Showing 1 - 20 results of 359 for search '"МЕЗЕНХИМАЛЬНЫЕ СТВОЛОВЫЕ КЛЕТКИ"', query time: 1.05s Refine Results
  1. 1
    Academic Journal

    Contributors: Работа выполнена в рамках программы «Приоритет-2036» Министерства науки и высшего образования Российской Федерации.

    Source: Complex Issues of Cardiovascular Diseases; Том 14, № 3 (2025); 51-61 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 3 (2025); 51-61 ; 2587-9537 ; 2306-1278 ; undefined

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1648/1042; https://www.nii-kpssz.com/jour/article/view/1648/1043; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1648/2006; Файзуллин А.Л., Шехтер А.Б., Истранов Л.П., Истранова Е.В., Руденко Т.Г., Гуллер А.Е., Абоянц Р.К., Тимашев П.С., Бутнару Д.В. Биорезорбируемые коллагеновые материалы в хирургии: 50 лет успеха. Сеченовский вестник. 2020; 11(1): 59–70. doi.org/10.47093/2218-7332.2020.11.1.59-70; Bian D., Wu Y., Song G., Azizi R., Zamani A. The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: a comprehensive review. Stem Cell Res Ther. 2022;13(1):1-17. doi:10.1186/s13287-021-02697-9; Heldring N., Mäger I., Wood M.J.A., Le Blanc K, Andaloussi S.E.L. Therapeutic Potential of Multipotent Mesenchymal Stromal Cells and Their Extracellular Vesicles. Hum Gene Ther. 2015;26(8):506-517. doi:10.1089/hum.2015.072; Gomzikova M.О., James V., Rizvanov A. A. Therapeutic Application of Mesenchymal Stem Cells Derived Extracellular Vesicles for Immunomodulation. Front Immunol. 2019;10(November):1-9. doi:10.3389/fimmu.2019.02663; Dedier M., Magne B., Nivet M., Banzet S., Trouillas M. Anti-inflammatory effect of interleukin-6 highly enriched in secretome of two clinically relevant sources of mesenchymal stromal cells. Front Cell Dev Biol. 2023;11(September):1-8. doi:10.3389/fcell.2023.1244120; Mendt M., Rezvani K., Shpall E. Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant. 2019;54:789-792. doi:10.1038/s41409-019-0616-z; Lotfy A., AboQuella N.M., Wang H. Mesenchymal stromal/stem cell (MSC)-derived exosomes in clinical trials. Stem Cell Res Ther. 2023;14(1):1-18. doi:10.1186/s13287-023-03287-7; Lin Y., Marin-Argany M., Dick C.J., Redhage K.R., Blancas-Mejia L.M., Bulur P., Butler G.W., Deeds M.C., Madden B.J., Williams A., Wall J.S., Dietz A., Ramirez-Alvarado M. Mesenchymal stromal cells protect human cardiomyocytes from amyloid fibril damage. Cytotherapy. 2017;19(12). doi:10.1016/j.jcyt.2017.08.021; Hashemi S.S., Pourfath M.R., Derakhshanfar A., Behzad-Behbahani A., Moayedi J. The role of labeled cell therapy with and without scaffold in early excision burn wounds in a rat animal model. Iran J Basic Med Sci. 2020;23(5):673-679. doi:10.22038/ijbms.2020.34324.8156; Marino G., Moraci M., Armenia E., Orabona C., Sergio R., De Sena G., Capuozzo V., Barbarisi M., Rosso F., Giordano G., Iovino F., Barbarisi A. Therapy with autologous adipose-derived regenerative cells for the care of chronic ulcer of lower limbs in patients with peripheral arterial disease. J Surg Res. 2013 Nov;185(1):36-44. doi:10.1016/j.jss.2013.05.024; Зиновьев Е.В., Крайнюков П.Е., Асадулаев М.С., Костяков Д.В., Вагнер Д.О., Крылов П.К., Османов К.Ф. Клиническая оценка эффективности применения мезенхимальных стволовых клеток при термических ожогах Вестник Национального медико-хирургического Центра им. Н.И. Пирогова 2018;13(4): 62-67. doi:10.25881/bpnmsc.2018.88.91.011; Еремеев А.В., Пикина А.С., Владимирова Т.В., Богомазова А.Н. Методы оценки жизнеспособности клеток, культивируемых in vitro в 2D- и 3D-структурах. Гены и клетки. 2023;18(1):5-21. doi:10.23868/gc312198; Kamiloglu S., Sari G., Ozdal T., Capanoglu E. Guidelines for cell viability assays. Food Front. 2020;1(3):332-349. doi:10.1002/fft2.44; Debruyne A.C., Okkelman I.A., Dmitriev R.I. Balance between the cell viability and death in 3D. Semin Cell Dev Biol. 2023;144:55-66. doi:10.1016/J.SEMCDB.2022.09.005; Gantenbein-Ritter B., Potier E., Zeiter S., van der Werf M., Sprecher C.M., Ito K. Accuracy of three techniques to determine cell viability in 3D tissues or scaffolds. Tissue Eng - Part C Methods. 2008;14(4):353-358. doi:10.1089/ten.tec.2008.0313; Dominijanni A.J., Devarasetty M., Forsythe S.D., Votanopoulos K.I., Soker S. Cell Viability Assays in Three-Dimensional Hydrogels: A Comparative Study of Accuracy. Tissue Eng - Part C Methods. 2021;27(7):401-410. doi:10.1089/ten.tec.2021.0060; Dittmar R., Potier E., van Zandvoort M., Ito K. Assessment of cell viability in three-dimensional scaffolds using cellular auto-fluorescence. Tissue Eng - Part C Methods. 2012;18(3):198-204. doi:10.1089/ten.tec.2011.0334; Bonnier F., Keating M.E., Wróbel T.P., Majzner K., Baranska M., Garcia-Munoz A., Blanco A., Byrne H.J. Cell viability assessment using the Alamar blue assay: a comparison of 2D and 3D cell culture models. Toxicol In vitro. 2015;29(1):124-31. doi:10.1016/j.tiv.2014.09.014; Семенычева Л.Л., Кузнецова Ю.Л., Валетова, Н.Б., Гераськина Е.В., Таранкова О.А. Способ получения уксусной дисперсии высокомолекулярного рыбного коллагена. Патент RU2567171C1, 2015; Бюл. №31; Коржевский Д.Э., Гиляров А.В. Основы гистологической техники. Практическое руководство. СПб: СпецЛит; 2010. 95 с.; Guo S., Dipietro L.A. Factors affecting wound healing. J Dent Res. 2010;89(3):219-229. doi:10.1177/0022034509359125; Gonzalez A.C., Costa T.F., Andrade Z.A., Medrado A.R. Wound healing - A literature review. An Bras Dermatol. 2016;91(5):614-620. doi:10.1590/abd1806-4841.20164741; Юрова К.А., Мелащенко Е.С., Хазиахматова О.Г., Малащенко В.В., Мелащенко О.Б., Шунькин Е.О., Норкин И.К., Хлусов И.А., Литвинова Л.С. Мезенхимные стволовые клетки: краткий обзор классических представлений и новых факторовостеогенной дифференцировки (PDF) Мезенхимальные стволовые клетки: краткий обзор концепций классификации и новых факторов остеогенной дифференцировки. Медицинская иммунология, 2021;23(2):207-222. doi:10.15789/1563-0625-MSC-2128; Макаревич П.И. Клеточные пласты из мультипотентных мезенхимных стромальных клеток как платформа для тканевой инженерии в регенеративной медицине. Дисс. …д.м.н. М; 2024.; Nourian Dehkordi A., Mirahmadi Babaheydari F., Chehelgerdi M., Raeisi Dehkordi S. Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther. 2019;10(1):111. doi:10.1186/s13287-019-1212-2; Воротников А.В., Суздальцева Ю.Г., Рубцов Ю.П., Аниол Н.В., Горюнов К.В., Кудряшова Т.В., Тюрин-Кузьмин П.А., Ткачук В.А. Направленная миграция и мезенхимальные прогениторные клетки: участие в воспалении, репарации и регенерации ткани. В сборнике: Стволовые клетки и регенеративная медицина под ред. В.А Ткачука. М: Макс-пресс; 2012.; Бехало В.А., Горская Ю.Ф., Нестеренко В.Г. Иммунорегуляторный и иммунотерапевти-ческий потенциал мезенхимальных стволовых/стромальных клеток: перспективы и проблемы. Иммунология. 2024; 45 (3): 385–395. doi:10.33029/1816-2134-2024-45-3-385-395

