-
1Academic Journal
Authors: D. A. Sychev, M. S. Cherniaeva, M. A. Rozhkova, A. E. Vorobyova, Д. А. Сычев, М. С. Черняева, М. А. Рожкова, А. Е. Воробьева
Contributors: The study was performed without external funding., Работа выполнена без спонсорской поддержки.
Source: Safety and Risk of Pharmacotherapy; Том 12, № 3 (2024); 253-267 ; Безопасность и риск фармакотерапии; Том 12, № 3 (2024); 253-267 ; 2619-1164 ; 2312-7821 ; 10.30895/2312-7821-2024-12-3
Subject Terms: межлекарственное взаимодействие, PIMs, Beers criteria, older adults, elderly, senile, adverse drug reactions, ADRs, pharmacotherapy in older adults, polypharmacy, multimorbidity, safety of pharmacotherapy, drug–drug interactions, критерии Бирса, пожилые пациенты, пациенты старческого возраста, нежелательные реакции, фармакотерапия пожилого пациента, полипрагмазия, полиморбидность, безопасность фармакотерапии
File Description: application/pdf
Relation: https://www.risksafety.ru/jour/article/view/420/1220; https://www.risksafety.ru/jour/article/downloadSuppFile/420/455; https://www.risksafety.ru/jour/article/downloadSuppFile/420/477; https://www.risksafety.ru/jour/article/downloadSuppFile/420/482; https://www.risksafety.ru/jour/article/downloadSuppFile/420/494; https://www.risksafety.ru/jour/article/downloadSuppFile/420/500; https://www.risksafety.ru/jour/article/downloadSuppFile/420/501; https://www.risksafety.ru/jour/article/downloadSuppFile/420/507; https://www.risksafety.ru/jour/article/downloadSuppFile/420/508; https://www.risksafety.ru/jour/article/downloadSuppFile/420/509; https://www.risksafety.ru/jour/article/downloadSuppFile/420/510; https://www.risksafety.ru/jour/article/downloadSuppFile/420/511; https://www.risksafety.ru/jour/article/downloadSuppFile/420/512; https://www.risksafety.ru/jour/article/downloadSuppFile/420/513; https://www.risksafety.ru/jour/article/downloadSuppFile/420/517; Onder G, Petrovic M, Tangiisuran B, Meinardi MC, Markito-Notenboom Winih P, Somers A, et al. Development and validation of a score to assess risk of adverse drug reactions among in-hospital patients 65 years or older: the GerontoNet ADR risk score. Arch Intern Med. 2010;170(13):1142–8. https://doi.org/10.1001/archinternmed.2010.153; Tangiisuran B, Scutt G, Stevenson J, Wright J, Onder G, Petrovic M, et al. Development and validation of a risk model for predicting adverse drug reactions in older people during hospital stay: Brighton Adverse Drug Reactions Risk (BADRI) model. PLoS One. 2014;9(10):e111254. https://doi.org/10.1371/journal.pone.0111254; Rumore MM, Vaidean G. Development of a risk assessment tool for falls prevention in hospital inpatients based on the medication appropriateness index (MAI) and modified Beer’s criteria. Innov Pharm. 2012;3(1):73. https://doi.org/10.24926/iip.v3i1.256; Adverse Drug Reaction Probability Scale (Naranjo) in Drug Induced Liver Injury. In: LiverTox: Clinical and Research Information on DrugInduced Liver Injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012. PMID: 31689026; O’Mahony D, Cherubini A, Guiteras AR, Denkinger M, Beuscart JB, Onder J, et al. STOPP/START criteria for potentially inappropriate prescribing in older people: version 3. Eur Geriatr Med. 2023;14(4):625–32. https://doi.org/10.1007/s41999-023-00777-y; Pazan F, Weiss C, Wehling M, FORTA Expert Panel Members. The EURO-FORTA (Fit fOR The Aged) list version 2: consensus validation of a clinical tool for improved pharmacotherapy in older adults. Drugs Aging. 2023;40(5):417–26. https://doi.org/10.1007/s40266-023-01024-6; 2023 American Geriatrics Society Beers Criteria® Update Expert Panel. American Geriatrics Society 2023 updated AGS Beers Criteria® for potentially inappropriate medication use in older adults. J Am Geriatr Soc. 2023;71(7):2052–81. https://doi.org/10.1111/jgs.183724; Beers MH, Ouslander JG, Rollingher I, Reuben DB, Brooks J, Beck JC. Explicit criteria for determining inappropriate medication use in nursing home residents. Arch Intern Med. 1991;151:1825–32. https://doi.org/10.1001/archinte.1991.00400090107019; Beers MH. Explicit criteria for determining potentially inappropriate medication use by the elderly: an update. Arch Intern Med. 1997;157:1531–6. https://doi.org/10.1001/archinte.1997.00440350031003; Fick DM, Cooper JW, Wade WE, Waller JL, Maclean JR, Beers MH. Updating the Beers criteria for potentially inappropriate medication use in older adults: results of a U.S. consensus panel of experts. Arch Intern Med. 2003;163(22):2716–24. https://doi.org/10.1001/archinte.163.22.2716; American Geriatrics Society 2012 Beers Criteria Update Expert Panel. American Geriatrics Society updated Beers criteria for potentially inappropriate medication use in older adults. J Am Geriatr Soc. 2012;60(4):616–31. https://doi.org/10.1111/j.1532-5415.2012.03923.x; American Geriatrics Society 2015 Beers Criteria Update Expert Panel. American Geriatrics Society 2015 updated Beers criteria for potentially inappropriate medication use in older adults. J Am Geriatr Soc. 2015;63(11):2227–46. https://doi.org/10.1111/jgs.13702; American Geriatrics Society Beers Criteria Update Expert Panel. American Geriatrics Society 2019 updated AGS Beers criteria for potentially inappropriate medication use in older adults. J Am Geriatr Soc. 2019;67(4):674–94. https://doi.org/10.1111/jgs.15767; Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64(4):383–94. https://doi.org/10.1016/j.jclinepi.2010.04.026; Qaseem A, Snow V, Owens DK, Shekelle P, Clinical guidelines Committee of the American College of Physicians. The development of clinical practice guidelines and guidance statements of the American College of Physicians: summary of methods. Ann Intern Med. 2010;153(3):194–9. https://doi.org/10.7326/0003-4819-153-3-201008030-00010; Tian F, Chen Z, Zeng Y, Feng Q, Chen X. Prevalence of use of potentially inappropriate medications among older adults worldwide: a systematic review and meta-analysis. JAMA Netw Open. 2023;6(8):e2326910. https://doi.org/10.1001/jamanetworkopen.2023.26910; Ma W, Wang H, Wen Z, Liu L, Zhang X. Potentially inappropriate medication and frailty in older adults: a systematic review and meta-analysis. Arch Gerontol Geriatr. 2023;114:105087. https://doi.org/10.1016/j.archger.2023.105087; Maher RL, Hanlon J, Hajjar ER. Clinical consequences of polypharmacy in elderly. Expert Opin Drug Saf. 2014;13(1):57–65. https://doi.org/10.1517/14740338.2013.827660; Zhou S, Li R, Zhang X, Zong Y, Lei L, Tao Z, et al. The effects of pharmaceutical interventions on potentially inappropriate medications in older patients: a systematic review and meta-analysis. Front Public Health. 2023;11:1154048. https://doi.org/10.3389/fpubh.2023.1154048; Ho JM, To E, Sammy R, Stoian M, Tung JM, Bodkin RJ, et al. Outcomes of a medication optimization virtual interdisciplinary geriatric specialist (MOVING) program: a feasibility study. Drugs Real World Outcomes. 2023. https://doi.org/10.1007/s40801-023-00403-0; Borrie M, Cooper T, Basu M, Kay K, Prorok J, Seitz D. Ontario geriatric specialist physician resources 2018. Can Geriatr J. 2020;23(3):245–53. https://doi.org/10.5770/cgj.23.448; Tung J, Cox L, Benjamin S, An H, Ho JM-W. GeriMedRisk: preliminary data from a new technology-based geriatric clinical pharmacology consult service. Can Geriatrics J. 2018;21(1):1–46.; Hyttinen V, Jyrkkа J, Valtonen H. A systematic review of the impact of potentially inappropriate medication on health care utilization and costs among older adults. Med Care. 2016;54(10):950–64. https://doi.org/10.1097/MLR.0000000000000587; Xing XX, Zhu C, Liang HY, Wang K, Chu YQ, Zhao LB, et al. Associations between potentially inappropriate medications and adverse health outcomes in the elderly: a systematic review and meta-analysis. Ann Pharmacother. 2019;53(10):1005–19. https://doi.org/10.1177/1060028019853069; Malakouti SK, Javan-Noughabi J, Yousefzadeh N, Rezapour A, Mortazavi SS, Jahangiri R, Moghri J. A systematic review of potentially inappropriate medications use and related costs among the elderly. Value Heal Reg Issues. 2021;25:172–9. https://doi.org/10.1016/j.vhri.2021.05.003; Schiavo G, Forgerini M, Lucchetta RC, Silva GO, Mastroianni PDC. Cost of adverse drug events related to potentially inappropriate medication use: a systematic review. J Am Pharm Assoc. 2022;62(5):1463–76. https://doi.org/10.1016/j.japh.2022.04.008; Aucella F, Corsonello A, Soraci L, Fabbietti P, Prencipe MA, Gatta G, et al. A focus on CKD reporting and inappropriate prescribing among older patients discharged from geriatric and nephrology units throughout Italy: a nationwide multicenter retrospective cross-sectional study. Front Pharmacol. 2022;13:996042. https://doi.org/10.3389/fphar.2022.996042; Hughes JE, Waldron C, Bennett KE, Cahir C. Prevalence of drug–drug interactions in older community-dwelling individuals: a systematic review and meta-analysis. Drugs Aging. 2023;40(2):117–34. https://doi.org/10.1007/s40266-022-01001-5; Зурдинова АА, Шараева АТ, Сатыбалдиева АТ. Фармакоэпидемиологический анализ применения лекарственных средств при лечении пациентов пожилого возраста. Вестник КыргызскоРоссийского Славянского университета. 2018;18(6):133–6. EDN: UYTZQK; Панова ЕА, Серов ВА, Шутов АМ, Бакумцева НН, Кузовенкова МЮ. Полипрагмазия у амбулаторных пациентов пожилого возраста. Ульяновский медикобиологический журнал. 2019;(2):16–22. https://doi.org/10.34014/2227-1848-2019-2-16-22; Батищева ГА, Черенкова ОВ, Елизарова ИО, Некрасова НВ. Аудит лекарственных назначений у пациентов старше 65 лет в многопрофильном стационаре. Актуальные научные исследования в современном мире. 2021;(11-2):73–81. EDN: KFAXZT; Мусапирова АБ, Тулеутаева РЕ, Махатова АР, Смаилова ЖК, Укенов АЖ, Укенова ДБ. Оценка риска нежелательных лекарственных реакций у пожилых пациентов с сердечно-сосудистыми заболеваниями. Наука и здравоохранение. 2021;23(2):118–26. https://doi.org/10.34689/SH.2021.23.2.012; Изможерова НВ, Попов АА, Курындина АА, Гаврилова ЕИ, Шамбатов МА, Бахтин ВМ. Полиморбидность и полипрагмазия у пациентов высокого и очень высокого сердечно-сосудистого риска. Рациональная фармакотерапия в кардиологии. 2022;18(1):20–6. https://doi.org/10.20996/1819-6446-2022-02-09; Сычев ДА, Данилина КС, Головина ОВ. Частота назначения потенциально не рекомендованных препаратов (по критериям Бирса) пожилым пациентам, находящимся в терапевтических отделениях многопрофильного стационара. Терапевтический архив. 2015;87(1):27–30. https://doi.org/10.17116/terarkh201587127-30; Малыхин ФТ, Батурин ВА. Оценка назначения потенциально не рекомендуемых лекарственных препаратов пульмонологическим пациентам пожилого и старческого возраста. Медицина. 2017;5(1):19–24. EDN: YISDUV; Мусина АЗ, Жамалиева ЛМ, Смагулова ГА, Достанова ЖА, Танмаганбетова АЮ, Николаенко НВ. Применение потенциально не рекомендованных препаратов в пожилом возрасте в стационарах западного Казахстана: поперечное исследование. ЗападноКазахстанский медицинский журнал. 2020;(1):41–50. EDN: DQJVDE; Сатыбалдиева АТ, Шараева АТ. Фармакоэпидемиологический анализ применения лекарственных препаратов у пожилых пациентов с гипертонической болезнью на стационарном уровне. Бюллетень науки и практики. 2020;6(6):108–14. https://doi.org/10.33619/2414-2948/55/15; Изможерова НВ, Попов АА, Курындина АА, Гаврилова ЕИ, Шамбатов МА, Бахтин ВМ. Анализ фармакотерапии пожилых пациентов с артериальной гипертензией. Лекарственный вестник. 2022;23(4):24–34. EDN: DCNBXX; Краснова НМ, Сычев ДА, Венгеровский АИ, Александрова ТН. Современные методы оптимизации фармакотерапии у пожилых пациентов в условиях многопрофильного стационара. Клиническая медицина. 2017;95(11):1042–9. https://doi.org/10.18821/0023-2149-2017-95-111042-1049; Кирилочев ОО, Умерова АР. Контроль рациональности фармакотерапии у пациентов психиатрического стационара с синдромом старческой астении. Современные проблемы науки и образования. 2020;(6):184. https://doi.org/10.17513/spno.30449; Кирилочев ОО, Умерова АР. Анализ антихолинергической нагрузки у пожилых пациентов психиатрического профиля. Современные проблемы науки и образования. 2020;(5):122. https://doi.org/10.17513/spno.30192; Кирилочев ОО. Оценка фармакотерапии у пожилых пациентов психиатрического профиля с учетом критериев Бирса. Успехи геронтологии. 2020;33(2):325–30. https://doi.org/10.34922/AE.2020.33.2.015; Кирилочев ОО, Тарханов ВС. Потенциально не рекомендованные лекарственные назначения и межлекарственные взаимодействия у пожилых пациентов с психическими заболеваниями. Современные проблемы науки и образования. 2021;(6):126. https://doi.org/10.17513/spno.31224; Ильина ЕС, Сычев ДА, Богова ОТ. Падение пациента старческого возраста, связанное с применением бензодиазепиновых транквилизаторов: клиническое наблюдение. Медикосоциальная экспертиза и реабилитация. 2017;20(2):104–6. https://doi.org/10.18821/1560-9537-2017-20-2-104-106; Шалыгин ВА, Ильина ЕС, Синицина ИИ, Савельева МИ, Сычев ДА. Лекарственно-обусловленное падение у пожилых: вклад антигипертензивных препаратов. Врач. 2019;30(1):72–6. https://doi.org/10.29296/25877305-2019-01-15; Лесонен АС, Виноградова ИА, Лоскутова ЕЕ. Исследование возможности рационального применения антигистаминных лекарственных препаратов у пожилых людей с позиции безопасности и экономической доступности. Успехи геронтологии. 2020;33(6):1181–5. https://doi.org/10.34922/AE.2020.33.6.022; https://www.risksafety.ru/jour/article/view/420
-
2Academic Journal
Source: Приложение международного научного журнала "Вестник психофизиологии".
