of fatal respiratory failure after surgery for advanced supraglottic laryngeal carcinoma. Acta Otolaryngol Suppl. 2004; (554): 71–3. doi:10.1080/03655230410018327.; Zieske L.A., Myers E.N., Brown B.M. Pulmonary lymphangitic carcinomatosis from hypopharyngeal adenosquamous carcinoma. Head Neck Surg. 1988; 10(3): 195–8. doi:10.1002/hed.2890100308.; Fend F., Gruber U., Fritzsche H., Rothmund J., Breitfellner G., Mikuz G. Occult papillary carcinoma of the thyroid with pulmonary lymphangitic spread diagnosed by lung biopsy. Klin Wochenschr. 1989; 67(13): 687–90. doi:10.1007/BF01718031.; Digumarthy S.R., Fischman A.J., Kwek B.H., Aquino S.L. Fluorodeoxyglucose positron emission tomography pattern of pulmonary lymphangitic carcinomatosis. J Comput Assist Tomogr. 2005; 29(3): 346–9. doi:10.1097/01.rct.0000163952.03192.ef.; Jiménez-Fonseca P., Carmona-Bayonas A., Font C., PlasenciaMartínez J., Calvo-Temprano D., Otero R., Beato C., Biosca M., Sánchez M., Benegas M., Varona D., Faez L., Antonio M., de la Haba I., Madridano O., Solis M.P., Ramchandani A., Castañón E., Marchena P.J., Martín M., de la Peña F.A., Vicente V.; EPIPHANY study investigators and the Asociación de Investigación de la Enfermedad Tromboembólica de la Región de Murcia. The prognostic impact of additional intrathoracic findings in patients with cancer-related pulmonary embolism. Clin Transl Oncol. 2018; 20(2): 230–42. doi:10.1007/s12094-017-1713-3.; Belhassine M., Papakrivopoulou E., Venet C., Mestdagh C., Schroeven M. Gastric adenocarcinoma revealed by atypical pulmonary lymphangitic carcinomatosis. J Gastrointest Oncol. 2018; 9(6): 1207–12. doi:10.21037/jgo.2018.07.06.; Bruce D.M., Heys S.D., Eremin O. Lymphangitis carcinomatosa: a literature review. J R Coll Surg Edinb. 1996; 41(1): 7–13.; Pandey S., Ojha S. Delays in Diagnosis of Pulmonary Lymphangitic Carcinomatosis due to Benign Presentation. Case Rep Oncol Med. 2020. doi:10.1155/2020/4150924.; Okayama M., Kanemitsu Y., Oguri T., Asano T., Fukuda S., Ohkubo H., Takemura M., Maeno K., Ito Y., NIImi A. A Rare Case of Isolated Chronic Cough Caused by Pulmonary Lymphangitic Carcinomatosis as a Primary Manifestation of Rectum Carcinoma. Intern Med. 2018; 57(18): 2709–12. doi:10.2169/internalmedicine.0572-17.; Charest M., Armanious S. Prognostic implication of the lymphangitic carcinomatosis pattern on perfusion lung scan. Can Assoc Radiol J. 2012; 63(4): 294–303. doi:10.1016/j.carj.2011.04.004.; Prakash P., Kalra M.K., Sharma A., Shepard J.A., Digumarthy S.R. FDG PET/CT in assessment of pulmonary lymphangitic carcinomatosis. Am J Roentgenol. 2010; 194(1): 231–6. doi:10.2214/AJR.09.3059.; Yahng S.A., Kang H.H., Kim S.K., Lee S.H., Moon H.S., Lee B.Y., Kim H.S., Seo E.J. Erdheim-Chester disease with lung involvement mimicking pulmonary lymphangitic carcinomatosis. Am J Med Sci. 2009; 337(4): 302–4. doi:10.1097/MAJ.0b013e31818d7a64.; Im Y., Lee H., Lee H.Y., Baek S.Y., Jeong B.H., Lee K., Kim H., Kwon O.J., Han J., Lee K.S., Ahn M.J., Kim J., Um S.W. Prognosis of pulmonary lymphangitic carcinomatosis in patients with non-small cell lung cancer. Transl Lung Cancer Res. 2021; 10(11): 4130–40. doi:10.21037/tlcr-21-677.; https://www.siboncoj.ru/jour/article/view/2772