  2. 2
    Academic Journal

    Source: Acta Biomedica Scientifica; Том 10, № 1 (2025); 25-37 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/5207/2958; Lin YJ, Anzaghe M, Schülke S. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis. Cells. 2020; 9(4): 880. doi:10.3390/cells9040880; Jang S, Kwon EJ, Lee JJ. Rheumatoid arthritis: Pathogenic roles of diverse immune cells. Int J Mol Sci. 2022; 23(2): 905. doi:10.3390/ijms23020905; Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, et al. Rheumatoid arthritis. Nat Rev Dis Primers.2018; 4: 18001. doi:10.1038/nrdp.2018.1; Venetsanopoulou AI, Alamanos Y, Voulgari PV, Drosos AA. Epidemiology of rheumatoid arthritis: Genetic and environmental influences. Expert Rev Clin Immunol. 2022; 18(9): 923-931. doi:10.1080/1744666X.2022.2106970; Edilova MI, Akram A, Abdul-Sater AA. Innate immunity drives pathogenesis of rheumatoid arthritis. Biomed J. 2021; 44: 172-182. doi:10.1016/j.bj.2020.06.010; Damerau A, Gaber T. Modeling rheumatoid arthritis in vitro: From experimental feasibility to physiological proximity. Int J Mol Sci. 2020; 21: 7916. doi:10.3390/ijms21217916; Насонов Е.Л. Российские клинические рекомендации. Ревматология. М.: ГЭОТАР-Медиа; 2020.; Клиппел Дж.Х., Стоун Дж.Х., Кроффорд Л.Дж., Уайт П.Х. (ред.). Ревматические заболевания: практическое руководство; в 3 т. М.: ГЭОТАР-Медиа; 2014; 2.; Curran AM, Naik P, Giles JT, Darrah E. PAD enzymes in rheumatoid arthritis: Pathogenic effectors and autoimmune targets. Nat Rev Rheumatol. 2020; 16: 301-315. doi:10.1038/s41584-020-0409-1; Aletaha D, Smolen JS. Diagnosis and management of rheumatoid arthritis: A review. JAMA. 2018; 320(13): 1360-1372. doi:10.1001/jama.2018.13103; Chemin K, Gerstner C, Malmström V. Effector functions of CD4+ T cells at the site of local autoimmune inflammation lessons from rheumatoid arthritis. Front Immunol. 2019; 10: 353. doi:10.3389/fimmu.2019.00353; Kwon EJ, Ju JH. Impact of posttranslational modification in pathogenesis of rheumatoid arthritis: Focusing on citrullination, carbamylation, and acetylation. Int J Mol Sci. 2021; 22: 10576. doi:10.3390/ijms221910576; Komatsu N, Win S, Yan M, Huynh NC, Sawa S, Tsukasaki M, et al. Plasma cells promote osteoclastogenesis and periarticular bone loss in autoimmune arthritis. J Clin Investig. 2021; 131: e143060. doi:10.1172/JCI143060; Coutant F. Pathogenic effects of anti-citrullinated protein antibodies in rheumatoid arthritis – role for glycosylation. Joint Bone Spine. 2019; 86(5): 562-567. doi:10.1016/j.jbspin.2019.01.005; Jung SM, Kim KW, Yang CW, Park SH, Ju JH. Cytokinemediated bone destruction in rheumatoid arthritis. JImmunol Res. 2014; 2014: 263625. doi:10.1155/2014/263625; Robert M, Miossec P. IL-17 in rheumatoid arthritis and precision medicine: From synovitis expression to circulating bioactive levels. Front Med (Lausanne). 2019; 14(5): 364. doi:10.3389/fmed.2018.00364; Elshabrawy HA, Chen Z, Volin MV, Ravella S, Virupannavar S, Shahrara S. The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis. 2015; 18(4): 433-448. doi:10.1007/s10456-015-9477-2; Mueller AL, Payandeh Z, Mohammadkhani N, Mubarak SMH, Zakeri A, Alagheband Bahrami A, et al. Recent advances in understanding the pathogenesis of rheumatoid arthritis: New treatment strategies. Cells. 2021; 10(11): 3017. doi:10.3390/cells10113017; Singh JA. Treatment guidelines in rheumatoid arthritis. Rheum Dis Clin North Am. 2022; 48(3): 679-689. doi:10.1016/j.rdc.2022.03.005; Debreova M, Culenova M, Smolinska V, Nicodemou A, Csobonyeiova M, Danisovic L. Rheumatoid arthritis: From synovium biology to cell-based therapy. 2022; 24: 365-375. doi:10.1016/j.jcyt.2021.10.003; Jasim SA, Yumashev AV, Abdelbasset WK, Margiana R, Markov A, Suksatan W. Shining the light on clinical application of mesenchymal stem cell therapy in autoimmune diseases. Stem Cell Ther. 2022; 13(1): 101. doi:10.1186/s13287-022-02782-7; Yang JH, Liu FX, Wang JH, Cheng M, Wang SF, Xu DH. Mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles: Potential roles in rheumatic diseases. World J Stem Cells. 2020; 12(7): 688-705. doi:10.4252/wjsc.v12.i7.688; Jiang Q, Yang G, Liu Q, Wang S, Cui D. Function and role of regulatory T cells in rheumatoid arthritis. Front Immunol. 2021; 12: 626193. doi:10.3389/fimmu.2021.626193; Sarsenova M, Issabekova A, Abisheva S, Rutskaya-Moroshan K, Ogay V, Saparov A. Mesenchymal stem cell-based therapy for rheumatoid arthritis. Int J Mol Sci. 2021; 22(21): 11592. doi:10.3390/ijms222111592; Liu H, Li R, Liu T, Yang L, Yin G, Xie Q. Immunomodulatory effects of mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles in rheumatoid arthritis. Front Immunol. 2020; 11: 1912. doi:10.3389/fimmu.2020.01912; Luz-Crawford P, Hernandez J, Djouad F, Luque-Campos N, Caicedo A, Carrere-Kremer S, et al. Mesenchymal stem cell repression of Th17 cells is triggered by mitochondrial transfer. Stem Cell Res Ther. 2019; 10: 232. doi:10.1186/s13287-019-1307-9; Vasilev G, Ivanova M, Ivanova-Todorova E, Tumangelova-Yuzeir K, Krasimirova E, Stoilov R, et al. Secretory factors produced by adipose mesenchymal stem cells downregulate Th17 and increase Treg cells in peripheral blood mononuclear cells from rheumatoid arthritis patients. Rheumatol Int. 2019; 39: 819-826. doi:10.1007/s00296-019-04296-7; Song W, Craft J. T follicular helper cell heterogeneity: Time, space, and function. Immunol Rev. 2019; 288: 85-96. doi:10.1111/imr.12740; Yap HY, Tee SZY, Wong MMT, Chow SK, Peh SC, Teow SY. Pathogenic role of immune cells in rheumatoid arthritis: Implications in clinical treatment and biomarker development. Cells. 2018; 7: 161. doi:10.3390/cells7100161; Gowhari Shabgah A, Shariati-Sarabi Z, Tavakkol-Afshari J, Ghasemi A, Ghoryani M, Mohammadi M. A significant decrease of BAFF, APRIL, and BAFF receptors following mesenchymal stem cell transplantation in patients with refractory rheumatoid arthritis. Gene. 2020; 732: 144336. doi:10.1016/j.gene.2020.144336; Gaugler B, Laheurte C, Bertolini E, Pugin A, Wendling D, Saas P, et al. Peripheral blood B cell subsets and BAFF/APRIL levels and their receptors are disturbed in rheumatoid arthritis but not in ankylosing spondylitis. J Clin Cell Immunol. 2013; 4: 2. doi:10.4172/2155-9899.1000163; Rosado MM, Bernardo ME, Scarsella M, Conforti A, Giorda E, Biagini S, et al. Inhibition of B-cell proliferation and antibody production by mesenchymal stromal cells is mediated by T cells. Stem Cells Dev. 2015; 24(1): 93-103. doi:10.1089/scd.2014.0155; Pianta S, Bonassi Signoroni P, Muradore I, Rodrigues MF, Rossi D, Silini A, et al. Amniotic membrane mesenchymal cellsderived factors skew T cell polarization toward Treg and downregulate Th1 and Th17 cells subsets. Stem Cell Rev Rep. 2015; 11: 394-407. doi:10.1007/s12015-014-9558-4; Zhou X, Jin N, Wang F, Chen B. Mesenchymal stem cells: A promising way in therapies of graft-versus-host disease. Cancer Cell Int. 2020; 20: 114. doi:10.1186/s12935-020-01193-z; Liu H, Li R, Liu T, Yang LYi, Yin G, Xie QB. Immunomodulatory effects of mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles in rheumatoid arthritis. Front Immunol. 2020; 11: 1912. doi:10.3389/fimmu.2020.01912; Afzali B, Mitchell PJ, Scottà C, Canavan J, Edozie FC, Fazekasova H, et al. Relative resistance of human CD4+ memory T cells to suppression by CD4+, CD25+ regulatory T cells: Memory cells as barriers to Treg-cell therapy. Am J Transpl. 2011; 11: 1734-1742. doi:10.1111/j.1600-6143.2011.03635.x; Luque-Campos N, Contreras-López RA, Paredes-Martínez MJ, Torres MJ, Bahraoui S, Wei M, et al. Mesenchymal stem cells improve rheumatoid arthritis progression by controlling memory T cell response. Front Immunol. 2019; 10: 798. doi:10.3389/fimmu.2019.00798; Ribeiro A, Laranjeira P, Mendes S, Velada I, Leite C, Andrade P, et al. Mesenchymal stem cells from umbilical cord matrix, adipose tissue and bone marrow exhibit different capability to suppress peripheral blood B, natural killer and T cells. Stem Cell Res Ther. 2013; 4: 125. doi:10.1186/scrt336; Mareschi K, Castiglia S, Sanavio F, Rustichelli D, Muraro M, Defedele D, et al. Immunoregulatory effects on T lymphocytes by human mesenchymal stromal cells isolated from bone marrow, amniotic fluid, and placenta. Exp Hematol. 2016; 44: 138-150. doi:10.1016/j.exphem.2015.10.009; Laranjeira P, Pedrosa M, Pedreiro S, Gomes J, Martinho A, Antunes B, et al. Effect of human bone marrow mesenchymal stromal cells on cytokine production by peripheral blood naive, memory and effector T cells. Stem Cell Res Ther. 2015; 6: 3. doi:10.1186/scrt537; Hu C, Qian L, Miao Y, Huang Q, Miao P, Wang P, et al. Antigen-presenting effects of effector memory Vγ9Vδ2 T cells in rheumatoid arthritis. Cell Mol Immunol. 