Subject Terms: anxiolytics, ритонавир, антипсихотические средства, COVID-19, межлекарственное взаимодействие, side effects. neuropsychology, psychopharmacotherapy, 3. Good health, ritonavir, antipsychotics, анксиолитики, психофармакотерапия, побочные эффекты. нейропсихология, interdrug interaction
-
3Academic Journal
Source: Фармакокинетика и Фармакодинамика, Vol 0, Iss 1, Pp 21-32 (2020)
Subject Terms: цитохром р450, cyp2c9, лозартан, фармакокинетика, метаболизм, межлекарственное взаимодействие, афобазол, рифампицин, флуконазол, cytochrome p450, losartan, pharmacokinetics, metabolism, drug-drug interaction, afobazole, rifampicin, fluconazole, Pharmacy and materia medica, RS1-441
File Description: electronic resource
-
4Academic Journal
Authors: M. N. Kostyleva, A. B. Strok, S. S. Postnikov, A. N. Gratsianskaya, A. E. Ermilin, М. Н. Костылева, А. Б. Строк, С. С. Постников, А. Н. Грацианская, А. E. Ермилин
Contributors: The study was performed without external funding., Работа выполнена без спонсорской поддержки.
Source: Safety and Risk of Pharmacotherapy; Том 10, № 3 (2022); 302-314 ; Безопасность и риск фармакотерапии; Том 10, № 3 (2022); 302-314 ; 2619-1164 ; 2312-7821
Subject Terms: межлекарственное взаимодействие, multimorbidity, children, glomerulonephritis, therapeutic drug monitoring, immuno-suppressants, cyclosporine, rifampicin, drug interaction, мультиморбидность, дети, гломерулонефрит, терапевтический лекарственный мониторинг, иммунодепрессанты, циклоспорин, рифампицин
File Description: application/pdf
Relation: https://www.risksafety.ru/jour/article/view/283/593; https://www.risksafety.ru/jour/article/downloadSuppFile/283/275; https://www.risksafety.ru/jour/article/downloadSuppFile/283/278; Guthrie B, Makubate B, Hernandez-Santiago V, Dreischulte T. The rising tide of polypharmacy and drug-drug interactions: population database analysis 1995-2010. BMC Med. 2015;13:74. https://doi.org/10.1186/s12916-015-0322-7; Грацианская АН, Костылева МН, Постников СС, Белоусов ЮБ. Опыт «off-label» назначений в педиатрическом стационаре. Лечебное дело. 2014;(2):4–6.; Pazan F, Wehling M. Polypharmacy in older adults: a narrative review of definitions, epidemiology and consequences. Eur Geriatr Med. 2021;12(3):443–52. https://doi.org/10.1007/s41999-021-00479-3; Khezrian M, McNeil CJ, Murray AD, Myint PK. An overview of prevalence, determinants and health outcomes of polypharmacy. Ther Adv Drug Saf. 2020;11:2042098620933741. https://doi.org/10.1177/2042098620933741; Masnoon N, Shakib S, Kalisch-Ellett L, Caughey GE. What is polypharmacy? A systematic review of definitions. BMC Geriatr. 2017;17(1):230. https://doi.org/10.1186/s12877-017-0621-2; Лазарева НБ, Ших ЕВ, Реброва ЕВ, Рязанова АЮ. Полипрагмазия в педиатрической практике: современные реалии. Вопросы современной педиатрии. 2019;18(3):212–8. https://doi.org/10.15690/vsp.v18i3.2039; Bakaki PM, Horace A, Dawson N, Winterstein A, Waldron J, Staley J, et al. Defining pediatric polypharmacy: a scoping review. PLoS One. 2018;13(11):e0208047. https://doi.org/10.1371/journal.pone.0208047; Постников СС, Карманов МЕ, Кувалдина ЕВ, Гаджиева АЗ, Костылева МН, Грацианская АН, Ермилин АЕ. Случай синдрома Кушинга у ребенка 15 лет после длительного эндоназального применения дексаметазона. Безопасность и риск фармакотерапии. 2018;6(4):187–90. https://doi.org/10.30895/2312-7821-2018-6-4-187-190.; Gnjidic D, Hilmer SN, Blyth FM, Naganathan V, Waite L, Seibel MJ, et al. Polypharmacy cutoff and outcomes: five or more medicines were used to identify community-dwelling older men at risk of different adverse outcomes. J Clin Epidemiol. 2012;65(9):989–95. https://doi.org/10.1016/j.jclinepi.2012.02.018; Duerden M, Avery T, Payne R. Polypharmacy and Medicines Optimisation: Making It Safe and Sound. London, UK: Kings fund; 2013.; Mizokami F, Koide Y, Noro T, Furuta K. Polypharmacy with common diseases in hospitalized elderly patients. Am J Geriatr Pharmacother. 2012 Apr;10(2):123–8. https://doi.org/10.1016/j.amjopharm.2012.02.003; Dai D, Feinstein JA, Morrison W, Zuppa AF, Feudtner C. Epidemiology of Polypharmacy and Potential Drug-Drug Interactions Among Pediatric Patients in ICUs of U.S. Children's Hospitals. Pediatr Crit Care Med. 2016;17(5):e218–28. https://doi.org/10.1097/PCC.0000000000000684; Feudtner C, Dai D, Hexem KR, Luan X, Metjian TA. Prevalence of polypharmacy exposure among hospitalized children in the United States. Arch Pediatr Adolesc Med. 2012;166(1):9–16. https://doi.org/10.1001/archpediatrics.2011.161; Cadieux RJ. Drug interactions in the elderly. How multiple drug use increases risk exponentially. Postgrad Med. 1989;86(8):179–86. https://doi.org/10.1080/00325481.1989.11704506; Григорьев К.И., Харитонова Л.А. К вопросу об эффективности и безопасности назначения фармакологических средств в педиатрической практике. Экспериментальная и клиническая гастроэнтерология. 2022;(1):5–13. https://doi.org/10.31146/1682-8658-ecg-197-1-5-13; Janković SM, Pejčić AV, Milosavljević MN, Opančina VD, Pešić NV, Nedeljković TT, Babić GM. Risk factors for potential drug-drug interactions in intensive care unit patients. J Crit Care. 2018;43:1–6. https://doi.org/10.1016/j.jcrc.2017.08.021; Feinstein J, Dai D, Zhong W, Freedman J, Feudtner C. Potential drug-drug interactions in infant, child, and adolescent patients in children's hospitals. Pediatrics. 2015;135(1):e99–108. https://doi.org/10.1542/peds.2014-2015; Cadogan CA, Ryan C, Hughes CM. Appropriate polypharmacy and medicine safety: when many is not too many. Drug Saf. 2016;39(2):109–16. https://doi.org/10.1007/s40264-015-0378-5; Кобалава ЖД, Конради АО, Недогода СВ, Шляхто ЕВ, Арутюнов ГП, Баранова ЕИ и др. Артериальная гипертензия у взрослых. Клинические рекомендации 2020. Российский кардиологический журнал. 2020;25(3):3786. https://doi.org/10.15829/1560-4071-2020-3-3786; Ивашкин ВТ, Маев ИВ, Царьков ПВ, Королев МП, Андреев ДН, Баранская ЕК и др. Диагностика и лечение язвенной болезни у взрослых (Клинические рекомендации Российской гастроэнтерологической ассоциации, Российского общества колоректальных хирургов и Российского эндоскопического общества). Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2020;30(1):49–70. https://doi.org/10.22416/1382-4376-2020-30-1-49-70; Maxwell SRJ, Webb DJ. Improving medication safety: focus on prescribers and systems. Lancet. 2019;394(10195):283–5. https://doi.org/10.1016/S0140-6736(19)31526-0; Павличенко СН, Леонова МВ, Упницкий АА. Особенности фармакотерапии у пожилых пациентов с мультиморбидностью: критерии Бирса. Лечебное дело. 2017;(2):18–26.; O'Mahony D, O'Sullivan D, Byrne S, O'Connor MN, Ryan C, Gallagher P. STOPP/START criteria for potentially inappropriate prescribing in older people: version 2. Age Ageing. 2015;44(2):213–8. https://doi.org/10.1093/ageing/afu145; Ishikura K, Yoshikawa N, Nakazato H, Sasaki S, Iijima K, Nakanishi K, et al. Two-year follow-up of a prospective clinical trial of cyclosporine for frequently relapsing nephrotic syndrome in children. Clin J Am Soc Nephrol. 2012;7(10):1576–83. https://doi.org/10.2215/CJN.00110112; Saito T, Iwano M, Matsumoto K, Mitarai T, Yokoyama H, Yorioka N, et al. Significance of combined cyclosporine-prednisolone therapy and cyclosporine blood concentration monitoring for idiopathic membranous nephropathy with steroid-resistant nephrotic syndrome: a randomized controlled multicenter trial. Clin Exp Nephrol. 2014;18(5):784–94. https://doi.org/10.1007/s10157-013-0925-2; Djabarouti S, Mora P, Lahouati M, Gigan M, d'Houdain N, Sourisseau B, et al. Intérêt des dosages pharmacologiques d’immunosuppresseurs et immunomodulateurs dans la prise en charge des maladies autoimmunes [Benefit of therapeutic drug monitoring of immunosuppressants and immunomodulators in the management of autoimmune diseases]. Rev Med Interne. 2022:S0248-8663(22)00418-0. French. https://doi.org/10.1016/j.revmed.2022.03.343; Gregory MJ, Smoyer WE, Sedman A, Kershaw DB, Valentini RP, Johnson K, Bunchman TE. Long-term cyclosporine therapy for pediatric nephrotic syndrome: a clinical and histologic analysis. J Am Soc Nephrol. 1996;7(4):543–9. https://doi.org/10.1681/ASN.V74543; Srinivas NR. Therapeutic drug monitoring of cyclosporine and area under the curve prediction using a single time point strategy: appraisal using peak concentration data. Biopharm Drug Dispos. 2015;36(9):575–86. https://doi.org/10.1002/bdd.1967; Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group. KDIGO 2021 Clinical practice guideline for the management of glomerular diseases. Kidney Int. 2021;100(4S):S1–S276. https://doi.org/10.1016/j.kint.2021.05; https://www.risksafety.ru/jour/article/view/283
-
5Academic Journal
Authors: V. I. Petrov, A. Y. Ryazanova, D. A. Nekrasov, V. I. Svinukhov, N. S. Privaltseva, В. И. Петров, А. Ю. Рязанова, Д. А. Некрасов, В. И. Свинухов, Н. С. Привальцева
Source: Safety and Risk of Pharmacotherapy; Том 10, № 1 (2022); 34-47 ; Безопасность и риск фармакотерапии; Том 10, № 1 (2022); 34-47 ; 2619-1164 ; 2312-7821 ; 10.30895/2312-7821-2022-10-1
Subject Terms: межлекарственное взаимодействие, monoclonal antibodies, interleukins, interleukin receptors, tocilizumab, rheumatoid arthritis, COVID-19, adverse drug reactions, pharmacovigilance, hepatotoxity, drug-drug interactions, моноклональные антитела, интерлейкины, рецепторы интерлейкинов, тоцилизумаб, ревматоидный артрит, нежелательные реакции, фармаконадзор, гепатотоксичность
File Description: application/pdf
Relation: https://www.risksafety.ru/jour/article/view/253/461; https://www.risksafety.ru/jour/article/downloadSuppFile/253/199; https://www.risksafety.ru/jour/article/downloadSuppFile/253/226; https://www.risksafety.ru/jour/article/downloadSuppFile/253/227; https://www.risksafety.ru/jour/article/downloadSuppFile/253/236; Smolen JS, Aletaha D. Forget personalised medicine and focus on abating disease activity. Ann Rheum Dis. 2013;72(1):3–6. https://doi.org/10.1136/annrheumdis-2012-202361; Saki A, Rajaei E, Rahim F. Safety and efficacy of tocilizumab for rheumatoid arthritis: a systematic review and meta-analysis of clinical trial studies. Reumatologia. 2021;59(3):169–79. https://doi.org/10.5114/reum.2021.107026; Schiff MH, Kremer JM, Jahreis A, Vernon E, Isaacs JD, van Vollenhoven RF. Integrated safety in tocilizumab clinical trials. Arthritis Res Ther. 2011;13(5):R141. https://doi.org/10.1186/ar3455; Campbell L, Chen C, Bhagat SS, Parker RA, Östör AJ. Risk of adverse events including serious infections in rheumatoid arthritis patients treated with tocilizumab: a systematic literature review and meta-analysis of randomized controlled trials. Rheumatology (Oxford). 2011;50(3):552–62. https://doi.org/10.1093/rheumatology/keq343; Rutherford AI, Subesinghe S, Hyrich KL, Galloway JB. Serious infection across biologic-treated patients with rheumatoid arthritis: results from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis. Ann Rheum Dis. 2018;77(6):905–10. https://doi.org/10.1136/annrheumdis-2017-212825; Yun H, Xie F, Delzell E, Levitan EB, Chen L, Lewis JD, et al. Comparative risk of hospitalized infection associated with biologic agents in rheumatoid arthritis patients enrolled in medicare. Arthritis Rheumatol. 2016;68(1):56–66. https://doi.org/10.1002/art.39399; Morel J, Constantin A, Baron G, Dernis E, Flipo RM, Rist S, et al. Risk factors of serious infections in patients with rheumatoid arthritis treated with tocilizumab in the French Registry REGATE. Rheumatology (Oxford). 2017;56(10):1746–54. https://doi.org/10.1093/rheumatology/kex238; Moots RJ, Sebba A, Rigby W, Ostor A, Porter-Brown B, Donaldson F, et al. Effect of tocilizumab on neutrophils in adult patients with rheumatoid arthritis: pooled analysis of data from phase 3 and 4 clinical trials. Rheumatology (Oxford). 2017;56(4):541–9. https://doi.org/10.1093/rheumatology/kew370; Choy E, Freemantle N, Proudfoot C, Chen C, Pollissard L, Kuznik A, et al. Evaluation of the efficacy and safety of sarilumab combination therapy in patients with rheumatoid arthritis with inadequate response to conventional disease-modifying antirheumatic drugs or tumour necrosis factor α inhibitors: systematic literature review and network meta-analyses. RMD Open. 2019;5(1):e000798. https://doi.org/10.1136/rmdopen-2018-000798; Puxeddu I, Caltran E, Rocchi V, Del Corso I, Tavoni A, Migliorini P. Hypersensitivity reactions during treatment with biological agents. Clin Exp Rheumatol. 2016;34(1):129–32. PMID: 26751942; Pichler WJ. Adverse side effects to biological agents. Allergy. 2006;61(8):912–20. https://doi.org/10.1111/j.1398-9995.2006.01058.x; Yun H, Xie F, Beyl RN, Chen L, Lewis JD, Saag KG, Curtis JR. Risk of hypersensitivity to biologic agents among medicare patients with rheumatoid arthritis. Arthritis Care Res (Hoboken). 2017;69(10):1526–34. https://doi.org/10.1002/acr.23141; Salmon JH, Perotin JM, Morel J, Dramé M, Cantagrel A, Ziegler LE, et al. Serious infusion-related reaction after rituximab, abatacept and tocilizumab in rheumatoid arthritis: prospective registry data. Rheumatology (Oxford). 2018;57(1):134–9. https://doi.org/10.1093/rheumatology/kex403; Fleischmann RM, Tesser J, Schiff MH, Schechtman J, Burmester GR, Bennett R, et al. Safety of extended treatment with anakinra in patients with rheumatoid arthritis. Ann Rheum Dis. 2006;65(8):1006–12. https://doi.org/10.1136/ard.2005.048371; Mahamid M, Mader R, Safadi R. Hepatotoxicity of tocilizumab and anakinra in rheumatoid arthritis: management decisions. Clin Pharmacol. 2011;(3):39–43. https://doi.org/10.2147/cpaa.s24004; Nishimoto N, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T, Azuma J. Long-term safety and efficacy of tocilizumab, an anti-interleukin-6 receptor monoclonal antibody, in monotherapy, in patients with rheumatoid arthritis (the STREAM study): evidence of safety and efficacy in a 5-year extension study. Ann Rheum Dis. 2009;68(10):1580–4. https://doi.org/10.1136/ard.2008.092866; Ogata A, Amano K, Dobashi H, Inoo M, Ishii T, Kasama T, et al. Longterm safety and efficacy of subcutaneous tocilizumab monotherapy: results from the 2-year open-label extension of the MUSASHI study. J Rheumatol. 2015;42(5):799–809. https://doi.org/10.3899/jrheum.140665; Jones G, Wallace T, McIntosh MJ, Brockwell L, Gomez-Reino J, Sebba A. Five-year efficacy and safety of tocilizumab monotherapy in patients with rheumatoid arthritis who were methotrexate- and biologic-naive or free of methotrexate for 6 months: the AMBITION study. J Rheumatol. 2017;44(2):142–7. https://doi.org/10.3899/jrheum.160287; Kim SC, Solomon DH, Rogers JR, Gale S, Klearman M, Sarsour K, et al. Cardiovascular safety of tocilizumab versus tumor necrosis factor inhibitors in patients with rheumatoid arthritis: a multi-database cohort study. Arthritis Rheumatol. 