-
1Academic Journal
Authors: V. V. Smirnov, L. M. Krasnykh, G. V. Ramenskaya, S. B. Kazanbekov
Source: Фармакокинетика и Фармакодинамика, Vol 0, Iss 2, Pp 11-18 (2022)
Subject Terms: критерий пирсона, RS1-441, Pharmacy and materia medica, фенотипирование, cyp3a4, кортизол, критерий колмогорова, критерий граббса, метаболическая активность
-
2Academic Journal
Authors: E. V. Pyankova, Yu. G. Maksimova, Е. В. Пьянкова, Ю. Г. Максимова
Contributors: The research was funded by Russian Science Foundation, project number № 24-24-20008, https://rscf.ru/en/project/24-24-20008/, Perm Krai., Исследование выполнено при финансовой поддержке Российского научного фонда (проект № 24-24-20008, https://rscf.ru/project/24-24-20008/, Пермский край).
Source: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 79, № 3 (2024); 227-234 ; Вестник Московского университета. Серия 16. Биология; Том 79, № 3 (2024); 227-234 ; 0137-0952
Subject Terms: АТФ, biofilms, graphene oxide, reduced graphene oxide, metabolic activity, ATP, биопленки, оксид графена, восстановленный оксид графена, метаболическая активность
File Description: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1411/695; Bhatt S., Punetha V.D., Pathak R., Punetha M. Graphene in nanomedicine: A review on nano-bio factors and antibacterial activity. Colloids Surf. B: Biointerfaces. 2023;226:113323.; Awogbemi O., Kallon D.V.V. Recent advances in the application of nanomaterials for improved biodiesel, biogas, biohydrogen, and bioethanol production. Fuel. 2024;358(Pt. B):130261.; Xia M.-Y., Xie Y., Yu C.-H., Chen G.-Y., Li Y.-H., Zhang T., Peng Q. Graphene-based nanomaterials: the promising active agents for antibiotics-independent antibacterial applications. J. Control. Release. 2019;307:16–31.; Ibukun A.E., Yahaya N., Mohamed A.H., Semail N.-F., Hamid M.A.A., Zain N.N.M., Kamaruddin M.A., Loh S.H., Kamaruzaman S. Recent developments in synthesis and characterisation of graphene oxide modified with deep eutectic solvents for dispersive and magnetic solid-phase extractions. Microchem. J. 2024;199:110111.; Flemming H.-C., Wingender J. The biofilm matrix. Nat. Rev. Microbiol. 2010;8(9):623–633.; Lundqvist M., Stigler J., Elia G., Dawson K.A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. U.S.A. 2008;105(38):14265–14270.; Cui F., Li T., Wang D., Yi S., Li J., Li X. Recent advances in carbon-based nanomaterials for combating bacterial biofilm-associated infections. J. Hazard. Mater. 2022;431:128597.; Maksimova Yu.G., Zorina A.S. Antibiofilm and probiofilm effects of nanomaterials on microorganisms (Review). Appl. Biochem. Microbiol. (Mosc.). 2024;60(1):1–16.; Seifi T., Kamali A.R. Anti-pathogenic activity of graphene nanomaterials: A review. Colloids Surf. B: Biointerfaces. 2021;199:111509.; Shankar K., Agarwal S., Mishra S., Bhatnagar P., Siddiqui S., Abrar I. A review on antimicrobial mechanism and applications of graphene-based materials. Biomater. Adv. 2023;150:213440.; Hadidi N.; Mohebbi M. Anti-Infective and toxicity properties of carbon based materials: graphene and functionalized carbon nanotubes. Microorganisms. 2022;10(12):2439.; Akhavan O., Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 2010;4(10):5731–5736.; Dey N., Vickram S., Thanigaivel S., Kamatchi C., Subbaiya R., Karmegam N., Govarthanan M. Graphene materials: Armor against nosocomial infections and biofilm formation – A review. Environ. Res. 2022;214(Pt. 2):113867.; Guo Z., Xie C., Zhang P., Zhang J., Wang G., He X., Ma Y., Zhao B., Zhang Z. Toxicity and transformation of graphene oxide and reduced graphene oxide in bacteria biofilm. Sci. Total Environ. 2017;580:1300–1308.; Saeed S.I., Vivian L., Salma C.W., Zalati C.W., Sani N.I.M., Aklilu E., Mohamad M., Noor A.M., Muthoosamy K., Kamaruzzaman N.F. Antimicrobial activities of graphene oxide against biofilm and intracellular Staphylococcus aureus isolated from bovine mastitis. BMC Vet. Res. 2023;19(1):10.; Shahnaz T., Hayder G. Exploring graphene’s antibacterial potential for advanced and sustainable solutions in water treatment. J. Water Process Eng. 2023;56:104530.; Zhang X., Li Y., Zhang K., Yin Y., Wang J., Wang L., Wang Z., Zhang R., Wang H., Zhang Z. Graphene oxide affects bacteriophage infection of bacteria by promoting the formation of biofilms. Sci. Total Environ. 2023;880:163027.; Liao Y., Li S., Ji G. Graphene oxide stimulated low-temperature denitrification activity of microbial communities in lake sediments by enhancing anabolism and inhibiting cellular respiration. Chemosphere. 2024;350:141090.; Park S., Kang S.-E., Kim S.-J., Kim J. Grapheneencapsulated yeast cells in harsh conditions. Fungal Biol. 2023;127(10–11):1389–1396.; Agarwalla S.V., Ellepola K., Sorokin V., Ihsan M., Silikas N., Neto A.C., Seneviratne C.J., Rosa V. Antimicrobial-free graphene nanocoating decreases fungal yeast-tohyphal switching and maturation of cross-kingdom biofilms containing clinical and antibiotic-resistant bacteria. Biomater. Biosyst. 2022;8:100069.; Shirshahi V., Saedi M., Nikbakht M., Mirzaii M. Unveiling the antimicrobial potential of oxidized graphene derivatives: Promising materials for advanced wound dressings and antibacterial surfaces. J. Drug Delivery Sci. Technol. 2023;88:104949.; Zvonarev A., Farofonova V., Kulakovskaya E., Kulakovskaya T., Machulin A., Sokolov S., Dmitriev V. Changes in cell wall structure and protein set in Candida maltosa grown on hexadecane. Folia Microbiol. (Praha). 2021;66(2):247–253.; Патент РФ 2114174 С1 Кузнецов П.А., Авчиева П.Б. Консорциум дрожжей Candida maltosa для биодеградации нефтезагрязнений. 1998.; Hammer Ø., Harper D.A.T., Ryan P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica. 2001;4(1):4.; Alonso V.P.P., Lemos J.G., do Nascimento M. da S. Yeast biofilms on abiotic surfaces: Adhesion factors and control methods. Int. J. Food Microbiol. 2023;400:110265.; Калебина Т.С., Кулаев И.С. Роль белков в формировании молекулярной структуры клеточной стенки дрожжей. Успехи биологической химии. 2001;41:105–130.
-
3Academic Journal
Authors: Zakharchenko, T.F., Gulevaty, S.V., Volinets, I.P.