2012; 9: 245-254. doi:10.1038/cmi.2011.50; Liu X, Feng T, Gong T, Shen C, Zhu T, Wu Q, et al. Human umbilical cord mesenchymal stem cells inhibit the function of allogeneic activated V γδ T lymphocytes in vitro. BioMed Res Int. 2015; 2015: 317801. doi:10.1155/2015/317801; Hu C, Li L. The immunoregulation of mesenchymal stem cells plays a critical role in improving the prognosis of liver transplantation. J Transl Med. 2019; 17: 412. doi:10.1186/s12967-019-02167-0; Saad A, Dietz AB, Herrmann SMS, Hickson LJ, Glockner JF, McKusick MA, et al. Autologous mesenchymal stem cells increase cortical perfusion in renovascular disease. J Am Soc Nephrol 2017; 28: 2777-2785. doi:10.1681/ASN.2017020151; Saldana L, Bensiamar F, Valles G, Mancebo FJ, García-Rey E, Vilaboa N. Immunoregulatory potential of mesenchymal stem cells following activation by macrophage-derived soluble factors. Stem Cell Res Ther 2019; 10: 58. doi:10.1186/s13287-019-1156-6; Ren W, Hou J, Yang C, Wang H, Wu S, Wu Y, et al. Extracellular vesicles secreted by hypoxia pre-challenged mesenchymal stem cells promote non-small cell lung cancer cell growth and mobility as well as macrophage M2 polarization via miR-21-5p delivery. J Exp Clin Cancer Res. 2019; 38: 62. doi:10.1186/s13046-019-1027-0; Yuan X, Qin X, Wang D, Zhang Z, Tang X, Gao X, et al. Mesenchymal stem cell therapy induces FLT3L and CD1c+ dendritic cells in systemic lupus erythematosus patients. Nat Commun. 2019; 10: 2498. doi:10.1038/s41467-019-10491-8; Das T, Bergen IM, Koudstaal T, van Hulst JAC, van Loo G, Boonstra A, et al. DNGR1-mediated deletion of A20/Tnfaip3 in dendritic cells alters T and B-cell homeostasis and promotes autoimmune liver pathology. J Autoimmun 2019; 102: 167-178. doi:10.1016/j.jaut.2019.05.007; Montesinos JJ, Lopez-Garcia L, Cortes-Morales VA, ArriagaPizano L, Valle-Ríos R, Fajardo-Orduña GR, et al. Human bone marrow mesenchymal stem/stromal cells exposed to an inflammatory environment increase the expression of ICAM-1 and release microvesicles enriched in this adhesive molecule: Analysis of the participation of TNF-alpha and IFN-gamma. J Immunol Res 2020; 2020: 8839625. doi:10.1155/2020/8839625; Cho KA, Lee JK, Kim YH, Park M, Woo SY, Ryu KH. Mesenchymal stem cells ameliorate B-cell-mediated immune responses and increase IL-10-expressing regulatory B cells in an EBI3-dependent manner. Cell Mol Immunol 2017; 14: 895-908. doi:10.1038/cmi.2016.59; Goradel NH, Jahangiri S, Negahdari B. Effects of mesenchymal stem cellderived exosomes on angiogenesis in regenerative medicine, Curr. Regenerat. Med. 2018; 7(1): 46-53. doi:10.2174/2468424408666180315101232; Abbaszadeh H, Ghorbani F, Derakhshani M, Movassaghpour A, Yousefi M. Human umbilical cord mesenchymal stem cellderived extracellular vesicles: A novel therapeutic paradigm, J Cell Physiol. 2020; 235(2): 706-717. doi:10.1002/jcp.29004; Jasim SA, Yumashev AV, Abdelbasset WK, Margiana R, Markov A, Suksatan W, et al. Shining the light on clinical application of mesenchymal stem cell therapy in autoimmune diseases. Stem Cell Res Ther. 2022; 13(1): 101. doi:10.1186/s13287-022-02782-7; Fierabracci A, Del Fattore A, Luciano R, Muraca M, Teti A, Muraca M. Recent advances in mesenchymal stem cell immunomodulation: The role of microvesicles. Cell Transplant. 2015; 24: 133-149. doi:10.3727/096368913X675728; Kalluri R, Lebleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020; 367(6478): 6977. doi:10.1126/science.aau6977; Wang S, Lei B, Zhang E, Gong P, Gu J, He L, et al. Targeted therapy for inflammatory diseases with mesenchymal stem cells and their derived exosomes: From basic to clinics. IntJ Nanomedicine. 2022; 17: 1757-1781. doi:10.2147/IJN.S355366; Sun Z, Shi K, Yang S, Liu J, Zhou Q, Wang G, et al. Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer. 2018; 17(1): 147. doi:10.1186/s12943-018-0897-7; Meng Q, Qiu B. Exosomal microRNA-320a derived from mesenchymal stem cells regulates rheumatoid arthritis fibroblast-like synoviocyte activation by suppressing CXCL9 expression. Front Physiol. 2020; 11: 441. doi:10.3389/fphys.2020.00441; Liu H, Chen Y, Yin G, Xie Q. Therapeutic prospects of microRNAs carried by mesenchymal stem cells-derived extracellular vesicles in autoimmune diseases. Life Sci. 2021; 277: 119458. doi:10.1016/j.lfs.2021.119458; Wu H, Zhou X, Wang X, Cheng W, Hu X, Wang Y, et al. miR-34a in extracellular vesicles from bone marrow mesenchymal stem cells reduces rheumatoid arthritis inflammation via the cyclin I/ATM/ATR/p53 axis. J Cell Mol Med. 2021; 25(4): 1896-1910. doi:10.1111/jcmm.15857; Chen Z, Wang H, Xia Y, Yan F, Lu Y. Therapeutic potential of mesenchymal cell-derived miRNA-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF. J Immunol. 2018; 201(8): 2472-2482. doi:10.4049/jimmunol.1800304; Huldani H, Jasim SA, Bokov DO, Abdelbasset WK, Shalaby MN, Thangavelu L, et al. Application of extracellular vesicles derived from mesenchymal stem cells as potential therapeutic tools in autoimmune and rheumatic diseases. Int Immunopharmacol. 2022; 106: 108634. doi:10.1016/j.intimp.2022.108634; Cosenza S, Toupet K, Maumus M, Luz-Crawford P, Blanc-Brude O, Jorgensen C, et al. Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics. 2018; 8(5): 1399-1410. doi:10.7150/thno.21072; Abdelmawgoud H, Saleh A. Anti-inflammatory and antioxidant effects of mesenchymal and hematopoietic stem cells in a rheumatoid arthritis rat model. Adv Clin Exp Med. 2018; 27: 873-880. doi:10.17219/acem/73720; Álvaro-Gracia JM, Jover JA, García-Vicuña R, Carreño L, Alonso A, Marsal S, et al. Intravenous administration of expanded allogeneic adipose-derived mesenchymal stem cells in refractory rheumatoid arthritis (Cx611): Results of a multicentre, dose escalation, randomised, single-blind, placebo-controlled phase Ib/ IIa clinical trial. Ann Rheum Dis. 2017; 76: 196-202. doi:10.1136/annrheumdis-2015-208918; Wang L, Wang L, Cong X, Liu G, Zhou J, Bai B, et al. Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: Safety and efficacy. Stem Cells Dev. 2013; 22: 3192-3202. doi:10.1089/scd.2013.0023; Zhang Q, Li Q, Zhu J, Guo H, Zhai Q, Li B, et al. Comparison of therapeutic effects of different mesenchymal stem cells on rheumatoid arthritis in mice. Peer J. 2019; 3: 7: e7023. doi:10.7717/peerj.7023; Timin AS, Peltek OO, Zyuzin MV, Muslimov AR, Karpov TE, Epifanovskaya OS, et al. Safe and effective delivery of antitumor drug using mesenchymal stem cells impregnated with submicron carriers. ACS Appl Mater Interfaces. 2019; 11(14): 13091-13104. doi:10.1021/acsami.8b22685; Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev. 2016; 106: 148-156. doi:10.1016/j.addr.2016.02.006; Kim KW, Kim HJ, Kim BM, Kwon YR, Kim HR, Kim YJ. Epigenetic modification of mesenchymal stromal cells enhances their suppressive effects on the Th17 responses of cells from rheumatoid arthritis patients. Stem Cell Res Ther. 2018; 9: 208. doi:10.1186/s13287-018-0948-4; Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018; 7: 1535750. doi:10.1080/20013078.2018.1535750; He X, Dong Z, Cao Y, Wang H, Liu S, Liao L, et al. MSCderived exosome promotes M2 polarization and enhances cutaneous wound healing. Stem Cells Int. 2019; 2019: 7132708. doi:10.1155/2019/7132708; Reis M, Mavin E, Nicholson L, Green K, Dickinson AM, Wang XN. Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function. Front Immunol. 2018; 9: 2538. doi:10.3389/fimmu.2018.02538; Matheakakis A, Batsali A, Papadaki HA, Pontikoglou CG. Therapeutic implications of mesenchymal stromal cells and their extracellular vesicles in autoimmune diseases: From biology to clinical applications. IntJ Mol Sci. 2021; 22(18): 10132. doi:10.3390/ijms221810132; Kahmini FR, Shahgaldi S. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles as novel cell-free therapy for treatment of autoimmune disorders. Exp Mol Pathol. 2021; 118: 104566. doi:10.1016/j.yexmp.2020.104566; Lu Y, Zhou Y, Zhang R, Wen L, Wu K, Li Y, et al. Bone mesenchymal stem cell-derived extracellular vesicles promote recovery following spinal cord injury via improvement of the integrity of the blood-spinal cord barrier. Front Neurosci. 2019; 13: 209. doi:10.3389/fnins.2019.00209; Lopez-Santalla M, Fernandez-Perez R, Garin MI. Mesenchymal stem/stromal cells for rheumatoid arthritis treatment: An update on clinical applications. Cells. 2020; 9: 1852. doi:10.3390/cells9081852; Nooshabadi VT, Mardpour S, Yousefi-Ahmadipour A, Allahverdi A, Izadpanah M, Daneshimehr F, et al. The extracellular vesicles-derived from mesenchymal stromal cells: A new therapeutic option in regenerative medicine. J Cell Biochem. 2018; 119: 8048-8073. doi:10.1002/jcb.26726; https://www.actabiomedica.ru/jour/article/view/5207