2017;69(6):1154–64. https://doi.org/10.1002/art.40084; Kleveland O, Kunszt G, Bratlie M, Ueland T, Broch K, Holte E, et al. Effect of a single dose of the interleukin-6 receptor antagonist tocilizumab on inflammation and troponin T release in patients with non-ST-elevation myocardial infarction: a double-blind, randomized, placebo-controlled phase 2 trial. Eur Heart J. 2016;37(30):2406–13. https://doi.org/10.1093/eurheartj/ehw171; Yamamoto K, Goto H, Hirao K, Nakajima A, Origasa H, Tanaka K, Tomobe M, Totsuka K. Longterm Safety of Tocilizumab: Results from 3 Years of Followup Postmarketing Surveillance of 5573 Patients with Rheumatoid Arthritis in Japan. J Rheumatol. 2015 Aug;42(8):1368-75. doi:10.3899/jrheum.141210. Epub 2015 Jun 1. PMID: 26034149.; Harigai M, Nanki T, Koike R, Tanaka M, Watanabe-Imai K, Komano Y, Sakai R, Yamazaki H, Koike T, Miyasaka N. Risk for malignancy in rheumatoid arthritis patients treated with biological disease-modifying antirheumatic drugs compared to the general population: A nationwide cohort study in Japan. Mod Rheumatol. 2016 Sep;26(5):642-50. doi:10.3109/14397595.2016.1141740. Epub 2016 Mar 11. PMID: 26873430.; Luo P, Liu Y, Qiu L, Liu X, Liu D, Li J. Tocilizumab treatment in COVID-19: a single center experience. J Med Virol. 2020;92(7):814–8. https://doi.org/10.1002/jmv.25801; Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA. 2020;117(20):10970–5. https://doi.org/10.1073/pnas.2005615117; Fomina DS, Lysenko MA, Beloglazova IP, Mutovana ZYu, Poteshkina NG, Samsonova IV, et al. Temporal clinical and laboratory response to interleukin-6 receptor blockade with tocilizumab in 89 hospitalized patients with COVID-19 pneumonia. Pathog Immun. 2020;5(1):327–41. https://doi.org/10.20411/pai.v5i1.392; RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2021;397(10285):1637–45. https://doi.org/10.1016/s0140-6736(21)00676-0; Gundling S, Popa A, Tumbush C, Hejal RB, Giddings OK, Teba C, John AR. Safety of tocilizumab in patients with Covid-19. Am J Respir Crit Care Med. 2021;203:A3805. https://doi.org/10.1164/ajrccm-conference.2021.203.1_MeetingAbstracts.A3805; Morena V, Milazzo L, Oreni L, Bestetti G, Fossali T, Bassoli C, et al. Off-label use of tocilizumab for the treatment of SARS-CoV-2 pneumonia in Milan, Italy. Eur J Intern Med. 2020;76:36–42. https://doi.org/10.1016/j.ejim.2020.05.011; Jiménez-Lozano I, Caro-Teller JM, Fernández-Hidalgo N, Miarons M, Frick MA, Batllori Badia E, et al. Safety of tocilizumab in COVID-19 pregnant women and their newborn: a retrospective study. J Clin Pharm Ther. 2021;46(4):1062–70. https://doi.org/10.1111/jcpt.13394; Campochiaro C, Della-Torre E, Cavalli G, De Luca G, Ripa M, Boffini N, et al. Efficacy and safety of tocilizumab in severe COVID-19 patients: a single-centre retrospective cohort study. Eur J Intern Med. 2020;76:43–9. https://doi.org/10.1016/j.ejim.2020.05.021; Rezaei S, Fatemi B, Karimi Majd Z, Minaei H, Peikanpour M, Anjidani N, et al. Efficacy and safety of tocilizumab in severe and critical COVID-19: a systematic review and meta-analysis. Expert Rev Clin Immunol. 2021;17(5):499–511. https://doi.org/10.1080/1744666x.2021.1908128; https://www.risksafety.ru/jour/article/view/253
-
6Academic Journal
Authors: A. V. Kryukov, A. S. Zhiryakova, Yu. V. Shevchuk, A. V. Matveev, V. I. Vechorko, O. V. Averkov, S. V. Glagolev, I. I. Temirbulatov, K. B. Mirzaev, N. P. Denisenko, Sh. P. Abdullaev, D. A. Sychev, А. В. Крюков, А. С. Жирякова, Ю. В. Шевчук, А. В. Матвеев, В. И. Вечорко, О. В. Аверков, С. В. Глаголев, И. И. Темирбулатов, К. Б. Мирзаев, Н. П. Денисенко, Ш. П. Абдуллаев, Д. А. Сычев
Contributors: This study was funded by the Ministry of Health of the Russian Federation and carried out under the state assignment “Development of a clinical decision support system for predicting adverse drug reactions in COVID-19 patients on the basis of pharmacogenetic testing” (R&D public accounting No. 122021800321-2), Работа выполнена при финансовой поддержке Министерства здравоохранения Российской Федерации. Тематика государственного задания «Разработка системы поддержки принятия врачебных решений для прогнозирования нежелательных лекарственных реакций у пациентов с COVID-19 на основе фармакогенетического тестирования» (ЕГИСУ НИОКТР № 122021800321-2)
Source: Safety and Risk of Pharmacotherapy; Том 10, № 4 (2022); 326-344 ; Безопасность и риск фармакотерапии; Том 10, № 4 (2022); 326-344 ; 2619-1164 ; 2312-7821
Subject Terms: моноклональные антитела, adverse drug reactions, pharmacovigilance, drug-drug interactions, pharmacogenetics, nirmatrelvir+ritonavir, interleukin inhibitors, monoclonal antibodies, нежелательные реакции, фармаконадзор, межлекарственное взаимодействие, фармакогенетика, нирматрелвир+ритонавир, ингибиторы интерлейкинов
File Description: application/pdf
Relation: https://www.risksafety.ru/jour/article/view/340/643; https://www.risksafety.ru/jour/article/downloadSuppFile/340/294; https://www.risksafety.ru/jour/article/downloadSuppFile/340/301; https://www.risksafety.ru/jour/article/downloadSuppFile/340/302; https://www.risksafety.ru/jour/article/downloadSuppFile/340/303; https://www.risksafety.ru/jour/article/downloadSuppFile/340/306; Зырянов СК, Затолочина КЭ, Казаков АС. Актуальные вопросы обеспечения безопасности пациентов: роль фармаконадзора. Общественное здоровье. 2022;2(3):25-34. https://doi.org/10.21045/2782-1676-2021-2-3-25-34; Костылева МН, Белоусов ЮБ, Грацианская АН, Постников СС. Оценка безопасности лекарственной терапии в клинической практике. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2014;7(1):27-32.; Иващенко ДВ, Буромская НИ, Савченко ЛМ, Шевченко ЮС, Сычев ДА. Значение метода глобальных триггеров для выявления неблагоприятных событий, связанных с оказанием медицинской помощи в педиатрии. Медицинский совет. 2018;(17):56-66. https://doi.org/10.21518/2079-701X-2018-17-56-65; Назаренко ГИ, Клейменова ЕБ, Отделенов ВА, Пающик СА, Яшина ЛП, Сычев ДА. Использование триггеров нежелательных событий для выявления побочных реакций при применении лекарственных средств в стационаре. Клиническая фармакология и терапия. 2015;24(4):55-62.; Alshehail B, Al Jamea Z, Chacko R, Alotaibi F, Ismail N, Alshayban D. Incidence and risk factors of adverse drug reactions in patients with coronavirus disease 2019: a pharmacovigilance experience utilizing an ADR trigger tool. Saudi Pharm J. 2022;30(4):407-13. https://doi.org/10.1016/i.isps.2022.01.021; Sun J, Deng X, Chen X, Huang J, Huang S, Li Y, et al. Incidence of adverse drug reactions in Covid-19 patients in China: an active monitoring study by hospital pharmacovigilance system. Clin Pharmacol Ther. 2020;108(4):791-7. https://doi.org/10.1002/cpt.1866; O'Mahony D, O'Connor MN, Eustace J, Byrne S, Petrovic M, Gallagher P. The adverse drug reaction risk in older persons (ADRROP) prediction scale: derivation and prospective validation of an ADR risk assessment tool in older multi-morbid patients. Eur Geriatr Med. 2018;9(2):191-9. https://doi.org/10.1007/s41999-018-0030-x; Lavan A, Eustace J, Dahly D, Flanagan E, Gallagher P, Cullinane S, et al. Incident adverse drug reactions in geriatric inpatients: a multicentred observational study. Ther Adv Drug Saf. 2018;9(1):13-23. https://doi.org/10.1177/2042098617736191; Iloanusi S, Mgbere O, Essien EJ. Polypharmacy among COVID-19 patients: a systematic review. J Am Pharm Assoc (2003). 2021;61(5):e14-e25. https://doi.Org/10.1016/i.iaph.2021.05.006; Wen W, Chen C, Tang J, Wang C, Zhou M, Cheng Y, et al. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19: a meta-analysis. Ann Med. 2022;54(1):516-23. https://doi.org/10.1080/07853890.2022.2034936; Hammond J, Leister-Tebbe H, Gardner A, Abreu P, Bao W, Wisemandle W, et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with Covid-19. N Engl J Med. 2022;386(15):1397-408. https://doi.org/10.1056/NEJMoa2118542; Saravolatz LD, Depcinski S, Sharma M. Molnu-piravir and nirmatrelvir-ritonavir: oral COVID antiviral drugs. Clin Infect Dis. 2022:ciac180. https://doi.org/10.1093/cid/ciac180; Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020;395(10236):1569-78. https://doi.org/10.1016/S0140-6736(20)31022-9; Touafchia A, Bagheri H, Carrie D, Durrieu G, Sommet A, Chouchana L, Montastruc F. Serious bradycardia and remdesivir for coronavirus 2019 (COVID-19): a new safety concerns. Clin Microbiol Infect. 2021;27(5):791.e5-8. https://doi.org/10.1016/Lcmi.2021.02.013; Reddy PK, Patil S, Khobragade A, Balki A, Rai A, Kalikar M, et al. Evaluation of the safety and efficacy of favipiravir in adult Indian patients with mild-to-moderate COVID-19 in a real-world setting. Int J Gen Med. 2022;15:4551-63. https://doi.org/10.2147/IJGM.S349241; Матвеев АВ, Мирзаев КБ, Сычев ДА, Глаголев СВ, Крюков АВ, Темирбулатов ИИ и др. Безопасность этиотропной фармакотерапии COVID-19 по данным спонтанных сообщений. Вестник Росздравнадзора. 2022;(6) (в печати).; Levin MJ, Ustianowski A, De Wit S, Launay O, Avila M, Templeton A, et al. Intramuscular AZD7442 (tixagevimab-cilgavimab) for prevention of Covid-19. N Engl J Med. 2022;386(23):2188-200. https://doi.org/10.1056/NEJMoa2116620; Montgomery H, Hobbs FDR, Padilla F, Arbetter D, Templeton A, Seegobin S, et al. Efficacy and safety of intramuscular administration of tixagevimab-cilgavimab for early outpatient treatment of COVID-19 (TACKLE): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Respir Med. 2022;10(10):985-96. https://doi.org/10.1016/S2213-2600(22)00180-1; Gupta A, Gonzalez-Roias Y, Juarez E, Crespo Casal M, Moya J, Falci DR, et al. Early treatment for Covid-19 with SARS-CoV-2 neutralizing antibody sotrovimab. N Engl J Med. 2021;385(21):1941-50. https://doi.org/10.1056/NEJMoa2107934; Lee S, Lee SO, Lee JE, Kim KH, Lee SH, Hwang S, et al. Regdanvimab in patients with mild-to-moderate SARS-CoV-2 infection: a propensity score-matched retrospective cohort study. Int Immunopharmacol. 2022;106:108570. https://doi.org/10.1016/i.intimp.2022.108570; Chen P, Nirula A, Heller B, Gottlieb RL, Boscia J, Morris J, et al. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19. N Engl J Med. 2021;384(3):229-37. https://doi.org/10.1056/NEJMoa2029849; Gottlieb RL, Nirula A, Chen P, Boscia J, Heller B, Morris J, et al. Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: a randomized clinical trial. JAMA. 2021;325(7):632-44. https://doi.org/10.1001/jama.2021.0202; Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, et al. REGEN-COV antibody combination and outcomes in outpatients with Covid-19. N Engl J Med. 2021;385(23):e81. https://doi.org/10.1056/NEJMoa2108163; Portal-Celhay C, Forleo-Neto E, Eagan W, Musser BJ, Davis JD, Turner KC, et al. Phase 2 dose-ranging study of the virologic efficacy and safety of the combination COVID-19 antibodies casirivimab and imdevimab in the outpatient setting. medRxiv 2021.11.09.21265912. https://doi.org/10.1101/2021.11.09.21265912; ITAC (INSIGHT 013) Study Group. Hyperimmune immunoglobulin for hospitalised patients with COVID-19 (ITAC): a double-blind, placebo-controlled, phase 3, randomised trial. Lancet. 2022;399(10324):530-40. https://doi.org/10.1016/S0140-6736(22)00101-5; Nguyen FT, van den Akker T, Lally K, Lam H, Lenskaya V, Liu STH, et al. Transfusion reactions associated with COVID-19 convalescent plasma therapy for SARS-CoV-2. Transfusion. 2021;61(1):78-93. https://doi.org/10.1111/trf.16177; Gupta T, Kannan S, Kalra B, Thakkar P. Systematic review and meta-analysis of randomised controlled trials testing the safety and efficacy of convalescent plasma in the treatment of coronavirus disease 2019 (COVID-19): evidence-base for practise and implications for research. Transfus Med. 2021;31(6):409-20. https://doi.org/10.1111/tme.12803; Bhushan BLS, Wanve S, Koradia P, Bhomia V, Soni P, Chakraborty S, et al. Efficacy and safety of pegylated interferon-a2b in moderate COVID-19: a phase 3, randomized, comparator-controlled, open-label study. Int J Infect Dis. 2021;111:281-7. https://doi.org/10.1016/Liiid.2021.08.044; Xu N, Pan J, Sun L, Zhou C, Huang S, Chen M, et al. Interferon a-2b spray shortened viral shedding time of SARS-CoV-2 Omicron variant: an open prospective cohort study. Front Immunol. 2022;13:967716. https://doi.org/10.3389/fimmu.2022.967716; Tomazini BM, Maia IS, Cavalcanti AB, Berwanger O, Rosa RG, Veiga VC, et al. Effect of dexamethasone on days alive and ventilator-free in patients with moderate or severe acute respiratory distress syndrome and COVID-19: the CoDEX randomized clinical trial. JAMA. 2020;324(13):1307-16. https://doi.org/10.1001/jama.2020.17021; COVID STEROID 2 Trial Group, Munch MW, Myatra SN, Vijayaraghavan BKT, Saseedharan S, Benfield T, et al. Effect of 12 mg vs 6 mg of dexamethasone on the number of days alive without life support in adults with COVID-19 and severe hypoxemia: the COVID STEROID 2 randomized trial. JAMA. 2021;326(18):1807-17. https://doi.org/10.1001/jama.2021.18295; Les I, Loureiro-Amigo J, Capdevila F, Oriol I, Elejalde I, Aranda-Lobo J, et al. Methylprednisolone pulses in hospitalized COVID-19 Patients without respiratory failure: a randomized controlled trial. Front Med (Lausanne). 2022;9:807981. https://doi.org/10.3389/fmed.2022.807981; Dhooria S, Chaudhary S, Sehgal IS, Agarwal R, Arora S, Garg M, et al. High-dose versus low-dose prednisolone in symptomatic patients with post-COVID-19 diffuse parenchymal lung abnormalities: an open-label, randomised trial (the COLDSTER trial). Eur Respir J. 2022;59(2):2102930. https://doi.org/10.1183/13993003.02930-2021; Dequin PF, Heming N, Meziani F, Plantefeve G, Voiriot G, Badie J, et al. Effect of hydrocortisone on 21-day mortality or respiratory support among critically ill patients with COVID-19: a randomized clinical trial. JAMA. 2020;324(13):1298-306. https://doi.org/10.1001/jama.2020.16761; Ramakrishnan S, Nicolau DV Jr, Langford B, Mahdi M, Jeffers H, Mwasuku C, et al. Inhaled budesonide in the treatment of early COVID-19 (STOIC): a phase 2, open-label, randomised controlled trial. Lancet Respir Med. 2021;9(7):763-72. https://doi.org/10.1016/S2213-2600(21)00160-0; Guimaraes PO, Quirk D, Furtado RH, Maia LN, Saraiva JF, Antunes MO, et al. Tofacitinib in patients hospitalized with Covid-19 pneumonia. N Engl J Med. 2021;385(5):406-15. https://doi.org/10.1056/NEJMoa2101643; Jorgensen SCJ, Tse CLY, Burry L, Dresser LD. Baricitinib: a review of pharmacology, safety, and emerging clinical experience in COVID-19. Pharmacotherapy. 2020;40(8):843-56. https://doi.org/10.1002/phar.2438; Biddle K, White J, Sofat N. What is the full potential of baricitinib in treating patients with COVID-19? Expert Rev Clin Immunol. 