Source: Mìžnarodnij Endokrinologìčnij Žurnal, Vol 15, Iss 8, Pp 610-618 (2019)
INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine); Vol. 15 No. 8 (2019); 610-618
Международный эндокринологический журнал-Mìžnarodnij endokrinologìčnij žurnal; Том 15 № 8 (2019); 610-618
Міжнародний ендокринологічний журнал-Mìžnarodnij endokrinologìčnij žurnal; Том 15 № 8 (2019); 610-618Subject Terms: активність NK-клітин, Diseases of the endocrine glands. Clinical endocrinology, 03 medical and health sciences, 0302 clinical medicine, thyroid cancer, distant metastases, радіойодотерапія, возраст, вік, мужской пол, metabolic activity of neutrophils, метаболическая активность нейтрофилов, male gender, NK cell activity, рак щитоподібної залози, radioiodine therapy, отдаленные метастазы, RC648-665, чоловіча стать, активность NK-клеток, 3. Good health, рак щитовидной железы, age, toxic goiter, віддалені метастази, nk cell activity, токсический зоб, радиойодтерапия, токсичний зоб, метаболічна активність нейтрофілів
File Description: application/pdf
-
4Academic Journal
Authors: Zakharchenko, T.F., Zamotaeva, G.A., Gulevatyi, S.V.
Source: Mìžnarodnij Endokrinologìčnij Žurnal, Vol 14, Iss 6, Pp 579-584 (2018)
INTERNATIONAL JOURNAL OF ENDOCRINOLOGY; Том 14, № 6 (2018); 579-584
Международный эндокринологический журнал-Mìžnarodnij endokrinologìčnij žurnal; Том 14, № 6 (2018); 579-584
Міжнародний ендокринологічний журнал-Mìžnarodnij endokrinologìčnij žurnal; Том 14, № 6 (2018); 579-584Subject Terms: рак щитовидной железы, радиойодтерапия, рчТТГ, активность NK-клеток, метаболическая активность нейтрофилов, recombinant human thyroid-stimulating hormone, 03 medical and health sciences, 0302 clinical medicine, metabolic activity of neutrophils, рак щитоподібної залози, радіойодотерапія, рлТТГ, активність NK-клітин, метаболічна активність нейтрофілів, thyroid cancer, radioiodine therapy, RC648-665, the activity of NK cells, Diseases of the endocrine glands. Clinical endocrinology, 3. Good health
File Description: application/pdf
-
5Academic Journal
Authors: A. H. Al-Humairi, V. V. Udut, D. L. Speransky, M. E. Al-Gazally, V. V. Novochadov, А. Х. Хумаири, В. В. Удут, Д. Л. Сперанский, М. О. Аль-Газали, В. В. Новочадов
Source: Siberian Journal of Clinical and Experimental Medicine; Том 37, № 4 (2022); 139-148 ; Сибирский журнал клинической и экспериментальной медицины; Том 37, № 4 (2022); 139-148 ; 2713-265X ; 2713-2927
Subject Terms: клеточная линия Vero, azolotetrazines, metabolic activity, oxygen consumption, MCF-7 cell line, Vero cell line, имидазотетразины, метаболическая активность, потребление кислорода, клеточная линия MCF-7
File Description: application/pdf
Relation: https://www.sibjcem.ru/jour/article/view/1630/767; https://www.sibjcem.ru/jour/article/view/1630/768; Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021;71(3):209–249. DOI:10.3322/caac.21660.; Wild C.P., Weiderpass E., Stewart B.W. World Cancer Report: Cancer research for cancer prevention. Lyon, France: International Agency for Research on Cancer; 2020.; Rositch A.F., Unger-Saldana K., DeBoer R.J., Ng’ang’a A., Weiner B.J. The role of dissemination and implementation science in global breast cancer control programs: Frameworks, methods, and examples. Cancer. 2020;126(10):2394–2404. DOI:10.1002/cncr.32877.; Gradishar W.J., Anderson B.O., Abraham J., Aft R., Agnese D., Allison K.H. et al. Breast Cancer, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2020;18(4):452– 478. DOI:10.6004/jnccn.2020.0016.; Kang Y.P., Ward N.P., DeNicola G.M. Recent advances in cancer metabolism: A technological perspective. Exp. Mol. Med. 2018;50(4):1–16. DOI:10.1038/s12276-018-0027-z.; El-Sahli S., Wang L. Cancer stem cell-associated pathways in the metabolic reprogramming of breast cancer. Int. J. Mol. Sci. 2020;21(23):9125. DOI:10.3390/ijms21239125.; Gentric G., Mieulet V., Mechta-Grigoriou F. Heterogeneity in cancer metabolism: New concepts in an old field. Antioxid. Redox Signal. 2017;26(9):462–485. DOI:10.1089/ars.2016.6750.; Vander Heiden M.G., DeBerardinis R.J. Understanding the intersections between metabolism and cancer biology. Cell. 2017;168(4):657–669. DOI:10.1016/j.cell.2016.12.039.; Bhardwaj V., He J. Reactive oxygen species, metabolic plasticity, and drug resistance in cancer. Int. J. Mol. Sci. 2020;21(10):3412. DOI:10.3390/ijms21103412.; Park J.H., Pyun W.Y., Park H.W. Cancer metabolism: phenotype, signaling and therapeutic targets. Cells. 2020;9(10):2308. DOI:10.3390/cells9102308.; Garza-Morales R., Gonzalez-Ramos R., Chiba A., Montes de Oca-Luna R., McNally L.R., McMasters K.M. et al. Temozolomide enhan ces triple-negative breast cancer virotherapy in vitro. Cancers (Basel).2018;10(5):144. DOI:10.3390/cancers10050144.; Хумаири А.Х., Сперанский Д.Л., Садчикова Е.В. Синтез и цитотоксическая активность новых производных азолотриазина при изучении на клеточных культурах. Химико-фармацевтический журнал. 2022;56(6):17–22. DOI:10.30906/0023-1134-2022-56-6-17-22.; Alexeeva D.L., Sadchikova E.V., Volkova N.N., Efimov I.V., Jacobs J., Van Meervelt L. et al. Reactivity of 3-substituted pyrazole-5-diazonium salts towards 3-azolyl enamines. Synthesis of novel 3-azolylpyrazolo[5,1-c][1,2,4]triazines. ARKIVOC. 2016;(iv):114–129. DOI:10.3998/ark.5550190.p009.571.; Alexandrova R., Dinev D., Gavrilova-Valchеva I., Gavrilov I. Cell cultures as model systems in breast cancer research. Merit Res. J. Med. Med. Sci. 2019;7(2):73–79. DOI:10.5281/zenodo.2579323.; Andreani N.A., Renzi S., Piovani G., Ajmone Marsan P., Bomba L., Villa R. et al. Potential neoplastic evolution of Vero cells: In vivo and in vitro characterization. Cytotechnology. 2017;69(5):741–750. DOI:10.1007/s10616-017-0082-7.; Traba J., Miozzo P., Akkaya B., Pierce S.K., Akkaya M. An optimized protocol to analyze glycolysis and mitochondrial respiration in lymphocytes. J. Vis. Exp. 2016;(117):54918. DOI:10.3791/54918.; Katzir R., Polat I.H., Harel M., Katz S., Foguet C., Selivanov V.A. et al. The landscape of tiered regulation of breast cancer cell metabolism. Sci. Rep. 2019;9(1):17760. DOI:10.1038/s41598-019-54221-y.; Cairns R.A., Mak T.W. The current state of cancer metabolism. Nat. Rev. Cancer. 2016;16:613–614. DOI:10.1038/nrc.2016.100.; Ramzan R., Michels S., Weber P., Rhiel A., Irqsusi M., Rastan A.J. et al. Protamine sulfate induces mitochondrial hyperpolarization and a subsequent increase in reactive oxygen species production. J. Pharmacol. Exp. Ther. 2019;370(2):308–317. DOI:10.1124/jpet.119.257725.; Zambrano A., Molt M., Uribe E., Salas M. Glut 1 in cancer cells and the inhibitory action of resveratrol as a potential therapeutic strategy. Int. J. Mol. Sci. 2019;20(13):3374. DOI:10.3390/ijms20133374.; https://www.sibjcem.ru/jour/article/view/1630
-
6Academic Journal
Authors: A. N. Afanasyeva, V. B. Saparova, I. E. Makarenko, R. V. Drai, T. A. Selmenskikh, А. Н. Афанасьева, В. Б. Сапарова, И. Е. Макаренко, Р. В. Драй, Т. А. Сельменских
Contributors: I.S. Giba and A.A. Batueva, the authors’ colleagues from the quality assurance service of Pharm-Holding, CJSC, assisted in the research and preparation of the paper. GEROPHARM, OJSC provided funding for the research., В проведении исследования и подготовке статьи оказывали помощь коллеги из службы обеспечения качества ЗАО «Фарм Холдинг» И.С. Гиба и А.А. Батуева. Спонсорская поддержка ОАО «ГЕРОФАРМ».