  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
    Academic Journal

    Contributors: With the support of a Grant for the implementation of the Scientific and Practical Project in the field of medicine: “Applying various protocols for perfusion preservation in kidney and liver transplantation” in conformity with concluded Agreement No. 2312-15/22 of March 25, 2022, При поддержке гранта на реализацию научно-практического проекта в сфере медицины: «Применение различных протоколов перфузионной консервации при трансплантации почек и печени» в соответствии с заключенным Соглашением № 2312-15/22 от 25 марта 2022 года

    Source: Transplantologiya. The Russian Journal of Transplantation; Том 16, № 1 (2024); 116-134 ; Трансплантология; Том 16, № 1 (2024); 116-134 ; 2542-0909 ; 2074-0506

    File Description: application/pdf

    Relation: https://www.jtransplantologiya.ru/jour/article/view/860/847; https://www.jtransplantologiya.ru/jour/article/view/860/850; Готье С.В., Хомяков С.М. Донорство и трансплантация органов в Российской Федерации в 2021 году. XIV сообщение регистра Российского трансплантологического общества. Вестник трансплантологии и искусственных органов. 2022;24(3):8–31. https://doi.org/10.15825/1995-1191-2022-3-8-31; Busquets J, Xiol X, Figueras J, Jaurrieta E, Torras J, Ramos E, et al. The impact of donor age on liver transplantation: influence of donor age on early liver function and on subsequent patient and graft survival. Transplantation. 2001;71(12):1765–1771. PMID: 11455256 https://doi.org/10.1097/00007890-200106270-00011; Kawut SM, Reyentovich A, Wilt JS, Anzeck R, Lederer DJ, O'Shea MK, et al. Outcomes of extended donor lung recipients after lung transplantation. Transplantation. 2005;79(3):310–316. PMID: 15699761 https://doi.org/10.1097/01.tp.0000149504.53710.ae; Chouchani ET, Pell VR, Gaude E, Aksentijević D, Sundier SY, Robb EL, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515(7527):431–435. PMID: 25383517 https://doi.org/10.1038/nature13909; Petrenko A, Carnevale M, Somov A, Osorio J, Rodríguez J, Guibert E, et al. Organ preservation into the 2020s: the era of dynamic intervention. Transfus Med Hemother. 2019;46(3):151–172. PMID: 31244584 https://doi.org/10.1159/000499610; Rojas-Pena A, Bartlett RH. Ex situ organ preservation: the temperature paradigm. Transplantation. 2018;102(4):554–556. PMID: 29309378 https://doi.org/10.1097/TP.0000000000002081; Mordant P, Nakajima D, Kalaf R, Iskender I, Maahs L, Behrens P, et al. Mesenchymal stem cell treatment is associated with decreased perfusate concentration ofinterleukin-8 during ex vivo perfusion of donor lungs after 18-hourpreservation. J Heart Lung Transplant. 2016;35(10):1245–1254. PMID: 27444694 https://doi.org/10.1016/j.healun.2016.04.017; Lee JW, Fang X, Gupta N, Serikov V, Matthay MA. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci USA. 2009;106(38):16357–16362. https://doi.org/10.1073/pnas.0907996106; Lee JW, Krasnodembskaya A, McKenna DH, Song Y, Abbott J, Matthay MA. Therapeutic effects of human mesenchymal stem cells in ex vivo human lungs injured with live bacteria. Am J Respir Crit Care Med. 2013;187(7):751–760. PMID: 23292883 https://doi.org/10.1164/rccm.201206-0990OC; McAuley DF, Curley GF, Hamid UI, Laffey JG, Abbott J, McKenna DH, et al. Clinical grade allogeneic human mesen chymal stem cells restore alveolar fluid clearance inhuman lungs rejected for transplantation. Am J Physiol Lung Cell Mol Physiol. 2014;306(9):L809– L815. PMID: 24532289 https://doi.org/10.1152/ajplung.00358.2013; Stone ML, Zhao Y, Robert Smith J, Weiss ML, Kron IL, Laubach VE, et al. Mesenchymal stromal cell-derived extracellular vesicles attenuate lung ischemiareperfusion injury and enhance reconditioning of donor lungs after circulatory death. Respir Res. 2017;18(1):212. PMID: 29268735 https://doi.org/10.1186/s12931-017-0704-9; Gennai S, Monsel A, Hao Q, Park J, Matthay MA, Lee JW. Microvesicles derived from human mesenchymal stem cells restore alveolar fluid clearance in human lungs rejected for transplantation. Am J Transplant. 2015;15(9):2404– 2412. PMID: 25847030 https://doi.org/10.1111/ajt.13271; Park J, Kim S, Lim H, Liu A, Hu S, Lee J, et al. Therapeutic effects of human mesenchymal stem cell microvesicles in an ex vivo perfused human lung injured with severe E. coli pneumonia. Thorax. 2019;74(1):43–50. PMID: 30076187 https://doi.org/10.1136/thoraxjnl-2018-211576; Martens A, Ordies S, Vanaudenaerde BM, Verleden SE, Vos R, Van Raemdonck DE, et al. Immunoregulatory effects of multipotent adult progenitor cells in a porcine ex vivo lung perfusion model. Stem Cell Res Ther. 2017;8(1):159. PMID: 28676074 https://doi.org/10.1186/s13287-017-0603-5; La Francesca S, Ting AE, Sakamoto J, Rhudy J, Bonenfant NR, Borg ZD, et al. Multipotent adult progenitor cells decrease cold ischemic injury in ex vivo perfused human lungs: an initial pilot and feasibility study. Transplant Res. 2014;3(1):19. PMID: 25671090 https://doi.org/10.1186/2047-1440-3-19eCollection 2014.; Stone ML, Sharma AK, Mas VR, Gehrau RC, Mulloy DP, Zhao Y, et al. Ex vivo perfusion with adenosine A2A receptor agonist enhances rehabilitation of murine donor lungs after circulatory death. Transplantation. 2015;99(12):2494–2503. PMID: 26262504 https://doi.org/10.1097/TP.0000000000000830; Emaminia A, Lapar DJ, Zhao Y, Steidle JF, Harris DA, Laubach VE, et al. Adenosine A2A agonist improves lung function during ex vivo lung perfusion. Ann Thorac Surg. 2011;92(5):1840–1846. PMID: 22051279 https://doi.org/10.1016/j.athoracsur.2011.06.062; Wagner CE, Pope NH, Charles EJ, Huerter ME, Sharma AK, Salmon MD, et al. Ex vivo lung perfusion with adenosine A2A receptor agonist allows prolonged cold preservation of lungs donated after cardiac death. J Thorac Cardiovasc Surg. 2016;151(2):538–545. PMID: 26323621 https://doi.org/10.1016/j.jtcvs.2015.07.075; Huerter ME, Charles EJ, Downs EA, Hu Y, Lau CL, Isbell JM, et al. Enteral access is not required for esophageal cancer patients undergoing neoadjuvant therapy. Ann Thorac Surg. 2016;102(3):948–954. PMID: 27209608 https://doi.org/10.1016/j.athoracsur.2016.03.041; Charles EJ, Kron IL. Which ischemic mitral valves should be repaired and how? Time will tell. J Thorac Cardiovasc Surg. 2017;154(3):833. PMID: 28826152 https://doi.org/10.1016/j.jtcvs.2017.05.006; Valenza F, Rosso L, Coppola S, Froio S, Colombo J, Dossi R, et al. β-adrenergic agonist infusion during extracorporeal lung perfusion: effects on glucose concentration in the perfusion fluid and on lung function. J Heart Lung Transplant. 2012;31(5):524–530. PMID: 22386450 https://doi.org/10.1016/jhealun.2012.02.001; Kondo T, Chen F, Ohsumi A, Hijiy a K, Motoyama H, Sowa T, et al. β2-adrenoreceptor agonist inhalation during ex vivo lung perfusion attenuates lung injury. Ann Thorac Surg. 2015;100(2):480–486. PMID: 26141779 https://doi.org/10.1016/j.athoracsur.2015.02.136; Hijiya K, Chen-Yoshikawa TF, Kondo T, Motoyama H, Ohsumi A, Nakajima D, et al. Bronchodilator inhalation during ex vivo lung perfusion improves posttransplant graft function after warm ischemia. Ann Thorac Surg. 2017;103(2):447–453. PMID: 27737734 https://doi.org/10.1016/j.athoracsur.2016.07.066; Inci I, Zhai W, Arni S, Inci D, Hillinger S, Lardinois D, et al. Fibrinolytic treatment improves the quality of lungs retrieved from non-heart-beating donors. J Heart Lung Transplant. 2007;26(10):1054–1060. PMID: 17919627 https://doi.org/10.1016/j.healun.2007.07.033; Nakajima D, Cypel M, Bonato R, Machuca TN, Iskender I, Hashimoto K, et al. Ex vivo perfusion treatment of infection in human donor lungs. Am J Transplant. 2016;16(4):1229–1237. PMID: 26730551 https://doi.org/10.1111/ajt.13562; Chen F, Nakamura T, Fujinaga T, Zhang J, Hamakawa H, Omasa M, et al. Protective effect of a nebulized beta2-adrenoreceptor agonist in warm ischemic-reperfused rat lungs. Ann Thorac Surg. 2006;82(2):465–471. PMID: 16863745 https://doi.org/10.1016/j.athoracsur.2006.01.010; Sakamoto J, Chen F, Nakajima D, Yamada T, Ohsumi A, Zhao X, et al. The effect of β-2 adrenoreceptor agonist inhalation on lungs donated after cardiac death in a canine lung transplantation model. J Heart Lung Transplant. 2012;31(7):773–779. PMID: 22534458 https://doi.org/10.1016/j.healun.2012.03.012; Machuca TN, Cypel M, Bonato R, Yeung JC, Chun YM, Juvet S, et al. Safety and efficacy of ex vivo donor lung adenoviral IL-10 gene therapy in a large animal lung transplant survival model. Hum Gene Ther. 2017;28(9):757– 765. PMID: 28052693 https://doi.org/10.1089/hum.2016.070; Andreasson A, Karamanou DM, Perry JD, Perry A, Ӧzalp F, Butt T, et al. The effect of ex vivo lung perfusion on microbial load in human donor lungs. J Heart Lung Transplant. 