2022;18(6):545-9. https://doi.org/10.1080/1744666X.2022.2072298; Stone JH, Frigault MJ, Serling-Boyd NJ, Fernandes AD, Harvey L, Foulkes AS, et al. Efficacy of tocilizumab in patients hospitalized with Covid-19. N Engl J Med. 2020;383(24):2333-44. https://doi.org/10.1056/NEJMoa2028836; Perrone F, Piccirillo MC, Ascierto PA, Salvarani C, Parrella R, Marata AM, et al. Tocilizumab for patients with COVID-19 pneumonia. The single-arm TO-CIVID-19 prospective trial. Transl Med. 2020;18(1):405. https://doi.org/10.1186/s12967-020-02573-9; Lescure FX, Honda H, Fowler RA, Lazar JS, Shi G, Wung P, et al. Sarilumab in patients admitted to hospital with severe or critical COVID-19: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir Med. 2021;9(5):522-32. https://doi.org/10.1016/S2213-2600(21)00099-0; Hermine O, Mariette X, Porcher R, Resche-Rigon M, Tharaux PL, Ravaud P; CORIMUNO-19 Collaborative Group. Effect of interleukin-6 receptor antagonists in critically ill adult patients with COVID-19 pneumonia: two randomised controlled trials of the CORIMUNO-19 Collaborative Group. Eur Respir J. 2022;60:2102523. https://doi.org/10.1183/13993003.02523-2021; Cavalli G, De Luca G, Campochiaro C, Della-Torre E, Ripa M, Canetti D, et al. Interleu-kin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020;2(6):e325-e331. https://doi.org/10.1016/S2665-9913(20)30127-2; Kyriazopoulou E, Poulakou G, Milionis H, Metallidis S, Adamis G, Tsiakos K, et al. Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: a double-blind, randomized controlled phase 3 trial. Nat Med. 2021;27(10):1752-60. https://doi.org/10.1038/s41591-021-01499-z; Huet T, Beaussier H, Voisin O, Jouves-homme S, Dauriat G, Lazareth I, et al. Anak-inra for severe forms of COVID-19: a cohort study. Lancet Rheumatol. 2020;2(7):e393-e400. https://doi.org/10.1016/S2665-9913(20)30164-8; Lomakin NV, Bakirov BA, Protsenko DN, Mazurov VI, Musaev GH, Moiseeva OM, et al. The efficacy and safety of levilimab in severely ill COVID-19 patients not requiring mechanical ventilation: results of a multicenter randomized double-blind placebo-controlled phase III CORONA clinical study. Inflamm Res. 2021;70(10-12):1233-46. https://doi.org/10.1007/s00011-021-01507-5; Flumignan RL, Civile VT, Tinoco JDS, Pascoal PI, Areias LL, Matar CF, et al. Anticoagulants for people hospitalised with COVID-19. Cochrane Database Syst Rev. 2022;3(3):CD013739. https://doi.org/10.1002/14651858.CD013739.pub2; Pilia E, Belletti A, Fresilli S, Finco G, Landoni G. Efficacy and safety of heparin full-dose anticoagulation in hospitalized non-critically ill COVID-19 patients: a meta-analysis of multicenter randomized controlled trials. J Thromb Thrombolysis.2022;(54):1-11. https://doi.org/10.1007/s11239-022-02681-x; Lopes RD, de Barros E Silva PGM, Furtado RHM, Macedo AVS, Bronhara B, Damiani LP, et al. Therapeutic versus prophylactic anticoagulation for patients admitted to hospital with COVID-19 and elevated D-dimer concentration (ACTION): an open-label, multicentre, randomised, controlled trial. Lancet. 2021;397(10291):2253-63. https://doi.org/10.1016/S0140-6736(21)01203-4; Marzolini C, Kuritzkes DR, Marra F, Boyle A, Gibbons S, Flexner C, et al. Recommendations for the management of drug-drug interactions between the COVID-19 antiviral nirmatrelvir/ritonavir (paxlovid) and comedications. Clin Pharmacol Ther. 2022:10.1002/cpt.2646.https://doi.org/10.1002/cpt.2646; Agarwal S, Agarwal SK. Lopinavir-ritonavir in SARS-CoV-2 infection and drug-drug interactions with cardioactive medications. Cardiovasc Drugs Ther. 2021;35(3): 427-40. https://doi.org/10.1007/s10557-020-07070-1; Shini Rubina SK, Anuba PA, Swetha B, Kalala KP, Aish-warya PM, Sabarathinam S. Drug interaction risk between cardioprotective drugs and drugs used in treatment of COVID-19: an evidence-based review from six databases. Diabetes Metab Syndr. 2022;16(3):102451. https://doi.org/10.1016Zi.dsx.2022.102451; Niu W, Li S, Jin S, Lin X, Zhang M, Cai W, et al. Investigating the interaction between nifedipine- and ritonavir-containing antiviral regimens: a physiologically based pharmacokinetic/pharmacodynamic analysis. Br J Clin Pharmacol. 2021;87(7):2790-806. https://doi.org/10.1111/bcp.14684; Marzolini C, Kuritzkes DR, Marra F, Boyle A, Gibbons S, Flexner C, et al. Prescribing nirmatrelvir-ri-tonavir: how to recognize and manage drug-drug interactions. Ann Intern Med. 2022;175(5):744-6. https://doi.org/10.7326/M22-0281; Stader F, Kinvig H, Battegay M, Khoo S, Owen A, Siccardi M, Marzolini C. Analysis of clinical drug-drug interaction data to predict magnitudes of uncharacterized interactions between antiretroviral drugs and comedications. Antimicrob Agents Chemother. 2018;62(7): e00717-18. https://doi.org/10.1128/AAC.00717-18; Wanounou M, Caraco Y, Levy RH, Bialer M, Pe-rucca E. Clinically relevant interactions between ritonavir-boosted nirmatrelvir and concomitant antiseizure medications: implications for the management of COVID-19 in patients with epilepsy. Clin Pharmacokinet. 2022;61(9):1219-36. https://doi.org/10.1007/s40262-022-01152-z; Takahashi T, Luzum JA, Nicol MR, Jacobson PA. Pharmacogenomics of COVID-19 therapies. NPJ genomic medicine. 2020;5(1):1-7.https://doi.org/10.1038/s41525-020-00143-y; Fricke-Galindo I, Falfan-Valencia R. Pharmacogenetics approach for the improvement of COVID-19 treatment. Viruses. 2021;13(3):413. https://doi.org/10.3390/v13030413; https://www.risksafety.ru/jour/article/view/340
-
7Academic Journal
Authors: E. S. Bazrova, G. D. Kaminskiy, L. Yu. Ilchenko, A. Маtin, I. G. Nikitin, Е. С. Базрова, Г. Д. Каминский, Л. Ю. Ильченко, А. Матин, И. Г. Никитин
Source: The Russian Archives of Internal Medicine; Том 11, № 5 (2021); 344-358 ; Архивъ внутренней медицины; Том 11, № 5 (2021); 344-358 ; 2411-6564 ; 2226-6704
Subject Terms: коморбидность, drug-drug interactions, pharmacotherapy, polypharmacy, chronic infectious diseases, HIV infection, anti-retroviral therapy, tuberculosis, comorbidity, межлекарственное взаимодействие, фармакотерапия, полипрагмазия, хронические инфекционные болезни, ВИЧ-инфекция, антиретровирусная терапия, туберкулез
File Description: application/pdf
Relation: https://www.medarhive.ru/jour/article/view/1297/1054; https://www.medarhive.ru/jour/article/view/1297/1060; Naranjo CA, Busto U, Sellers EM, et al. A method for estimating the probability of adverse drug reactions. Clin.Pharmacol.Ther. 1981; 30(2): 239-245. doi:10.1038/clpt.1981.154; Rawlins M, Thompson W. Mechanisms of adverse drug reactions. Textbook of adverse drug reactions, ed. Davies D.M. New York. Oxford University Press. 1991; 18–45.; Edwards I.R, Aronson JK. Adverse drug reactions: definitions, diagnosis, and management. Lancet. 2000 Oct 7; 356(9237): 1255-9. doi:10.1016/S0140-6736(00)02799-9.; Drug and Therapeutics Committee Training Course. Session 4. Assessing and Managing Medicine Safety Trainer’s Guide. WHO [Electronic resource]. URL: https://www.who. int/medicines/technical_briefing/tbs/04-PG_Dug-Safety_ final-08.pdf?ua=1#:~:text=Adverse%20drug%20reaction%20 (ADR)%E2%80%94,the%20modification%20of%20 physiological%20function.%E2%80%9D (date of application: 26.05.2021).; Defenitions, WHO [Electronic resource]. URL:https://www.who.int/medicines/areas/quality_safety/safety_ efficacy/trainingcourses/definitions.pdf (date of application: 26.05.2021).; Caviglia G.P, Rizzetto M. Treatment of hepatitis D: an unmet medical need. Clin.Microbiol Infect. 2020; 26(7): 824-827. doi:10.1016/j. cmi.2020.02.031; Кирилюк А.А., Петрище Т.Л. Особенности влияния пищевых продуктов и их компонентов на фармакологическую активность лекарственных средств. Современные проблемы здравоохранения и медицинской статистики. 2017; 1: 51-64.; Дурнев А.Д. Пище-лекарственные взаимодействия: генотоксикологические аспекты. Фармакокинетика и фармакодинамика. 2016; 2: 4-9.; Lietman PS. Chloramphenicol and the neonate--1979 view. Clin. Perinatol. 1979; 6(1): 151-162.; Snider, D.E.Jr. Pyridoxine supplementation during isoniazid therapy. Tubercle. 1980; 61(4): 191-196. doi:10.1016/0041-3879(80)90038-0; Сатырова Т.В. Ацетиляторный статус: современный взгляд на проблему. Проблемы здоровья и экологии. 2009. 4(22): 31-36.; Сычев Д.А., Кукес В.Г., Ташенова А.И. Фармакогенетическое тестирование — новая медицинская технология. Медицинские технологии. Оценка и выбор. 2010; 1(75): 51-58.; Sychev D., Antonov I., Ignatev I., et al. Advantages of pharmacogenetic approach (polimorphisms of genes CYP2C9 and VKORC1 study) to warfarin dosing, against the standard method for Russian patients with contestant form atrial fibrilation. J Basic Clin.Pharmacol 2009; 105: 73-74.; Сычев Д.А., Антонов И.М., Загребин С.В., и др. Алгоритмы дозирования варфарина, основанные на результатах фармакогенетического тестирования: реальная возможность оптимизации фармакотерапии. Рациональная фармакотерапия в кардиологии. 2007; 3(2): 59-66.; Wu L., Ye Z., Liu H., et al. Rapid and highly sensitive quantification of the anti-tuberculosis agents isoniazid, ethambutol, pyrazinamide, rifampicin and rifabutin in human plasma by UPLC-MS/MS. J Pharm Biomed Anal. 2020; 180: 113076. doi:10.1016/j.jpba.2019.11307; Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs. 2002; 62(15): 2169-2183. doi:10.2165/00003495-200262150-0000; Meloni M., Corti N., Müller D., et al. Cure of tuberculosis despite serum concentrations of antituberculosis drugs below published reference ranges. Swiss Med Wkly. 2015; 145:w14223. doi:10.4414/smw.2015.14223; Parikh UM, McCormick K, van Zyl G, et al. Future technologies for monitoring HIV drug resistance and cure. Curr.Opin HIV AIDS. 2017; 12(2):182-189. doi:10.1097/COH.0000000000000344; Lai J.M.L, Yang S.L, Avoi R. Treating More with Less: Effectiveness and Event Outcomes of Antituberculosis Fixed-dose Combination Drug versus Separate-drug Formulation (Ethambutol, Isoniazid, Rifampicin and Pyrazinamide) for Pulmonary Tuberculosis Patients in Real-world Clinical Practice. J Glob.Infect.Dis. 2019; 11(1): 2-6. doi:10.4103/jgid. jgid_50_18; Mukherjee A., Lodha R., Kabra SK. Pharmacokinetics of First-Line Anti-Tubercular Drugs. Indian J Pediatr. 2019; 86(5): 468-478. doi:10.1007/s12098-019-02911-w; Ших Е.В., Исмагилов А.Д., Сизова Ж.М., и др. Безопасность комбинированной фармакотерапии у пациентов пожилого возраста. Ведомости Научного центра экспертизы средств медицинского применения. 2017; 7(1): 47-54.; Шмагель Н.Г., Шмагель К.В., Королевская Л.Б., и др. Системное воспаление и повреждение кишечного барьера при эффективном лечении ВИЧ-инфекции. Клиническая медицина. 2016; 94(1): 47-51. doi:10.18821/0023-2149-2016-94-1-47-; Bandera A., De Benedetto I., Bozzi G, et al. Altered gut microbiome composition in HIV infection: causes, effects and potential intervention. Curr.Opin HIV AIDS. 2018; 13(1): 73-80. doi:10.1097/COH.0000000000000429; Кондратенко С.Н., Стародубцев А.К. Особенности всасывания некоторых лекарственных средств у больных с различными заболеваниями желудочно-кишечного тракта. Биомедицина. 2006; 5: 29-30.; Хасанова Г.М., Урунова Д.М., Ахмеджанова З.И., и др. Поражение желудочно-кишечного тракта при ВИЧ-инфекции. Тихоокеанский Мед. Журн. 2019; 3(77): 24-28. doi:10.17238/PmJ1609- 1175.2019.3.24-28; Iacob S., Iacob D.G. Infectious Threats, the Intestinal Barrier, and Its Trojan Horse: Dysbiosis. Front.Microbiol. 2019; 10: 1676. doi:10.3389/fmicb.2019.01676; Pinto-Cardoso S., Klatt N.R., Reyes-Terán G. Impact of antiretroviral drugs on the microbiome: unknown answers to important questions. Curr.Opin HIV AIDS. 2018 Jan; 13(1): 53-60. doi:10.1097/COH.0000000000000428; The Liverpool HIV-Drug Interactions website by the University of Liverpool. 2021. [Electronic resource]. URL: https://www.hivdruginteractions.org/checker (date of application: 26.05.2021).; The Liverpool Drug Interactions website by the University of Liverpool. 2021. [Electronic resource]. URL: https://www.hepdruginteractions.org/checker (date of application: 26.05.2021).; McMurray J.J.V., Solomon S.D., Inzucchi S.E., et al. Dapagliflozinin Patients with Heart Failure and Reduced Ejection Fraction. NEJM. 2019; 381(21):1995-2008. doi:10.1056/NEJMoa1911303; Guaraldi G., Milic J., Mussini C. et al. Aging with HIV. Curr HIV/AIDS Rep. 2019; 16(6):475-481. doi:10.1007/s11904-019-00464-3; McGettrick P., Barco E.A., Mallon P.W.G. Ageing with HIV. Healthcare (Basel). 2018; 6(1):17. doi:10.3390/healthcare6010017; Lundgren J.D., Battegay M., Behrens G., et al. EACS Executive Committee. European AIDS Clinical Society (EACS) guidelines on the prevention and management of metabolic diseases in HIV. HIV Med. 2008; 9(2):72-81. doi:10.1111/j.1468-1293.2007.00534.x; Матиевская Н.В., Прокопчик Н.И., Цыркунов В.М. Патоморфологические особенности поражения печени при коинфекции туберкулез/ВИЧ. Журнал ГрГМУ. 2012; 1(37): 66-69.; Байкова И.Е., Никитин И.Г. Лекарственное поражение печени. РМЖ. 2009; 1:1; Ситдиков И.И., Москалева А.В., Власова Т.И. Гепатотоксические эффекты антиретровирусной терапии — миф или реальность. Вестник СМУС74. 2017; 419:50-55.; https://www.medarhive.ru/jour/article/view/1297
-
8Academic Journal
Authors: O. G. Gribakina, R. V. Shevchenko, P. O. Bochkov, A. A. Novitskiy, A. A. Litvin, G. B. Kolyvanov, V. P. Zherdev
Source: Фармакокинетика и Фармакодинамика, Vol 0, Iss 2, Pp 36-40 (2019)
Subject Terms: гмл-1, cyp2c9, cyp1a2, лозартан, кофеин, метаболическое отношение, межлекарственное взаимодействие, gml-1, losartane, caffeine, metabolic ratio, drug-drug interaction, Pharmacy and materia medica, RS1-441
File Description: electronic resource
-
9Academic Journal
Authors: E. A. Sokova, I. A. Mazerkina, O. A. Demidova, T. V. Aleksandrova
Source: Регуляторные исследования и экспертиза лекарственных средств, Vol 7, Iss 3, Pp 150-154 (2018)
Subject Terms: беременность, вич-инфекция, антиретровирусный препарат, фармакокинетика, безопасность, эффективность, транспортеры лекарственных средств, межлекарственное взаимодействие, pregnancy, hiv infection, antiretroviral drugs, pharmacokinetics, safety, efficacy, drug transporters, therapeutic drug monitoring, drug-drug interactions, Medicine (General), R5-920
File Description: electronic resource
-
10Academic Journal
Authors: O. V. Muslimova, V. A. Evteev, I. A. Mazerkina, О. В. Муслимова, В. А. Евтеев, И. А. Мазеркина
Contributors: The study reported in this publication was carried out as part of a publicly funded research project No. 056-00003-20-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. AAAA-A18-118021590047-6)., Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00003-20-00 на проведение прикладных научных исследований (номер государственного учета НИР AAAA-A18-118021590047-6).