Source: Regulatory Research and Medicine Evaluation; Том 13, № 1 (2023); 77-88 ; Регуляторные исследования и экспертиза лекарственных средств; Том 13, № 1 (2023); 77-88 ; 3034-3453 ; 3034-3062
Subject Terms: инсулинозависимый захват глюкозы, L6J1 rat myogenic cell line, metabolic activity, biological activity, insulin, determination of glucose in cell culture media, insulin-dependent glucose uptake, клеточная линия миобластов крысы L6J1, метаболическая активность, биологическая активность, инсулин, определение глюкозы в клеточнойкультуральной среде
File Description: application/pdf
Relation: https://www.vedomostincesmp.ru/jour/article/view/398/951; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/398/193; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/398/268; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/398/270; Yaffe D. Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc Natl Acad Sci USA. 1968;61(2):477–83. https://doi.org/10.1073/pnas.61.2.477; Mandel JL, Pearson ML. Insulin stimulates myogenesis in a rat myoblast line. Nature. 1974;251(5476):618– 20. https://doi.org/10.1038/251618a0; Jacobs FA, Bird RC, Sells BH. Differentiation of rat myoblasts. Regulation of turnover of ribosomal proteins and their mRNAs. Eur J Biochem. 1985;150(2):255–63. https://doi.org/10.1111/j.1432-1033.1985.tb09015.x; Portiér GL, Benders AG, Oosterhof A, Veerkamp JH, van Kuppevelt TH. Differentiation markers of mouse C2C12 and rat L6 myogenic cell lines and the effect of the differentiation medium. In Vitro Cell Dev Biol Anim. 1999;35(4):219–27. https://doi.org/10.1007/s11626-999-0030-8; Alvim RO, Cheuhen MR, Machado SR, Sousa AGP, Santos PCJL. General aspects of muscle glucose uptake. An Acad Bras Cienc. 2015;87(1):351–68. https://doi.org/10.1590/0001-3765201520140225; Goodyear LJ, King PA, Hirshman MF, Thompson CM, Horton ED, Horton ES. Contractile activity increases plasma membrane glucose transporters in absence of insulin. Am J Physiol. 1990;258(4 Pt 1):E667–72. https://doi.org/10.1152/ajpendo.1990.258.4.E667; Lee AD, Hansen PA, Holloszy JO. Wortmannin inhibits insulin-stimulated but not contraction-stimulated glucose transport activity in skeletal muscle. FEBS Lett. 1995;361(1):51–4. https://doi.org/10.1016/0014-5793(95)00147-2; Lund S, Holman GD, Schmitz O, Pedersen O. Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc Natl Acad Sci USA. 1995;92(13):5817–21. https://doi.org/10.1073/pnas.92.13.5817; Rothman DL, Magnusson I, Cline G, Gerard D, Kahn CR, Shulman RG, Shulman GI. Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA. 1995;92(4):983–7. https://doi.org/10.1073/pnas.92.4.983; Jiang S, Zhang Y, Yang Y, Huang Y, Ma G, Luo Y, et al. Glucose oxidase-instructed fluorescence amplification strategy for intracellular glucose detection. ACS Appl Mater Interfaces. 2019;11(11):10554–8. https://doi.org/10.1021/acsami.9b00010; Trinder P. Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J Clin Pathol. 1969;22(2):158–61. https://doi.org/10.1136/jcp.22.2.158; https://www.vedomostincesmp.ru/jour/article/view/398
-
7Academic Journal
Contributors: ELAKPI, Тема № 2033п, КПІ ім. Ігоря Сікорського, Тема № 374–НК, Національний ботанічний сад імені М.М. Гришка
Source: Innovative Biosystems and Bioengineering, Vol 2, Iss 2 (2018)
Innovative Biosystems and Bioengineering; Том 2, № 2 (2018); 98-104Subject Terms: 0106 biological sciences, 0301 basic medicine, огірки сорту Конкурент, S. albus UN44, Biopreparation, Cucumber plants of the variety Konkurent, Biological activity, Growth stimulation, Metabolic activity, Stress resistance, QH301-705.5, Біотехнологія, Сільське господарство, стресостійкість, Биопрепараты, Огурцы сорта Конкурент, Биологическая активность, Стимуляция роста, Метаболическая активность, Стрессоустойчивость, biological activity, Стимуляція росту, metabolic activity, биологическая активность, Метаболічна активність, 01 natural sciences, biopreparation, growth stimulation, 03 medical and health sciences, огурцы сорта Конкурент, cucumber plants of the variety Konkurent, біопрепарати, Biology (General), стрессоустойчивость, stress resistance, 2. Zero hunger, Біопрепарати, Огірки сорту Конкурент, Біологічна активність, Стресостійкість, биопрепараты, стимуляция роста, метаболическая активность, біологічна активність, метаболічна активність, стимуляція росту
File Description: application/pdf
-
8Academic Journal
Subject Terms: биообрастание, биоциды, метаболическая активность, биоцидные добавки, аэробные бактерии, анаэробные бактерии, метаболическая активность
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/38837
-
9Academic Journal
Authors: Vakhlova, I. V., Fedotova, G. V., Boronina, L. G., Ibragimova, Y. N., Вахлова, И. В., Федотова, Г. В., Боронина, Л. Г., Ибрагимова, Ю. Н.