2014;33(9):910–916. PMID: 24631044 https://doi.org/10.1016/j.healun.2013.12.023; Galasso M, Feld JJ, Watanabe Y, Pipkin M, Summers C, Ali A, et al. Inactivating hepatitis C virus in donor lungs using light therapies during normothermic ex vivo lung perfusion. Nat Commun. 2019;10(1):481. PMID: 30696822 https://doi.org/10.1038/s41467-018-08261-z; Cypel M, Liu M, Rubacha M, Yeung JC, Hirayama S, Anraku M, et al. Functional repair of human donor lungs by IL-10 gene therapy. Sci Transl Med. 2009;1(4):4ra9. PMID: 20368171 https://doi.org/10.1126/scitranslmed.3000266; Yeung JC, Wagnetz D, Cypel M, Rubacha M, Koike T, Chun YM, et al. Ex vivo adenoviral vector gene delivery results in decreased vector-associated inflammation pre- and post-lung transplantation in the pig. Mol Ther. 2012;20(6):1204–1211. PMID: 22453765 https://doi.org/10.1038/mt.2012.57; Figueiredo C, Carvalho Oliveira M, Chen-Wacker C, Jansson K, Höffler K, Yuzefovych Y, et al. Immunoengineering of the vascular endothelium to silence MHC expression during normothermic ex vivo lung perfusion. Hum Gene Ther. 2019;30(4):485–496. PMID: 30261752 https://doi.org/10.1089/hum.2018.117; McAuley DF, Frank JA, Fang X, Matthay MA. Clinically relevant concentrations of beta2-adrenergic agonists stimulate maximal cyclic adenosine monophosphate-dependent airspace fluid clearance and decrease pulmonary edema in experimental acid-induced lung injury. Crit Care Med. 2004;32(7):1470–1476. PMID: 15241090 https://doi.org/10.1097/01.ccm.0000129489.34416.0e; Machuca TN, Hsin MK, Ott HC, Chen M, Hwang DM, Cypel M, et al. Injury-specific ex vivo treatment of the donor lung: pulmonary thrombolysis followed by successful lung transplantation. Am J Respir Crit Care Med. 2013;188(7):878–880. PMID: 24083866 https://doi.org/10.1164/rccm.2013020368LE; Jamieson RW, Zilvetti M, Roy D, Hughes D, Morovat A, Coussios CC, et al. Hepatic steatosis and normothermic perfusion-preliminary experiments in a porcine model. Transplantation. 2011;92(3):289–295. PMID: 21681143 https://doi.org/10.1097/TP.0b013e318223d817; Liu Q, Berendsen T, Izamis ML, Uygun B, Yarmush ML, Uygun K. Perfusion defatting at subnormothermic temperatures in steatotic rat livers. Transplant Proc. 2013;45(9):3209–3213. PMID: 24182786 https://doi.org/10.1016/j.transproceed.2013.05.005; Nagrath D, Xu H, Tanimura Y, Zuo R, Berthiaume F, Avila M, et al. Metabolic preconditioning of donor organs: defatting fatty livers by normothermic perfusion ex vivo. Metab Eng. 2009;11(4–5):274–283. PMID: 19508897 https://doi.org/10.1016/j.ymben.2009.05.005; Hara Y, Akamatsu Y, Maida K, Kashiwadate T, Kobayashi Y, Ohuchi N, et al. A new liver graft preparation method for uncontrolled non-heart-beating donors, combining short oxygenated warm perfusion and prostaglandin E1. J Surg Res. 2013;184(2):1134–1142. PMID: 23688794 https://doi.org/10.1016/j.jss.2013.04.030; Maida K, Akamatsu Y, Hara Y, Tokodai K, Miyagi S, Kashiwadate T, et al. Short oxygenated warm perfusion with prostaglandin E1 administration before cold preservationas a novel resuscitation method for liver grafts from donors after cardiac death in a rat in vivo model. Transplantation. 2016;100(5):1052– 1058. PMID: 26950723 https://doi.org/10.1097/TP.0000000000001127; Nassar A, Liu Q, Farias K, D'Amico G, Buccini L, Urcuyo D, et al. Role of vasodilation during normothermic machine perfusion of DCD porcine livers. Int J Artif Organs. 2014;37(2):165–172. PMID: 24619899 https://doi.org/10.5301/ijao.5000297; Echeverri J, Goldaracena N, Kaths JM, Linares I, Roizales R, Kollmann D, et al. Comparison of BQ123, epoprostenol, and verapamil as vasodilators during normothermic ex vivo liver machine perfusion. Transplantation. 2018;102(4):601–608. PMID: 29189484 https://doi.org/10.1097/TP.0000000000002021; Goldaracena N, Spetzler VN, Echeverri J, Kaths JM, Cherepanov V, Persson R, et al. Inducing hepatitis C virus resistance after pig liver transplantationa proof of concept of liver graft modification using warm ex vivo perfusion. Am J Transplant. 2017;17(4):970–978. PMID: 27805315 https://doi.org/10.1111/ajt.14100; Gillooly AR, Perry J, Martins PN. First report of siRNA uptake (forRNA interference) during ex vivo hypothermic and normothermic liver machine perfusion. Transplantation. 2019;103(3):e56–e57. PMID: 30418428 https://doi.org/10.1097/TP.0000000000002515; Thijssen MF, Brüggenwirth IMA, Gillooly A, Khvorova A, Kowalik TF, Martins PN. Gene silencing with siRNA (RNA interference): a new therapeutic option during ex vivo machine liver perfusion preservation. Liver Transpl. 2019;25(1):140–151. PMID: 30561891 https://doi.org/10.1002/lt.25383; Goldaracena N, Echeverri J, Spetzler VN, Kaths JM, Barbas AS, Louis KS, et al. Anti-inflammatory signaling during ex vivo liver perfusion improves the preservation of pig liver grafts before transplantation. Liver Transpl. 2016;22(11):1573–1583. PMID: 27556578 https://doi.org/10.1002/lt.24603; Rigo F, De Stefano N, NavarroTableros V, David E, Rizza G, Catalano G, et al. Extracellular vesicles from human liver stem cells reduce injury in an ex vivo normothermic hypoxic rat liver perfusion model. Transplantation. 2018;102(5):e205–e210. PMID: 29424767 https://doi.org/10.1097/TP.0000000000002123; Beal EW, Kim JL, Reader BF, Akateh C, Maynard K, Washburn WK, et al. [D-Ala2, D-Leu5] Enkephalin improves liver preservation during normothermic ex vivo perfusion. J Surg Res. 2019;241:323–335. PMID: 31071481 https://doi.org/10.1016/j.jss.2019.04.010; Yu Y, Cheng Y, Pan Q, Zhang YJ, Jia DG, Liu YF. Effect of the selective NLRP3 inflammasome inhibitor mcc950 on transplantation outcome in a pig liver transplantation model with organs from donors after circulatory death preserved by hypothermic machine perfusion. Transplantation. 2019;103(2):353– 362. PMID: 30247318 https://doi.org/10.1097/TP.0000000000002461; Yang B, Hosgood SA, Bagul A, Waller HL, Nicholson ML. Erythropoietin regulates apoptosis, inflammation and tissue remodelling via caspase-3 and IL-1β in isolated hemoperfused kidneys. Eur J Pharmacol. 2011;660(23):420–430. PMID: 21497595 https://doi.org/10.1016/j.ejphar.2011.03.044; Yang C, Hosgood SA, Meeta P, Long Y, Zhu T, Nicholson ML, et al. Cyclic helix B peptide inpreservation solution and autologous blood perfusate ameliorates ischemia-reperfusion injury in isolated porcine kidneys. Transplant Direct. 2015;1(2):e6. PMID: 27500213 https://doi.org/10.1097/TXD.0000000000000515; Tietjen GT, Hosgood SA, DiRito J, Cui J, Deep D, Song E, et al. Nanoparticle targeting to then do the lium during normothermic machine perfusion of human kidneys. Sci Transl Med. 2017;9(418):eaam6764. PMID: 29187644 https://doi.org/10.1126/scitranslmed.aam6764; Pool M, Eertman T, Sierra Parraga J, 't Hart N, Roemeling-van Rhijn M, Eijken M, et al. Infusing mesenchymal stromal cells into porcine kidneys during normothermic machine perfusion: intact MSCs can be traced and localised to glomeruli. Int J Mol Sci. 2019;20(14):3607. PMID: 31340593 https://doi.org/10.3390/ijms20143607; Brasile L, Henry N, Orlando G, Stubenitsky B. Potentiating renal regeneration using mesenchymal stem cells. Transplantation. 2019;103(2):307–313. PMID: 30234788 https://doi.org/10.1097/TP.0000000000002455; Hamaoui K, Gowers S, Boutelle M, Cook TH, Hanna G, Darzi A, et al. Organ pretreatment withcytotopic endothelial localizing peptides to ameliorate microvascular thrombosis and perfusion deficits in ex vivo renal hemoreperfusion models. Transplantation. 2016;100(12):e128–e139. PMID: 27861293 https://doi.org/10.1097/TP.0000000000001437; Gregorini M, Corradetti V, Pattonieri EF, Rocca C, Milanesi S, Peloso A, et al. Perfusion of isolated rat kidney with mesenchymal stromal cells/extracellular vesicles prevents ischaemic injury. J Cell Mol Med. 2017;21(12):3381–3393. PMID: 28639291 https://doi.org/10.1111/jcmm.13249; Bhattacharjee RN, Richard-Mohamed M, Sun Q, Haig A, Aboalsamh G, Barrett P, et al. CORM-401 reduces ischemia reperfusion injury in an ex vivo renal porcine model of the donation after circulatory death. Transplantation. 2018;102(7):1066–1074. PMID: 29677080 https://doi.org/10.1097/TP.0000000000002201; Sedigh A, Nordling S, Carlsson F, Larsson E, Norlin B, Lübenow N, et al. Perfusion of porcine kidneys with macromolecular heparin reduces early ischemia reperfusion injury. Transplantation. 2019;103(2):420–427. PMID: 30299374 https://doi.org/10.1097/TP.0000000000002469; Sierra Parraga JM Rozenberg K, Eijken M, Leuvenink HG, Hunter J, Merino A, et al. Effects of normothermic machine perfusion conditions on mesenchymal stromal cells. Front Immunol. 2019;10:765. PMID: 31024574 https://doi.org/10.3389/fimmu.2019.00765eCollection 2019; https://www.jtransplantologiya.ru/jour/article/view/860