Source: Safety and Risk of Pharmacotherapy; Том 8, № 4 (2020); 198-204 ; Безопасность и риск фармакотерапии; Том 8, № 4 (2020); 198-204 ; 2619-1164 ; 2312-7821 ; 10.30895/2312-7821-2020-8-4
Subject Terms: межлекарственное взаимодействие, nonsteroidal anti-inflammatory drugs, NSAIDs, nephrotoxicity, interstitial nephritis, drug-drug interaction, нестероидные противовоспалительные средства, НПВС, нефротоксичность, интерстициальный нефрит
File Description: application/pdf
Relation: https://www.risksafety.ru/jour/article/view/192/312; https://www.risksafety.ru/jour/article/downloadSuppFile/192/120; Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: a current perspective. Biochem Pharmacol. 2020;180:114147. https://doi.org/10.1016/j.bcp.2020.114147; Wilcox CM, Cryer B, Triadafilopoulos G. Patterns of use and public perception of over-the-counter pain relievers: focus on nonsteroidal antiinflammatory drugs. J Rheumatol. 2005;32(11):2218–24.; Насонов ЕЛ. Нестероидные противовоспалительные препараты в ревматологии. Лечащий врач. 2006;(2).; Vega J, Goecke H, Méndez GP, Guarda FJ. Nephrotic syndrome and acute tubular necrosis due to meloxicam use. Ren Fail. 2012;34(10):1344–7. https://doi.org/10.3109/0886022X.2012.718953; Swan SK, Rudy DW, Lasseter KC, Ryan CF, Buechel KL, Lambrecht LJ, et al. Effect of cyclooxygenase-2 inhibition on renal function in elderly persons receiving a low-salt diet. A randomized, controlled trial. Ann Intern Med. 2000;133(1):1–9. https://doi.org/10.7326/0003-4819-133-1-200007040-00002; Whelton A, Maurath CJ, Verburg KM, Geis GS. Renal safety and tolerability of celecoxib, a novel cyclooxygenase-2 inhibitor. Am J Ther. 2000;7(3):159–75. https://doi.org/10.1097/00045391-200007030-00004; Radi ZA, Khan KN. Cardio-renal safety of non-steroidal anti-inflammatory drugs. J Toxicol Sci. 2019;44(6):373–91. https://doi.org/10.2131/jts.44.373; Moore N, Pollack C, Butkerait P. Adverse drug reactions and drug-drug interactions with over-the-counter NSAIDs. Ther Clin Risk Manag. 2015;11:1061–75. https://doi.org/10.2147/TCRM.S79135; Pazhayattil GS, Shirali AС. Drug-induced impairment of renal function. Int J Nephrol Renovasc Dis. 2014;7:457–68. https://doi.org/10.2147/IJNRD.S39747; Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81(5):442–8. https://doi.org/10.1038/ki.2011.379; Клинические практические рекомендации KDIGO 2012 по диагностике и лечению хронической болезни почек. Нефрология и диализ. 2017;19(1). Глава 4.4; с. 167–168. https://doi.org/10.28996/1680-4422-2017-1-22-206; Lefebvre C, Hindié J, Zappitelli M, Platt RW, Filion KB. Non-steroidal anti-inflammatory drugs in chronic kidney disease: a systematic review of prescription practices and use in primary care. Clin Kidney J. 2019;13(1):63–71. https://doi.org/10.1093/ckj/sfz054; Musu M, Finco G, Antonucci R, Polati E, Sanna D, Evangelista M, et al. Acute nephrotoxicity of NSAID from the foetus to the adult. Eur Rev Med Pharmacol Sci. 2011;15(12):1461–72.; Chiu HY, Huang HL, Li CH, Chen HA, Yeh CL, Chiu SH, et al. Increased risk of chronic kidney disease in rheumatoid arthritis associated with cardiovascular complications-a national population-based cohort study. PLoS One. 2015;10(9):e0136508. https://doi.org/10.1371/journal.pone.0136508; Sriperumbuduri S, Hiremath S. The case for cautious consumption: NSAIDs in chronic kidney disease. Curr Opin Nephrol Hypertens. 2019;28(2):163–70. https://doi.org/10.1097/MNH.0000000000000473; Heleniak Z, Cieplińska M, Szychliński T, Rychter D, Jagodzińska K, Kłos A, et al. Nonsteroidal anti-inflammatory drug use in patients with chronic kidney disease. J Nephrol. 2017;30(6):781–6. https://doi.org/10.1007/s40620-016-0352-z; Wongrakpanich S, Wongrakpanich A, Melhado K, Rangaswami J. A comprehensive review of non-steroidal antiinflammatory drug use in the elderly. Aging Dis. 2018;9(1):143–50. https://doi.org/10.14336/AD.2017.0306; Lucas GNC, Leitão ACC, Alencar RL, Xavier RMF, Daher EDF, Junior GBS. Pathophysiological aspects of nephropathy caused by non-steroidal anti-inflammatory drugs. J Bras Nefrol. 2019;41(1):124–30. https://doi.org/10.1590/2175-8239-JBN-2018-0107; Curiel RV, Katz JD. Mitigating the cardiovascular and renal effects of NSAIDs. Pain Med. 2013;14(Suppl 1):S23–8. https://doi.org/10.1111/pme.12275; Ivanyuk A, Livio F, Biollaz J, Buclin T. Renal drug transporters and drug interactions. Clin Pharmacokinet. 2017;56(8):825–92. https://doi.org/10.1007/s40262-017-0506-8; Posada MM, Bacon JA, Schneck KB, Tirona RG, Kim RB, Higgins JW, et al. Prediction of renal transporter mediated drug-drug interactions for pemetrexed using physiologically based pharmacokinetic modeling. Drug Metab Dispos. 2015;43(3):325–34. https://doi.org/10.1124/dmd.114.059618; Atta MG, Whelton A. Acute renal papillary necrosis induced by ibuprofen. Am J Ther. 1997;4(1):55–60. https://doi.org/10.1097/00045391-199701000-00011; Akhund L, Quinet RJ, Ishaq S. Celecoxib-related renal papillary necrosis. Arch Intern Med. 2003;163(1):114–5. https://doi.org/10.1001/archinte.163.1.114; Hickey EJ, Raje RR, Reid VE, Gross SM, Ray SD. Diclofenac induced in vivo nephrotoxicity may involve oxidative stress-mediated massive genomic DNA fragmentation and apoptotic cell death. Free Radic Biol Med. 2001;31(2):139–52. https://doi.org/10.1016/s0891-5849(01)00560-3; Yarlagadda SG, Perazella MA. Drug-induced crystal nephropathy: an update. Expert Opin Drug Saf. 2008;7(2):147–58. https://doi.org/10.1517/14740338.7.2.147; Iwaki M, Shimada H, Irino Y, Take M, Egashira S. Inhibition of methotrexate uptake via organic anion transporters OAT1 and OAT3 by glucuronides of nonsteroidal anti-inflammatory drugs. Biol Pharm Bull. 2017;40(6):926–31. https://doi.org/10.1248/bpb.b16-00970; Uwai Y, Taniguchi R, Motohashi H, Saito H, Okuda M, Inui K. Methotrexate-loxoprofen interaction: involvement of human organic anion transporters hOAT1 and hOAT3. Drug Metab Pharmacokinet. 2004;19(5):369–74. https://doi.org/10.2133/dmpk.19.369; Leowattana W. Antiviral drugs and acute kidney injury (AKI). Infect Disord Drug Targets. 2019;19(4):375–82. https://doi.org/10.2174/1871526519666190617154137; Izzedine H, Launay-Vacher V, Deray G. Antiviral drug-induced nephrotoxicity. Am J Kidney Dis. 2005;45(5):804–17. https://doi.org/10.1053/j.ajkd.2005.02.010; Mulato AS, Ho ES, Cihlar T. Nonsteroidal anti-inflammatory drugs efficiently reduce the transport and cytotoxicity of adefovir mediated by the human renal organic anion transporter 1. J Pharmacol Exp Ther. 2000;295(1):10–5.; George B, You D, Joy MS, Aleksunes LM. Xenobiotic transporters and kidney injury. Adv Drug Deliv Rev. 2017;116:73–91. https://doi.org/10.1016/j.addr.2017.01.005; Babu E, Takeda M, Narikawa S, Kobayashi Y, Enomoto A, Enomoto A, Tojo A, et al. Role of human organic anion transporter 4 in the transport of ochratoxin A. Biochim Biophys Acta. 2002;1590(1–3):64–75. https://doi.org/10.1016/s0167-4889(02)00187-8; Baudrimont I, Murn M, Betbeder AM, Guilcher J, Creppy EE. Effect of piroxicam on the nephrotoxicity induced by ochratoxin A in rats. Toxicology. 1995;95(1–3):147–54. https://doi.org/10.1016/0300-483x(94)02899-6; Obrecht-Pfumio S, Gross Y, Pfohl-Leszkowicz A, Dirheimer G. Protection by indomethacin and aspirin against genotoxicity of ochratoxin A, particularly in the urinary bladder and kidney. Arch Toxicol. 1996;70(3–4):244–8. https://doi.org/10.1007/s002040050267; Vanholder R, Baurmeister U, Brunet P, Cohen G, Glorieux G, Jankowski J, European Uremic Toxin Work Group. A bench to bedside view of uremic toxins. J Am Soc Nephrol. 2008;19(5):863–70. https://doi.org/10.1681/ASN.2007121377; Wu W, Bush K, Nigam SK. Key role for the organic anion transporters, OAT1 and OAT3, in the in vivo handling of uremic toxins and solutes. Sci Rep. 2017;7(1):4939. https://doi.org/10.1038/s41598-017-04949-2; Lekawanvijit S, Krum H. Cardiorenal syndrome: role of protein-bound uremictoxins. J Ren Nutr. 2015;25(2):149–54. https://doi.org/10.1053/j.jrn.2014.10.009; Peng YH, Sweet DH, Lin SP, Yu CP, Chao PD L, Hou YC. Green tea inhibited the elimination of nephro-cardiovascular toxins and deteriorated the renal function in rats with renal failure. Sci Rep. 2015;5:16226. https://doi.org/10.1038/srep16226; Лукичев БГ, Подгаецкая ОЮ, Карунная АВ, Румянцев АШ. Индоксил сульфат при хронической болезни почек. Нефрология. 2014;18(1):25–32.; Yu CP, Sweet DH, Peng YH, Hsieh YW, Chao PL, Hou YC, Lin SP. Effects of nonsteroidal anti-inflammatory drugs on the renal excretion of indoxyl sulfate, a nephro-cardiovascular toxin, in rats. Eur J Pharm Sci. 2017;101:66–70. https://doi.org/10.1016/j.ejps.2017.02.007; Дударева ЛА, Батюшин ММ. Хронический тубулоинтерстициальный нефрит, индуцированный приемом нестероидных противовоспалительных препаратов: эпидемиологические особенности и возможности ранней диагностики. Нефрология. 2013;17(5):22–6.; Nast CC. Medication-induced interstitial nephritis in the 21st century. Adv Chronic Kidney Dis. 2017;24(2):72–9. https://doi.org/10.1053/j.ackd.2016.11.016; Hosohata K. Role of oxidative stress in drug-induced kidney injury. Int J Mol Sci. 2016;17(11):1826. https://doi.org/10.3390/ijms17111826; Paueksakon P, Fogo AB. Drug-induced nephropathies. Histopathology. 2017;70(1):94–108. https://doi.org/10.1111/his.13064; Kinoshita Y, Ishimura N, Ishihara S. Advantages and disadvantages of long-term proton pump inhibitor use. J Neurogastroenterol Motil. 2018;24(2):182–96. https://doi.org/10.5056/jnm18001; Simpson IJ, Marshall MR, Pilmore H, Manley P, Williams L, Thein H, Voss D. Proton pump inhibitors and acute interstitial nephritis: report and analysis of 15 cases. Nephrology (Carlton). 2006;11(5):381–5. https://doi.org/10.1111/j.1440-1797.2006.00651.x; Valluri A, Hetherington L, Mcquarrie E, Fleming S, Kipgen D, Geddes CC, et al. Acute tubulointerstitial nephritis in Scotland. QJM. 2015;108(7):527–32. https://doi.org/10.1093/qjmed/hcu236; Raghavan R, Eknoyan G. Acute interstitial nephritis—a reappraisal and update. Clin Nephrol. 2014;82(3):149–62.; Zhou Y, Yang Y, Wang P, Wei M, Ma Y, Wu X. Adefovir accumulation and nephrotoxicity in renal interstitium: Role of organic anion transporters of kidney. Life Sci. 2019;224:41–50. https://doi.org/10.1016/j.lfs.2019.03.042; https://www.risksafety.ru/jour/article/view/192
-
11Academic Journal
Authors: I. A. Mazerkina, V. A. Evteev, A. B. Prokofiev, O. V. Muslimova, E. Yu. Demchenkova, И. А. Мазеркина, В. А. Евтеев, А. Б. Прокофьев, О. В. Муслимова, Е. Ю. Демченкова
Contributors: The study reported in this publication was carried out as part of a publicly funded research project No. 056-00003-20-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. AAAA-A18-118021590047-6)., Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00003-20-00 на проведение прикладных научных исследований (номер государственного учета НИР AAAA-A18-118021590047-6).
