-
1Academic Journal
Συγγραφείς: German B. Fershtater, Nadezhda S. Borodina, Fernando Bea, Pilar Montero
Πηγή: Литосфера, Vol 18, Iss 2, Pp 177-207 (2018)
Θεματικοί όροι: mantle-crustal interaction, мигматизация, migmatization, Engineering geology. Rock mechanics. Soil mechanics. Underground construction, мантийно-коровое взаимодействие, 01 natural sciences, геодинамика, isotopy, магматизм, изотопия, magmatism, TA703-712, geodynamics, 0105 earth and related environmental sciences
Σύνδεσμος πρόσβασης: https://www.lithosphere.ru/jour/article/download/147/148
https://doaj.org/article/c3cc1aad0c70485c9930d2f0db590297
https://lithosphere.uran.ru/index.php/lith/article/download/2122/2052
https://lithosphere.uran.ru/index.php/lith/article/view/2122/2052
https://www.lithosphere.ru/jour/article/view/147 -
2Academic Journal
Συγγραφείς: T. A. Osipova, G. A. Kallistov, D. A. Zamyatin, V. A. Bulatov, Т. А. Осипова, Г. А. Каллистов, Д. А. Замятин, В. А. Булатов
Συνεισφορές: The study was carried out under the state assignment of the Institute of Geology and Geochemistry UB RAS (project АААА-А18-118052590029-6 and АААА-А19-119071090011-6)., Работа выполнена в рамках государственного задания ИГГ УрО РАН (№ гос. рег. тем АААА-А18-118052590029-6 и АААА-А19-119071090011-6).
Πηγή: Geodynamics & Tectonophysics; Том 12, № 2 (2021); 350-364 ; Геодинамика и тектонофизика; Том 12, № 2 (2021); 350-364 ; 2078-502X
Θεματικοί όροι: электронно-зондовый микроанализ, baddeleyite, uranotorianite, zircon, petrogenesis, crust–mantle interaction, South Urals, cathodoluminescence, electron probe microanalysis, бадделеит, ураноторианит, циркон, петрогенезис, мантийно-коровое взаимодействие, Южный Урал, катодолюминесценция
Περιγραφή αρχείου: application/pdf
Relation: https://www.gt-crust.ru/jour/article/view/1215/556; Abersteiner A., Kamenetsky V.S., Goemann K., Giuliani A., Howarth G.H., Castillo-Oliver M., Thompson J., Kamenetsky M., Cherry A., 2019. Composition and Emplacement of the Benfontein Kimberlite Sill Complex (Kimberley, South Africa): Textural, Petrographic and Melt Inclusion Constraints. Lithos 324–325, 297–314. https://doi.org/10.1016/j.lithos.2018.11.017.; Amelin Y., Li C., Naldrett A.J., 1999. Geochronology of the Voisey’s Bay Intrusion, Labrador, Canada, by Precise U–Pb Dating of Coexisting Baddeleyite, Zircon, and Apatite. Lithos 47 (1–2), 33–51. https://doi.org/10.1016/s0024-4937(99)00006-7.; Anfilogov V.N., Krasnobaev A.A., Ryzhkov V.M., 2018. Ancient Age of Zircons and Problems of Dunits Genesis from Gabbro-Hyperbasez Complexes of Folded Areas and Central Type Platform Massives. Lithosphere 18 (5), 706–717 (in Russian) [Анфилогов В.Н., Краснобаев А.А., Рыжков В.М. Древний возраст цирконов и проблемы генезиса дунитов габбро-гипербазитовых комплексов складчатых областей и платформенных массивов центрального типа // Литосфера. 2018. Т. 18. № 5. С. 706–717]. https://doi.org/10.24930/1681-9004-2018-18-5-706-717.; Bao Z., Shi Y., Anderson J.L., Kennedy A., Ke Z., Gu X., Wang P., Che X., Kang Y., Sun H., Wang C., 2020. Petrography and Chronology of Lunar Meteorite Northwest Africa 6950. Science China Information Sciences 63, 140902. https://doi.org/10.1007/s11432-019-2809-3.; Bhushan S.K., Somani O.P., 2019. Rare Earth Elements and Yttrium Potentials of Neoproterozoic Peralkaline Siwana Granite of Malani Igneous Suite, Barmer District, Rajasthan. Journal of the Geological Society of India 94, 35–41. https://doi.org/10.1007/s12594-019-1263-0.; Drogobuzhskaya S.V., Bayanova T.B., Novikov A.I., Neradovskiy Yu.N., Subbotin V.V., Savchenko E.E., 2019. LA-ICPMS Analysis of Baddeleyite, Zircon, Sulfides from Rocks of the Fennoscandian Shield Complex Deposits in the Arctic Region. Proceedings of the Fersman Scientific Session of the GI KSC RAS. Vol. 16. P. 165–169 (in Russian) [Дрогобужская С.В., Баянова Т.Б., Новиков А.И., Нерадовский Ю.Н., Субботин В.В., Cавченко Е.Э. LA-ICP-MS анализ бадделеита, циркона и сульфидов из пород комплексных месторождений Фенноскандинавского щита в пределах Арктического региона // Труды Ферсмановской научной сессии ГИ КНЦ РАН. 2019. Т. 16. С. 165–169]. https://doi.org/10.31241/fns.2019.16.034.; Fan H.P., Zhu W.G., Li Z.X., Zhong H., Bai Z.J., He D.F., Chen C.J., Cao C.Y., 2013. Ca. 1.5 Ga Mafic Magmatism in South China during the Break-up of the Supercontinent Nuna/Columbia: The Zhuqing Fe–Ti–V Oxide Ore-Bearing Mafic Intrusions in Western Yangtze Block. Lithos 168–169, 85–98. https://doi.org/10.1016/j.lithos.2013.02.004.; Fershtater G.B., 2001. Granitoid Magmatism and Continental Crust Formation (Uralian Orogen). Lithosphere 1, 65–85 (in Russian) [Ферштатер Г.Б. Гранитоидный магматизм и формирование континентальной земной коры в ходе развития уральского орогена // Литосфера. 2001. № 1. С. 62–85].; Fershtater G.B., Bea F., Montero M.P., Scarrow J., 2004. Hornblende Gabbro in the Urals: Types, Geochemistry, and Petrogenesis. Geochemistry International 42 (7), 610–629.; French J.E., Heaman L.M., 2010. Precise U–Pb Dating of Paleoproterozoic Mafic Dyke Swarms of the Dharwar Craton, India: Implications for the Existence of the Neoarchean Supercraton Sclavia. Precambrian Research 183 (3), 416–441. https://doi.org/10.1016/j.precamres.2010.05.003.; Gaft M., Reisfeld R., Panczer G., 2005. Luminescence Spectroscopy of Minerals and Materials. Springer-Verlag, Berlin, Heidelberg, New York, 356 p. https://doi.org/10.1017/S0016756806272972.; Geisler T., Schaltegger U., Tomaschek F., 2007. Re-Equilibration of Zircon in Aqueous Fluids and Melts. Elements 3 (1), 43–50. https://doi.org/10.2113/gselements.3.1.43.; Gorobets B.S., Rogozhin A.A., 2001. Luminescence Spectra of Minerals. Guidebook. VIMS, Moscow, 316 p. (in Russian) [Горобец Б.С., Рогожин А.А. Спектры люминесценции минералов: Справочник. М.: Изд-во ВИМС, 2001. 316 с.].; Grimes C.B., John B.E., Kelemen P.B., Mazdab F.K., Wooden J.L., Cheadle M.J., Hanghoj K., Schwartz J.J., 2007. Trace Element Chemistry of Zircons from Oceanic Crust: A Method for Distinguishing Detrital Zircon Provenance. Geology 35 (7), 643–646. https://doi.org/10.1130/g23603a.1.; Guo F., Guo J., Wang C.Y., Fan W., Li C., Zhao L., Li H., Li J., 2013. Formation of Mafic Magmas through Lower Crustal AFC Processes – An Example from the Jinan Gabbroic Intrusion in the North China Block. Lithos 179, 157–174. https://doi.org/10.1016/j.lithos.2013.05.018.; Heaman L.M., 2009. The Application of U–Pb Geochronology to Mafic, Ultramafic and Alkaline Rocks: An Evaluation of Three Mineral Standards. Chemical Geology 261 (1–2), 43–52. https://doi.org/10.1016/j.chemgeo.2008.10.021.; Heaman L.M., LeCheminant A.N., 1993. Paragenesis and U-Pb Systematics of Baddeleyite (ZrO2). Chemical Geology 110 (1–3), 95–126. https://doi.org/10.1016/0009-2541(93)90249-i.; Ivanyuk G.Yu., Yakovenchuk V.N., Pakhomovsky Y.A., 2002. Kovdor. Laplandia Minerals, Apatity, 326 p. (in Russian) [Иванюк Г.Ю., Яковенчук В.Н., Пахомовский Я.А. Ковдор. Апатиты: Изд-во Минералы Лапландии, 2002. 326 с.].; Jiang Y., Hsu W., 2012. Petrogenesis of Grove Mountains 020090: An Enriched “Lherzolitic” Shergottite. Meteoritics & Planetary Science 47 (9), 1419–1435. https://doi.org/10.1111/j.1945-5100.2012.01404.x.; Kallistov G.A., 2014. Duration and Age Stages of the Formation of the Chelyabinsk Granitoid Batholith. In: Informational Collection of Scientific Papers of IGG UB RAS. Yearbook 2013. IGG UB RAS Publishing House, Ekaterinburg, p. 343–349 (in Russian) [Каллистов Г.А. Длительность и возрастные этапы становления Челябинского гранитоидного батолита. Информационный сборник научных трудов ИГГ УрО РАН. Ежегодник-2013. Екатеринбург: Изд-во ИГГ УрО РАН, 2014. C. 343–349].; Kallistov G.А., Osipova Т.А., 2017. Geology and Geochemistry of Synplutonic Dykes in the Chelyabinsk Granitoid Massif, South Urals. Geodynamics & Tectonophysics 8 (2), 331–345 (in Russian) [Каллистов Г.А., Осипова Т.А. Геология и геохимия синплутонических даек в Челябинском гранитоидном массиве (Южный Урал) // Геодинамика и тектонофизика. 2017. Т. 8. № 2. С. 331–345]. https://doi.org/10.5800/gt-2017-8-2-0244.; Klemme S., Meyer H.-P., 2003. Trace Element Partitioning between Baddeleyite and Carbonatite Melt at High Pressures and High Temperatures. Chemical Geology 199 (3–4), 233–242. https://doi.org/10.1016/s0009-2541(03)00081-0.; Kogarko L.N., Sorokhtina N.V., Kononkova N.N., Klimovich I.V., 2013. Uranium and Thorium in Carbonatitic Minerals from the Guli Massif, Polar Siberia. Geochemistry International 51, 767–776. https://doi.org/10.1134/s0016702913090036.; Li L., Shi Y., Anderson J.L., Cui M., 2016. Sensitive High-Resolution Ion Microprobe U-Pb Dating of Baddeleyite and Zircon from a Monzonite Porphyry in the Xiaoshan Area, Western Henan Province, China: Constraints on Baddeleyite and Zircon Formation Process. Geosphere 12 (4), 1362–1377. https://doi.org/10.1130/ges01328.1.; Ludwig K.R., 1999. User’s Manual for ISOPLOT/EX, Version 2. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 1a, 120 p.; Lumpkin G.R., 1999. Physical and Chemical Characteristics of Baddeleyite (Monoclinic Zirconia) in Natural Environments: An Overview and Case Study. Journal of Nuclear Materials 274 (1–2), 206–217. https://doi.org/10.1016/s0022-3115(99)00066-5.; Mackie R.A., Scoates J.S., Weis D., 2009. Age and Nd–Hf Isotopic Constraints on the Origin of Marginal Rocks from the Muskox Layered Intrusion (Nunavut, Canada) and Implications for the Evolution of the 1.27Ga Mackenzie Large Igneous Province. Precambrian Research 172 (1–2), 46–66. https://doi.org/10.1016/j.precamres.2009.03.007.; Malitch K.N., Belousova E.A., Griffin W.L., Badanina I.Yu., Knauf V.V., O’Reilly S.Y., Pearson N.J., 2017. Laurite and Zircon from the Finero Chromitites (Italy): New Insights into Evolution of the Subcontinental Mantle. Ore Geology Reviews 90, 210–225. http://dx.doi.org/10.1016/j.oregeorev.2017.06.027.; Malitch K.N., Khiller V.V., Badanina I.Y., Belousova E.A., 2015. Results of Dating of Thorianite and Baddeleyite from Carbonatites of the Guli Massif, Russia. Doklady Earth Sciences 464, 1029–1032. https://doi.org/10.1134/S1028334X15100050.; Martin H., Smithies R.H., Rapp R., Moyen J.