Subject Terms: YOUNG CHILDREN, PHYSICAL DEVELOPMENT, METABOLIC ACTIVITY OF THE INTESTINE, SHORT CHAIN FATTY ACID, ДЕТИ РАННЕГО ВОЗРАСТА, ФИЗИЧЕСКОЕ РАЗВИТИЕ, МЕТАБОЛИЧЕСКАЯ АКТИВНОСТЬ КИШЕЧНИКА, КОРОТКОЦЕПОЧЕЧНЫЕ ЖИРНЫЕ КИСЛОТЫ
File Description: application/pdf
Relation: Уральский медицинский журнал. 2021. т. 20. №5; http://elib.usma.ru/handle/usma/6327
Availability: http://elib.usma.ru/handle/usma/6327
-
10Academic Journal
Authors: Yu. G. Samoilova, O. A. Oleynik, D. A. Kudlay, E. V. Sagan, N. S. Denisov
Source: Rossijskij Vestnik Perinatologii i Pediatrii, Vol 66, Iss 5, Pp 38-41 (2021)
Subject Terms: дети и подростки, детское ожирение, сахарный диабет 2-го типа, микробиота, метаболическая активность, микробиом полости рта, Pediatrics, RJ1-570
Relation: https://www.ped-perinatology.ru/jour/article/view/1479; https://doaj.org/toc/1027-4065; https://doaj.org/toc/2500-2228; https://doaj.org/article/246afe7a03064e678962e83cebcf8d75
-
11Academic Journal
Authors: V. S. Ilyakov, Artem Pronin, A. I. Mikhaylov, A. V. Parnas, Nadezhda Meshcheriakova, Z. H. Kamolova, В. С. Ильяков, А. И. Пронин, А. И. Михайлов, А. В. Парнас, Н. А. Мещерякова, З. Х. Камолова
Source: Cancer Urology; Том 16, № 4 (2020); 160-169 ; Онкоурология; Том 16, № 4 (2020); 160-169 ; 1996-1812 ; 1726-9776
Subject Terms: метаболическая активность, fluorodeoxyglucose, 18F-FDG, renal cell carcinoma, diagnostics, metabolic activity, совмещенная с компьютерной томографией, фтордезоксиглюкоза, 18Р-ФДГ, почечно-клеточный рак, диагностика
File Description: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/1372/1227; Bray F., Ferlay J., Soerjomataram I. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6):394-424. DOI:10.3322/caac.21492.; Motzer R.J., Jonasch E., Michaelson M.D. et al. NCCN Guidelines Insights: Kidney Cancer, Version 2.2020. J Natl Compr Canc Netw 2019;17(11):1278-85. DOI:10.6004/jnccn.2019.0054.; Кушлинский Н.Е., Фридман М.В., Морозов А.А. и др. Современные подходы к иммунотерапии рака почки. Онкоурология 2018;14(2):54-67. DOI:10.17650/1726-9776-2018-14-2-54-67.; Ricketts C.J., De Cubas A.A., Fan H. et al. The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma. Cell Rep 2018;23(1):313-26.e5. DOI:10.1016/j.celrep.2018.03.075.; Gray R.E., Harris G.T. Renal cell carcinoma: diagnosis and management. Am Fam Physician 2019;99(3):179-84.; Escudier B., Porta C., Schmidinger M. et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2016;27(suppl 5):v58-68. DOI:10.1093/annonc/mdw328.; Win A.Z., Aparici C.M. Clinical effectiveness of (18)f-fluorodeoxyglucose positron emission tomography/computed tomography in management of renal cell carcinoma: a single institution experience. World J Nucl Med 2015;14(1):36-40. DOI:10.4103/1450-1147.150535.; Wiechno P., Kucharz J., Sadowska M. et al. Contemporary treatment of metastatic renal cell carcinoma. Med Oncol 2018;35(12):156. DOI:10.1007/s12032-018-1217-1.; Bianchi M., Sun M., Jeldres C. et al. Distribution of metastatic sites in renal cell carcinoma: a population-based analysis. Ann Oncol 2012;23(4):973-80. DOI:10.1093/annonc/mdr362.; Gupta K., Miller J.D., Li J.Z. et al. Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): a literature review. Cancer Treat Rev 2008;34(3):193-205. DOI:10.1016/j.ctrv.2007.12.001.; Murphy G., Jhaveri K. The expanding role of imaging in the management of renal cell carcinoma. Expert Rev Anticancer Ther 2011;11(12):1871-88. DOI:10.1586/era.11.122.; Kuusk T., Grivas N., de Bruijn R., Bex A. The current management of renal cell carcinoma. Minerva Med 2017;108(4):357-69. DOI:10.23736/S0026-4806.17.05058-3.; Fletcher J.W., Djulbegovic B., Soares H. et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 2008;49:480-508. DOI:10.2967/jnumed.107.047787.; Sai K.K.S., Zachar Z., Bingham P.M., Mintz A. Metabolic PET Imaging in Oncology. AJR Am J Roentgenol 2017;209(2):270-6. DOI:10.2214/AJR.17.18112.; Verma V., Choi J.I., Sawant A. et al. Use of PET and other functional imaging to guide target delineation in radiation oncology. Semin Radiat Oncol 2018;28(3):171-7. DOI:10.1016/j.semradonc.2018.02.001.; Zhu A., Lee D., Shim H. Metabolic positron emission tomography imaging in cancer detection and therapy response. Semin Oncol 2011;38(1):55-69. DOI:10.1053/j.seminoncol.2010.11.012.; Apostolova I., Wedel F., Brenner W. Imaging of tumor metabolism using positron emission tomography (PET). Recent Results Cancer Res 2016;207:177-205. DOI:10.1007/978-3-319-42118-6_8.; Liu Y., Ghesani N.V., Zuckier L.S. Physiology and pathophysiology of incidental findings detected on FDG-PET scintigraphy. Semin Nucl Med 2010;40:294-315. DOI:10.1053/j.semnuclmed.2010.02.002.; Vander Heiden M.G., Cantley L.C., Thompson C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009;324(5930):1029-33. DOI:10.1126/science.1160809.; Kim J.W., Dang C.V. Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res 2006;66(18):8927-30. DOI:10.1158/0008-5472.CAN-06-1501.; Wang H.Y., Ding H.J., Chen J.H. et al. Meta-analysis of the diagnostic performance of [18F]FDG-PET and PET/CT in renal cell carcinoma. Cancer Imaging 2012;12(3):464-74. DOI:10.1102/1470-7330.2012.0042.; Ma H., Shen G., Liu B. et al. Diagnostic performance of 18F-FDG PET or PET/CT in restaging renal cell carcinoma: a systematic review and meta-analysis. Nucl Med Commun 2017;38(2):156-63. DOI:10.1097/MNM.0000000000000618.; Ozulker T., Ozulker E, Ozbek E., OzpaSaci T. A prospective diagnostic accuracy study of F-18 fluorodeoxyglucose-positron emission tomography/computed tomography in the evaluation of indeterminate renal masses. Nucl Med Commun 2011;32(4):265-72. DOI:10.1097/MNM.0b013e3283442e3b.; Kamel E.M., Jichlinski P., Prior J.O. et al. Forced