Source: Regulatory Research and Medicine Evaluation; Том 10, № 3 (2020); 177-183 ; Регуляторные исследования и экспертиза лекарственных средств; Том 10, № 3 (2020); 177-183 ; 3034-3453 ; 3034-3062
Subject Terms: прогнозирование межлекарственного взаимодействия, β-lactam antibiotics, drug-drug interaction, inhibition of organic anion transporters, prediction of drug-drug interaction, β-лактамные антибиотики, межлекарственное взаимодействие, ингибирование транспортеров органических анионов
File Description: application/pdf
Relation: https://www.vedomostincesmp.ru/jour/article/view/308/405; Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KLR, Chu X, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–36. https://doi.org/10.1038/nrd3028; Ueo H, Motohashi H, Katsura T, Inui K. Human organic anion transporter hOAT3 is a potent transporter of cephalosporin antibiotics, in comparison with hOAT1. Biochem Pharmacol. 2005;70(7):1104–13. https://doi.org/10.1016/j.bcp.2005.06.024; Takeda M, Babu E, Narikawa S, Endou H. Interaction of human organic anion transporters with various cephalosporin antibiotics. Eur J Pharmacol. 2002;438(3):137–42. https://doi.org/10.1016/s00142999(02)01306-7; Vanwert AL, Bailey RM, Sweet DH. Organic anion transporter 3 (Oat3/ Slc22a8) knockout mice exhibit altered clearance and distribution of penicillin G. Am J Physiol Renal Physiol. 2007;293(4):F1332–41. https://doi.org/10.1152/ajprenal.00319.2007; Khamdang S, Takeda M, Noshiro R, Narikawa S, Enomoto A, Anzai N, et al. Interactions of human organic anion transporters and human organic cation transporters with nonsteroidal anti-inflammatory drugs. J Pharmacol Exp Ther. 2002;303(2):534–9. https://doi.org/10.1124/jpet.102.037580; Apiwattanakul N, Sekine T, Chairoungdua A, Kanai Y, Nakajima N, Sophasan S, et al. Transport properties of nonsteroidal anti-inflammatory drugs by organic anion transporter 1 expressed in Xenopus laevis oocytes. Mol Pharmacol. 1999;55(5):847–54. PMID: 10220563; Nozaki Y, Kusuhara H, Kondo T, Iwaki M, Shiroyanagi Y, Nakayama H, et al. Species difference in the inhibitory effect of nonsteroidal anti-inflammatory drugs on the uptake ofmethotrexate by human kidney slices. J Pharmacol Exp Ther. 2007;322(3):1162–70. https://doi.org/10.1124/jpet.107.121491; Sato M, Iwanaga T, Mamada H, Ogihara T, Yabuuchi H, Maeda T, et al. Involvement of uric acid transporters in alteration of serum uric acid level by angiotensin II receptor blockers. Pharm Res. 2008;25(3):639–46. https://doi.org/10.1007/s11095-007-9401-6; Takeda M, Khamdang S, Narikawa S, Kimura H, Hosoyamada M, Cha SH, et al. Characterization of methotrexate transport and its drug interactions with human organic anion transporters. J Pharmacol Exp Ther. 2002;302(2):666–71. https://doi.org/10.1124/jpet.102.034330; Cha SH, Sekine T, Fukushima JI, Kanai Y, Kobayashi Y, Goya T, et al. Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol Pharmacol. 2001;59(5):1277–86. https://doi.org/10.1124/mol.59.5.1277; Uwai Y, Ida H, Tsuji Y, Katsura T, Inui K. Renal transport of adefovir, cidofovir, and tenofovir by SLC22A family members (hOAT1, hOAT3, and hOCT2). Pharm Res. 2007;24(4):811–5. https://doi.org/10.1007/s11095-006-9196-x; Truong DM, Kaler G, Khandelwal A, Swaan PW, Nigam SK. Multi-level analysis of organic anion transporters 1, 3, and 6 reveals major differences in structural determinants of antiviral discrimination. J Biol Chem. 2008;283(13):8654–63. https://doi.org/10.1074/jbc.M708615200; Takeda M, Khamdang S, Narikawa S, Kimura H, Kobayashi Y, Yamamoto T. Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J Pharmacol Exp Ther. 2002;300(3):918–24. https://doi.org/10.1124/jpet.300.3.918; Ahn S-Y, Bhatnagar V. Update on the molecular physiology of organic anion transporters. Curr Opin Nephrol Hypertens. 2008;17(5):499–505. https://doi.org/10.1097/MNH.0b013e32830b5d5d; Srimaroeng C, Perry JL, Pritchard JB. Physiology, structure, and regulation of the cloned organic anion transporters. Xenobiotica. 2008;38(7–8):889–935. https://doi.org/10.1080/00498250801927435; Burckhardt BC, Burckhardt G. Transport of organic anions across the basolateral membrane of proximal tubule cells. Rev Physiol Biochem Pharmacol. 2003;146:95–158. https://doi.org/10.1007/s10254-0020003-8; El-Sheikh AAK, Masereeuw R, Russel FGM. Mechanisms of renal anionic drug transport. Eur J Pharmacol. 2008;585(2–3):245–55. https://doi.org/10.1016/j.ejphar.2008.02.085; Бреслер ВМ, Наточин ЮВ. Угнетение диуретиками секреции флюоресцина в проксимальном канальце почки лягушки (прижизненное исследование методом контактной микроскопии). Бюллетень экспериментальной биологии и медицины. 1973;75(6):67–9.; Beyer KH, Flippin H, Verwey WF, Woodward R. The effect of para-aminohippuric acid on plasma concentration of penicillin in man. JAMA. 1944;126(16):1007–9. https://doi.org/10.1001/jama.1944.02850510015003; Rammelkamp C, Bradley S. Excretion of penicillin in man. Proc Soc Exper Biol & Med. 1943;53:30. https://doi.org/10.3181/0037972753-14171; Beyer KH, Miller AK, Russo HF, Patch E, Verwey WF. The inhibitory effect of caronamide on the renal elimination of penicillin. Am J Physiol. 1947;149(2):355–68. https://doi.org/10.1152/ajplegacy.1947.149.2.355; Beyer KH, Russo HF, Tillson EK, Miller AK, Verwey WF, et al. ‘Benemid,’ p-(di-n-propylsulfamyl)-benzoic acid; its renal affinity and its elimination. Am J Physiol. 1951;166(3):625–40. https://doi.org/10.1152/ajplegacy.1951.166.3.625; Lopez-Nieto CE, You G, Barros EJG, Beier DR, Nigam SK. Molecular cloning and characterization of a novel transport protein with very high expression in the kidney. J Am Soc Nephrol. 1996;7:1301.; Goa KL, Noble S. Panipenem/betamipron. Drugs. 2003;63(9):91325; discussion 926. https://doi.org/10.2165/00003495-20036309000005; Payne LE, Gagnon DJ, Riker RR, Seder DB, Glisic EK, Morris JG, et al. Cefepime-induced neurotoxicity: a systematic review. Crit Care. 2017;21(1):276. https://doi.org/10.1186/s13054-017-1856-1; Wallace KL. Antibiotic-induced convulsions. Crit Care Clin. 1997;13(4),741–62. https://doi.org/10.1016/s0749-0704(05)70367-5; Miller AD, Ball AM, Bookstaver PB, Dornblaser EK, Bennett CL. Epileptogenic potential of carbapenem agents: mechanism of action, seizure rates, and clinical considerations. Pharmacotherapy. 2011;31(4):408–23. https://doi.org/10.1592/phco.31.4.408; Tune BM. Nephrotoxicity of beta-lactam antibiotics: mechanisms and strategies for prevention. Pediatr Nephrol. 1997;11(6):768–72. https://doi.org/10.1007/s004670050386; Imani S, Buscher H, Marriott D, Gentili S, Sandaradura I. Too much of a good thing: a retrospective study of β-lactam concentration–toxicity relationships. J Antimicrob Chemother. 2017;72(10):2891–7. https://doi.org/10.1093/jac/dkx209; Hirouchi Y, Naganuma H, Kawahara Y, Okada R, Kamiya A, Inui K, Hori R. Preventive effect of betamipron on nephrotoxicity and uptake of carbapenems in rabbit renal cortex. Jpn J Pharmacol. 1994;66(1):1–6. https://doi.org/10.1254/jjp.66.1; Kim SH, Kim WB, Kwon JW, Lee MG. Nephroprotective effect of betamipron on a new carbapenem, in rabbits. Biopharm Drug Dispos. 1999;20(3):125–9. https://doi.org/10.1002/(sici)1099-081x(199904)20:33.0.co;2-v; Huo X, Meng Q, Wang C, Zhu Y, Liu Z, Ma X. Cilastatin protects against imipenem-induced nephrotoxicity via inhibition of renal organic anion transporters (OATs). Acta Pharm Sin B. 2019;9(5):986–96. https://doi.org/10.1016/j.apsb.2019.02.005; Yamazaki I, Shirakawa Y, Fugono T. Comparison of the renal excretory mechanisms of cefmenoxime and other cephalosporins: effect of para-aminohippurate on renal clearance and intrarenal distribution of cephalosporins in rabbits. J Antibiot (Tokyo). 1981;34(11):1476–85. https://doi.org/10.7164/antibiotics.34.1476; Saitoh H, Oda M, Gyotoku T, Kobayashi M, Fujisaki H, Sekikawa H. A beneficial interaction between imipenem and piperacillin possibly through their renal excretory process. Biol Pharm Bull. 2006;29(12):2519–22. https://doi.org/10.1248/bpb.29.2519; Jung KY, Takeda M, Shimoda M, Narikawa S, Tojo A, Kim DK, et al. Involvement of rat organic anion transporter 3 (rOAT3) in cephaloridine-induced nephrotoxicity: in comparison with rOAT1. Life Sci. 2002;70(16):1861–74. https://doi.org/10.1016/s00243205(02)01500-x; Jariyawat S, Sekine T, Takeda M, Apiwattanakul N, Kanai Y, Sophasan S, et al. The interaction and transport of beta-lactam antibiotics with the cloned rat renal organic anion transporter 1. J Pharmacol Exp Ther. 1999;290(2):672–7. PMID: 10411577; Takeda M, Narikawa S, Hosoyamada M, Cha SH, Sekine T, Endou H. Characterization of organic anion transport inhibitors using cells stably expressing human organic anion transporters. Eur J Pharmacol. 2001;419(2–3):113–20. https://doi.org/10.1016/s00142999(01)00962-1; Deguchi T, Kusuhara H, Takadate A, Endou H, Otagiri M, Sugiyama Y. Characterization of uremic toxin transport by organic anion transporters in the kidney. Kidney Int. 2004;65(1):162–74. https://doi.org/10.1111/j.1523-1755.2004.00354.x; Shibayama T, Sugiyama D, Kamiyama E, Tokui T, Hirota T, Ikeda T. Characterization of CS-023 (RO4908463), a novel parenteral carbapenem antibiotic, and meropenem as substrates of human renal transporters. Drug Metab Pharmacokinet. 2007;22(1):41–7. https://doi.org/10.2133/dmpk.22.41; Ivanyuk A, Livio F, Biollaz J, Buclin T. Renal drug transporters and drug interactions. Clin Pharmacokinet. 2017;56(8):825–92. https://doi.org/10.1007/s40262-017-0506-8; Ye J, Liu Q, Wang C, Meng Q, Sun H, Peng J, et al. Benzylpenicillin inhibits the renal excretion of acyclovir by OAT1 and OAT3. Pharmacol Rep. 2013;65(2):505–12. https://doi.org/10.1016/s17341140(13)71026-0; Chen J, Terada T, Ogasawara K, Katsura T, Inui K. Adaptive responses of renal organic anion transporter 3 (OAT3) during cholestasis. Am J Physiol Renal Physiol. 2008;295(1):F247–52. https://doi.org/10.1152/ajprenal.00139.2008; Katsube T, Miyazaki S, Narukawa Y, Hernandez-Illas M, Wajima T. Drug-drug interaction of cefiderocol, a siderophore cephalosporin, via human drug transporters. Eur J Clin Pharmacol. 2018;74(7):931–8. https://doi.org/10.1007/s00228-018-2458-9; Fleck C, Hilger R, Jurkutat S, Karge E, Merkel U, Schimske A, Schubert J. Ex vivo stimulation of renal transport of the cytostatic drugs methotrexate, cisplatin, topotecan (Hycamtin) and raltitrexed (Tomudex) by dexamethasone, T3 and EGF in intact human and rat kidney tissue and in human renal cell carcinoma. Urol Res. 2002;30(4):256–62. https://doi.org/10.1007/s00240-002-0265-2; https://www.vedomostincesmp.ru/jour/article/view/308
-
12Academic Journal
Authors: O. G. Gribakina, G. B. Kolyvanov, A. A. Litvin, A. O. Viglinskaya, V. P. Zherdev, О. Г. Грибакина, Г. Б. Колыванов, А. А. Литвин, А. О. Виглинская, Владимир Павлович Жердев
Source: Pharmacokinetics and Pharmacodynamics; № 1 (2016); 21-32 ; Фармакокинетика и Фармакодинамика; № 1 (2016); 21-32 ; 2686-8830 ; 2587-7836
Subject Terms: fluconazole, CYP2C9, лозартан, фармакокинетика, метаболизм, межлекарственное взаимодействие, афобазол, рифампицин, флуконазол, cytochrome P450, losartan, pharmacokinetics, metabolism, drug-drug interaction, afobazole, rifampicin
File Description: application/pdf