  9. 9
    Academic Journal

    Source: Meditsinskiy sovet = Medical Council; № 4 (2024); 30-36 ; Медицинский Совет; № 4 (2024); 30-36 ; 2658-5790 ; 2079-701X

    File Description: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8172/7200; Research on the menopause in the 1990s. Report of a WHO Scientific Group. World Health Organ Tech Rep Ser. 1996;866:1–107. Available at: https://pubmed.ncbi.nlm.nih.gov/8942292.; Shifren JL, Gass ML; NAMS Recommendations for Clinical Care of Midlife Women Working Group. The North American Menopause Society recommendations for clinical care of midlife women. Menopause. 2014;21(10):1038–1062. https://doi.org/10.1097/GME.0000000000000319.; InterLACE Study Team. Variations in reproductive events across life: a pooled analysis of data from 505 147 women across 10 countries. Hum Reprod. 2019;34(5):881–893. https://doi.org/10.1093/humrep/dez015.; Coulam CB, Adamson SC, Annegers JF. Incidence of Premature Ovarian Failure. Obstetrical & Gynecological Survey. 1987;42:182–183. https://doi.org/10.1097/00006254-198742030-00020.; Rostami Dovom M, Bidhendi-Yarandi R, Mohammad K, Farahmand M, Azizi F, Ramezani Tehrani F. Prevalence of premature ovarian insufficiency and its determinants in Iranian populations: Tehran lipid and glucose study. BMC Womens Health. 2021;21(1):79. https://doi.org/10.1186/s12905-021-01228-1.; Golezar S, Ramezani Tehrani F, Khazaei S, Ebadi A, Keshavarz Z. The global prevalence of primary ovarian insufficiency and early menopause: a meta-analysis. Climacteric. 2019;22(4):403–411. https://doi.org/10.1080/13697137.2019.1574738.; Mishra GD, Chung HF, Cano A, Chedraui P, Goulis DG, Lopes P et al. EMAS position statement: Predictors of premature and early natural menopause. Maturitas. 2019;123:82–88. https://doi.org/10.1016/j.maturitas.2019.03.008.; Rossetti R, Di Pasquale E, Marozzi A, Bione S, Toniolo D, Grammatico P et al. BMP15 mutations associated with primary ovarian insufficiency cause a defective production of bioactive protein. Hum Mutat. 2009;30(5):804–810. https://doi.org/10.1002/humu.20961.; Bodin L, Di Pasquale E, Fabre S, Bontoux M, Monget P, Persani L, Mulsant P. A novel mutation in the bone morphogenetic protein 15 gene causing defective protein secretion is associated with both increased ovulation rate and sterility in Lacaune sheep. Endocrinology. 2007;148(1):393–400. https://doi.org/10.1210/en.2006-0764.; Di Pasquale E, Beck-Peccoz P, Persani L. Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene. Am J Hum Genet. 2004;75(1):106–111. https://doi.org/10.1086/422103.; Mansouri MR, Schuster J, Badhai J, Stattin EL, Lösel R, Wehling M et al. et al. Alterations in the expression, structure and function of progesterone receptor membrane component-1 (PGRMC1) in premature ovarian failure. Hum Mol Genet. 2008;17(23):3776–3783. https://doi.org/10.1093/hmg/ddn274.; Barros F, Carvalho F, Barros A, Dória S. Premature ovarian insufficiency: clinical orientations for genetic testing and genetic counseling. Porto Biomed J. 2020;5(3):e62. https://doi.org/10.1097/j.pbj.0000000000000062.; Qin Y, Jiao X, Simpson JL, Chen ZJ. Genetics of primary ovarian insufficiency: new developments and opportunities. Hum Reprod Update. 2015;21(6):787–808. https://doi.org/10.1093/humupd/dmv036.; ACOG Committee Opinion No. 469: Carrier screening for fragile X syndrome. Obstet Gynecol. 2010;116(4):1008–1010. https://doi.org/10.1097/AOG.0b013e3181fae884.; Jiao X, Qin C, Li J, Qin Y, Gao X, Zhang B et al. Cytogenetic analysis of 531 Chinese women with premature ovarian failure. Hum Reprod. 2012;27(7):2201–2207. https://doi.org/10.1093/humrep/des104.; Ishizuka B. Current Understanding of the Etiology, Symptomatology, and Treatment Options in Premature Ovarian Insufficiency (POI). Front Endocrinol (Lausanne). 2021;12:626924. https://doi.org/10.3389/fendo.2021.626924.; European Society for Human Reproduction and Embryology (ESHRE) Guideline Group on POI, Webber L, Davies M, Anderson R, Bartlett J, Braat D, Cartwright B et al. ESHRE Guideline: management of women with premature ovarian insufficiency. Hum Reprod. 2016;31(5):926–937. https://doi.org/10.1093/humrep/dew027.; Muka T, Oliver-Williams C, Kunutsor S, Laven JS, Fauser BC, Chowdhury R et al. Association of Age at Onset of Menopause and Time Since Onset of Menopause With Cardiovascular Outcomes, Intermediate Vascular Traits, and All-Cause Mortality: A Systematic Review and Meta-analysis. JAMA Cardiol. 2016;1(7):767–776. https://doi.org/10.1001/jamacardio.2016.2415.; Archer DF. Premature menopause increases cardiovascular risk. Climacteric. 2009;12(Suppl. 1):26–31. https://doi.org/10.1080/13697130903013452.; Rocca WA, Bower JH, Maraganore DM, Ahlskog JE, Grossardt BR, de Andrade M, Melton LJ 3rd. Increased risk of cognitive impairment or dementia in women who underwent oophorectomy before menopause. Neurology. 2007;69(11):1074–1083. https://doi.org/10.1212/01.wnl.0000276984.19542.e6.; Stuenkel CA, Davis SR, Gompel A, Lumsden MA, Murad MH, Pinkerton JV, Santen RJ. Treatment of Symptoms of the Menopause: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2015;100(11):3975–4011. https://doi.org/10.1210/jc.2015-2236.; Webber L, Anderson RA, Davies M, Janse F, Vermeulen N. HRT for women with premature ovarian insufficiency: a comprehensive review. Hum Reprod Open. 2017;2017(2):hox007. https://doi.org/10.1093/hropen/hox007.; Mueck AO. Postmenopausal hormone replacement therapy and cardiovascular disease: the value of transdermal estradiol and micronized progesterone. Climacteric. 2012;15(Suppl. 