diuresis improves the diagnostic accuracy of 18F-FDG PET in abdominopelvic malignancies. J Nucl Med 2006;47(11):1803-7.; Karivedu V., Jain A.L., Eluvathingal T.J., Sidana A. Role of positron emission tomography imaging in metabolically active renal cell carcinoma. Curr Urol Rep 2019;20(10):56. DOI:10.1007/s11934-019-0932-2.; Tabei T., Nakaigawa N., Kaneta T. et al. Early assessment with 18F-2-fluoro-2-deoxyglucose positron emission tomography/ computed tomography to predict shortterm outcome in clear cell renal carcinoma treated with nivolumab. BMC Cancer 2019;19(1):298. DOI:10.1186/s12885-019-5510-y.; Nakaigawa N., Kondo K., Kaneta T. et al. FDG PET/CT after first molecular targeted therapy predicts survival of patients with renal cell carcinoma. Cancer Chemother Pharmacol 2018;81(4):739-44. DOI:10.1007/s00280-018-3542-7.; Kayani I., Avril N., Bomanji J. et al. Sequential FDG-PET/CT as a biomarker of response to sunitinib in metastatic clear cell renal cancer. Clin Cancer Res 2011;17(18):6021-8. DOI:10.1158/1078-0432.CCR-10-3309.; Elahmadawy M.A., Elazab M.S.S., Ahmed S., Salama M. Diagnostic value of F-18 FDG PET/CT for local and distant disease relapse surveillance in surgically treated RCC patients: can it aid in establishing consensus follow up strategy? Nucl Med Rev Cent East Eur 2018;21(2):85-91. DOI:10.5603/NMR.2018.0024.; Chen J.L., Appelbaum D.E., Kocherginsky M. et al. FDG-PET as a predictive biomarker for therapy with everolimus in metastatic renal cell cancer. Cancer Med 2013;2(4):545-52. DOI:10.1002/cam4.102.; Rakheja R., Makis W., Skamene S. et al. Correlating metabolic activity on 18F-FDG PET/CT with histopathologic characteristics of osseous and soft-tissue sarcomas: a retrospective review of 136 patients. AJR Am J Roentgenol 2012;198(6):1409-16. DOI:10.2214/AJR.11.7560.; Watanabe Y., Suefuji H., Hirose Y. et al. 18F-FDG uptake in primary gastric malignant lymphoma correlates with glucose transporter 1 expression and histologic malignant potential. Int J Hematol 2013;97(1):43-9. DOI:10.1007/s12185-012-1225-4.; Kadota K., Colovos C., Suzuki K. et al. FDG-PET SUVmax combined with IASLC/ATS/ERS histologic classification improves the prognostic stratification of patients with stage I lung adenocarcinoma. Ann Surg Oncol 2012;19(11):3598-605. DOI:10.1245/s10434-012-2414-3.; Kubota K., Okasaki M., Minamimoto R. et al. Lesion-based analysis of (18)F-FDG uptake and (111)In-Pentetreotide uptake by neuroendocrine tumors. Ann Nucl Med 2014;28(10):1004-10. DOI:10.1007/s12149-014-0900-3.; Heudel P., Cimarelli S., Montella A. et al. Value of PET-FDG in primary breast cancer based on histopathological and immunohistochemical prognostic factors. Int J Clin Oncol 2010;15(6):588-93. DOI:10.1007/s10147-010-0120-3.; Endo M., Nakagawa K., Ohde Y. et al. Utility of 18FDG-PET for differentiating the grade of malignancy in thymic epithelial tumors. Lung Cancer 2008;61(3):350-5. DOI:10.1016/j.lungcan.2008.01.003.; Takahashi M., Kume H., Koyama K. et al. Preoperative evaluation of renal cell carcinoma by using 18F-FDG PET/CT. Clin Nucl Med 2015;40(12):936-40. DOI:10.1097/RLU.0000000000000875.; Nakajima R., Nozaki S., Kondo T. et al. Evaluation of renal cell carcinoma histological subtype and fuhrman grade using 18F-fluorodeoxyglucose-positron emission tomography/computed tomography. Eur Radiol 2017;27(11):4866-73. DOI:10.1007/s00330-017-4875-z.; Nakajima R., Abe K., Kondo T. et al. Clinical role of early dynamic FDG-PET/CT for the evaluation of renal cell carcinoma. Eur Radiol 2016;26(6):1852-62. DOI:10.1007/s00330-015-4026-3.; Nakhoda Z., Torigian D.A., Saboury B. et al. Assessment of the diagnostic performance of (18)F-FDG-PET/CT for detection and characterization of solid renal malignancies. Hell J Nucl Med 2013;16(1):19-24. DOI:10.1967/s002449910067.; Song M. Recent developments in small molecule therapies for renal cell carcinoma. Eur J Med Chem 2017;142:383-92. DOI:10.1016/j.ejmech.2017.08.007.; European Association of Urology: The compilation of the complete Guidelines should be referenced as: EAU Guidelines. Edn. presented at the EAU Annual Congress Copenhagen 2018. Available at: http://uroweb.org/guideline/renal-cell-carcinoma/.; Namura K., Minamimoto R., Yao M. et al. Impact of maximum standardized uptake value (SUVmax) evaluated by 18-Fluoro-2-deoxy-d glucose positron emission tomography/computed tomography (18F-FDG-PET/CT) on survival for patients with advanced renal cell carcinoma: a preliminary report. BMC Cancer 2010:10:667. DOI:10.1186/1471-2407-10-667.; Pankowska V., Malkowski B., Wedrowski M. et al. FDG PET/CT as a survival prognostic factor in patients with advanced renal cell carcinoma. Clin Exp Med 2019;19(1):143-8. DOI:10.1007/s10238-018-0539-9.; Nakaigawa N., Kondo K., Tateishi U. et al. FDG PET/CT as a prognostic biomarker in the era of molecular-targeting therapies: max SUVmax predicts survival of patients with advanced renal cell carcinoma. BMC Cancer 2016;16:67. DOI:10.1186/s12885-016-2097-4.; Ferda J., Ferdova E., Hora M. et al. 18F-FDG-PET/CT in potentially advanced renal cell carcinoma: a role in treatment decisions and prognosis estimation. Anticancer Res 2013;33(6):2665-72.; Lee H., Hwang K.H., Kim S.G. et al. Can initial (18)F-FDG PET-CT imaging give information on metastasis in patients with primary renal cell carcinoma? Nucl Med Mol Imaging 2014;48(2):144-52. DOI:10.1007/s13139-013-0245-1.; Alongi P., Picchio M., Zattoni F. et al. Recurrent renal cell carcinoma: clinical and prognostic value of FDG PET/CT. Eur J Nucl Med Mol Imaging 2016;43(3):464-73. DOI:10.1007/s00259-015-3159-6.; Fuccio C., Ceci F., Castellucci P. et al. Restaging clear cell renal carcinoma with 18F-FDG PET/CT. Clin Nucl Med 2014;39(6):e320-4. DOI:10.1097/RLU.0000000000000382.; Ljungberg B., Albiges L., Abu-Ghanem Y. et al. European Association of Urology Guidelines on Renal Cell Carcinoma: The 2019 Update. Eur Urol 2019;75(5):799-810. DOI:10.1016/j.eururo.2019.02.011.; Escudier B., Sharma P., McDermott D.F. et al. CheckMate 025 randomized phase 3 study: outcomes by key baseline factors and prior therapy for nivolumab versus everolimus in advanced renal cell carcinoma. Eur Urol 2017;72(6):962-71. DOI:10.1016/j.eururo.2017.02.010.; Motzer R.J., Tannir N.M., McDermott D.F. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med 2018;378(14):1277-90. DOI:10.1056/NEJMoa1712126.; Ito H., Kondo K., Kawahara T. et al. One-month assessment of renal cell carcinoma treated by everolimus using FDG PET/CT predicts progression-free and overall survival. Cancer Chemother Pharmacol 2017;79(5):855-61. DOI:10.1007/s00280-017-3275-z.; Avril N., Sassen S., Schmalfeldt B. et al. Prediction of response to neoadjuvant chemotherapy by sequential F-18-fluorodeoxyglucose positron emission tomography in patients with advanced-stage ovarian cancer. J Clin Oncol 2005;23(30):7445-53. DOI:10.1200/JCO.2005.06.965.; Lordick F. Optimizing neoadjuvant chemotherapy through the use of early response evaluation by positron emission tomography. Recent Results Cancer Res 2012;196:201-11. DOI:10.1007/978-3-642-31629-6_14.; Ueda S., Tsuda H., Saeki T. et al. Early metabolic response to neoadjuvant letrozole, measured by FDG PET/CT, is correlated with a decrease in the Ki67 labeling index in patients with hormone receptor-positive primary breast cancer: a pilot study. Breast Cancer 2011;18(4):299-308. DOI:10.1007/s12282-010-0212-y.; Benz M.R., Czernin J., Allen-Auerbach M.S. et al. FDG-PET/CT imaging predicts histopathologic treatment responses after the initial cycle of neoadjuvant chemotherapy in high-grade soft-tissue sarcomas. Clin Cancer Res 2009;15(8):2856-63. DOI:10.1158/1078-0432.CCR-08-2537.; Nakaigawa N., Kondo K., Ueno D. et al. The acceleration of glucose accumulation in renal cell carcinoma assessed by FDG PET/CT demonstrated acquisition of resistance to tyrosine kinase inhibitor therapy. BMC Cancer 2017;17(1):39. DOI:10.1186/s12885-016-3044-0.; Ueno D., Yao M., Tateishi U. et al. Early assessment by FDG-PET/CT of patients with advanced renal cell carcinoma treated with tyrosine kinase inhibitors is predictive of disease course. BMC Cancer 2012;12:162. DOI:10.1186/1471-240712-162.; Caldarella C., Muoio B., Isgro M.A. et al. The role of fluorine-18-fluorodeoxyglucose positron emission tomography in evaluating the response to tyrosine-kinase inhibitors in patients with metastatic primary renal cell carcinoma. Radiol Oncol 2014;48(3):219-27. DOI:10.2478/raon-2013-0067.; Kakizoe M., Yao M., Tateishi U. et al. The early response of renal cell carcinoma to tyrosine kinase inhibitors evaluated by FDG PET/CT was not influenced by metastatic organ. BMC Cancer 2014;14:390. DOI:10.1186/1471-2407-14-390.; https://oncourology.abvpress.ru/oncur/article/view/1372
-
12Academic Journal
Authors: Ju. G. Samoilova, O. A. Oleynik, E. V. Sagan, I. N. Vorozhtsova, T. A. Filippova, N. S. Denisov, D. A. Dyakov, Ю. Г. Самойлова, О. А. Олейник, Е. В. Саган, И. Н. Ворожцова, Т. А. Филиппова, Н. С. Денисов, Д. А. Дьяков
Source: Siberian Journal of Clinical and Experimental Medicine; Том 35, № 3 (2020); 38-46 ; Сибирский журнал клинической и экспериментальной медицины; Том 35, № 3 (2020); 38-46 ; 2713-265X ; 2713-2927 ; 10.29001/2073-8552-2020-35-3
Subject Terms: микробиом пищеварительной системы, microbiota, metabolic activity, digestive system microbiome. Conflict of interest: the authors do not declare a conflict of interest., микробиота, метаболическая активность
File Description: application/pdf
Relation: https://www.sibjcem.ru/jour/article/view/1037/551; Sanz Y., Moya-Pérez A. Microbiota, inflammation and obesity. Adv. Exp. Med. Biol. 2014;817:291–317. DOI:10.1007/978-1-4939-0897-4_14.; Winer D.A., Luck H., Tsai S., Winer S. The Intestinal Immune System in Obesity and Insulin Resistance. Cell Metab. 2016;23(3):413–426. DOI:10.1016/j.cmet.2016.01.003.; Самойлова Ю.Г., Олейник О.А., Саган Е.В., Денисов Н.С., Ворожцова И.Н., Кудлай Д.А. и др. Микробиота и метаболическое программирование ожирения у детей. Педиатрия. Журнал им. Г.Н. Сперанского. 2020;99(1):209–216. DOI:10.24110/0031-403X-2020-99-1-209-216.; Мазанкова Л.Н., Рыбальченко О.В., Николаева И.В. Микродисбиоз и эндогенные инфекции: руководство для врачей. М.: ГЭОТАР-Медиа; 2018:336.; Bernhardt H., Knoke M. Recent studies on the microbial ecology of the upper gastrointestinal tract. Infection. 1989;17(4):259–263. DOI:10.1007/bf01639536.; Arumugam M., Raes J., Pelletier E., Le Paslier D., Yamada T., Mende D.R. et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–180. DOI:10.1038/nature09944.; Mbakwa C.A., Hermes G.D., Penders J., Savelkoul P.H., Thijs C., Dagnelie P.C. et al. Gut Microbiota and Body Weight in School-Aged Children: The KOALA Birth Cohort Study. Obesity (Silver Spring). 2018;26(11):1767–1776. DOI:10.1002/oby.22320.; Ignacio A., Fernandes M.R., Rodrigues V.A., Groppo F.C., Cardoso A.L., Avila-Campos M.J. et al. Correlation between body mass index and faecalmicrobiota from children. Clin. Microbiol. Infect. 2016;22(3):258.e1–8. DOI:10.1016/j.cmi.2015.10.031.; Hou Y.P., He Q.Q., Ouyang H.M., Peng H.S., Wang Q., Li J. et al. Human gut microbiota associated with obesity in chinese children and adolescents. Biomed. Res. Int. 2017;2017:7585989. DOI:10.1155/2017/7585989.; Chen X., Sun H., Jiang F., Shen Y., Li X., Hu X. et al. Alteration of the gut microbiota associated with childhood obesity by 16S rRNA gene sequencing. Peer J. 2020;8:e8317. DOI:10.7717/peerj.8317.; Zhong H., Penders J., Shi Z., Ren H., Cai K., Fang C. et al. Impact of early events and lifestyle on the gut microbiota and metabolic phenotypes in young school-age children. Microbiome. 