Relation: https://www.pharmacokinetica.ru/jour/article/view/157/157; Грибакина О.Г., Колыванов Г.Б., Литвин А.А., и др. Фармакокинетическое взаимодействие афобазола с лозартаном - препаратом-субстратом цитохрома CYP2C9 в эксперименте // Экспер. и клин. фармакол. 2013; 76: 3: 35-37.; Грибакина О.Г., Колыванов Г.Б., Литвин А.А., и др. Оценка фармакокинетического взаимодействия афобазола с препаратом-субстратом изофермента цитохрома Р450 CYP2C9 // Экспер. и клин. фармакол. 2015; 78: 12: 18-22.; Новицкая Я.Г., Грибакина О.Г., Литвин А.А. и др. In vivo оценка метаболического отношения маркеров CYP2C9 и CYP1A2 после введения афобазола в сравнении со стандартными индукторами и ингибиторами цитохромов // Экспериментальная и клиническая фармакология. 2013; 76: 11: 36-39.; Пронина, О.Г. (Грибакина), Колыванов Г.Б., Виглинская А.О., Жердев В.П. Количественное определение лозартана и его метаболита в моче крыс // Вестник Московского Университета. Сер. 2. Химия. 2012; 53: 2: 194-197.; Сычёв Д.А., Аникин Г.С., Александрова Е.К., и др. Фармакокинетическое взаимодействие лекарственных средств с фруктовыми соками. Клиническое значение // Клиническая фармакология и фармакоэкономика. 2008; 1: 2: 57-67.; Agrawa A.K., Shapiro B.H. Gender, age and dose effects of neonatally administered aspartate on the sexually dimorphic plasma growth hormone profiles regulating expression of the rat sex-dependent hepatic CYP isoforms // Drug Metab. Dispos. 1997; 25: 11: 1249-1256.; Andersson T., Regardh C.G., Lou Y.C. et al. Polymorphic hydroxylation of S-mephenytoin and omeprazole metabolism in Caucasian and Chinese subjects // Pharmacogenetics. 1992; 2: 1: 25-31.; Anzenbacher P., Anzenbacherov E. Cytochromes P450 and metabolism of xenobiotics // CMLS, Cell. Mol. Life Sci. 2001; 58: 5 - 6: 737-747.; Archakov A.I., Bachmanova G.I. Cytochrome P450 and active oxygen // London-New York-Philadelphia: Taylor & Francis, 1990; 435.; Brockmöller J., Kirchheiner J., Meisel C., Roots I. Pharmacogenetic diagnostics ofcytochrome P450 polymorphisms in clinical drug development and in drug treatment // Pharmacogenomics. 2000; 1: 2: 125-51.; Cao X., Gibbs S., Fang L., et al. Why is it challenging to predict intestinal drug absorption and oral bioavailabilityin human using rat model // Pharm Res. 2006; 23: 8: 1675-1686.; Chang G.W., Kam P.C. The physiological roles of cytochrome P450 isoenzymes // Anaesthesia. 1999; 54: 1: 42.; Chen T.L., Lin C.J., Liu C.C. Cytochrome P-450-dependent monooxygenase system and anesthetics // Acta Anaesthesiol. Sin. 1995; 33: 3: 185-194.; Choi D.H., Li C., Choi J.S. Effects of myricetin, an antioxidant, on the pharmacokinetics of losartan and its active metabolite, EXP-3174, in rats: possible role of cytochrome P450 3A4, cytochrome P450 2C9 and P-glycoprotein inhibition by myricetin // Journal of Pharmacy and Pharmacology. 2010; 62: 7: 908-914.; Christensen L.K., Hansen J.M., Kristensen M. Sulphaphenazole-induced hypoglycaemic attacks in tolbutamide-treated diabetics // Lancet. 1963; 2: 7321: 1298-1301.; Danielson P.B. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans // Curr. Drug Metab. 2002; 3: 6: 561-597.; DeLozier T.C., Lee S.C., Coulter S.J., et al. Functional characterization of novel allelic variants of CYP2C9 recently discovered in southeast // J Pharmacol Exp Ther. 2005; 315: 3: 1085-90.; Dickstein K., Timmermans P., Segal R. Losartan: a selective angiotensin II type 1 (AT1) receptor antagonist for the treatment of heart failure // Expert Opin Investig Drugs. 1998; 7: 11: 1897-1914.; Doherty M.M., Charman W.N. The mucosa of the small intestine: how clinically relevant as an organ of drug metabolism // Clin. Pharmacokinet. 2002; 41: 4: 235-253.; Donner K.M., Hiltunen T.P., Suonsyrjä et al. CYP2C9 genotype modifies activity of the renin-angiotensin-aldosterone system in hypertensive men // J Hypertens. 2009; 27: 10: 2001-2009.; Ferguson S.S., LeCluyse. E.L., Negishi M. et al. Regulation of human CYP2C9 by the constitutive androstane receptor: discovery of a new distal binding site // Mol Pharmacol. 2002; 62: 3: 737-746.; Ferguson S.S., Chen Y., LeCluyse E.L. et al. Human CYP2C8 is transcriptionally regulated by the nuclear receptors constitutive androstane receptor, pregnane X receptor, glucocorticoid receptor, and hepatic nuclear factor 4alpha // Mol Pharmacol. 2005; 68: 3: 747-757.; Fischer M., Knoll M., Sirim D. The Cytochrome P450 Engineering Database: A Navigation and Prediction Tool for the Cytochrome P450 Protein Family // Bioinformatics. 2007; 23: 15: 2015-2017.; Frye R.F. Probing the world of cytochrome P450 enzymes // Mol Interv. 2004; 4: 3: 157-162.; García-Martín E., Martinez C., Ladero J., Agúndez J. Interethnic and intraethnicvariability of CYP2C8 and CYP2C9 polymorphisms in healthy individuals // Mol Diagn Ther. 2006; 10: 1: 29-40.; Gonzalez F.J., Matsunaga T., Nagata K. Debrisoquine 4-hydroxylase: characterization of a new P-450 gene subfamily, regulation, chromosome mapping, and molecular analysis of the DA rat polymorphism // DNA. 1987; 6: 2: 149-161.; Gorski J.C., Huang S.M., Pinto A., et al. The effect of echinacea (Echinacea purpurea root) on cytochrome P450 activity in vivo // Clin Pharmacol Ther. 2004; 75: 1: 89-100.; Grant P. Warfarin and cranberry juice: an interaction // J Heart Valve Dis. 2004; 13: 1: 25-26.; Guengerich, F.P. Human cytochrome P450 enzymes. Cytochrome P450: Structure, Mechanism, and Biochemistry // Kluwer Academic/ Plenum Press, 2005; 377-531.; Gurley J., Gardner S.F., Hubbard_ M.A. et al. Cytochrome P450 phenotypic ratio for predicting herb-drug interaction in humans // Clinical pharmacology and therapeuticus. 2002; 72: 3: 276-287.; Han Y., Guo D., Chen Y., et al. Effect of silymarin on the pharmacokinetics of losartan and its active metabolite E-3174 in healthy Chinese volunteers // Eur J Clin Pharmacol. 2009; 65: 6: 585-91.; He S.M., Zhou Z.W., Li X.T. et al. Clinical drugs undergoing polymorphic metabolism by human cytochrome P450 2C9 and the implication in drug development // Curr Med Chem. 2011; 18: 5: 667-713.; Hidaka M., Nagata M., Kawano Y. et al. Inhibitory effects of fruit juices on cytochrome P450 2C9 activity in vitro // Biosci Biotechnol Biochem. 2008; 72: 2: 406-11.; Ingelman-Sundberg, M, Daly A.K. and Nebert D.W. Home Page of the Human CytochromeP450 (CYP) Allele Nomenclature Committee, Available at. 2008. URL: http://www.cypalleles.ki.se/.; Kazierad D.J., Martin D.E., Blum R.A. et al. Effect of fluconazole on the pharmacokinetics of eprosartan and losartan in healthy male volunteers // Clin Pharmacol Ther. 1997; 62: 4: 417-25.; Klose T.S., Blaisdell J.A., Goldstein J.A. Gene structure of CYP2C8 and extrahepatic distribution of the human CYP2Cs // J Biochem Mol Toxicol. 1999; 13: 6: 289-295.; Ko J., Desta Z., Soukhova N. et al. In vitro inhibition of the cytochrome P450 (CYP450) system by the antiplatelet drug ticlopidine: potent effect on CYP2C19 and CYP2D6 // Br J Clin Pharmacol. 2000; 49: 4: 343-351.; Kobayashi M., Takagi M., Fukumoto K. et al. The effect of bucolome, a CYP2C9 inhibitor, on the pharmacokinetics of losartan // Drug Metab Pharmacokinet. 2008; 23: 2: 115-119.; Komoroski B.J., Zhang S., Cai H. et al. Induction and inhibition of cytochromes P450 by the St. John’s wort constituent hyperforin in human hepatocyte cultures // Drug Metab Dispos. 2004; 32: 5: 512-518.; Kumar V., Brundage R.C., Oetting W.S. et al. Differential genotype dependent inhibition of CYP2C9 in humans // Drug Metab Dispos. 2008; 36: 1242-1248.; Lapple F., O. von Richter, Fromm M.F. et al. Differential expression and function of CYP2C isoforms in human intestine and liver // Pharmacogenetics. 2003; 13: 9: 565-575.; Lee C.R., Goldstein J., Pieper J. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human // Pharmacogenetics. 2002; 12: 3: 251-263.; Lewis D. Cytochrome P450. Substrate specificity and metabolism.In: Cytochromes P450: structure, function, and mechanism - Bristol: Taylor & Francis. 1996; 115-167.; Lewis D.F. Modi S., Dickins M. Structure-activity relationship for human cytochrome P450 substrates and inhibitors // Drug Metab Rev. 2002; 34; 1-2: 69-82.; Liu Y., Li X., Yang C. et al. UPLC-MS-MS method for simultaneous determination of caffeine, tolbutamide, metoprolol, and dapsone in rat plasma and its application to cytochrome P450 activity study in rats // J Chromatogr Sci. 2013; 51: 1: 26-32.; Lo M.W., Goldberg M.R., McCrea J.B. et al. Pharmacokinetics of losartan, an angiotensin II receptor antagonist, and its active metabolite EXP3174 in humans // Clin Pharmacol Ther. 1995; 58: 6: 641-649.; Lofgren S., Baldwin R.M., Hiratsuka M. et al. Generation of mice transgenic for human CYP2C18 and CYP2C19: characterization of the sexually dimorphic gene and enzyme expression // Drug Metab Dispos. 2008; 36: 5: 955-962.; Matsunaga T., Ohmori S., Ishida M. et al. Molecular cloning of monkey CYP2C43 cDNA and expression in yeast // Drug Metab Pharmacokinet. 2002; 17: 2: 117-124.; Meadowcroft A.M., Williamson K.M., Patterson J.H. et al. The effects of fluvastatin, a CYP2C9 inhibitor, on losartan pharmacokinetics in healthy volunteers // J Clin Pharmacol. 1999; 39: 4: 418-424.; Meyer U.A., Skoda R.C., Zanger U.M. The genetic polymorphism of debrisoquine/sparteine metabolism-molecular mechanisms // Pharmacol Ther. 1990; 46: 2: 297-308.; Mergenhagen K.A., Sherman O. Elevated International Normalized Ratio after concurrent ingestion of cranberry sauce and warfarin // Am J Health Syst Pharm. 2008; 65: 22: 2113-2116.; Morgan E.T. Hormonal and developmental regulation of expression of the hepatic microsomal steroid 16 alpha-hydroxylase cytochrome P-450 apoprotein in the rat [Text] / E.T. Morgan, C. MacGeoch, J.A. Gustafsson // J Biol Chem. 1985; 260: 22: 11895-8.; Mugford C.A., Kedderis G.L. Sex-dependent metabolism of xenobiotics // Drug Metab Rev. 1998; 30: 3: 441-498.; Munafo A., Christen Y., Nussberger J. et al. Drug concentration response relationships in normal volunteers after oral administration oflosartan, an angiotensin I1 receptor antagonist // Clin Pharmacol Ther. 1992; 51: 5: 513-521.; Nagata M., Hidaka M., Sekiya H. Effects of Pomegranate Juice on Human Cytochrome P450 2C9 and Tolbutamide Pharmacokinetics in // Drug metabolism and disposition. 2007; 35: 2: 302-305.; Nebert D.W., Gonzalez F.J. P-450 Genes: structure, evolution, and regulation // Ann. Rev. Biochem. 1987; 56: 945-993.; Nedelcheva V, Gut I. P450 in the rat and man: methods of investigation, substratespecificities and relevance to cancer // Xenobiotica. 1994; 24: 12: 1151-1175.; Nelson D.R., Kamataki T., Waxman D.J. et al. The P450 superfamily: update on newsequences, gene mapping, accession numbers, early trivial names of enzymes and nomenclature // DNA and Cell Biology. 1993; 12: 1: 1-51.; Pascussi J.M., Gerbal-Chaloin S., Drocourt L. et al. The expression of CYP2B6, CYP2C9 and CYP3A4 genes: a tangle of networks of nuclear and steroid receptors // Biochim Biophys Acta. 2003; 1619: 3: 243-253.; Pham D.Q., Pham A.Q. Interaction potential between cranberry juice and warfarin //Am J Health Syst Pharm. 2007; 64: 5: 490-494.; Porter T.D., Coon M.J. Cytochrome P-450 multiplicity of isoforms, substrates, and catalytic and regulatory mechanisms // J. Biol. Chem. 1991; 266: 21: 13469-13472.; Rahman A., Korzekwa R., Grogan J. et al. Selective biotransformation of taxol to 6 alpha-hydroxytaxol by human cytochrome P450 2C8 // Cancer Res. 1994; 54: 21: 5543-5546.; Reid J., Kuffel M.J., Ruben S.L. et al. Rat and human liver cytochrome P-450 isoform metabolism of ecteinascidin743 does not predict gender-dependent toxicity in humans // Clin Cancer Res. 2002; 8: 9: 2952-2962.; Romkes M.B., Faletto J.A., Blaisdell J.L. et al. Cloning and expression of complementary DNAs for multiple members of the human cytochrome P450IIC subfamily // Biochemistry. 1991; 30: 13: 3247-3255. актуальный обзор; Sekino K., Kubota T., Okada Y. et al. Effect of the single CYP2C9*3 allele on pharmacokinetics and pharmacodynamics of losartan in healthy Japanese subjects // Eur J Clin Pharmacol. 2003; 59: 8-9: 589-592.; Schwarz U.I. Clinical relevance of genetic polymorphisms in the human CYP2C9 gene // Eur J Clin Invest. 2003; 33: 2: 23-30.; Shimada T., Yamazaki M., Mimura Y. et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians // J. Pharmacol Exp Ther. 1994; 270: 1: 414-423.; Sica D.A., Gehr T.W., Ghosh S. Clinical pharmacokinetics of losartan// Clin Pharmacokinet. 2005; 44: 8: 797-814.; Soldner A. HPLC assays to simultaneously determine the angiotensin-AT1 antagonist losartan as well as its main and active metabolite EXP 3174 in biological material of human and rats [Text] / A. Soldner, H. Spahn-Langguth, E. Mutschler // J Pharm Biomed Anal. 1998; 16: 5: 863-873.; Stearns R.A., Chakravarty P.K., Chen R., Chiu S.H. Biotransformation of losartan to its active carboxylic acid metabolite in human liver microsomes. Role of cytochrome P4502C and 3A subfamily // Drug Metab Dispos. 1995; 23: 2: 207-215.; Stearns R.A., Miller R.R., Doss G.A. et al. The metabolism of Dup 753, a nonpeptide angiotensin II receptor antagonist, by rat, monkey and human liver // Drug Metab.Dispos. 1992; 20: 2: 281-287.; Tamaki T., Nishiyama A., Kimura S. et al. EXP3174: the major active metabolite of losartan // Cardiovasc Drug. 1997; 15: 2: 122-136.; Ushijima K., Tsuruoka S., Tsuda H. et al. Cranberry juice suppressed the diclofenac metabolism by human liver microsomes, but not in healthy human subjects // J Clin Pharmacol. 2009; 68: 2: 194-200.; Varshney E., Saha N., Tandon M. et al. Genotype-phenotype correlation of cytochrome P450 2C9 polymorphism in Indian National Capital Region // Eur J Drug Metab Pharmacokinet. 2013; 38: 4: 275-281.; Verhoef T.I., Redekop W.K., Daly A.K. et al. Pharmacogenetic-guided dosing of coumarin anticoagulants: algorithms for warfarin, acenocoumarol and phenprocoumon // Br J Clin Pharmacol. 2014; 77: 4: 626 - 641.; Wang G., Xiao C.Q., Li Z. Effect of soy extract administration on losartan pharmacokinetics in healthy female volunteers // Ann Pharmacother. 2009; 43: 6: 1045-1049.; Wang, S.L. Huang J., Lai M.D., Tsai J.J. Detection of CYP2C9 polymorphism based on the polymerase chain reaction in Chinese // Pharmacogenetics. 1995; 5: 1: 37-42.; Wang Z., Gorski J.C., Hamman M.A. et al. The effects of St John’s wort (Hypericum perforatum) on human cytochrome P450 activity // Clin Pharmacol Ther. 2001; 70: 4: 317-326.; Wijnen P.A., Buijsch R.A., Drent M. et al. Review article: the prevalence and clinical relevance of cytochrome P450 polymorphisms // Aliment Pharmacol Ther. 2007; 26: Suppl. 