-F., Champion D., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos 79 (1–2), 1–24. https://doi.org/10.1016/j.lithos.2004.04.048.; Meng F., Zhang J., 2009. Genesis of the Mega-crystal Zircons in the Dunite Veins of North Qaidam Mountains, Northwestern China. Chinese Science Bulletin 54, 4688–4696. https://doi.org/10.1007/s11434-009-0205-4.; Montel J.M., Foret S., Veschambre M., Nicollet C., Provost A., 1996. Electron Microprobe Dating of Monazite. Chemical Geology 131 (1–4), 37–53. https://doi.org/10.1016/0009-2541(96)00024-1.; Nedosekova I.L., 2012. Age and Sources of the Material in the Ilmen-Vishnevogorsk Alkaline Complex (Ural, Russia): Geochemical and Isotopic Rb-Sr, Sm-Nd, U-Pb and Lu-Hf Data. Lithosphere 5, 77–95 (in Russian) [Недосекова И.Л. Возраст и источники вещества Ильмено-Вишневогорского щелочного комплекса (Урал, Россия): геохимические и изотопные Rb-Sr, Sm-Nd, U-Pb и Lu-Hf данные // Литосфера. 2012. № 5. С. 77–95].; Nedosekova I.L., Belousova E.A., Belyatsky B.V., 2014. The U-Pb Age and Lu-Hf Isotope Systems of Zircons in the Ilmen-Vishnevogorsk Alkaline-Carbonatite Complex, South Urals. Lithosphere 5, 19–32 (in Russian) [Недосекова И.Л., Белоусова Е.А., Беляцкий Б.В. U-Pb-возраст и Lu-Hf изотопные системы цирконов Ильмено-Вишневогорского щелочно-карбонатитового комплекса, Южный Урал // Литосфера. 2014. № 5. С. 19–32].; Osipova Т.А., Kallistov G.A., Zaitseva M.V., 2019. Zircon in High-Mg Diorite of the Chelyabinsk Massif (South Urals): Morphology, Geochemical Signature, and Petrogenesis Implications. Geodynamics & Tectonophysics 10 (2), 289–308 (in Russian) [Осипова Т.А., Каллистов Г.А., Зайцева М.В. Циркон из высокомагнезиального диорита Челябинского массива (Южный Урал): морфология, геохимические особенности, петрогенетические аспекты // Геодинамика и тектонофизика. 2017. Т. 10. № 2. С. 289–308]. https://doi.org/10.5800/gt-2019-10-2-0415.; Pavlov N.V., 1949. Chemical Composition of Cr-Spinels in Relation to the Petrographic Rock Composition of Ultrabasic Intrusions. Proceedings of the Institute of Geological Sciences of the USSR Academy of Sciences. Ore Deposits Series 103 (13). Nauka, Moscow, 88 p. (in Russian) [Павлов Н.В. Химический состав хромшпинелидов в связи с петрографическим составом пород ультраосновных интрузивов // Труды ИГН АН СССР. Серия рудных месторождений 1949. Вып. 103. № 13. М.: Наука, 1949. 88 с.].; Popova V.I., Gubin V.A., Churin E.I., Kotlyarov V.A., Khiller V.V., 2013. Rare Metal Mineralization in Granite Pegmatites of Rezhevsky Area at the Middle Urals. Proceedings of the Russian Mineralogical Society 142 (1), 23–38 (in Russian) [Попова В.И., Губин В.А., Чурин Е.И., Котляров В.А., Хиллер В.В. Редкометалльная минерализация гранитных пегматитов Режевского района на Среднем Урале // Записки Российского минералогического общества. 2013. Т. 142. № 1. C. 23–38].; Pouchou J.L., Pichoir F., 1984. A New Model for Quantitative X-Ray Micro-Analysis. Part I: Application to the Analysis of Homogeneous Samples. La Recherche Aerospatiale 3, 13–38.; Pribavkin S.V., Kallistov G.A., Оsipova Т.A., Gottman I.A., Zin’kova E.A., 2019. Geochemical Behavior of Chromium in Minerals of High-Mg Rocks, Associated with Granitoid Massifs of the Urals. Lithosphere 19 (3), 416–435 (in Russian) [Прибавкин С.В., Каллистов Г.А., Осипова Т.А., Готтман И.А., Зинькова Е.А. Распределение хрома в минералах высокомагнезиальных пород, ассоциированных с гранитоидными массивами Урала // Литосфера. 2019. Т. 19. № 3. С. 416–435]. https://doi.org/10.24930/1681-9004-2019-19-3-416-435.; Pribavkin S.V., Ronkin Y.L., Travin A.V., Ponomarchuk V.A., 2007. New Data on the Age of Lamproite-Lamprophyre Magmatism in the Urals. Doklady Earth Sciences 413, 213–215. https://doi.org/10.1134/s1028334x07020171.; Puchkov V.N., 2010. Geology of the Urals and the Surroundings: Topical Problems of Stratigraphy, Tectonics, Geodynamics and Metallogeny. DizajnPoligrafServis, Ufa, 280 p. (in Russian) [Пучков В.Н. Геология Урала и Приуралья (актуальные вопросы стратиграфии, тектоники, геодинамики и металлогении). Уфа: ДизайнПолиграфСервис, 2010. 280 с.].; Qian Q., Hermann J., 2010. Formation of High-Mg Diorites through Assimilation of Peridotite by Monzodiorite Magma at Crustal Depths. Journal of Petrology 57 (7), 1381–1416. https://doi.org/10.1093/petrology/egq023.; Rajesh V.J., Arai S., 2006. Baddeleyite-Apatite-Spinel-Phlogopite (BASP) Rock in Achankovil Shear Zone, South India, as a Probable Cumulate from Melts of Carbonatite Affinity. Lithos 90 (1–2), 1–18. https://doi.org/10.1016/j.lithos.2006.01.004.; Rajesh V.J., Yokoyama K., Santosh M., Arai S., Oh C.W., Kim S.W., 2006. Zirconolite and Baddeleyite in an Ultramafic Suite from Southern India: Early Ordovician Carbonatite‐Type Melts Associated with Extensional Collapse of the Gondwana Crust. The Journal of Geology 114 (2), 171–188. https://doi.org/10.1086/499571.; Robinson S.C., Sabina A.P., 1955. Uraninite and Thorianite from Ontario and Quebec1. American Mineralogist 40 (7–8), 624–633.; Ronkin Yu.L., Efimov A.A., Lepikhina G.A., Maslov A.V., Rodionov N.V., 2013. U-Pb Dating of the Baddeleytte-Zircon System from PT-Bearing Dunite of the Konder Massif, Aldan Shield: New Data. Doklady Earth Sciences 450, 607–612. https://doi.org/10.1134/s1028334x13060135.; Scharer U., Berndt J., Deutsch A., 2011. The Genesis of Deep-Mantle Xenocrystic Zircon and Baddeleyite Megacrysts (Mbuji-Mayi Kimberlite): Trace-Element Patterns. European Journal of Mineralogy 23 (2), 241–255. https://doi.org/10.1127/0935-1221/2011/0023-2088.; Standards for Electron Probe Microanalysis, 2020. Available from: https://www.pandhdevelopments.com (Last Accessed July 2020).; Sun J., Tappe S., Kostrovitsky S.I., Liu C.-Z., Skuzovatov S.Yu., Wu F.-Y., 2018. Mantle Sources of Kimberlites through Time: A U-Pb and Lu-Hf Isotope Study of Zircon Megacrysts from the Siberian Diamond Fields. Chemical Geology 479, 228–240. https://doi.org/10.1016/j.chemgeo.2018.01.013.; Tatsumi Y., 2008. Making Continental Crust: The Sanukitoid Connection. Chinese Science Bulletin 53, 1620–1633. https://doi.org/10.1007/s11434-008-0185-9.; Votyakov S.L., Shchapova Yu.V., Hiller V.V., 2011. Crystal Chemistry and Physics of Radiation–Thermal Effects in U-Th-Containing Minerals as a Basis for Their Chemical Microprobe Dating. IGG UB RAS Publishing House, Еkaterinburg, 340 p. (in Russian) [Вотяков С.Л., Щапова Ю.В., Хиллер В.В. Кристаллохимия и физика радиационно-термических эффектов в ряде U-Th-содержащих минералов как основа для их химического микрозондового датирования. Екатеринбург: Изд-во ИГГ УрО РАН, 2011. 340 с.].; Wall C.J., Scoates J.S., Weis D., Friedman R.M., Amini M., Meurer W.R., 2018. The Stillwater Complex: Integrating Zircon Geochronological and Geochemical Constraints on the Age, Emplacement History and Crystallization of a Large, Open-System Layered Intrusion. Journal of Petrology 59 (1), 153–190. https://doi.org/10.1093/petrology/egy024.; Wingate M.T.D., Campbell I.H., Harris L.B., 2000. SHRIMP Baddeleyite Age for the Fraser Dyke Swarm, Southeast Yilgarn Craton, Western Australia. Australian Journal of Earth Sciences 47 (2), 309–313. https://doi.org/10.1046/j.1440-0952.2000.00783.x.; Yurichev A.N., Chernyshov A.I., Kul’kov A.S., 2016. New Ore Minerals of the Kingash Ultramafic Massif (Northwestern Areas of Eastern Sayan). Proceedings of the Russian Mineralogical Society 145 (3), 14–22 (in Russian) [Юричев А.Н., Чернышов А.И., Кульков А.С. Новые рудные минералы Кингашского ультрамафитового массива (северо-запад Восточного Саяна) // Записки Российского минералогического общества. 2016. Т. 145. № 3. C. 14–22].; Zaccarini F., Stumpfl E.F., Garuti G., 2004. Zirconolite and Zr–Th–U Minerals in Chromitites of the Finero Complex, Western Alps, Italy: Evidence for Carbonatite-Type Metasomatism in a Subcontinental Mantle Plume. Mineralogical Association of Canada 42 (6), 1825. https://doi.org/10.2113/gscanmin.42.6.1825.; Zamyatin D.A., Shchapova Yu.V., Votyakov S.L., Nasdala L., Lenz C., 2017. Alteration and Chemical U-Th-Total Pb Dating of Heterogeneous High-Uranium Zircon from a Pegmatite from the Aduiskii Massif, Middle Urals, Russia. Mineralogy and Petrology 111, 475–497. https://doi.org/10.1007/s00710-017-0513-3.; Zamyatin D.A., Votyakov S.L., Shchapova Yu.V., 2020. Cathodoluminescence Spectrometry of Zircon: To the Analysis Technique Using a Jeol JSM 6390 LV SEM with a Horiba H-CLUE iHR500 Unit. In: Minerals: Structure, Properties, and Research Methods. Proceedings of Materials of the XI All-Russia Youth Scientific Conference (May 25–28, 2020). IGG UB RAS Publishing House, Ekaterinburg, p. 96–99 (in Russian) [Замятин Д.А., Вотяков С.Л., Щапова Ю.В. Катодолюминесцентная спектрометрия циркона: к методике анализа на СЭМ Jeol JSM6390LV c приставкой Horiba H-CLUE iHR500 // Минералы: строение, свойства, методы исследования: Материалы XI Всероссийской молодежной научной конференции (25–28 мая 2020 г.). Екатеринбург: Изд-во ИГГ УрО РАН, 2020. С. 96–99].; Zhu Y.-S., Yang J.-H., Wang H., Wu F.-Y., 2020. Mesoproterozoic (~1.32 Ga) Modification of Lithospheric Mantle beneath the North China Craton Caused by Break-up of the Columbia Supercontinent. Precambrian Research 342, 105674. https://doi.org/10.1016/j.precamres.2020.105674.