2019;7(1):2. DOI:10.1186/s40168-018-0608-z.; Méndez-Salazar E.O., Ortiz-López M.G., Granados-Silvestre M.L., Palacios-González B., Menjivar M. Altered gut microbiota and compositional changes in firmicutes and proteobacteria in Mexican undernourished and obese children. Front. Microbiol. 2018;9:2494. DOI:10.3389/fmicb.2018.02494.; Riva A., Borgo F., Lassandro C., Verduci E., Morace G., Borghi E. et al. Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. Environ. Microbiol. 2017;19(1):95– 105. DOI:10.1111/1462-2920.13463.; Sze M.A., Schloss P.D. Looking for a signal in the noise: Revisiting obesity and the microbiome. mBio. 2016;7(4):e01018–6. DOI:10.1128/mBio.01018-16.; Rampelli S., Guenther K., Turroni S., Wolters M., Veidebaum T., Kourides Y. et al. Pre-obese children’s dysbiotic gut microbiome and unhealthy diets may predict the development of obesity. Commun. Biol. 2018;1:222. DOI:10.1038/s42003-018-0221-5.; Nobili V., Putignani L., Mosca A., Chierico F.D., Vernocchi P., Alisi A. et al. Bifidobacteria and lactobacilli in the gut microbiome of children with non-alcoholic fatty liver disease: Which strains act as health players? Arch. Med. Sci. 2018;14(1):81–87. DOI:10.5114/aoms.2016.62150.; Huerta-Ávila E.E., Ramírez-Silva I., Torres-Sánchez L.E., Díaz-Benítez C.E., Orbe-Orihuela Y.C., Lagunas-Martínez A. et al. High relative abundance of lactobacillus reuteri and fructose intake are associated with adiposity and cardiometabolic risk factors in children from Mexico city. Nutrients. 2019;11(6):1207. DOI:10.3390/nu11061207.; Barczyńska R., Litwin M., Sliżewska K., Szalecki M., Berdowska A., Bandurska K. et al. Bacterial microbiota and fatty acids in the faeces of overweight and obese children. Pol. J. Microbiol. 2018;67(3):339–345. DOI:10.21307/pjm-2018-041.; Goffredo M., Mass K., Parks E.J., Wagner D.A., McClure E.A., Graf J. et al. Role of gut microbiota and short chain fatty acids in modulating energy harvest and fat partitioning in youth. J. Clin. Endocrinol. Metab. 2016;101(11):4367–4376. DOI:10.1210/jc.2016-1797.; De Filippo C., Cavalieri D., Di Paola M., Ramazzotti M., Poullet J.B., Massart S. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA. 2010;107(33):14691–14696. DOI:10.1073/pnas.1005963107.; Ou J., Carbonero F., Zoetendal E.G., DeLany J.P., Wang M., Newton K. et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am. J. Clin. Nutr. 2013;98(1):111– 120. DOI:10.3945/ajcn.112.056689.; Furet J.P., Kong L.C., Tap J., Poitou C., Basdevant A., Bouillot J.-L. et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59(12):3049–3057. DOI:10.2337/db10-0253.; Verdam F.J., Fuentes S., de Jonge C., Zoetendal Er.G., Erbil R., Willem Greve J. et al. Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity. 2013;21(12):E607– E615. DOI:10.1002/oby.20466; Million M., Angelakis E., Paul M., Armougom F., Leibovici L., Raoult D. Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microb. Pathog. 2012;53(2):100– 108. DOI:10.1016/j.micpath.2012.05.007.; Schwiertz A., Taras D., Schafer K., Beijer S., Bos N.A., Donus C. et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010;18(1):190–195. DOI:10.1038/oby.2009.167.; Everard A., Belzer C., Geurts L., Ouwerkerk J.P., Druart C., Bindels L.B. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA. 2013;110(22):9066–9071. DOI:10.1073/pnas.1219451110.; Del Chierico F., Abbatini F., Russo A., Quagliariello A., Reddel S., Capoccia D. et al. Gut microbiota markers in obese adolescent and adult patients: Age-dependent differential patterns. Front. Microbiol. 2018;9:1210. DOI:10.3389/fmicb.2018.01210.; Sonnenburg J.L., Bäckhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 2016;535(7610):56–64. DOI:10.1038/nature18846.; Mulders R.J., de Git K.C.G., Schéle E., Dickson S.L., Sanz Y., Adan R.A. Microbiota in obesity: interactions with enteroendocrine, immune and central nervous systems. Obes. Rev. 2018;19(4):435–451. DOI:10.1111/obr.12661.; Whitt J., Woo V., Lee P., Moncivaiz J., Haberman Y., Denson L. et al. Disruption of epithelial HDAC3 in intestine prevents diet-induced obesity in mice. Gastroenterology. 2018;155(2):501–513. DOI:10.1053/j.gastro.2018.04.017.; Schroeder B.O., Birchenough G.M., Ståhlman M., Arike L., Johansson M.E., Hansson G.C. et al. Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration. Cell Host Microbe. 2018;23(1):27–40.e7. DOI:10.1016/j.chom.2017. 11.004.; David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–563. DOI:10.1038/nature12820.; Stojanović O., Trajkovski M. Microbiota guides insulin trafficking in beta cells. Cell Res. 2019;29(8):603–604. DOI:10.1038/s41422-019-02005.; Everard A., Geurts L., Caesar R., Van Hul M., Matamoros S., Duparc T. et al. Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nat. Commun. 2014;5:5648. DOI:10.1038/ncomms6648.; Orbe-Orihuela Y.C., Lagunas-Martínez A., Bahena-Román M., Madrid-Marina V., Torres-Poveda K., Flores-Alfaro E. et al. High relative abundance of firmicutes and increased TNFα levels correlate with obesity in children. Salud. Publica Mex. 2018;60(1):5–11. DOI:10.21149/8133.; Luck H., Khan S., Kim J.H., Copeland J.K., Revelo X.S., Tsai S. et al. Gut-associated IgA+ immune cells regulate obesity-related insulin resistance. Nat. Commun. 2019;10(1):3650. DOI:10.1038/s41467-01911370-y.; https://www.sibjcem.ru/jour/article/view/1037
-
13Academic Journal
Authors: TARUSIN D., MAZUR S., VOLKOVA N., PETRENKO YU., ZAIKOV V., PETRENKO A.