2: 211- 219.; Williamson K.M., Patterson J.H., McQueen R.H. et al. Effects of erythromycin or rifampin on losartan pharmacokinetics in healthy // Clin Pharmacol Ther. 1998; 63: 3: 316-23.; Yang S., CHOY., CHOIJ. Effects of ticlopidine on pharmacokinetics oflosartan and its main metabolite EXP-3174 in rats // Acta Pharmacologica Sinica. 2011; 32: 7: 967-972.; Yasar U., Dahl M.L., Christensen M., Eliasson E. Intra-individual variability in urinary losartan oxidation ratio, an in vivo marker of CYP2C9 activity // J Clin Pharmacol. 2002; 54: 2: 183-185.; Yoshitani T., Yagi H., Inotsume N. et al. Effect of experimental renal failure on the pharmacokinetics of losartan in rats // Biol. Pharm.Bull. 2002; 25: 8: 1077-1083.; Yun C.H., Lee H.S., Lee H. et al. Oxidation of the angiotensin II receptor antagonist losartan (DuP 753) in human liver microsomes. Role of cytochrome P4503A(4) in formation of the active metabolite EXP3174 // Drug Metab Dispos. 1995; 23: 2: 285-289.; Zanger U., Turpeinen M., Klein K., Schwab M. Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation // Anal Bioanal Chem. 2008; 392: 6: 1093-1108.; Zaphiropoulos P.G. Exon skipping and circular RNA formation in transcripts of the human cytochrome P-450 2C18 gene in epidermis and of the rat androgen binding protein gene in testis // Mol Cell Biol. 1997; 17: 2985-2993.; Zhang S., Song N., Li Q. et al. Liquid chromatography/tandem mass spectrometry method for simultaneous evaluation of activities of five cytochrome P450s using a five-drug cocktail and application to cytochrome P450 phenotyping studies in rats // J Chromatogr B Analyt Technol Biomed Life Sci. 2008; 871: 1: 78-89.; Zhang Z.Y., Kerr J., Wexler R.S. et al. Warfarin analog inhibition of human CYP2C9-catalyzed S-warfarin 7-hydroxylation // Thromb Res. 1997; 88: 389-398.; Zhou S.F., Zhou Z.W., Yang L.P. et al. Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development // Curr Med Chem. 2009; 16: 27: 3480-3675.; Zhou S.F., Zhou Z.W., Huang M. Polymorphisms of human cytochrome P450 2C9 and the functional relevance // Toxicology. 2010; 278: 2: 165-88.; https://www.pharmacokinetica.ru/jour/article/view/157
Availability: https://www.pharmacokinetica.ru/jour/article/view/157
-
13Academic Journal
Authors: V. P. Zherdev, G. B. Kolyvanov, A. A. Litvin, O. G. Grybakina, P. O. Bochkov, R. V. Shevchenko
Source: Фармакокинетика и Фармакодинамика, Vol 0, Iss 4, Pp 12-15 (2017)
Subject Terms: тропоксин, cyp2с9, cyp1а2, лозартан, кофеин, метаболическое отношение, межлекарственное взаимодействие, tropoxine, cyp1a2, losartane, caffeine, metabolic ratio, drug-drug interaction, Pharmacy and materia medica, RS1-441
File Description: electronic resource
-
14Academic Journal
Authors: I. I. Sinitsina, Dmitriy A. Sychev, G. Yu. Zakharova, M. I. Savel'eva, A. V. Kryukov, A. Yu. Yurovskii, A. V. Ryabova
Source: Рациональная фармакотерапия в кардиологии, Vol 11, Iss 2, Pp 209-216 (2015)
Subject Terms: drug-drug interactions, клиническая фармакология, новые пероральные антикоагулянты, апиксабан, new oral anticoagulants, apixaban, кровотечения, межлекарственное взаимодействие, perioperative management, RM1-950, bleeding, 3. Good health, 03 medical and health sciences, периоперацион-ное ведение, 0302 clinical medicine, RC666-701, Diseases of the circulatory (Cardiovascular) system, clinical pharmacology, Therapeutics. Pharmacology
Access URL: https://www.rpcardio.com/jour/article/download/154/156
https://doaj.org/article/66ccb771d501455f8b3489d168248d67
https://doaj.org/article/33dc2363659d4ebdbc2993f4515483ac
https://www.rpcardio.com/jour/article/view/154
https://www.rpcardio.com/jour/article/download/154/156
https://core.ac.uk/display/91369968 -
15Academic Journal
Authors: E. A. Sokova, I. A. Mazerkina, O. A. Demidova, T. V. Aleksandrova, Е. А. Сокова, И. А. Мазеркина, О. А. Демидова, Т. В. Александрова
Source: Regulatory Research and Medicine Evaluation; Том 7, № 3 (2017); 150-154 ; Регуляторные исследования и экспертиза лекарственных средств; Том 7, № 3 (2017); 150-154 ; 3034-3453 ; 3034-3062 ; undefined
Subject Terms: drug-drug interactions, ВИЧ-инфекция, антиретровирусный препарат, фармакокинетика, безопасность, эффективность, транспортеры лекарственных средств, межлекарственное взаимодействие, pregnancy, HIV infection, antiretroviral drugs, pharmacokinetics, safety, efficacy, drug transporters, therapeutic drug monitoring
File Description: application/pdf
Relation: https://www.vedomostincesmp.ru/jour/article/view/134/133; Darak S, Parchure R, Darak T, Talavlikar R, Kulkarni S, Kulkarni V. Advances in the prevention of mother-to-child transmission of HIV and resulting clinical and programmatic implications. Research and Reports in Neonatology 2014; 4: 111-23.; Roustit M, Jlaiel M, Leclercq P, Stanke-Labesque F. Pharmacokinetics and therapeutic drug monitoring of antiretrovirals in pregnant women. Br J Clin Pharmacol. 2008; 66(2): 179-95.; Сокова ЕА, Чилова РА, Проклова ГФ, Мекша ЮВ, Демидова ОА. Особенности метаболизма лекарственных средств во время беременности. Вестник современной клинической медицины 2016; 9(5): 70-5.; Mattison DR. Clinical pharmacology during pregnancy. Amsterdam: Elsevier; 2013.; Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services [Internet]. 2016 [cited 2017 Jul 10]. Available from: https://goo.gl/ RpJPfc.; Lundgren JD, Babiker AG, Gordin F, Emery S, Grund B, Sharma S, et al. Initiation of antiretroviral therapy in early asymptomatic HIV Infection. № Engl J Med. 2015; 373(9): 795-807.; Recommendations for use of antiretroviral drugs in pregnant HIV-1-infected women for maternal health and interventions to reduce perinatal HIV transmission in the United States [Internet]. 2016 [cited 2017 Jul 10]. Available from: https://goo.gl/5VKzKy.; Журавлева ЕО, Вельц НЮ, Затолочина КЭ, Глаголев СВ, Поливанов ВА, Дармостукова МА. и др. Анализ спонтанных сообщений о нежелательных реакциях, развившихся при применении лекарственных средств во время беременности. Безопасность и риск фармакотерапии 2017; 5(2): 61-69.; Применение антиретровирусных препаратов в комплексе мер, направленных на профилактику передачи ВИЧ от матери ребенку. Клинические рекомендации (протокол лечения) Министерства здравоохранения Российской Федерации. Available from: http://minzdrav.midural.ru/uploads/1120%D0%B0.pdf.; Шефер К, Шпильманн Х, Феттер К. Лекарственная терапия в период беременности и лактации. М.: Логосфера; 2010.; Best B, Stek A, Hu C, Burchett SK, Rossi SS, Smith E, et al. High-dose Lopinavir and standard dose emtricitabine pharmacokinetics during pregnancy and postpartum. 15th Conference on Retroviruses and Opportunistic Infections, February 3-6, 2008, Boston, MA, USA.; Capparelli EV, Aweeka F, Hitti J, Stek A, Hu C, Burchett SK, et al. Chronic administration of Nevirapine during pregnancy: impact of pregnancy on pharmacokinetics. HIV Med. 2008; 9(4): 214-20.; Van der Lugt J, Colbers A, Molto J, Hawkins D, van der Ende M, Vogel M, et al. The pharmacokinetics, safety and efficacy of boosted Saquinavir tablets in HIV type-1-infected pregnant women. Antivir Ther. 2009; 14(3): 443-50.; De Cock KM, Fowler MG, Mercier E, de Vincenzi I, Saba J, Hoff E, et al. Prevention of mother-to-child HIV transmission in resource-poor countries: translating research into policy and practice. JAMA 2000; 283(9): 1175-82.; Flynn PM, Mirochnick M, Shapiro DE, Bardeguez A, Rodman J, Robbins B, et al. Pharmacokinetics and safety of single-dose Tenofovir disoproxil fumarate and Emtricitabine in HIV-1-infected pregnant women and their infants. Antimicrob Agents Chemother. 2011; 55(12): 5914-22.; Сокова ЕА. Мониторинг безопасности зарегистрированных лекарственных средств у беременных: фармакогенетические аспекты. Безопасность и риск фармакотерапии 2015; (3): 30-35.; Gedeon C, Koren G. Designing pregnancy centered medications: drugs which do not cross the human placenta. Placenta 2006; 27(8): 861-8.; Sudhakaran S, Rayner CR, Li J, Kong DC, Gude NM, Nation RL. Inhibition of placental P-glycoprotein: impact on indinavir transfer to the foetus. Br J Clin Pharmacol. 2008; 65(5): 667-73.; Storch CH, Theile D, Lindenmaier H, Haefeli WE, Weiss J. Comparison of the inhibitory activity of anti-HIV drugs on P-glycoprotein. Biochem Pharmacol. 2007; 73(10): 1573-81.; Minuesa G, Volk C, Molina-Arcas M, Gorboulev V, Erkizia I, Arndt P, et al. Transport of Lamivudine [(-)-beta-L-2’, 3’-dideoxy-3’-thiacytidine] and high-affinity interaction of nucleoside reverse transcriptase inhibitors with human organic cation transporters 1, 2, and 3. J Pharmacol Exp Ther. 2009; 329(1): 252-61.; Weiss J, Rose J, Storch CH, Ketabi-Kiyanvash N, Sauer A, Haefeli WE, Efferth T. Modulation of human BCRP (ABCG2) activity by anti-HIV drugs. J Antimicrob Chemother. 2007; 59(2): 238-45.; Gulati A, Gerk PM. Role of placental ATP-binding cassette (ABC) trasporters in antiretroviral therapy during pregnanacy. J Pharm Sci. 2009; 98(7): 2317-35.; https://www.vedomostincesmp.ru/jour/article/view/134; undefined
Availability: https://www.vedomostincesmp.ru/jour/article/view/134
-
16Academic Journal
Authors: D. A. Sychev, I. I. Sinitsina, G. Yu. Zakharova, M. I. Savel'eva, A. V. Ryabova, A. V. Kryukov, A. Yu. Yurovskii
Source: Рациональная фармакотерапия в кардиологии, Vol 11, Iss 2, Pp 209-216 (2015)
Subject Terms: новые пероральные антикоагулянты, апиксабан, клиническая фармакология, межлекарственное взаимодействие, кровотечения, периоперацион-ное ведение, Therapeutics. Pharmacology, RM1-950, Diseases of the circulatory (Cardiovascular) system, RC666-701
File Description: electronic resource
-
17Academic Journal
Authors: Y. B. Belousov
Source: Фармакокинетика и Фармакодинамика, Vol 0, Iss 1, Pp 57-62 (2014)
Subject Terms: перампанел, зонисамид, фармакокинетика, фармакодинамика, межлекарственное взаимодействие, perampanel, zonisamide, pharmacokinetics, pharmacodynamics, drug-drug interaction, Pharmacy and materia medica, RS1-441
File Description: electronic resource
-
18Academic Journal
Authors: Y. G. Novickaya, V. P. Zherdev, A. O. Viglinskaya, A. A. Litvin
Source: Фармакокинетика и Фармакодинамика, Vol 0, Iss 1, Pp 4-13 (2014)
Subject Terms: цитохром р450, кофеин, метаболизм, фармакокинетика, межлекарственное взаимодействие, cytochrome p450, caffeine, metabolism, pharmacokinetics, drug-drug interaction, Pharmacy and materia medica, RS1-441
File Description: electronic resource
-
19Academic Journal
Authors: V. P. Zherdev, G. B. Kolyvanov, A. A. Litvin, O. G. Grybakina, P. O. Bochkov, R. V. Shevchenko, В. П. Жердев, Г. Б. Колыванов, Александр Алексеевич Литвин, О. Г. Грибакина, П. О. Бочков, Р. В. Шевченко
Source: Pharmacokinetics and Pharmacodynamics; № 4 (2017); 12-15 ; Фармакокинетика и Фармакодинамика; № 4 (2017); 12-15 ; 2686-8830 ; 2587-7836
Subject Terms: drug-drug interaction, CYP2С9, CYP1А2, лозартан, кофеин, метаболическое отношение, межлекарственное взаимодействие, tropoxine, CYP1A2, losartane, caffeine, metabolic ratio
File Description: application/pdf
Relation: https://www.pharmacokinetica.ru/jour/article/view/39/39; Ганьшина Т.С., Горбунов А.А., Гнездилова А.В. и др. Тропоксин - новое средство для лечения мигрени. Хим.-фарм. журн. 2016; 50: 1: 19-23.; Жердев В.П., Колыванов Г.Б., Литвин А.А. и др. Оценка взаимосвязи между фармакокинетикой и фармакодинамикой тропоксина у крыс Фармакокинетика и фармакодинамика. 2016; 3: 21-25.; Косточка Л.М., Мирзоян Р.C., Ганьшина Т.С., Середенин С.Б. Синтез и антисеротониновая активность новых производных тропана. Хим.-фарм. журн. 2010; 44: 9: 6-9.; Мирзоян Р.Є., Середенин С.Б., Ганьшина Т.С. и др. Эксперим. и клин. фармакол. 1998; 61: 2: 28-31.; Новицкая Я.Г. Оценка фармакокинетического взаимодействия афобазола с препаратом-субстратом изофермента цитохрома Р450 CYP1A2. Автореф. канд. биол. наук, М.: 2014; 24.; Новицкая Я.Г., Литвин А.А., Жердев В.П. Количественный анализ кофеина и его метаболитов в плазме крови крыс с применением ВЭЖХ, как метод определения метаболических отношений. Вест. Моск. Ун-та. Сер. 2. Химия. 2013; 54: 1: 56-60.; Пронина О.Г., Колыванов Г.Б., Виглинская А.О., Жердев В.П. Количественное определение лозартана и его метаболита в моче крыс. Вест. Моск. Ун-та. Сер. 2. Химия. 2012; 53: 2: 194-197.; Frye R.F. Probing the world of cytochrome P450 enzymes. Mol Interv. 2004; 4: 3: 157-162.; Wijnen P.A., Buijsch R.A., Drent M. et al. Review article: the prevalence and clinical relevance of cytochrome P450 polymorphisms. Aliment Pharmacol Ther. 2007; 26: Suppl. 2: 211-219.; https://www.pharmacokinetica.ru/jour/article/view/39
Availability: https://www.pharmacokinetica.ru/jour/article/view/39
-
20Academic Journal
Subject Terms: цитохром Р450, CYP2C9, лозартан, фармакокинетика, метаболизм, межлекарственное взаимодействие, афобазол, рифампицин, флуконазол
File Description: text/html