-
3Academic Journal
Συγγραφείς: T. A. Osipova, G. A. Kallistov, M. V. Zaitseva, Т. А. Осипова, Г. А. Каллистов, М. В. Зайцева
Συνεισφορές: Работа выполнена в рамках государственного задания ИГГ УрО РАН (№ гос. рег. темы АААА-А18-118052590029-6) и при финансовой поддержке РНФ (проект № 16-17-10283) и РФФИ (проект № 17-05-00618\17). Аналитические исследования выполнены в ЦКП УрО РАН «Геоаналитик»
Πηγή: Geodynamics & Tectonophysics; Том 10, № 2 (2019); 289-308 ; Геодинамика и тектонофизика; Том 10, № 2 (2019); 289-308 ; 2078-502X
Θεματικοί όροι: мантийно‐коровое взаимодействие, zircon, U‐Pb age, isotopic composition of Hf, South Urals, petrogenesis, mantle‐crust Interaction, циркон, U‐Pb‐возраст, изотопный состав Hf, Южный Урал, петрогенезис
Περιγραφή αρχείου: application/pdf
Relation: https://www.gt-crust.ru/jour/article/view/842/436; Andersen T., 2002. Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology 192 (1–2), 59–79. https://doi.org/10.1016/s0009-2541(02)00195-x.; Belousova E.A., Griffin W.L., O’Reilly S.Y., 2006. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from Eastern Australian granitoids. Journal of Petrology 47 (2), 329–353. https://doi.org/10.1093/petrology/egi077.; Бережная Н.Г., Левский Л.К. Локальные методы и аномалии уран-свинцовой системы в цирконах // Изотопное датирование геологических процессов: новые результаты, подходы и перспективы: Материалы VI Российской конференции по изотопной геохронологии (2–5 июня 2015 г., г. Санкт-Петербург). СПб.: Sprinter, 2015. С. 37–39.; Blichert-Toft J., Albarède F., 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters 148 (1), 243–258. https://doi.org/10.1016/s0012-821x(97)00040-x.; Burmakina G.N., Tsygankov A.A., 2013. Mafic microgranular enclaves in Late Paleozoic granitoids in the Burgasy quartz syenite massif, western Transbaikalia: composition and petrogenesis. Petrology 21 (3), 280–303. https://doi.org/ 10.1134/S086959111303003X.; Castillo R.C., 2012. Adakite petrogenesis. Lithos 134–135, 304–316. https://doi.org/10.1016/j.lithos.2011.09.013.; Chauvel C., Blichert-Toft J., 2001. A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth and Planetary Science Letters 190 (3–4), 137–151. https://doi.org/10.1016/S0012-821X(01)00379-X.; Claiborne L.L., Miller C.F., Walker B.A., Wooden J.L., Mazdab F.K., Bea F., 2006. Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: an example from the Spirit Mountain batholith, Nevada. Mineralogical Magazine 70 (5), 517–543. https://doi.org/10.1180/0026461067050348.; Dementieva G.I., 1964. Induction Faces on Crystals. Author’s brief thesis (Candidate of Geology and Mineralogy). Leningrad State University, Leningrad, 24 p. (in Russian); Dong G., Luo M., Mo X., Zhao Z., Dong L., Yu X., Wang X., Li X., Huang X., Liu Y., 2018. Petrogenesis and tectonic implications of Early Paleozoic granitoids in East Kunlun belt: Evidences from geochronology, geochemistry and isotopes. Geoscience Frontiers 9 (5). 1383–1397. https://doi.org/10.1016/j.gsf.2018.03.003.; Du L., Long X., Yuan C., Zhang Y., Huang Z., Sun M., Xiao W., 2018. Petrogenesis of Late Paleozoic diorites and A-type granites in the central Eastern Tianshan, NW China: Response to post-collisional extension triggered by slab breakoff. Lithos 318–319, 47–59. https://doi.org/10.1016/j.lithos.2018.08.006.; Fershtater G.B., Bea F., Montero M.P., Scarrow J., 2004. Hornblende gabbro in the Urals: types, geochemistry, and petrogenesis. Geochemistry International 42 (7), 610–629.; Gagnevin D., Daly J.S., Kronz A., 2010. Zircon texture and chemical composition as a guide to magmatic processes and mixing in a granitic environment and coeval volcanic system. Contributions to Mineralogy and Petrology 159 (4), 579–596. https://doi.org/10.1007/s00410-009-0443-0.; Geisler T., Pidgeon R.T., Kurtz R., Van Bronswijk W., Schleicher H., 2003. Experimental hydrothermal alteration of partially metamict zircon. American Mineralogist 88 (10), 1496–1513. https://doi.org/10.2138/am-2003-1013.; Giovanardi T., Lugli F., 2017. The Hf-INATOR: A free data reduction spreadsheet for Lu/Hf isotope analysis. Earth Science Informatics 10 (4), 517–523. https://doi.org/10.1007/s12145-017-0303-9.; Grimes C.B., John B.E., Kelemen P.B., Mazdab F.K., Wooden J.L., Cheadle M.J., Hanghoj K., Schwartz J.J., 2007. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology 35 (7), 643–646. https://doi.org/10.1130/g23603a.1.; Hanchar J.M., Watson E.B., 2003. Zircon saturation thermometry. Reviews in Mineralogy and Geochemistry 53 (1), 89–112. https://doi.org/10.2113/0530089.; Hoskin P.W.O., 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta 69 (3), 637–648. https://doi.org/10.1016/j.gca.2004.07.006.; Каллистов Г.А. Длительность и возрастные этапы становления Челябинского гранитоидного батолита // Ежегодник-2013. Труды ИГГ УрО РАН. Вып. 161. Екатеринбург, 2014. C. 343–349.; Каллистов Г.А., Осипова Т.А. Геология и геохимия синплутонических даек в Челябинском гранитоидном массиве (Южный Урал) // Геодинамика и тектонофизика. 2017. Т. 8. № 2. С. 331–345. https://doi.org/10.5800/GT-2017-8-2-0244.; Каллистов Г.А., Осипова Т.А. Хромит как индикатор условий корово-мантийного взаимодействия при формировании высокомагнезиальных меланодиоритов Челябинского массива (Южный Урал) // Корреляция алтаид и уралид: магматизм, метаморфизм, стратиграфия, геохронология, геодинамика и металлогеническое прогнозирование: Материалы Четвертой международной научной конференции (2–6 апреля 2018 г., г. Новосибирск). Новосибирск: Изд-во СО РАН, 2018. С. 67–68.; Kirkland C.L., Smithies R.H., Taylor R.J.M., Evans N., McDonald B., 2015. Zircon Th/U ratios in magmatic environs. Lithos 212–215, 397–414. https://doi.org/10.1016/j.lithos.2014.11.021.; Kostitsyn Y.A., Belousova E.A., Silant’ev S.A., Bortnikov N.S., Anosova M.O., 2015. Modern problems of geochemical and U-Pb geochronological studies of zircon in oceanic rocks. Geochemistry International 53 (9), 759–785. https:// doi.org/10.1134/S0016702915090025.; Lenting C., Geisler T., Gerdes A., Kooijman E., Scherer E.E., Zeh A., 2010. The behavior of the Hf isotope system in radiationdamaged zircon during experimental hydrothermal alteration. American Mineralogist 95 (8–9), 1343–1348. https://doi.org/10.2138/am.2010.3521.; Литвиновский Б.А., Занвилевич А.Н., Калмонович М.А., Шадаев М.Г. Синплутонические базитовые интрузии ранних стадий формирования Ангаро-Витимского батолита (Забайкалье) // Геология и геофизика. 1992. Т. 33. № 7. С. 70–81.; Martin H., Smithies R.H., Rapp R., Moyen J.-F., Champion D., 2005. An overview of adakite, tonalite–trondhjemite– granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79 (1–2), 1–24. https://doi.org/10.1016/j.lithos.2004.04.048.; Pitcher W.S., 1991. Synplutonic dykes and mafic enclaves. In: J. Didier, B. Barbarin (Eds.), Enclaves and granite petrology. Development in Petrology, vol. 13. Amsterdam, Elsevier, p. 389–391.; Попов В.А. Практическая генетическая минералогия. Екатеринбург: УрО РАН, 2011. 167 с.; Прибавкин С.В., Каллистов Г.А., Осипова Т.А., Готтман И.А., Зинькова Е.А. Распределение хрома в минералах высокомагнезиальных пород, ассоциированных с гранитоидными массивами Урала // Литосфера. 2019. Т. 19. № 3 (в печати).; Пучков В.Н. Геология Урала и Приуралья (актуальные вопросы стратиграфии, тектоники, геодинамики и металлогении. Уфа: ДизайнПолиграфСервис, 2010. 280 с.; Pupin J.P., 1980. Zircon and granite petrology. Contributions to Mineralogy and Petrology 73 (3), 207–220. https:// doi.org/10.1007/BF00381441.; Qian Q., Hermann J., 2010. Formation of high-Mg diorites through assimilation of peridotite by monzodiorite magma at crustal depths. Journal of Petrology 51 (7), 1381–1416. https://doi.org/10.1093/petrology/egq023.; Савко К.А., Терентьев Р.А. Геохронология кварцевых диоритов Романовского плутона Воронежского кристаллического массива // Вестник Воронежского государственного университета. Серия: Геология. 2017. № 2. С. 74–80.; Scherer E., Münker C., Mezger K., 2001. Calibration of the lutetium-hafnium clock. Science 293 (5530), 683–687. https://doi.org/10.1126/science.1061372.; Sklyarov E.V., Fedorovskii V.S., 2006. Magma mingling: tectonic and geodynamic implications. Geotectonics 40 (2). 120–134. https://doi.org/10.1134/S001685210602004X.; Sun S.-S., McDonough W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. Saunders, M.J. Norry (Eds.), Magmatism in the Ocean Basins. Geological Society, London, Special Publications, vol. 42, p. 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.; Tatsumi Y., 2008. Making continental crust: the sanukitoid connection. Chinese Science Bulletin 53 (11), 1620–1633. https://doi.org/10.1007/s11434-008-0185-9.; Taylor S.R., McLennan S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific, Oxford, 312 p.; Thomas J.B., Bodnar R.J., Shimizu N., Sinha A.K., 2002. Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon. Geochimica et Cosmochimica Acta 66 (16), 2887–2901. https:// doi.org/10.1016/S0016-7037(02)00881-5.; Vervoort J.D., Blichert-Toft J., 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta 63 (3–4), 533–556. https://doi.org/10.1016/S0016-7037(98)00274-9.; Vervoort J.D., Kemp A.I., 2016. Clarifying the zircon Hf isotope record of crust–mantle evolution. Chemical Geology 425, 65–75. https://doi.org/10.1016/j.chemgeo.2016.01.023.; Владимиров В.Г. Происхождение и механизмы формирования структур магматического минглинга в комбинированных габброгранитных дайках // Петрология магматических и метаморфических комплексов. Вып. 9. Материалы IX Всероссийской петрографической конференции с международным участием. Томск: Изд-во Томского ЦНТИ, 2017. С. 67–69.; Wark D.A., Miller C.F., 1993. Accessory mineral behavior during differentiation of a granite suite: monazite, xenotime and zircon in the Sweetwater Wash pluton, southeastern California, USA. Chemical Geology 110 (1–3), 49–67. https://doi.org/10.1016/0009-2541(93)90247-G.; Watson E.B., Liang Y., 1995. A simple model for sector zoning in slowly grown crystals: Implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. American Mineralogist 80 (11–12), 1179–1187. https://doi.org/10.2138/am-1995-11-1209.; Watson E.B., Wark D.A., Thomas J.B., 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology 151 (4), 413–433. https://doi.org/10.1007/s00410-006-0068-5.; Wood B.J., Turner S.P., 2009. Origin of primitive high-Mg andesite: Constraints from natural examples and experiments. Earth and Planetary Science Letters 283 (1–4), 59–66. https://doi.org/10.1016/j.epsl.2009.03.032.; Зайцева М.В., Пупышев А.А., Щапова Ю.В., Вотяков С.Л. UPb датирование цирконов с помощью квадрупольного масс-спектрометра с индуктивно-связанной плазмой NexION 300S и приставки для лазерной абляции NWR 213 // Аналитика и контроль. 2016. Т. 20. № 4. С. 294–306. https://doi.org/10.15826/analitika.2016.20.4.006.; Зайцева М.В., Вотяков С.Л. К методике определения U-Pb-возраста и анализа Lu-Hf-изотопной системы циркона методом ЛА-ИСП-МС // Ежегодник-2016. Труды ИГГ УрО РАН. Вып. 164. Екатеринбург, 2017. С. 284–289.; Zhang J., Zhang H., Li L., 2018. Neoproterozoic tectonic transition in the South Qinling Belt: New constraints from geochemistry and zircon U–Pb–Hf isotopes of diorites from the Douling Complex. Precambrian Research 306, 112–128. https://doi.org/10.1016/j.precamres.2017.12.043.
