Εμφανίζονται 1 - 20 Αποτελέσματα από 30 για την αναζήτηση '"МАРТЕНСИТНО-СТАРЕЮЩАЯ СТАЛЬ"', χρόνος αναζήτησης: 0,65δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Συνεισφορές: The work was carried out with financial support from the Ministry of Science and Higher Education of the Russian Federation within the framework of a state assignment (project № 0718-2020-0034)., Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках государственного задания (проект № 0718-2020-0034).

    Πηγή: Izvestiya. Non-Ferrous Metallurgy; № 1 (2024); 70-80 ; Izvestiya Vuzov. Tsvetnaya Metallurgiya; № 1 (2024); 70-80 ; 2412-8783 ; 0021-3438

    Περιγραφή αρχείου: application/pdf

    Relation: https://cvmet.misis.ru/jour/article/view/1586/721; https://cvmet.misis.ru/jour/article/view/1586/728; Ullah R., Akmal J.S. Anisotropy of additively manufactured 18Ni300 maraging steel: threads and surface characteristics. Procedia CIRP. 2020;93:68—78. https://doi.org/10.1016/j.procir.2020.04.059; Kucerova L., Zetkova I., Jenicek S., Burdova K. Hybrid parts produced by deposition of 18Ni300 maraging steel via selective laser melting on forged and heat treated advanced high strength steel. Additive Manufacturing. 2020;32:100—111. https://doi.org/10.1016/j.addma.2020.101108; Yuchao Bai, Cuiling Zhao, Jiayi Zhang, Hao Wang. Abnormal thermal expansion behaviour and phase transition of laser powder bed fusion maraging steel with different thermal histories during continuous heating. Additive Manufacturing. 2022;53:102712. https://doi.org/10.1016/j.jsis.2019.01.003; Dinghui Liu, Jie Su, Ao Wang, Zhuoyue Yang, Jiaoxi Yang, Zhen Wang, Yali Ding, Geng Liu. Tailoring the microstructure and mechanical properties of FeCrNiCoMo maraging stainless steel after laser melting deposition. Materials Science and Engineering: A. 2022;840:142931. https://doi.org/10.1016/j.jsis.2019.01.003; Vishwakarma J., Chattopadhyay K., Santhi Srinivas N.C. Effect of build orientation on microstructure and tensile behaviour of selectively laser melted M300 maraging steel. Materials Science and Engineering: A. 2020;798:140130. https://doi.org/10.1016/j.msea.2020.140130; Souza A.F., Al-Rubaie K.S., Marques S., Zluhan B., Santos E.C. Effect of laser speed, layer thickness, and part position on the mechanical properties of maraging 300 parts manufactured by selective laser melting. Materials Science and Engineering: A. 2019;767:138425. https://doi.org/10.1016/j.msea.2019.138425; Каясова А.О., Левашов Е.А. Особенности влияния горячего изостатического прессования и термообработки на структуру и свойства мартенситно-стареющей стали, полученной методом селективного лазерного сплавления. Известия вузов. Порошковая металлургия и функциональные покрытия. 2022;16(4):84—92. http://doi.org/10.17073/1997-308X-2022-4-84-92; Kaplanscky Yu.Yu., Levashov E.A., Korotitskiy A.V., Loginov P.A., Sentyurina Zh.A., Mazalov A.B. Influence of aging and HIP treatment on the structure and properties of NiAl-based turbine blades manufactured by laser powder bed fusion. Additive Manufacturing. 2020;31:100999. https://doi.org/10.1016/j.addma.2019.100999; Sentyurina Zh.A., Baskov F.A., Loginov P.A., Kaplanskii Yu.Yu. Mishukov A.V. Logachev I.A., Bychkova M.Ya., Levashov E.A. Logacheva A.I. The effect of hot isostatic pressing and heat treatment on the microstructure and properties of EP741NP nickel alloy manufactured by laser powder bed fusion. Additive Manufacturing. 2021.37: 101629. https://doi.org/10.1016/j.addma.2020.101629; Kaplanskii Yu.Yu., Sentyurina Zh.A., Loginov P.A., Levashov E.A., Korotitskiy A.V., Travyanov A.Ya., Petrovskii P.V. Microstructure and mechanical properties of the (Fe, Ni)Al-based alloy produced by SLM and HIP of spherical composite powder. Materials Science and Engineering: A. 2019;743:567—580. https://doi.org/10.1016/j.msea.2018.11.104; Baskov F.A., Sentyurina Zh.A., Kaplanskii Yu.Yu., Logachev I.A., Semerich A.S., Levashov E.A. The influence of post heat treatments on the evolution of microstructure and mechanical properties of EP741NP nickel alloy produced by laser powder bed fusion. Materials Science and Engineering: A. 2021;817:141340. https://doi.org/10.1016/j.msea.2021.141340; Conde F.F., Escobar J.D., Oliveira J.P., Jardini A.L., Bose Filho W.W., Avila J.A. Austenite reversion kinetics and stability during tempering of an additively manufactured maraging 300 steel. Additive Manufacturing. 