1):11–17. https://doi.org/10.3109/13697137.2012.669624.; Leite-Silva P, Bedone A, Pinto-Neto AM, Costa JV, Costa-Paiva L. Factors associated with bone density in young women with karyotypically normal spontaneous premature ovarian failure. Arch Gynecol Obstet. 2009;280(2):177–181. https://doi.org/10.1007/s00404-008-0881-3.; Popat VB, Calis KA, Vanderhoof VH, Cizza G, Reynolds JC, Sebring N et al. Bone mineral density in estrogen-deficient young women. J Clin Endocrinol Metab. 2009;94(7):2277–2283. https://doi.org/10.1210/jc.2008-1878.; Cartwright B, Robinson J, Seed PT, Fogelman I, Rymer J. Hormone Replacement Therapy Versus the Combined Oral Contraceptive Pill in Premature Ovarian Failure: A Randomized Controlled Trial of the Effects on Bone Mineral Density. J Clin Endocrinol Metab. 2016;101(9):3497–3505. https://doi.org/10.1210/jc.2015-4063.; Donnez J, Dolmans MM. Fertility Preservation in Women. N Engl J Med. 2017;377(17):1657–1665. https://doi.org/10.1056/NEJMra1614676.; Chae-Kim JJ, Gavrilova-Jordan L. Premature Ovarian Insufficiency: Procreative Management and Preventive Strategies. Biomedicines. 2018;7(1):2. https://doi.org/10.3390/biomedicines7010002.; Luyckx V, Dolmans MM, Vanacker J, Legat C, Fortuño Moya C, Donnez J, Amorim CA. A new step toward the artificial ovary: survival and proliferation of isolated murine follicles after autologous transplantation in a fibrin scaffold. Fertil Steril. 2014;101(4):1149–1156. https://doi.org/10.1016/j.fertnstert.2013.12.025.; Donnez J, Dolmans MM, Demylle D, Jadoul P, Pirard C, Squifflet J et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet. 2004;364(9443):1405–1410. https://doi.org/10.1016/S0140-6736(04)17222-X.; Meirow D, Levron J, Eldar-Geva T, Hardan I, Fridman E, Zalel Y et al. Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N Engl J Med. 2005;353(3):318–321. https://doi.org/10.1056/NEJMc055237.; Donnez J, Dolmans MM, Diaz C, Pellicer A. Ovarian cortex transplantation: time to move on from experimental studies to open clinical application. Fertil Steril. 2015;104(5):1097–1098. https://doi.org/10.1016/j.fertnstert.2015.08.005.; Practice Committee of American Society For Reproductive Medicine. Increased maternal cardiovascular mortality associated with pregnancy in women with Turner syndrome. Fertil Steril. 2012;97(2):282–284. https://doi.org/10.1016/j.fertnstert.2011.11.049.; Ding X, Liu G, Xu B, Wu C, Hui N, Ni X et al. Human GV oocytes generated by mitotically active germ cells obtained from follicular aspirates. Sci Rep. 2016;6:28218. https://doi.org/10.1038/srep28218.; Zhang C, Wu J. Production of offspring from a germline stem cell line derived from prepubertal ovaries of germline reporter mice. Mol Hum Reprod. 2016;22(7):457–464. https://doi.org/10.1093/molehr/gaw030.; Silvestris E, Cafforio P, D’Oronzo S, Felici C, Silvestris F, Loverro G. In vitro differentiation of human oocyte-like cells from oogonial stem cells: single-cell isolation and molecular characterization. Hum Reprod. 2018;33(3):464–473. https://doi.org/10.1093/humrep/dex377.; Guo K, Li CH, Wang XY, He DJ, Zheng P. Germ stem cells are active in postnatal mouse ovary under physiological conditions. Mol Hum Reprod. 2016;22(5):316–328. https://doi.org/10.1093/molehr/gaw015.; Martin JJ, Woods DC, Tilly JL. Implications and Current Limitations of Oogenesis from Female Germline or Oogonial Stem Cells in Adult Mammalian Ovaries. Cells. 2019;8(2):93. https://doi.org/10.3390/cells8020093.; Silvestris E, Minoia C, Guarini A, Opinto G, Negri A, Dellino M et al. Ovarian Stem Cells (OSCs) from the Cryopreserved Ovarian Cortex: A Potential for Neo-Oogenesis in Women with Cancer-Treatment Related Infertility: A Case Report and a Review of Literature. Curr Issues Mol Biol. 2022;44(5):2309–2320. https://doi.org/10.3390/cimb44050157.; Vo KCT, Kawamura K. Ovarian Fragmentation and AKT Stimulation for Expansion of Fertile Lifespan. Front Reprod Health. 2021;3:636771. https://doi.org/10.3389/frph.2021.636771.; Suzuki N, Yoshioka N, Takae S, Sugishita Y, Tamura M, Hashimoto S et al. Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency. Hum Reprod. 2015;30(3):608–615. https://doi.org/10.1093/humrep/deu353.; Kawamura K, Cheng Y, Suzuki N, Deguchi M, Sato Y, Takae S et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci U S A. 2013;110(43):17474–17479. https://doi.org/10.1073/pnas.1312830110.; Zhai J, Yao G, Dong F, Bu Z, Cheng Y, Sato Y et al. In Vitro Activation of Follicles and Fresh Tissue Auto-transplantation in Primary Ovarian Insufficiency Patients. J Clin Endocrinol Metab. 2016;101(11):4405–4412. https://doi.org/10.1210/jc.2016-1589.; Ferreri J, Fàbregues F, Calafell JM, Solernou R, Borrás A, Saco A et al. Drug-free in-vitro activation of follicles and fresh tissue autotransplantation as a therapeutic option in patients with primary ovarian insufficiency. Reprod Biomed Online. 2020;40(2):254–260. https://doi.org/10.1016/j.rbmo.2019.11.009.; Gupta S, Lodha P, Karthick MS, Tandulwadkar SR. Role of Autologous Bone Marrow-Derived Stem Cell Therapy for Follicular Recruitment in Premature Ovarian Insufficiency: Review of Literature and a Case Report of World’s First Baby with Ovarian Autologous Stem Cell Therapy in a Perimenopausal Woman of Age 45 Year. J Hum Reprod Sci. 2018;11(2):125–130. https://doi.org/10.4103/jhrs.JHRS_57_18.; Panda SR, Sachan S, Hota S. A Systematic Review Evaluating the Efficacy of Intra-Ovarian Infusion of Autologous Platelet-Rich Plasma in Patients With Poor Ovarian Reserve or Ovarian Insufficiency. Cureus. 2020;12(12):e12037. https://doi.org/10.7759/cureus.12037.