-
4Academic Journal
Συγγραφείς: S. V. Khromykh, P. D. Kotler, A. E. Izokh, N. N. Kruk, С. В. Хромых, П. Д. Котлер, А. Э. Изох, Н. Н. Крук
Πηγή: Geodynamics & Tectonophysics; Том 10, № 1 (2019); 79-99 ; Геодинамика и тектонофизика; Том 10, № 1 (2019); 79-99 ; 2078-502X
Θεματικοί όροι: мантийно-коровое взаимодействие, post-orogenic magmatism, Tarim mantle plume, mantle-crust interaction, посторогенный магматизм, Таримский плюм
Περιγραφή αρχείου: application/pdf
Relation: https://www.gt-crust.ru/jour/article/view/770/426; Abramov S.S., 2004. Formation of fluorin-rich magmas by fluid filtration through silicic magmas: petrological and geochemical evidence of metamagmatism. Petrology 12 (1), 17–36.; Annikova I.Yu., Vladimirov A.G., Vystavnoi S.A., Zhuravlev D.Z., Kruk N.N., Lepekhina E.N., Matukov D.I., Moroz E.N., Palesskii V.S., Ponomarchuk V.A., Rudnev S.N., Sergeev S.A., 2006. U-Pb and 39Ar/40Ar dating and Sm-Nd and Pb-Pb isotopic study of the Kalguty molybdenum–tungsten ore-magmatic system, southern Altai. Petrology 14 (1), 81–97. https://doi.org/10.1134/S0869591106010073.; Barbarin B., 2005. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos 80 (1–4), 155–177. https://doi.org/10.1016/j.lithos.2004.05.010.; Bryan S.E., Ernst R.E., 2008. Revised definition of large igneous provinces (LIPs). Earth-Science Reviews 86 (1–4), 175–202. https://doi.org/10.1016/j.earscirev.2007.08.008.; Burmakina G.N., Tsygankov A.A., 2013. Mafic microgranular enclaves in Late Paleozoic granitoids in the Burgasy quartz syenite massif, western Transbaikalia: Composition and petrogenesis. Petrology 21 (3), 280–303. https://doi.org/10.1134/S086959111303003X.; Burmakina G.N., Tsygankov A.A., Khubanov V.B., 2018. Petrogenesis of composite dikes in granitoids of western Transbaikalia. Russian Geology and Geophysics 59 (1), 19–40. https://doi.org/10.1016/j.rgg.2018.01.002.; Buslov M.M., 2011. Tectonics and geodynamics of the Central Asian Fold belt: The role of Late Paleozoic largeamplitude strike-slip faults. Russian Geology and Geophysics 52 (1), 52–71. https://doi.org/10.1016/j.rgg.2010.12.005.; Dobretsov N.L., 2003. Evolution of structures of the Urals, Kazakhstan, Tien Shan, and Altai-Sayan region within the Ural-Mongolian fold belt (Paleoasian ocean). Geologiya i Geofizika (Russian Geology and Geophysics) 44 (1–2), 5–27.; Dobretsov N.L., 2011. Early Paleozoic tectonics and geodynamics of Central Asia: Role of mantle plumes. Russian Geology and Geophysics 52 (12), 1539–1552. https://doi.org/10.1016/j.rgg.2011.11.003.; Ермолов П.В., Изох Э.П., Пономарёва А.П., Тян В.Д. Габбро-гранитные серии западной части Зайсанской складчатой системы. Новосибирск: Наука, 1977. 246 с.; Ермолов П.В., Владимиров А.Г., Изох А.Э., Полянский Н.В., Кузебный В.С., Ревякин П.С., Борцов В.Д. Орогенный магматизм офиолитовых поясов (на примере Восточного Казахстана). Новосибирск: Наука, 1983. 191 с.; Ernst R.E., 2014. Large Igneous Provinces. Cambridge University Press, Cambridge, 653 p. https://doi.org/10.1017/CBO9781139025300.; Ernst R.E., Buchan K.L., Campbell I.H., 2005. Frontiers in large igneous province research. Lithos 79 (3–4), 271–297. https://doi.org/10.1016/j.lithos.2004.09.004.; Furman T., Spera F.J., 1985. Co-Mingling of acid and basic magma with implications for the origin of mafic I-type xenoliths: field and petrochemical relations of an unusual dike complex at Eagle Lake, Sequoia National Park, California, U.S.A. Journal of Volcanology and Geothermal Research 24 (1–2), 151–178. https://doi.org/10.1016/0377-0273(85)90031-9.9; Gao R., Xiao L., Pirajno F., Wang G.-C., He X.-X., Yang G., Yan Sh.-W., 2014. Carboniferous–Permian extensive magmatism in the West Junggar, Xinjiang, northwestern China: its geochemistry, geochronology, and petrogenesis. Lithos 204, 125–143. https://doi.org/10.1016/j.lithos.2014.05.028.; Huppert H.E., Sparks S.J., 1988. The generation of granitic magmas by intrusion of basalt into continental crust. Journal of Petrology 29 (3), 599–624. https://doi.org/10.1093/petrology/29.3.599.; Izokh A.E., Vishnevskii A.V., Polyakov G.V., Kalugin V.M., Oyunchimeg T., Shelepaev R.A., Egorova V.V., 2010. The Ureg Nuur Pt-bearing volcanoplutonic picrite-basalt association in the Mongolian Altay as evidence for a CambrianOrdovician Large Igneous Province. Russian Geology and Geophysics 51 (5), 521–533. https://doi.org/10.1016/j.rgg.2010.04.003.; Khromykh S.V., Burmakina G.N., Tsygankov А.А., Kotler P.D., Vladimirov A.G., 2017a. Interactions between gabbroid and granitoid magmas during formation of the Preobrazhensky intrusion, Eastern Kazakhstan. Geodynamics & Tectonophysics 8 (2), 311–330. https://doi.org/10.5800/GT-2017-8-2-0243.; Khromykh S.V., Kotler P.D., Sokolova E.N., 2017b. Mantle-crust interaction at the late stage of evolution of Hercynian Altai collision system, western part of CAOB. Geodynamics & Tectonophysics 8 (3), 489–493. https://doi.org/10.5800/GT-2017-8-3-0270.; Khromykh S.V., Kuibida M.L., Kruk N.N., 2011. Petrogenesis of high-temperature siliceous melts in volcanic structures of the Altai collisional system of Hercynides (Eastern Kazakhstan). Russian Geology and Geophysics 52 (4), 411–420. https://doi.org/10.1016/j.rgg.2011.03.004.; Khromykh S.V., Sokolova E.N., Smirnov S.Z., Travin A.V., Annikova I.Y., 2014. Geochemistry and age of rare-metal dyke belts in Eastern Kazakhstan. Doklady Earth Sciences 459 (2), 1587–1591. https://doi.org/10.1134/S1028334X14120174.; Khromykh S.V., Tsygankov A.A., Burmakina G.N., Kotler P.D., Sokolova E.N., 2018. Mantle-crust interaction in petrogenesis of gabbro-granite association in Preobrazhenka intrusion, Eastern Kazakhstan. Petrology 26 (4), 368–388. https://doi.org/10.1134/S0869591118040045.; Khromykh S.V., Tsygankov A.A., Kotler P.D., Navozov O.V., Kruk N.N., Vladimirov A.G., Travin A.V., Yudin D.S., Burmakina G.N., Khubanov V.B., Buyantuev M.D., Antsiferova T.N., Karavaeva G.S., 2016. Late Paleozoic granitoid magmatism of Eastern Kazakhstan and Western Transbaikalia: Plume model test. Russian Geology and Geophysics 57 (5), 773–789. https://doi.org/10.1016/j.rgg.2015.09.018.; Khromykh S.V., Vladimirov A.G., Izokh A.E., Travin A.V., Prokop'ev I.R., Azimbaev E., Lobanov S.S., 2013. Petrology and geochemistry of gabbro and picrites from the Altai collisional system of Hercynides: Evidence for the activity of the Tarim plume. Russian Geology and Geophysics 54 (10), 1288–1304. https://doi.org/10.1016/j.rgg.2013.09.011.; Kiselev A.I., Yarmolyuk V.V., Ivanov A.V., Egorov K.N., 2014. Middle Paleozoic basaltic and kimberlitic magmatism in the northwestern shoulder of the Vilyui Rift, Siberia: Relations in space and time. Russian Geology and Geophysics 55 (2), 144–152. https://doi.org/10.1016/j.rgg.2014.01.003.; Konopelko D., Seltmann R., Mamadjano Y., Romer R.L., Rojas-Agramonte Y., Jeffries T., Fidaev D., Niyozov A., 2017. A geotraverse across two paleo-subduction zones in Tien Shan, Tajikistan. Gondwana Research 47, 110–130. https://doi.org/10.1016/j.gr.2016.09.010.; Konopelko D., Wilde S.A., Seltmann R., Romer R.L., Biske Yu.S., 2018. Early Permian intrusions of the Alai range: Understanding tectonic settings of Hercynian post-collisional magmatism in the South Tien Shan, Kyrgyzstan. Lithos 302–303, 405–420. https://doi.org/10.1016/j.lithos.2018.01.024.; Kotler P.D., Khromykh S.V., Smirnov S.Z., D'yachkov B.A., Travin A.V., Vladimirov A.G., Yudin D.S., Kruk N.N., 2014. Ar-Ar isotopic dating of rare-metal pegmatites of the Kalba-Narym granite batholith (Eastern Kazakhstan). In: Granites and Earth's evolution: granites and continental crust. Proceedings of the 2nd International Geological Conference. IGM SB RAS, Novosibirsk, p. 104–105.; Kotler P.D., Khromykh S.V., Vladimirov A.G., Navozov O.V., Travin A.V., Karavaeva G.S., Kruk N.N., Murzintsev N.G., 2015. New data on the age and geodynamic interpretation of the Kalba-Narym granitic batholith, Eastern Kazakhstan. Doklady Earth Sciences 462 (2), 565–569. https://doi.org/10.1134/S1028334X15060136.; Kozlovsky A.M., Yarmolyuk V.V., Salnikova E.B., Travin A.V., Kotov A.B., Plotkina Ju.V., Kudryashova E.A., Savatenkov V.M., 2015. Late Paleozoic anorogenic magmatism of the Gobi Altai (SW Mongolia): Tectonic position, geochronology and correlation with igneous activity of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences 113, 524–541. https://doi.org/10.1016/j.jseaes.2015.01.013.; Kuzmin M.I., Yarmolyuk V.V., 2014. Mantle plumes of Central Asia (Northeast Asia) and their role in forming endogenous deposits. Russian Geology and Geophysics 55 (2), 120–143. https://doi.org/10.1016/j.rgg.2014.01.002.; Levashova N.M., Van der Voo R., Abrajevitch A.V., Bazhenov M.L., 2009. Paleomagnetism of mid-Paleozoic subductionrelated volcanics from the Chingiz Range in NE Kazakhstan: the evolving paleogeography of the amalgamating Eurasian composite continent. Geological Society of America Bulletin 121 (3–4), 555–573. https://doi.org/10.1130/B26354.1.; Li Y.Q., Li Z.L., Yu X., Langmuir Ch.H., Santosh M., Yang Sh.F., Chen H.L., Tang Zh.L., Song B., Zou S.Y., 2014. Origin of the Early Permian zircons in Keping basalts and magma evolution of the Tarim Large Igneous Province (northwestern China). Lithos 204, 47–58. https://doi.org/10.1016/j.lithos.2014.05.021.; Litvinovsky B.A., Zanvilevich A.N., Kalmanovich M.A., 1995. The repeated mixing and mingling of coeval syenite and basalt magmas and its role in petrogenesis: a case study in the Ust’ Khilok pluton, Transbaikalia (Russia). Petrology 3 (2), 125–137.; Лопатников В.В., Изох Э.П., Ермолов П.В., Пономарева А.П., Степанов А.С. Магматизм и рудоносность Калба-Нарымской зоны Восточного Казахстана. М.: Наука, 1982. 