2019;29:100804. https://doi.org/10.1016/j.addma.2019.100804; Xu T.Z., Zhang S., Du Y., Wu C.L., Zhang C.H., Sun X.Y., Chen H.T., Chen J. Development and characterization of a novel maraging steel fabricated by laser additive manufacturing. Materials Science and Engineering: A. 2024;891:145975. https://doi.org/10.1016/j.msea.2023.145975; Mouritz A.P. 11 — Steels for aircraft structures. In: Introduction to aerospace material. Woodhead Publishing, 2012. P. 232—250. https://doi.org/https://doi.org/10.1533/9780857095152.232; Kürnsteiner P., Wilms M.B., Weisheit A., Barriobero-Vila P., Jägle E.A., Raabe D. Massive nanoprecipitation in an Fe—19Ni—xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition. Acta Materialia. 2017;129:52—60. https://doi.org/10.1016/j.actamat.2017.02.069; Tan C., Zhou K., Ma W., Zhang P., Liu M., Kuang T. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Materials & Design. 2017;134:23—34. https://doi.org/10.1016/j.matdes.2017.08.026; Karolczuk Aleksander, Kurek Andrzej, Böhm Michał, Derda Szymon, Prażmowski Mariusz, Kluger Krzysztof, Żak Krzysztof, Pejkowski Łukasz, Seyda Jan. Heterogeneous effect of aging temperature on the fatigue life of additively manufactured thin-walled 18Ni300 maraging steeltubular specimen. Materials & Design. 2024;237:112561. https://doi.org/10.1016/j.matdes.2023.112561; Jonghyun Jeong, Gun Woo No, Hyo Ju Bae, Sang Kyu Yoo, In-Chul Choi, Hyoung Seop Kim, Jae Bok Seol, Jung Gi Kim. Mechanical properties of lamellar-structured 18Ni300 maraging steel manufactured via directed energy deposition. Materials Science and Engineering: A. 2024;892:146031. https://doi.org/10.1016/j.msea.2023.146031; Sha W., Guo Z., Wilson E.A. Modeling the evolution of microstructure during the processing of maraging steels, JOM. 2004; 56:62—66. https://doi.org/10.1007/s11837-004-0037-2; Moshka O., Pinkas M., Brosh E., Ezersky V., Meshi L. Addressing the issue of precipitates in maraging steels — unambiguous answer. Materials Science and Engineering: A. 2015;638:232—239 https://doi.org/10.1016/j.msea.2015.04.067; Zhonghui Cheng, Shengzhi Sun, Xi Du, Qing Tang, Jinguang Shi, Xiaofeng Liu, Qiu Jianrong. Microstructural evolution of a FeCo15Cr14Ni4Mo3 maraging steel with high ductility prepared by selective laser melting. Materials Today Communications. 2022;31:103243. https://doi.org/10.1016/j.mtcomm.2022.103243; Lulu Guo, Lina Zhang, Joel Andersson, Olanrewaju Ojo. Additive manufacturing of 18 % nickel maraging steels: Defect, structure and mechanical properties: A review. Journal of Materials Science & Technology. 2022;120: 227—252. https://doi.org/10.1016/j.jmst.2021.10.056; Yuchao Bai, Di Wang, Yongqiang Yang, Hao Wang. Effect of heat treatment on the microstructure and mechanical properties of maraging steel by selective laser melting. Materials Science and Engineering: A. 2019;760: 105—117. https://doi.org/10.1016/j.msea.2019.05.115; Vishwakarma Jaydeep, Chattopadhyay K., Santhi Srinivas N.C. Effect of build orientation on microstructure and tensile behaviour of selectively laser melted M300 maraging steel. Materials Science and Engineering: A. 2020;798:140130. https://doi.org/10.1016/j.msea.2020.140130; Habassi Faiçal, Houria Manel, Barka Noureddine, Jahazi Mohammad. Influence of post-treatment on microstructure and mechanical properties of additively manufactured C300 maraging steel. Materials Characterization. 2023;202:112980. https://doi.org/10.1016/j.matchar.2023.112980; https://cvmet.misis.ru/jour/article/view/1586

  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20