  10. 10
    Academic Journal

    Contributors: This study was funded by the Ministry of Health of Russia to support the activities of the Coordinating Centre for Research and Development in Medical Science of the Russian Research Institute of Health in coordinating the implementation of the federal project Medical Science for People, Исследование проведено при финансовой поддержке Минздрава России, направленной на обеспечение деятельности координационного центра исследований и разработок в области медицинской науки ФГБУ «ЦНИИОИЗ» Минздрава России в рамках реализации федерального проекта «Медицинская наука для человека»

    Source: Biological Products. Prevention, Diagnosis, Treatment; Том 24, № 4 (2024); 428-442 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 24, № 4 (2024); 428-442 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2024-24-4

    File Description: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/557/944; https://www.biopreparations.ru/jour/article/downloadSuppFile/557/817; https://www.biopreparations.ru/jour/article/downloadSuppFile/557/824; https://www.biopreparations.ru/jour/article/downloadSuppFile/557/939; https://www.biopreparations.ru/jour/article/downloadSuppFile/557/940; https://www.biopreparations.ru/jour/article/downloadSuppFile/557/967; El-Kadiry AE, Rafei M, Shammaa R. Cell therapy: types, regulation, and clinical benefits. Front Med (Lausanne). 2021;8:756029. https://doi.org/10.3389/fmed.2021.756029; Han F, Wang J, Ding L, Hu Y, Li W, Yuan Z, et al. Tissue engineering and regenerative medicine: achievements, future, and sustainability in Asia. Front Bioeng Biotechnol. 2020;8:83. https://doi.org/10.3389/fbioe; O’Brien FJ, Duffy GP. Form and function in regenerative medicine: introduction. J Anat. 2015;227(6):705–6. https://doi.org/10.1111/joa.12401; Shumega AR, Pavlov YI, Chirinskaite AV, Rubel AA, Inge-Vechtomov SG, Stepchenkova EI. CRISPR/Cas9 as a mutagenic factor. Int J Mol Sci. 2024;25(2):823. https://doi.org/10.3390/ijms25020823; Гринев ВВ, Посредник ДВ, Северин ИН, Потапнев МП. Генетическая модификация клеток человека с помощью лентивирусной трансдукции in vitro и ex vivo. Минск: БГУ; 2010.; Wang Y, Yi H, Song Y. The safety of MSC therapy over the past 15 years: a meta-analysis. Stem Cell Res Ther. 2021;12(1):545. https://doi.org/10.1186/s13287-021-02609-x; Li C, Zhao H, Cheng L, Wang B. Allogeneic vs. autologous mesenchymal stem/stromal cells in their medication practice. Cell Biosci. 2021;11(1):187. https://doi.org/10.1186/s13578-021-00698-y; Conwit RA. Preventing familial ALS: a clinical trial may be feasible but is an efficacy trial warranted? J Neurol Sci. 2006;251(1–2):1–2. https://doi.org/10.1016/j.jns.2006.07.009; Al-Chalabi A, Leigh PN. Recent advances in amyotrophic lateral sclerosis. Curr Opin Neurol. 2000;13(4):397–405. https://doi.org/10.1097/00019052-200008000-00006; Oh KW, Noh MY, Kwon MS, Kim HY, Oh SI, Park J, et al. Repeated intrathecal mesenchymal stem cells for amyotrophic lateral sclerosis. Ann Neurol. 2018;84(3):361–73. https://doi.org/10.1002/ana.25302; Honmou O, Yamashita T, Morita T, Oshigiri T, Hirota R, Iyama S, et al. Intravenous infusion of auto serum-­expanded autologous mesenchymal stem cells in spinal cord injury patients: 13 case series. Clin Neurol Neurosurg. 2021;203:106565. https://doi.org/10.1016/j.clineuro.2021.106565; Sakai D, Schol J, Foldager CB, Sato M, Watanabe M. Rege­nerative technologies to bed side: evolving the regulatory framework. J Orthop Translat. 2017;9:1–7. https://doi.org/10.1016/j.jot.2017.02.001; Najar M, Melki R, Khalife F, Lagneaux L, Bouhtit F, Moussa Agha D, et al. Therapeutic mesenchymal stem/stromal cells: value, challenges and optimization. Front Cell Dev Biol. 2022;9:716853. https://doi.org/10.3389/fcell.2021.716853; Brockmann I, Ehrenpfordt J, Sturmheit T, Brandenburger M, Kruse C, Zille M, et al. Skin-derived stem cells for wound treatment using cultured epidermal autografts: clinical applications and challenges. Stem Cells Int. 2018;2018:4623615. https://doi.org/10.1155/2018/4623615; Мельникова ЕВ, Меркулова ОВ, Меркулов ВА. Клинические исследования препаратов клеточной терапии: опыт рассмотрения зарубежными регуляторными органами. Вестник трансплантологии и искусственных органов. 2020;22(2):139–50. https://doi.org/10.15825/1995-1191-2020-2-139-150; Павлова ВЮ, Ливадный ЕС. Биотехнология CAR-T и новые возможности лечения опухолевых заболеваний. Клиническая онкогематология. 2021;14(1):149–56. https://doi.org/10.21320/2500-2139-2021-14-1-149-156; Grissenberger S, Salzer B, Pascoal S, Wenninger-­Weinzierl A, Lehner M, Distel M. Chapter 8 — Preclinical testing of CAR T cells in zebrafish xenografts. Method Cell Biol. 2022;167:133–47. https://doi.org/10.1016/bs.mcb.2021.07.002; Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11(4):69. https://doi.org/10.1038/s41408-021-00459-7; Гаврилина ОА, Галстян ГМ, Щекина АЕ, Котова ЕС, Масчан МА, Троицкая ВВ и др. Терапия Т-клетками с химерным антигенным рецептором взрослых больных В-клеточными лимфопролиферативными заболеваниями. Гематология и трансфузиология. 2022;67(1):8–28. https://doi.org/10.35754/0234-5730-2022-67-1-8-28; Gong Y, Klein Wolterink RGJ, Wang J, Bos GMJ, Germe­raad WTV. Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy. J Hemat Oncol. 2021;14(1):73. https://doi.org/10.1186/s13045-021-01083-5; Habib S, Tariq SM, Tariq M. Chimeric antigen receptor-natural killer cells: the future of cancer immunotherapy. Ochsner J. 2019;19(3):186–7. https://doi.org/10.31486/toj.19.0033; Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med. 2021;384(3):252–60. https://doi.org/10.1056/NEJMoa2031054; Киселева ЯЮ, Шишкин АМ, Иванов АВ, Кулинич ТМ, Боженко ВК. CAR-терапия солидных опухолей: перспективные подходы к модулированию противоопухолевой активности CAR-Т-лимфоцитов. Вестник РГМУ. 2019;(5):5–13. https://doi.org/10.24075/vrgmu.2019.066; Kwon SG, Kwon YW, Lee TW, Park GT, Kim JH. Recent advances in stem cell therapeutics and tissue engineering strategies. Biomater Res. 2018;22:36. https://doi.org/10.1186/s40824-018-0148-4; Паштаев НП, ред. Современные методы диагностики и хирургического лечения кератоконуса. Чебоксары; 2017. EDN: IXHREG; Gibson ALF, Holmes JH 4th, Shupp JW, Smith D, Joe V, Carson J, et al. A phase 3, open-label, controlled, randomized, multicenter trial evaluating the efficacy and safety of StrataGraft® construct in patients with deep partial-thickness thermal burns. Burns. 2021;47(5):1024–37. https://doi.org/10.1016/j.burns.2021.04.021; Heng CHY, Snow M, Dave LYH. Single-stage arthroscopic cartilage repair with injectable scaffold and BMAC. Arthrosc Tech. 2021;10(3):e751–6. https://doi.org/10.1016/j.eats.2020.10.065; Pathak S, Chaudhary D, Reddy KR, Acharya KKV, Desai SM. Efficacy and safety of CARTIGROW® in patients with articular cartilage defects of the knee joint: a four year prospective studys. Int Orthop. 2022;46(6):1313–21. https://doi.org/10.1007/s00264-022-0536; Hmadcha A, Martin-Montalvo A, Gauthier BR, Soria B, Capilla-Gonzalez V. Therapeutic potential of mesenchymal stem cells for cancer therapy. Front Bioeng Biotechnol. 2020;8:43. https://doi.org/10.3389/fbioe.2020.00043; Gimble JM, Katz AJ, Bunnel BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2014;100(9):1249–60. https://doi.org/10.1161/01.RES.0000265074.83288.09; Howard D, Buttery LD, Shakesheff KM, Roberts SJ. Tissue engineering: strategies, stem cells and scaffolds. J Anat. 2008;213(1):66–72. https://doi.org/10.1111/j.1469-7580.2008.00878.x; Рачинская ОА, Мельникова ЕВ, Меркулов ВА. Актуальные направления и риски применения препаратов на основе технологий редактирования генома. БИОпрепараты. Профилактика, диагностика, лечение. 2023;23(3):247–61. https://doi.org/10.30895/2221-996X-2023-23-3-247-261; https://www.biopreparations.ru/jour/article/view/557

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
    Academic Journal

    Contributors: ELAKPI, National Academy of Sciences of Ukraine

    Source: Innovative Biosystems and Bioengineering, Vol 3, Iss 3 (2019)
    Innovative Biosystems and Bioengineering; Том 3, № 3 (2019); 146-151

    File Description: application/pdf

  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
    Academic Journal

    Contributors: This work was supported by the Kazan Federal University Strategic Academic Leadership Program («PRIORITY-2030»)., Работа выполнена за счет средств Программы стратегического академического лидерства Казанского (Приволжского) федерального университета («Приоритет-2030»).

    Source: Russian Journal of Child Neurology; Vol 18, No 1 (2023); 38-45 ; Русский журнал детской неврологии; Vol 18, No 1 (2023); 38-45 ; 2412-9178 ; 2073-8803

    File Description: application/pdf