248 с.; Mekhonoshin A.S., Kolotilina T.B., Vladimirov A.G., Sokol'nikova Yu.V., Doroshkov A.A., 2017. First data on the concentrations and distribution of noble metals in Ni-Cu sulfide ores of the South Maksut deposit (Eastern Kazakhstan). Geodynamics & Tectonophysics 8 (3), 515–519. https://doi.org/10.5800/GT-2017-8-3-0278.; Pirajno F., Seltmann R., Yang Y., 2011. A review of mineral systems and associated tectonic settings of northern Xinjiang, NW China. Geosciences Frontiers 2 (2), 157–185. https://doi.org/10.1016/j.gsf.2011.03.006.; Polyakov G.V., Izokh A.E., Borisenko A.S., 2008. Permian ultramafic-mafic magmatism and accompanying Cu-Ni mineralization in the Gobi-Tien Shan belt as a result of the Tarim plume activity. Russian Geology and Geophysics 49 (7), 455–467. https://doi.org/10.1016/j.rgg.2008.06.001.; Renna M.R., Tribuzio R., Tiepolo M., 2006. Interaction between basic and acid magmas during the latest stages of the post-collisional Variscan evolution: Clues from the gabbro-granite association of Ota (Corsica-Sardinia batholith). Lithos 90 (1–2), 92–110. https://doi.org/10.1016/j.lithos.2006.02.003.; Safonova I., Komiya T., Romer R.L., Simonov V., Seltmann R., Rudnev S., Yamamoto S., Sun M., 2018. Supra-subduction igneous formations of the Char ophiolite belt, East Kazakhstan. Gondwana Research 59, 159–179 https://doi.org/10.1016/j.gr.2018.04.001.; Safonova I.Y., Simonov V.A., Kurganskaya E.V., Obut O.T., Romer R.L., Seltmann R., 2012. Late Paleozoic oceanic basalts hosted by the Char suture-shear zone, Eastern Kazakhstan: Geological position, geochemistry, petrogenesis and tectonic setting. Journal of Asian Earth Sciences 49, 20–39. https://doi.org/10.1016/j.jseaes.2011.11.015.; Seltmann R., Konopelko D., Biske G., Divaev F., Sergeev S., 2011. Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt. Journal of Asian Earth Sciences 42 (5), 821–838. https://doi.org/10.1016/j.jseaes.2010.08.016.; Şengör A.M.C., Natal'in B.A., Burtman U.S., 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364 (6435), 299–304. https://doi.org/10.1038/364299a0.; Щерба Г.Н., Дьячков Б.А., Нахтигаль Г.П. Жарма-Саурский геотектоноген. Алма-Ата: Наука, 1976. 198 с.; Щерба Г.Н., Дьячков Б.А., Стучевский Н.И., Нахтигаль Г.П., Антоненко А.Н., Любецкий В.Н. Большой Алтай (геология и металлогения). Кн. 1. Геологическое строение. Алматы: Гылым, 1998. 304 с.; Sokolova E.N., Smirnov S.Z., Khromykh S.V., 2016. Conditions of crystallization, composition, and sources of rare-metal magmas forming ongonites in the Kalba-Narym zone, Eastern Kazakhstan. Petrology 24 (2), 153–177. https://doi.org/10.1134/S0869591116020065.; Vladimirov A.G., Izokh A.E., Polyakov G.V., Babin G.A., Mekhonoshin A.S., Kruk N.N., Khlestov V.V., Khromykh S.V., Travin A.V., Yudin D.S., Shelepaev R.A., Karmysheva I.V., Mikheev E.I., 2013. Gabbro-granite intrusive series and their indicator importance for geodynamic reconstructions. Petrology 21 (2), 158–180. https://doi.org/10.1134/S0869591113020070.; Vladimirov A.G., Kruk N.N., Khromykh S.V., Polyansky O.P., Chervov V.V., Vladimirov V.G., Travin A.V., Babin G.A., Kuibida M.L., Khomyakov V.D., 2008. Permian magmatism and lithospheric deformation in the Altai caused by crustal and mantle thermal processes. Russian Geology and Geophysics 49 (7), 468–479. https://doi.org/10.1016/j.rgg.2008.06.006.; Vladimirov A.G., Kruk N.N., Rudnev S.N., Khromykh S.V., 2003. Geodynamics and granitoid magmatism of collision orogens. Geologiya i Geofizika (Russian Geology and Geophysics) 44 (12), 1321–1338.; Vorontsov A.A., Fedoseev G.S., Andryushchenko S.V., 2013. Devonian volcanism in the Minusa basin in the Altai-Sayan area: geological, geochemical, and Sr-Nd isotopic characteristics of rocks. Russian Geology and Geophysics 54 (9), 1001–1025. https://doi.org/10.1016/j.rgg.2013.07.016.; Wang B., Cluzel D., Jahn B-M., Shu L., Chen Y., Zhai Y., Branquet Y., Barbanson L., Sizaret S., 2014. Late Paleozoic pre- and syn-kinematic plutons of the Kangguer–Huangshan Shear zone: Inference on the tectonic evolution of the eastern Chinese north Tianshan. American Journal of Science 314 (1), 43–79. https://doi.org/10.2475/01.2014.02.; Wei X., Xu Y.-G., Feng Y.-X., Zhao J.-X., 2014. Plume-lithosphere interaction in the generation of the Tarim Large Igneous Province, NW China: geochronological and geochemical constraints. American Journal of Science 314 (1), 314–356. https://doi.org/10.2475/01.2014.09.; Wiebe R.A., 1973. Relations between coexisting basaltic and granitic magmas in a composite dike. American Journal of Sciences 273 (2), 130–151. https://doi.org/10.2475/ajs.273.2.130.; Windley B.F., Alexeiev D., Xiao W., Kröner A., Badarch G., 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society 164 (1), 31–47. https://doi.org/10.1144/0016-76492006-022.; Xiao W.J., Han C.M., Yuan C., Sun M., Lin S.F., Chen H.L., Li Z.L., Li J.L., Sun S., 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of North Xinjiang, NW China: implications for the tectonic evolution of Central Asia. Journal of Asian Earth Sciences 32 (2–4), 102–117. https://doi.org/10.1016/j.jseaes.2007.10.008.; Xiao W.J., Huang B., Han Ch., Sun Sh., Li J., 2010. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Research 18 (2–3), 253–273. https://doi.org/10.1016/j.gr.2010.01.007.; Xiao W., Santosh M., 2014. The western Central Asian Orogenic Belt: a window to accretionary orogenesis and continental growth. Gondwana Research 25, 1429–1444. https://doi.org/10.1016/j.gr.2014.01.008.; Xu Y-G., Wei X., Luo Z-Y., Liu H-Q., Cao J., 2014. The Early Permian Tarim Large Igneous Province: Main characteristics and a plume incubation model. Lithos 204, 20–35. https://doi.org/10.1016/j.lithos.2014.02.015.; Yarmolyuk V.V., Kuzmin M.I., Ernst R.E., 2014. Intraplate geodynamics and magmatism in the evolution of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences 93, 158–179. https://doi.org/10.1016/j.jseaes.2014.07.004.; Yu X., Yang S.F., Chen H.L., Chen Z.Q., Li Z.L., Batt G.E., Li Y.Q., 2011. Permian flood basalts from the Tarim Basin, Northwest China: SHRIMP zircon U–Pb dating and geochemical characteristics. Gondwana Research 20 (2–3), 485–497. https://doi.org/10.1016/j.gr.2010.11.009.; Yu X., Yang S.F., Chen H.L., Li Z.L., Li Y.Q., 2017. Petrogenetic model of the Permian Tarim Large Igneous Province. Science China Earth Sciences 60 (10), 1805–1816. https://doi.org/10.1007/s11430-016-9098-7.; Zagorsky V.Ye., Vladimirov A.G., Makagon V.M., Kuznetsova L.G., Smirnov S.Z., D’yachkov B.A., Annikova I.Yu., Shokalsky S.P., Uvarov A.N., 2014. Large fields of spodumene pegmatites in the settings of rifting and postcollisional shear–pull-apart dislocations of continental lithosphere. Russian Geology and Geophysics 55 (2), 237–251. https://doi.org/10.1016/j.rgg.2014.01.008.; Zhang Ch.L., Li Z.X., Li X.H., Xu Y.G., Zhou G., Ye H.M., 2010. A Permian large igneous province in Tarim and Central Asian orogenic belt, NW China: Results of a ca. 275 Ma mantle plume? Geological Society of America Bulletin 122 (11–12), 2020–2040. https://doi.org/10.1130/B30007.1.; Zhang Ch.L., Zou H.B., Yao Ch.Y., Dong Y.G., 2014. Origin of Permian gabbroic intrusions in the southern margin of the Altai Orogenic belt: A possible link to the Permian Tarim mantle plume? Lithos 204, 112–124. https://doi.org/10.1016/j.lithos.2014.05.019.
-
5Academic Journal
Συγγραφείς: A. G. Vladimirov, A. S. Mekhonoshin, S. V. Khromykh, E. I. Mikheev, A. V. Travin, N. I. Volkova, T. B. Kolotilina, Yu. A. Davydenko, E. V. Borodina, V. V. Khlestov, А. Г. Владимиров, А. С. Мехоношин, С. В. Хромых, Е. И. Михеев, А. В. Травин, Н. И. Волкова, Т. Б. Колотилина, Ю. А. Давыденко, Е. В. Бородина, В. В. Хлестов
Πηγή: Geodynamics & Tectonophysics; Том 8, № 2 (2017); 223-268 ; Геодинамика и тектонофизика; Том 8, № 2 (2017); 223-268 ; 2078-502X
Θεματικοί όροι: Западное Прибайкалье, synmetamorphic gabbro‐pyroxenite, hypersthene plagiogranite, stress granite, mantle‐crust interaction, metamorphic magma‐mingling, Chernorud granulite zone, Olknon region, West Pribaikalie, синметаморфический габбро‐пироксенит, гиперстеновый плагиогранит, стресс‐гранит, мантийно‐коровое взаимодействие, метаморфический магма‐минглинг, Чернорудская гранулитовая зона, Ольхонский регион
Περιγραφή αρχείου: application/pdf
Relation: https://www.gt-crust.ru/jour/article/view/361/257; Aranovich L.Ya., Berman R.G., 1996. Optimized standard state and solution properties of minerals: II. Comparisons, predictions, and applications. Contributions to Mineralogy and Petrology 126 (1–2), 25–37. https://doi.org/10.1007/s004100050233.; Ariskin A.A., Frenkel M.Ya., Barmina G.S., Nielsen R.L., 1993. COMAGMAT: a Fortran program to model magma differentiation processer. Computers and Geosciences 19 (8), 1155–1170. https://doi.org/10.1016/0098-3004(93)90020-6.; Berman R.G., 1991. Thermobarometry using multiequilibrium calculations: a new technique with petrologic applications. Canadian Mineralogist 29 (4), 833–855.; Berman R.G., Aranovich L.Ya., 1996. Optimized standard state and solution properties of minerals: I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO-MgO-CaO-Al2O3-TiO2-SiO2. Contributions to Mineralogy and Petrology 126 (1), 1–24. https://doi.org/10.1007/s004100050232.; Bibikova E.V., Karpenko S.F., Sumin L.V., Bogdanovsky O.G., Kirnozova T.I., Lyalikova A.V., Makarova V.A., Arakelyants M.M., Korikovsky S.P., Fedorovsky V.S., Petrova Z.I., Levitsky V.I., 1990. U-Pb, Sm-Nd, Pb-Pb, and K-Ar age of metamorphic and magmatic rocks of the Olkhon area (Western Baikal). In: V.M. Shemyakin (Ed.), Geology and geochronology of the Precambrian of the Siberian platform and its framework. Nauka, Leningrad, p. 170–183 (in Russian) [Бибикова Е.В., Карпенко С.Ф., Сумин Л.В., Богдановский О.Г., Кирнозова Т.И., Ляликова А.В., Макарова В.А., Аракелянц М.М., Кориковский С.П., Федоровский В.С., Петрова З.И., Левицкий В.И. U-Pb, Sm-Nd, Pb-Pb и K-Ar возраст метаморфических и магматических пород Приольхонья (Западное Прибайкалье) // Геология и гехронология докембрия Сибирской платформы и ее обрамления / Ред. В.М. Шемякин. Л.: Наука, 1990. С. 170–183].; Boynton W.V., 1984. Cosmochemistry of the rare earth elements: meteorite studies. In: P. Henderson (Ed.). Rare earth element geochemistry. Developments in Geochemistry, vol. 2. Elsevier, Amsterdam, p. 63–114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3.; Davies J. Huw., von Blanckenburg F., 1995. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth and Planetary Science Letters 129 (1–4), 85–102. https://doi.org/10.1016/0012-821X(94)00237-S.; Didier J., Barbarin B., 1991. Enclaves and granite petrology. In: Developments in Petrology, vol. 13. Elsevier, Amsterdam – Oxford – New York – Tokio, p. 545–549.; Dobretsov N.L., 1980. Introduction to the Global Petrology. Nauka, Siberian Branch, Novosibirsk, 200 p. [Добрецов Н.Л. Введение в глобальную петрологию. Новосибирск: Наука. СО, 1980. 