Source: Biotechnologia Acta, Vol 9, Iss 4, Pp 58-66 (2016)
Subject Terms: 0301 basic medicine, induced differentiation, 0303 health sciences, 03 medical and health sciences, alginate microspheres, MULTIPOTENT MESENCHYMAL STROMAL CELLS,ALGINATE MICROSPHERES,METABOLIC ACTIVITY,INDUCED DIFFERENTIATION,МУЛЬТИПОТЕНТНі МЕЗЕНХіМАЛЬНі СТРОМАЛЬНі КЛіТИНИ,АЛЬГіНАТНі МіКРОСФЕРИ,МЕТАБОЛіЧНА АКТИВНіСТЬ,іНДУКОВАНЕ ДИФЕРЕНЦіЮВАННЯ,МУЛЬТИПОТЕНТНЫЕ МЕЗЕНХИМАЛЬНЫЕ СТРОМАЛЬНЫЕ КЛЕТКИ,АЛЬГИНАТНЫЕ МИКРОСФЕРЫ,МЕТАБОЛИЧЕСКАЯ АКТИВНОСТЬ,ИНДУЦИРОВАННАЯ ДИФФЕРЕНЦИРОВКА, multipotent mesenchymal stromal cells, metabolic activity, 16. Peace & justice, TP248.13-248.65, Biotechnology
File Description: text/html
Access URL: http://biotechnology.kiev.ua/index.php?view=article&catid=111%3A42016&id=680%3A2016-12-04-13-04-49&format=pdf&option=com_content&Itemid=133&lang=en
https://doaj.org/article/b8a1edd6b2d2463988888564cc917457
https://doaj.org/article/b8a1edd6b2d2463988888564cc917457
https://core.ac.uk/display/90985789
https://cyberleninka.ru/article/n/encapsulation-of-mesenchymal-stromal-cells-in-alginate-microspheres
http://cyberleninka.ru/article_covers/16935238.png
http://cyberleninka.ru/article/n/encapsulation-of-mesenchymal-stromal-cells-in-alginate-microspheres -
14Academic Journal
Authors: T. A. Batuashvili, L. V. Simutenko, P. V. Shadrin, N. P. Neugodova, Т. А. Батуашвили, Л. В. Симутенко, П. В. Шадрин, Н. П. Неугодова
Contributors: The study reported in this publication was carried out as part of a publicly funded research project No. 056-00154-19-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. AAAA-A18-118021590049-0), Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00154-19-00 на проведение прикладных научных исследований (номер государственного учета НИР AAAA-A18-118021590049-0)
Source: Regulatory Research and Medicine Evaluation; Том 9, № 2 (2019); 85-92 ; Регуляторные исследования и экспертиза лекарственных средств; Том 9, № 2 (2019); 85-92 ; 3034-3453 ; 3034-3062 ; 10.30895/1991-2919-2019-9-2
Subject Terms: метаболическая активность, insulin analogues, biosimilars, biological activity, in vivo and in vitro methods, IR-1 and IR-2, receptorbinding assay, phosphorylation, metabolic activity, аналоги инсулина, биоподобные препараты, биоаналоги, биологическая активность, методы in vivo и in vitro, ИР-1 и ИР-2, рецепторно-связывающий анализ, фосфорилирование
File Description: application/pdf
Relation: https://www.vedomostincesmp.ru/jour/article/view/241/225; Прозоровский ВН, Лохов ПГ, Маслов ДЛ, Ипатова ОМ. Структурно-функциональные особенности инсулина и механизма его действия. Биомедицинская химия. 2003;49(1):46-62.; Zaykov AN, Mayer JP, DiMarchi RD. Pursuit of a perfect insulin. Nat Rev Drug Discov. 2016;15(6):425-39. https://doi.org/10.1038/nrd.2015.36; Баирамашвили ДИ. Генноинженерный инсулин человека: успехи и перспективы. Российский химический журнал. 2005;XLIX(1):34— 45.; Селиванова ОМ, Гришин СЮ, Глякина АВ, Садгян АС, Ушакова НИ, Глазитская ОВ. Анализ аналогов инсулина и стратегия их дальнейшей разработки. Успехи биологической химии. 2018;58:313-46.; Nilsson MR. Insulin amyloid at injection sites of patients with diabetes. Amyloid. 2016;23(3):139-47. https://doi.org/10.1080/13506129.2016.1179183; Home P, Riddle M, Cefalu WT, Bailey CJ, Bretzel RG, Del Prato S, et al. Insulin therapy in people with type 2 diabetes: opportunities and challenges? Diabetes Care. 2014;37(6):1499-508. https://doi.org/10.2337/dc13-2743; de Galan BE. Insulin glargine 300 U/mL in the management of diabetes: clinical utility and patient perspectives. Patient Prefer Adherence. 2016;(10):2097-106. https://doi.org/10.2147/PPA.S92123; Vigneri R, Squatrito S, Sciacca L. Insulin and its analogs: actions via insulin and IGF receptors. Acta Diabetol. 2010;47(4):271-8. https://doi.org/10.1007/s00592-010-0215-3; Valund A, Brange J, Drejer K, Jensen I, Markussen J, Ribel U, et al. In vitro and in vivo potency of insulin analogues designed for clinical use. Diabet Med. 1991;8(9):839-47. https://doi.org/10.1111/j.1464-5491.1991.tb02122.x; Werner H, Chantelau EA. Differences in bioactivity between human insulin and insulin analogues approved for therapeutic use — compilation of reports from the past 20 years. Diabetol Metab Syndr. 2011;3:13. https://doi.org/10.1186/1758-5996-3-13; EDQM: Insulin glargine [draft monograph]. Pharmeuropa Online. 2011;23:327-28.; Шестакова МВ, Викулова ОК. Биосимиляры: презумпция «виновности». Сахарный диабет. 2011;(4):91-9.; Heinemann L, Owens D. Biosimilar insulin and insulin antibodies. J Diabetes Sci Technol. 2013;7(4):806-7. PMID: 2391 1160; Gough S. Biosimilar insulins: opportunities and challenges. Practical Diabetes. 2013;30(4):146-7a. https://doi.org/10.1002/pdi.1763; Проскурина ИА, Майоров АЮ, Горячев ДВ, Бунятян НД. Современные подходы к оценке фармакокинетики и фармакодинамики биоподобных генно-инженерных препаратов человеческого инсулина и аналогов инсулина человека в рамках I фазы клинического исследования. Сахарный диабет. 2016;19(3):251-9.; https://www.vedomostincesmp.ru/jour/article/view/241
-
15Academic Journal
Source: Бюллетень Главного ботанического сада.
Subject Terms: 2. Zero hunger, полное минеральное удобрение, микробные препараты, microbial biomass, микробная биомасса, 15. Life on land, метаболическая активность, complete mineral fertilizer, metabolic activity, variety, сорт, microbial preparations, respiration rate, интенсивность дыхания, голубика, blueberry
-
16Academic Journal
Authors: Zakharchenko, T.F., Gulevaty, S.V., Volynets, I.P.
Source: INTERNATIONAL JOURNAL OF ENDOCRINOLOGY; Том 15, № 3 (2019); 210-216
Международный эндокринологический журнал-Mìžnarodnij endokrinologìčnij žurnal; Том 15, № 3 (2019); 210-216
Міжнародний ендокринологічний журнал-Mìžnarodnij endokrinologìčnij žurnal; Том 15, № 3 (2019); 210-216Subject Terms: тиреотоксикоз, рак щитоподібної залози, радіойодотерапія, активність NK-клітин, метаболічна активність нейтрофілів, thyrotoxicosis, thyroid cancer, radioiodine therapy, NK-cell activity, metabolic activity of neutrophils, рак щитовидной железы, радиойодотерапия, активность NK-клеток, метаболическая активность нейтрофилов
File Description: application/pdf
Access URL: http://iej.zaslavsky.com.ua/article/view/172106
-
17Academic Journal
Authors: V. V. Skvortsov, I. M. Paschenko, D. A. Mednova
Source: Медицинский совет, Vol 0, Iss 11, Pp 46-48 (2015)
Subject Terms: дисбиоз, дисбактериоз, кишечник, микрофлора бактерии, условно-патогенный метаболическая активность, диарея, стресс классификация, диагностика, критерии, dysbiosis, dysbacteriosis, intestine, microflora, bacteria, opportunistic, metabolic activity, diarrhea, stress, classification, diagnosis, criteria, Medicine
File Description: electronic resource
-
18Academic Journal
Authors: КОНОПЛЯ А.И., ЛОКТИОНОВ А.Л., ХОЛИМЕНКО И.М., ШАТОХИН М.Н.
File Description: text/html
-
19Academic Journal
Authors: Medvedeva E.A., Meskina E.R.
Source: Almanac of Clinical Medicine; No 42 (2015); 72-78 ; Альманах клинической медицины; No 42 (2015); 72-78 ; 2587-9294 ; 2072-0505 ; 10.18786/2072-0505-2015-42
Subject Terms: recurrent respiratory tract infections, children, metabolic activity, short chain fatty acids, oropharyngeal microflora, часто болеющие дети, метаболическая активность, короткоцепочечные жирные кислоты, микрофлора ротоглотки
File Description: application/pdf
-
20Academic Journal