200 с.].; Dobretsov N.L., Borisenko A.S., Izokh A.E., Zhmodik S.M., 2010. A thermochemical model of Eurasian Permo-Triassic mantle plumes as a basis for prediction and exploration for Cu-Ni-PGE and rare-metal ore deposits. Russian Geology and Geophysics 51 (9), 903–924. https://doi.org/10.1016/j.rgg.2010.08.002.; Dobretsov N.L., Buslov M.M., 2007. Late Cambrian-Ordovician tectonics and geodynamics of Central Asia. Russian Geology and Geophysics 48 (1), 71–82. https://doi.org/10.1016/j.rgg.2006.12.006.; Dokukina K.A., Vladimirov V.G., 2005. Tectonic fragmentation of basaltic melt. Doklady Earth Sciences 401 (2), 182–186.; Donskaya T.V., Gladkochub D.P., Fedorovsky V.S., Mazukabzov A.M., Cho M., Cheong W., Kim J., 2013. Synmetamorphic granitoids (~490 Ma) as accretion indicators in the evolution of the Ol’khon terrane (western Cisbaikalia). Russian Geology and Geophysics 54 (10), 1205–1218. https://doi.org/10.1016/j.rgg.2013.09.006.; Donskaya T.V., Gladkochub D.P., Fedorovsky V.S., Sklyarov E.V., Cho M., Sergeev S.A., Demonterova E.I., Mazukabzov A.M., Lepekhina E.N., Cheong W., Kim J., 2017. Pre-collisional (> 0.5 Ga) complexes of the Olkhon terrane (southern Siberia) as an echo of events in the Central Asian orogenic belt. Gondwana Research 42, 243–263. https://doi.org/10.1016/j.gr.2016.10.016.; Egorova V.V., Volkova N.I., Shelepaev R.A., Izokh A.E., 2006. The lithosphere beneath the Sangilen plateau, Siberia: evidence from peridotite, pyroxenite and gabbro xenoliths from alkaline basalts. Mineralogy and Petrology 88 (3), 419–441. https://doi.org/10.1007/s00710-006-0121-0.; Ermolov P.V., Izokh E.P., Ponomareva A.P., Tyan V.D., 1977. Gabbro-Granite Intrusive Series of Western Zaisan Fold System. Nauka, Siberian Branch, Novosibirsk, 245 p. (in Russian) [Ермолов П.В., Изох Э.П., Пономарева А.П., Тян В.Д. Габбро-гранитные серии западной части Зайсанской складчатой системы. Новосибирск: Наука. СО, 1977. 245 с.].; Ernst R.E., 2014. Large Igneous Provinces. Cambridge University Press, Cambridge, 653 p. https://doi.org/10.1017/СВ09781139025300.; Ernst R.E., Hamilton M.A., Söderlund U., Hanes J.A., Gladkochub D.P., Okrugin A.V., Kolotilina T., Mekhonoshin A.S., Bleeker W., LeCheminant A.N., Buchan K.L., Chamberlain K.R., Didenko A.N., 2016. Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic. Nature Geoscience 9 (6), 464–469. https://doi.org/10.1038/ngeo2700.; Fedorovsky V.S., 2004. Geological Map of the Southwestern Part of Ol’khon Region. GIN RAS, Moscow (in Russian) [Федоровский В.С. Геологическая карта юго-западной части Ольхонского региона. М.: ГИН РАН, 2004].; Fedorovsky V.S., Donskaya T.V., Gladkochub D.P., Khromykh S.V., Mazukabzov A.M., Mekhonoshin A.S., Sklyarov E.V., Sukhorukov V.P., Vladimirov A.G., Volkova N.I., Yudin D.S., 2005. The Olkhon collision system (Baikal region) In: E.V. Sklyarov (Ed.), Structural and tectonic correlation across the Central Asia orogenic collage: north-eastern segment. Guidebook and abstract volume of the Siberian Workshop IGCP-480. IEC SB RAS, Irkutsk, p. 5–76.; Fedorovsky V.S., Khain E.V., Vladimirov A.G., Kargopolov S.A., Gibsher A.S., Izokh A.E., 1995 Tectonics, metamorphism and magmatism in early Caledonian collision zones of Central Asian fold belt. Geotektonika (Geotectonics) (3), 3–22 (in Russian) [Федоровский В.С., Хаин Е.В., Владимиров А.Г., Каргополов С.А., Гибшер А.С., Изох А.Э. Тектоника, метаморфизм и магматизм коллизионных зон каледонид Центральной Азии // Геотектоника. 1995. № 3. С. 3–22].; Fedorovsky V.S., Mazukabzov A.M., Gladkochub D.P., 2014. Tectonic position of marble melanges in the Early Paleozoic accretion-collisional system of the Western Pribaikalie. Geodynamics & Tectonophysics 5 (3), 595–624 (in Russian) [Федоровский В.С., Мазукабзов А.М., Гладкочуб Д.П. Тектоническая позиция мраморного меланжа в аккреционно-коллизионной системе раннего палеозоя Западного Прибайкалья // Геодинамика и тектонофизика. 2014. Т. 5. № 3. С. 595–624]. https://doi.org/10.5800/GT-2014-5-3-0145.; Fedorovsky V.S., Mazukabzov A.M., Sklyarov E.V., Gladkochub D.P., Donskaya T.V., Lavrenchuk A.V., Izokh A.E., Agatova A.R., Kotov A.B., 2012. Aerospace geological map of south-west part of the Chernorud and Tomota zones (Lake Baikal) of Ol’khon region. The Ol’khon geodynamic proving ground. A1 TIS, Moscow [Федоровский В.С., Мазукабзов А.М., Скляров Е.В., Гладкочуб Д.П., Донская Т.В., Лавренчук А.В., Изох А.Э., Агатова А.Р., Котов А.Б. Аэрокосмическая геологическая карта юго-западной части зон Черноруд и Томота Ольхонского региона (Байкал). Ольхонский геодинамический полигон. М.: A1 TIS, 2012].; Fedorovsky V.S., Sklyarov E.V., 2010. The Olkhon geodynamic proving ground (Lake Baikal): high resolution satellite data and geological maps of new generation. Geodynamics & Tectonophysics 1 (4), 331–418 (in Russian) [Федоровский В.С., Скляров Е.В. Ольхонский геодинамический полигон (Байкал): аэрокосмические данные высокого разрешения и геологические карты нового поколения // Геодинамика и тектонофизика. 2010. Т. 1. № 4. С. 331–418]. https://doi.org/10.5800/GT-2010-1-4-0026.; Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D., 2001. A geochemical classification for granitic rocks. Journal of Petrology 42 (11), 2033–2048. https://doi.org/10.1093/petrology/42.11.2033.; Gamble R.J.A., 1979. Some relationships between coexisting granitic and basaltic magmas and the genesis of hybrid rocks in the Tertiary central complex of Slieve Gullion, Northeast Ireland. Journal of Volcanology and Geothermal Research 5 (3–4), 297–316. https://doi.org/10.1016/0377-0273(79)90021-0.; Gerya T.V., Burg J.-P., 2007. Intrusion of ultramafic magmatic bodies into the continental crust: Numerical simulation. Physics of the Earth and Planetary Interiors 160 (2), 124–142. https://doi.org/10.1016/j.pepi.2006.10.004.; Gladkochub D.P., Donskaya T.V., Fedorovsky V.S., Mazukabzov A.M., Larionov A.N., Sergeev S.A., 2010. The Olkhon metamorphic terrane in the Baikal region: An Early Paleozoic collage of Neoproterozoic active margin fragments. Russian Geology and Geophysics 51 (5), 447–460. https://doi.org/10.1016/j.rgg.2010.04.001.; Gladkochub D.P., Donskaya T.V., Wingate M.T.D., Poller U., Kröner A., Fedorovsky V.S., Mazukabzov A.M., Todt W., Pisarevsky S.A., 2008. Petrology, geochronology, and tectonic implications of c. 500 Ma metamorphic and igneous rocks along the northern margin of the Central-Asian orogen (Olkhon terrane, Lake Baikal, Siberia). Journal of the Geological Society 165 (1), 235–246. https://doi.org/10.1144/0016-76492006-125.; Gladkochub D.P., Stanevich A.M., Mazukabzov A.M., Donskaya T.V., Pisarevsky S.A., Nicoll G., Motova Z.L., Kornilova T.A., 2013. Early evolution of the Paleoasian ocean: LA-ICP-MS dating of detrital zircon from Late Precambrian sequences of the southern margin of the Siberian craton. Russian Geology and Geophysics 54 (10), 1150–1163. https://doi.org/10.1016/j.rgg.2013.09.002.; Gordienko I.V., 2003. Indicator igneous assemblages in the Central Asian fold belt: implications for geodynamic environments of the Paleoasian ocean. Geologiya i Geofizika (Russian Geology and Geophysics) 44 (12), 1294–1304 (in Russian) [Гордиенко И.В. Индикаторные магматические формации Центрально-Азиатского складчатого пояса и их роль в геодинамических реконструкциях Палеоазиатского океана // Геология и геофизика. 2003. Т. 44. № 12. С. 1294–1304].; Holland T.J.B., Powell R., 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology 16 (3), 309–343. https://doi.org/10.1111/j.1525-1314.1998.00140.x.; Houseman G.A., Molnar P., 1997. Gravitational (Rayleigh-Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere. Geophysical Journal International 128 (1), 125–150. https://doi.org/10.1111/j.1365-246X.1997.tb04075.x.; Ivanov A.N., Shmakin B.M., 1980. Granites and Pegmatites of Western Pribaikal’ye. Nauka, Moscow, 219 p. (in Russian) [Иванов А.Н., Шмакин Б.М. Граниты и пегматиты Западного Прибайкалья. М.: Наука, 1980. 219 с.].; Karmysheva I.V., Vladimirov V.G., Vladimirov A.G., Shelepaev R.A., Yakovlev V.A., Vasyukova E.A., 2015. Tectonic position of mingling dykes in accretion-collision system of Early Caledonides of West Sangilen (South-East Tuva, Russia). Geodynamics & Tectonophysics 6 (3), 289–310. https://doi.org/10.5800/GT-2015-6-3-0183.; Khanchuk A.I., Kemkin I.V., Kruk N.N., 2015. The Sikhote–Alin orogenic belt, Russian South East: terranes and the formation of continental lithosphere based on geological and isotopic data. Journal of Asian Earth Sciences 120, 117–138. https://doi.org/10.1016/j.jseaes.2015.10.023.; Khlestov V.V., Volkova N.I., 2008. Effects of irregular strike-slip deformations at deep levels of collision systems (by the example of the Ol’khon region). In: Lithosphere Petrology and Origin of Diamond. Abstracts of International Symposium dedicated to the 100th birthday of Academician V.S. Sobolev (June 5–7, 2008, Novosibirsk). Publishing House of SB RAS, Novosibirsk, p. 148.; Khromykh S.V., 2006. Petrology of Igneous Complexes of Deep Levels of Collision Systems (Example of West Baikal Region Early Caledonides). Author’s PhD thesis (Geology and Mineralogy). Novosibirsk, 20 p. (in Russian) [Хромых С.В. Петрология магматических комплексов глубинных уровней коллизионных систем (на примере ранних каледонид Ольхонского региона Западного Прибайкалья): Автореф. дис. … канд. геол.-мин. наук. Новосибирск, 2006. 20 с.].; Khromykh S.V., Tsygankov A.A., Kotler P.D., Navozov O.V., Kruk N.N., Vladimirov A.G., Travin A.V., Yudin D.S., Burmakina G.N., Khubanov V.B., Buyantuev M.D., Antsiferova T.N., Karavaeva G.S., 2016. Late Paleozoic granitoid magmatism of Eastern Kazakhstan and Western Transbaikalia: plume model test. Russian Geology and Geophysics 57 (5), 773–789. https://doi.org/10.1016/j.rgg.2015.09.018.; Khromykh S.V., Vladimirov A.G., Izokh A.E., Travin A.V., Prokop’ev I.R., Azimbaev E., Lobanov S.S., 2013. Petrology and geochemistry of gabbro and picrites from the Altai collisional system of Hercynides: Evidence for the activity of the Tarim plume. Russian Geology and Geophysics 54 (10), 1288–1304. https://doi.org/10.1016/j.rgg.2013.09.011.; Khubanov V.B., Vrublevskaya Т.Т., Tsygankov А.А., Vladimirov A.G., Buyantuev M.D., Sokolova Е.N., Posokhov V.F., Khromova Е.А., 2017. Melting conditions of granitoid xenoliths in contact with alkaline mafic magma (Gusinoozerskaya dyke, Western Transbaikalia): to the problem of the origin of ultrapotassic acid melts. Geodynamics & Tectonophysics 8 (2), 347–368 (in Russian) [Хубанов В.Б., Врублевская Т.Т., Цыганков А.А., Владимиров А.Г., Буянтуев М.Д., Соколова Е.Н., Посохов В.Ф., Хромова Е.А. Условия плавления гранитоидных ксенолитов в контакте со щелочно-базитовой магмой (Гусиноозерская дайка, Западное Забайкалье): к проблеме происхождения ультракалиевых кислых расплавов // Геодинамика и тектонофизика. 2017. Т. 8. № 2. С. 347–368]. https://doi.org/10.5800/GT-2017-8-2-0245.; Korikovsky S.P., Fedorovsky V.S., 1981. Petrology of metamorphic rocks in Priol’khonie. In: Geology of granulites. Guidebook of Baikal International Symposium. Irkutsk, p. 70–80 (in Russian) [Кориковский С.П., Федоровский В.С. Петрология метаморфических пород Приольхонья // Геология гранулитов. Путеводитель Байкальской экскурсии международного симпозиума. Иркутск, 1981. С. 70–80].; Kozakov I.K., Sal’nikova E.B., Khain E.V., Kovach V.P., Berezhnaya N.G., Yakovleva S.Z., Plotkina Yu.V., 2002. Early Caledonian crystalline rocks of the Lake Zone in Mongolia: formation history and tectonic settings as deduced from U–Pb and Sm–Nd datings. Geotectonics 36 (2), 156–166.; Kozakov I.K., Sal’nikova E.B., Yarmolyuk V.V., Kozlovsky A.M., Kovach V.P., Azimov P.Ya., Anisimova I.V., Lebedev V.I., Enjin G., Erdenejargal Ch., Plotkina Yu.V., Fedoseenko A.M., Yakovleva S.Z., 2012. Convergent boundaries and related igneous and metamorphic complexes in caledonides of Central Asia. Geotectonics 46 (1), 16–36. https://doi.org/10.1134/S0016852112010037.; Letnikov F.A., Khalilov V.A., Savelyeva V.B., 1990. The isotopic age of igneous rocks in Priol’khonie. Doklady AN SSSR 313 (1), 171–174 (in Russian) [Летников Ф.А., Халилов В.А., Савельева В.Б. Изотопный возраст магматических пород Приольхонья // Доклады АН СССР. 1990. Т. 313. № 1. С. 171–174].; Li X.C., Yu J.H., Sang L.Q., Luo L., Zhu G.R., 2009. Granulite facies metamorphism of the Olkhon terrane in southern Siberian craton and tectonic significance. Acta Petrologica Sinica 12, 3346–3356.; Litvinovsky B.A., Zanvilevich A.N., Lyapunov S.M., Bindeman I.N., Davis A.M., Kalmanovich M.A., 1995. Model of composite basite-granitoid dike generation (Shaluta pluton, Transbaikalia). Geologiya i Geofizika (Russian Geology and Geophysics) 36 (7), 3–22 (in Russian) [Литвиновский Б.А., Занвилевич А.Н., Ляпунов С.М., Биндеман И.Н., Дэвис А.М., Калманович М.А. Условия образования комбинированных базит-гранитных даек (Шалутинский массив, Забайкалье) // Геология и геофизика. 1995. Т. 36. № 7. C. 3–22].; Makrygina V.A., Petrova Z.I., 1996. Geochemistry of migmatites and granitoids of priol'khon'e and Ol'khon Island, Baikal region. Geochemistry International 34 (7), 574–585.; Makrygina V.A., Petrova Z.I., Koneva A.A., 1993. Geochemistry of basic schists in the Olkhon area and on Olkhon Island, West Baikal Region. Geochemistry International 30 (1), 1–6 [Макрыгина В.А., Петрова З.И., Конева А.А. Геохимия основных кристаллических сланцев Приольхонья и о-ва Ольхон (Западное Прибайкалье) // Геохимия. 1992. № 6. С. 771–786].; Makrygina V.A., Petrova Z.I., Koneva A.A., Suvorova L.F., 2008. Composition, P-T parameters, and metasomatic transformations of mafic schists of the Svyatoi Nos Peninsula, Eastern Baikal area. Geochemistry International 46 (2), 140–155. https://doi.org/10.1134/S0016702908020043.; Martynov Yu.A., Golozubov V.V., Khanchuk A.I., 2016. Mantle diapirism at convergent boundaries (Sea of Japan). Russian Geology and Geophysics 57 (5), 745–755. https://doi.org/10.1016/j.rgg.2015.09.016.; Martynov Y.A., Khanchuk A.I., 2013. Cenozoic volcanism of the eastern Sikhote Alin: Petrological studies and outlooks. Petrology 21 (1), 85–99. https://doi.org/10.1134/S0869591113010049.; Mekhonoshin A.S., Kolotilina T.B., Bukharov A.A., Goregliad A.V., 2001. Mafic intrusive complexes of Priol’khonie (Western Baikal region). In: Petrology of igneous and metamorphic complexes. Proceedings of the scientific conference. Tomsk, p. 165–170 (in Russian) [Мехоношин А.С., Колотилина Т.Б., Бухаров А.А., Горегляд А.В. Базитовые интрузивные комплексы Приольхонья (Западное Прибайкалье) // Петрология магматических и метаморфических комплексов: Материалы совещания. Томск, 2001. С. 165–170].; Mekhonoshin A.S., Kolotilina T.B., Orsoev D.A., Vladimirov A.G., Travin A.V., Khromykh S.V., Yudin D.S., 2005. Indicator role of basic-ultrabasic complexes for the geodynamic interpretation of the tectonic blocks at the southern margin of the Siberian craton. In: Geodynamic evolution of the lithosphere of the Central Asian mobile belt (from ocean to continent). Issue 3. Institute of Earth's Crust, Irkutsk, vol. 2, p. 49–52 (in Russian) [Мехоношин А.С., Колотилина Т.Б., Орсоев Д.А., Владимиров А.Г., Травин А.В., Хромых С.В., Юдин Д.С. Индикаторная роль базит-ультрабазитовых комплексов в интерпретации геодинамической природы тектонических блоков южного обрамления Сибирского кратона // Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту). Вып. 3. Иркутск: Институт земной коры СО РАН, 2005. Т. 2. С. 49–52].; Mekhonoshin A.S., Vladimirov A.G., Vladimirov V.G., Volkova N.I., Kolotilina T.B., Mikheev E.I., Travin A.V., Yudin D.S., Khlestov V.V., Khromykh S.V., 2013. Restitic ultramafic rocks in the Early Caledonian collisional system of western Cisbaikalia. Russian Geology and Geophysics 54 (10), 1219–1235. https://doi.org/10.1016/j.rgg.2013.09.007.; Melnikov A.I., 2011. Structural Evolution of Metamorphic Complexes of Precambrian Crystalline Shields. Geo, Novosibirsk, 288 p. (in Russian) [Мельников А.И. Структурная эволюция метаморфических комплексов древних щитов. Новосибирск: Гео, 2011. 288 с.]; Menand T., 2008. The mechanics and dynamics of sills in layered elastic rocks and their implications for the growth of laccoliths and other igneous complexes. Earth and Planetary Science Letters 267 (1–2), 93-99. https://doi.org/10.1016/j.epsl.2007.11.043.; Mullen E.D., 1983. MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters 62 (1), 53–62. https://doi.org/10.1016/0012-821X(83)90070-5.; Nimis P., 1995. A clinopyroxene geobarometer for basaltic systems based on crystal-structure modeling. Contributions to Mineralogy and Petrology 121 (2), 115–125. https://doi.org/10.1007/s004100050093.; Panin V.E., Panin L.E., 2004. Scale levels of homeostasis in deformable solids. Physical Mesomechanics 7 (3–4), 5–20 [Панин В.Е., Панин Л.Е. Масштабные уровни гомеостаза в деформируемом твердом теле // Физическая мезомеханика. 2004. Т. 7. № 4. С. 5–23].; Pearce J.A., 1982. Trace element characteristics of lavas from destructive plate boundaries. In: R.S. Thorpe (Ed.), Andesites. Wiley, Chichester, p. 525–548.; Polyansky O.P., Babichev A.V., Sukhorukov V.P., Zinoviev S.V., Reverdatto V.V., 2015. A thermotectonic numerical model of collisional metamorphism in the Mongolian Altai. Doklady Earth Sciences 465 (1), 1164–1167. https://doi.org/10.1134/S1028334X15110124.; Polyansky O.P., Reverdatto V.V., Babichev A.V., Sverdlova V.G., 2016. The mechanism of magma ascent through the solid lithosphere and relation between mantle and crustal diapirism: numerical modeling and natural examples. Russian Geology and Geophysics 57 (6), 843–857. https://doi.org/10.1016/j.rgg.2016.05.002.; Rosen O.M., Fedorovsky V.S., 2001. Collision granitoids and the Earth’s crust layering (examples for Cenozoic, Paleozoic and Proterozoic collision systems). Nauchnyi Mir, Moscow, 188 p. (in Russian) [Розен О.М., Федоровский В.С. Коллизионные гранитоиды и расслоение земной коры (примеры кайнозойских, палеозойских и протерозойских коллизионных систем). М.: Научный мир, 2001. 188 с.].; Sharapov V.N., Romensky E.I., Dorovsky V.N., 1994. Hydrodynamics of basic melt intrusion in stratified complexes of the Earth’s crust. Geologiya i Geofizika (Russian Geology and Geophysics) 35 (3), 20–28 (in Russian) [Шарапов В.Н., Роменский Е.И., Доровский В.Н. Гидрогеодинамика интрузии базитового расплава в стратифицированные толщи земной коры // Геология и геофизика. 1994. Т. 35. № 3. С. 20–28].; Sklyarov E.V., Fedorovskii V.S., 2006. Magma mingling: Tectonic and geodynamic implications. Geotectonics 40 (2), 120–134. https://doi.org/10.1134/S001685210602004X.; Sklyarov E.V., Fedorovskii V.S., Gladkochub D.P., Vladimirov A.G., 2001. Synmetamorphic basic dikes as indicators of collision structure collapse in the Western Baikal region. Doklady Earth Sciences 381 (9), 1028–1033.; Sukhorukov V.P., Travin A.V., Fedorovsky V.S., Yudin D.S., 2005. The age of shear deformations in the Ol'khon region, western Cisbaikalia (from results of 40Ar/39Ar dating). Geologiya i Geofizika (Russian Geology and Geophysics) 46 (5), 579–583.; Taylor S.R., McLennan S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 312 p.; Travin A.V., 2016a. Thermochronology of Early Paleozoic collisional and subduction-collisional structures of Central Asia. Russian Geology and Geophysics 57 (3), 434–450. https://doi.org/10.1016/j.rgg.2016.03.006.; Travin A.V., 2016b. Thermochronology of Subduction-Collision and Collision Events in Central Asia. DSc thesis (geology). Novosibirsk, 278 p. (in Russian) [Травин А.В. Термохронология субдукционно-коллизионных, коллизионных событий Центральной Азии: Дис. … докт. геол.-мин. наук. Новосибирск, 2016. 278 с.].; Travin A.V., Yudin D.S., Vladimirov A.G., Khromykh S.V., Volkova N.I., Mekhonoshin A.S., Kolotilina T.B., 2009. Thermochronology of the Chernorud granulite zone, Ol’khon region, Western Baikal area. Geochemistry International 47 (11), 1107–1124. https://doi.org/10.1134/S0016702909110068.; Tychkov S.A., Vladimirov A.G., 1997. Model of break-off of the subducted oceanic lithosphere in the Indo-Eurasian collision zone. Transactions (Doklady) of the Russian Academy of Sciences 354 (4), 515–518.; Vladimirov A.G., Balykin P.A., Phan Luu Anh, Kruk N.N., Ngo Thi Phuong, Travin A.V., Tran Trong Hoa, Annikova I.Yu., Kuybida M.L., Borodina E.V., Karmysheva I.V., Bui An Nien, 2012. The Khao Que-Tam Tao gabbro-granite massif, Northern Vietnam: A petrological indicator of the Emeishan plume. Russian Journal of Pacific Geology 6 (5), 395–411. https://doi.org/10.1134/S1819714012050065.; Vladimirov A.G., Fedorovsky V.S., Khromykh S.V., Dokukina K.A., 2004. Synmetamorphic stress-granites in deep levels of the Early Caledonian collisional system in the Western Baikal region. Doklady Earth Sciences 397 (6), 771–777.; Vladimirov A.G., Izokh A.E., Polyakov G.V., Babin G.A., Kruk N.N., Khlestov V.V., Khromykh S.V., Travin A.V., Yudin D.S., Shelepaev R.A., Karmysheva I.V., Mikheev E.I., 2013. Gabbro-granite intrusive series and their indicator importance for geodynamic reconstructions. Petrology 21 (2), 158–180. https://doi.org/10.1134/S0869591113020070.; Vladimirov A., Khromykh S., Mekhonoshin А., Volkova N., Travin А., Mikheev E., Vladimirova A., 2016а. The main features of the interaction of mantle magmas with granulite complexes of the lower crust and their relationship with granitic melts (exemplified by the Early Caledonides of the West Baikal region, Russia). Geophysical Research Abstracts 18, EGU2016-14465-2 (EGU General Assembly 2016). Available from: http://meetingorganizer.copernicus.org/EGU2016/EGU2016-14465-2.pdf.; Vladimirov A.G., Khromykh S.V., Mekhonoshin A.S., Volkova N.I., Travin A.V., Yudin D.S., Kruk N.N., 2008. U-Pb dating and Sm-Nd systematics of igneous rocks in the Ol’khon region (Western Baikal coast). Doklady Earth Sciences 423 (2), 1372–1375. https://doi.org/10.1134/S1028334X08090092.; Vladimirov A.G., Kruk N.N., Rudnev S.N., Khromykh S.V., 2003. Geodynamics and granitoid magmatism of collisional orogens. Geologia i Geofizika (Russian Geology and Geophysics) 44 (12), 1321–1338.; Vladimirov A.G., Mekhonoshin А.S., Davydenko Yu.A., Khlestov V.V., Volkova N.I., Khromykh S.V., Mikheev E.I., 2016b. Dynamics of basic-ultrabasic injections at the deep levels of accretion-collision system (Ol’khon region, lake Baikal). In: Petrology of magmatic and metamorphic complexes. Issue 8. CSTI Publishing House, Tomsk, p. 47–53. (in Russian); [Владимиров А.Г., Мехоношин А.С., Давыденко Ю.А., Хлестов В.В., Волкова Н.И., Хромых С.В., Михеев Е.И. Динамика внедрения базит-ультрабазитовых тел на глубинных уровнях аккреционно-коллизионных систем (Ольхонский регион, Западное Прибайкалье) // Петрология магматических и метаморфических формаций. Вып. 8. Томск: ЦНТИ, 2016. С. 47–53.]; Vladimirov A.G., Mekhonoshin A.S., Volkova N.I., Khromykh S.V., Travin A.V., Yudin D.S., 2006. Metamorphism and magmatism of the Chernorud Zone of the Olkhon region, West Pribaikalie. In: Geodynamic evolution of the lithosphere of the Central Asian mobile belt (from ocean to continent). Issue 4. Institute of Earth's Crust SB RAS, Irkutsk, vol. 1, p. 57–61 (in Russian) [Владимиров А.Г., Мехоношин А.С., Волкова Н.И., Хромых С.В., Травин А.В., Юдин Д.С. Метаморфизм и магматизм Чернорудской зоны Ольхонского региона, Западное Прибайкалье // Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту). Вып. 4. Иркутск: Институт земной коры СО РАН, 2006. Т. 1. С. 57–61].; Vladimirov A.G., Vladimirov V.G., Volkova N.I., Mekhonoshin A.S., Babin G.A., Travin A.V., Kolotilina T.B., Khromykh S.V., Yudin D.S., Karmysheva I.V., Korneva I.B., Mikheev E.I., 2011a. Importance of plume tectonics and strike-slip deformations of the lithosphere for Central Asia early caledonides evolution. Izvestiya Sibirskogo otdeleniya Sektsii nauk o Zemle RAEN. Geologiya, poiski i razvedka rudnykh mestorozhdeniy (1), 105–119 (in Russian) [Владимиров А.Г., Владимиров В.Г., Волкова Н.И., Мехоношин А.С., Бабин Г.А., Травин А.В., Колотилина Т.Б., Хромых С.В., Юдин Д.С., Кармышева И.В., Корнева И.Б., Михеев Е.И. Роль плюм-тектоники и сдвигово-раздвиговых деформаций литосферы в эволюции ранних каледонид Центральной Азии // Известия Сибирского отделения Секции наук о Земле РАЕН. Геология, поиски и разведка рудных месторождений. 2011. № 1. С. 105–119].; Vladimirov A.G., Volkova N.I., Travin A.V., Vladimirov V.G., Khromykh S.V., Yudin D.S., Mekhonoshin A.S., Kolotilina T.B., 2011b. The geodynamic model of formation of Early Caledonides in the Olkhon region (West Pribaikalie). Doklady Earth Sciences 436 (2), 203–209. https://doi.org/10.1134/S1028334X10901234.; Vladimirov V.G., Vladimirov A.G., Gibsher A.S., Travin A.V., Rudnev S.N., Shemelina I.V., Barabash N.V., Savinykh Ya.V., 2005. Model of the tectonometamorphic evolution for the Sangilen block (Southeastern Tuva, Central Asia) as a reflection of the early Caledonian accretion-collision tectogenesis. Doklady Earth Scinces 405 (8), 1159–1165.; Volkova N.I., Travin A.V., Yudin D.S., Khromykh S.V., Mekhonoshin A.S., Vladimirov A.G., 2008. The 40Ar/39Ar dating of metamorphic rocks of the Ol’khon region (Western Baikal region). Doklady Earth Sciences 420 (1), 686–689. https://doi.org/10.1134/S1028334X08040363.; Volkova N.I., Vladimirov A.G., Travin A.V., Mekhonoshin A.S., Khromykh S.V., Yudin D.S., Rudnev S.N., 2010. U-Pb isotopic dating of zircons (SHRIMP-II) from granulites of the Ol’khon region of Western Baikal area. Doklady Earth Sciences 432 (2), 821–824. https://doi.org/10.1134/S1028334X10060243.; Wiebe R.A., 1973. Relations between coexisting basaltic and granitic magmas in a composite dike. American Journal of Science 273 (2), 130–151. https://doi.org/10.2475/ajs.273.2.130.; Xu Y., Wei X., Luo Z., Liu H., Cao J., 2014. The Early Permian Tarim Large Igneous Province: Main characteristics and a plume incubation model. Lithos 204, 20–35. https://doi.org/10.1016/j.lithos.2014.02.015.; Yarmolyuk V.V., Kozlovsky A.M., Kuzmin M.I., 2013. Late Paleozoic – Early Mesozoic within-plate magmatism in North Asia: traps, rifts, giant batholiths, and the geodynamics of their origin. Petrology 21 (2), 101–126. https://doi.org/10.1134/S0869591113010062.; Yarmolyuk V.V., Kuzmin M.I., Ernst R.E., 2014. Intraplate geodynamics and magmatism in the evolution of the Central Asian orogenic belt. Journal of Asian Earth Sciences 93, 158–179. https://doi.org/10.1016/j.jseaes.2014.07.004.; Yin A., Harrison M., 1996. The Tectonic Evolution of Asia (World and Regional Geology). Cambridge University Press, Cambridge, 710 p.; Yudin D.S., 2008. Thermochronological model of the Early Caledonides of Ol’khon region (West Baikal region). Author’s PhD thesis (Geology and Mineralogy). Novosibirsk, 16 p. (in Russian) [Юдин Д.С. Термохронологическая модель ранних каледонид Ольхонского региона (Западное Прибайкалье): Автореф. дис. … канд. геол.-мин. наук. Новосибирск, 2008. 16 c.].
-
6Academic Journal
Συγγραφείς: Гусев, Анатолий Иванович, Коробейников, Александр Феопенович, Гусев, Николай Иванович, Кукоева, Мария Александровна
Πηγή: Известия Томского политехнического университета
Θεματικοί όροι: гранитоиды, комплексы, абсолютный возраст, зональные массивы, петрохимия, мантийно-коровое взаимодействие, оруденение, изотопы стронция, золото, медь, granitoids, complex, absolute age, zoning massif, petrochemistry, mantle-crust interaction, ore mineralization, strontium isotopes, gold, copper
Περιγραφή αρχείου: application/pdf
Relation: Известия Томского политехнического университета [Известия ТПУ]. 2015. Т. 326, № 2; http://earchive.tpu.ru/handle/11683/5432
Διαθεσιμότητα: http://earchive.tpu.ru/handle/11683/5432
-
7Academic Journal
Πηγή: Известия Томского политехнического университета
Θεματικοί όροι: анорогенные гранитоиды, мантийно-коровое взаимодействие, фракционирование, подтипы, рудоносность, петрогеохимические особенности, Горный Алтай, anorogenic granitoids, gypersolvus and transsolvus granites, mantle-crust interaction, tetrad effect of fractionation
Περιγραφή αρχείου: application/pdf
Relation: Известия Томского политехнического университета [Известия ТПУ]. 2014. Т. 325, № 1 : Ресурсы планеты; http://earchive.tpu.ru/handle/11683/5285
Διαθεσιμότητα: http://earchive.tpu.ru/handle/11683/5285
-
8Academic Journal
Συγγραφείς: Гусев, А.
Θεματικοί όροι: АНДЕЗИТЫ, АНДЕЗИ-ДАЦИТЫ, АДАКИТЫ, ГЕОХИМИЯ, ПЕТРОЛОГИЯ, ПЛАВЛЕНИЕ МАНТИЙНЫХ СУБСТРАТОВ, МАНТИЙНО-КОРОВОЕ ВЗАИМОДЕЙСТВИЕ, ЭПИТЕРМАЛЬНОЕ ОРУДЕНЕНИЕ, ЗОЛОТО, СЕРЕБРО
Περιγραφή αρχείου: text/html
-
9Academic Journal
Συγγραφείς: Гусев, А.
Θεματικοί όροι: ПЛАГИОГРАНИТ-ПОРФИРЫ, ПЛАГИОЛЕЙКОГРАНИТЫ, МАНТИЙНО-КОРОВОЕ ВЗАИМОДЕЙСТВИЕ, ПЛАВЛЕНИЕ АМФИБОЛИТОВ И ГРАУВАКК, ТЕТРАДНЫЙ ЭФФЕКТ ФРАКЦИОНИРОВАНИЯ РЗЭ W-ТИПА, PLAGIOLEUCOGRANITES/ MANTLE-CRUST INTERACTION
Περιγραφή αρχείου: text/html
-
10Academic Journal
Θεματικοί όροι: ПЕРАЛЮМИНИЕВЫЙ МАГМАТИЗМ, АДАКИТОВЫЕ ГРАНИТОИДЫ, МАНТИЙНО-КОРОВОЕ ВЗАИМОДЕЙСТВИЕ, ТЕТРАДНЫЙ ЭФФЕКТ ФРАКЦИОНИРОВНИЯ РЗЭ
Περιγραφή αρχείου: text/html
-
11Academic Journal
Συγγραφείς: Гусев, А.
Θεματικοί όροι: ЭПИТЕРМАЛЬНОЕ ОРУДЕНЕНИЕ, АРГИЛЛИЗИТЫ, СЕРЕБРО, МЕДЬ, СУРЬМА, ПОЛИМЕТАЛЛЫ, ЗАПАСЫ, ПРОГНОЗНЫЕ РЕСУРСЫ, МАНТИЙНО-КОРОВОЕ ВЗАИМОДЕЙСТВИЕ
Περιγραφή αρχείου: text/html
-
12Academic Journal
Συγγραφείς: Гусев, А.
Θεματικοί όροι: ПЕТРОЛОГИЯ, ГАББРО, КЛИНОПИРОКСЕНИТЫ, КОСЬВИТЫ, ВЕБСТЕРИТЫ, ДОЛЕРИТОВЫЕ ПОРФИРИТЫ, ДИОРИТЫ, ХИМИЧЕСКИЙ СОСТАВ, ИЗОТОПЫ ND, МАНТИЙНО-КОРОВОЕ ВЗАИМОДЕЙСТВИЕ., MANTLE-CRUST INTERACTION
Περιγραφή αρχείου: text/html
-
13Academic Journal
Συγγραφείς: Предовский, Александр, Чикирёв, Игорь
Θεματικοί όροι: типы долгоживущих линеаментных зон, мантийно-коровое взаимодействие, коровые структуры, морфоструктуры и глубинная активизация, types of long-lived lineament zones, mantle-crust interaction, crust structures, morphostructures and deep activity
Περιγραφή αρχείου: text/html
-
14Academic Journal
Συγγραφείς: Гусев, А., Гусев, Н., Коробейников, А.
Περιγραφή αρχείου: text/html
-
15Academic Journal
Πηγή: Известия Томского политехнического университета
Θεματικοί όροι: золото, поведение, магматизм, петрология, геохимия, флюидный режим, рудоносность, мантийно-коровое взаимодействие, фракционирование, расплавы, магнетит, сульфиды, медь, железо
Περιγραφή αρχείου: application/pdf
Relation: Известия Томского политехнического университета [Известия ТПУ]. 2013. Т. 323, № 1 : Науки о Земле; http://earchive.tpu.ru/handle/11683/4908
Διαθεσιμότητα: http://earchive.tpu.ru/handle/11683/4908
-
16Academic Journal
Συγγραφείς: Коробейников, Александр, Гусев, Анатолий
Θεματικοί όροι: ПОВЕДЕНИЕ ЗОЛОТА, ПЕТРОЛОГИЯ МАГМАТИЗМА, ГЕОХИМИЯ, ФЛЮИДНЫЙ РЕЖИМ, РУДОНОСНОСТЬ, МАНТИЙНО-КОРОВОЕ ВЗАИМОДЕЙСТВИЕ, ФРАКЦИОНИРОВАНИЕ, РАСПЛАВ, МАГНЕТИТ, СУЛЬФИДЫ МЕДИ И ЖЕЛЕЗА, ЗОЛОТО
Περιγραφή αρχείου: text/html
-
17Academic Journal
Συγγραφείς: Предовский, Александр, Чикирёв, Игорь, Некипелов, Дмитрий
Θεματικοί όροι: РИФТОГЕНЫ, МАНТИЙНО-КОРОВОЕ ВЗАИМОДЕЙСТВИЕ, ТИПИЗАЦИЯ КОРОВЫХ СТРУКТУР
Περιγραφή αρχείου: text/html
-
18Academic Journal
Συγγραφείς: Гусев, А.
Θεματικοί όροι: ПОВЕДЕНИЕ ЗОЛОТА, ПЕТРОЛОГИЯ МАГМАТИЗМА, ГЕОХИМИЯ, ФЛЮИДНЫЙ РЕЖИМ, РУДОНОСНОСТЬ, МАНТИЙНО-КОРОВОЕ ВЗАИМОДЕЙСТВИЕ, ФРАКЦИОНИРОВАНИЕ, РАСПЛАВ, МАГНЕТИТ, СУЛЬФИДЫ МЕДИ И ЖЕЛЕЗА, ЗОЛОТО
Περιγραφή αρχείου: text/html
-
19Academic Journal
Θεματικοί όροι: ГРАНИТОИДЫ, ГАББРО, ДИОРИТЫ, ГРАНОДИОРИТЫ, МАНТИЙНО-КОРОВОЕ ВЗАИМОДЕЙСТВИЕ, ДЕПЛЕТИРОВАННАЯ МАНТИЯ, АДИАБАТИЧЕСКАЯ ДЕКОМПРЕССИЯ, ЛЕТУЧИЕ КОМПОНЕНТЫ
Περιγραφή αρχείου: text/html
-
20Academic Journal
Συγγραφείς: Гусев, А.
Περιγραφή αρχείου: text/html