Showing 1 - 20 results of 1,854 for search '"МАГНИТНО-РЕЗОНАНСНАЯ ТОМОГРАФИЯ"', query time: 0.72s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
    Academic Journal

    Source: Diagnostic radiology and radiotherapy; Том 16, № 3 (2025); 74-85 ; Лучевая диагностика и терапия; Том 16, № 3 (2025); 74-85 ; 2079-5343

    File Description: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/1147/706; Banks P.A., Bollen T.L., Dervenis C. et al. Acute Pancreatitis Classification Working Group. Classification of acute pancreatitis-2012: revision of the Atlanta classification and definitions by international consensus // Gut. 2013. Vol. 62, No. 1. Р. 102–111. doi:10.1136/gutjnl-2012-302779.; Rocha A.P.C., Schawkat K., Mortele K.J. Imaging guidelines for acute pancreatitis: when and when not to image // Abdom. Radiol. (NY). 2020. Vol. 45, No. 5. Р. 1338–1349. doi:10.1007/s00261-019-02319-2.; Petrov M.S., Yadav D. Global epidemiology and holistic prevention of pancreatitis // Nat. Rev. Gastroenterol. Hepatol. 2019. Vol. 16, No. 3. Р. 175–184. doi:10.1038/s41575-018-0087-5.; Heckler M., Hackert T., Hu K. et al. Severe acute pancreatitis: surgical indications and treatment // Langenbecks Arch. Surg. 2021. Vol. 406, No. 3. Р. 521–535. doi:10.1007/s00423-020-01944-6.; Meyrignac O., Lagarde S., Bournet B. et al. Acute pancreatitis: extrapancreatic necrosis volume as early predictor of severity // Radiology. 2015. Vol. 276, No. 1. Р. 119–128. doi:10.1148/radiol.15141494.; Mikó A., Vigh É., Mátrai P. et al. Computed Tomography Severity Index vs. Other Indices in the Prediction of Severity and Mortality in Acute Pancreatitis // Front Physiol. 2019. Vol. 10. Р. 1002. doi:10.3389/fphys.2019.01002.; Дюжева Т.Г., Шефер А.В., Джус Е.В. и др. Диагностика повреждения протока поджелудочной железы при остром панкреатите // Анналы хирургической гепатологии. 2021. Т. 26, № 2. С. 15–24. [; Vanek P., Urban O., Trikudanathan G., Freeman M.L. Disconnected pancreatic duct syndrome in patients with necrotizing pancreatitis // Surg. Open Sci. 2022. Vol. 11. Р. 19–25. doi:10.1016/j.sopen.2022.10.009.; Takenaka M., Saito T., Hamada T. et al. Disconnected pancreatic duct syndrome: diagnostic and therapeutic challenges // Expert Rev. Gastroenterol Hepatol. 2024. Vol. 18, No. 10. Р. 631–645. doi:10.1080/17474124.2024.2419056.; Maatman T.K., Roch A.M., Ceppa E.P. et al. The continuum of complications in survivors of necrotizing pancreatitis // Surgery. 2020. Vol. 168, No. 6. Р. 1032– 1040. doi:10.1016/j.surg.2020.07.004.; Baron T.H., DiMaio C.J., Wang A.Y., Morgan K.A. American Gastroenterological Association Clinical Practice Update: Management of Pancreatic Necrosis // Gastroenterology. 2020. Vol. 158, No. 1. Р. 67–75. doi:10.1053/j.gastro.2019.07.064.; Араблинский А.В., Титов М.Ю., Буславская А. КТ и МРТ в диагностике фазового течения панкреонекроза // REJR. 2022. Т. 12, № 3. С. 58–73. doi:10.21569/2222-7415-2022-12-3-58-73.; Шабунин А.В., Лукин А.Ю., Шиков Д.В. Оптимальное лечение острого панкреатита // Анналы хирургической гепатологии. 2013. Т. 18, № 3. С. 70–78.; Шабунин А.В., Бедин В.В., Лукин А.Ю. и др. Опыт применения малотравматичных способов секвестрэктомии // Московский хирургический журнал. 2021. Спецвыпуск. С. 53.; Rashid M.U., Hussain I., Jehanzeb S. et al. Pancreatic necrosis: Complications and changing trend of treatment // World J. Gastrointest. Surg. 2019. Vol. 11, No. 4, pp. 198–217. doi:10.4240/wjgs.v11.i4.198.; Choudhury S.R., Manoj M., Gupta P. et al. Wall maturation in necrotic collections in acute pancreatitis // Acta Gastroenterol. Belg. 2022. Vol. 85, No. 3, pp. 463– 467. doi:10.51821/85.3.9701.; Bhatia H., Johnson J. et al. Tracking Wall Characteristics of Necrotic Pancreatic Fluid Collections // Indian J. Radiol. Imaging. 2024. Vol. 34, No. 4. Р. 620–627. doi:10.1055/s-0044-1785683.; Koo J.G., Liau M.Y.Q., Kryvoruchko I.A. et al. Pancreatic pseudocyst: The past, the present, and the future // World J. Gastrointest. Surg. 2024. Vol. 16, No. 7. Р. 1986–2002. doi:10.4240/wjgs.v16.i7.1986.; Араблинский А.В., Буславская А., Пичугина Н.В., Титов М.Ю. Сочетание протоковой аденокарциномы и постнекротической псевдокисты // REJR. 2023. Т. 13, № 2. С. 147–154. doi:10.21569/2222-7415-2023-13-2-147-154.; Черданцев Д.В., Первова О.В., Носков И.Г. и др. Возможности лучевых методов исследования // REJR. 2018. Т. 8, № 4. С. 111–117. doi:10.21569/2222-7415-2018-8-4-111-117.; Rana S.S., Sharma R.K., Gupta P., Gupta R. Natural course of asymptomatic walled off pancreatic necrosis // Dig. Liver. Dis. 2019. Vol. 51, No. 5. Р. 730–734. doi:10.1016/j.dld.2018.10.010.; Easler J., Papachristou G.I. The morphologic evolution of necrotic pancreatic fluid collections // Ann. Gastroenterol. 2014. Vol. 27, No. 3. Р. 191–192.; Theerasuwipakorn N., Tasneem A.A., Kongkam P. et al. Walled-off Peripancreatic Fluid Collections in Asian Population // J. Transl. Int. Med. 2019. Vol. 7, No. 4. Р. 170–177. doi:10.2478/jtim-2019-0032.; Kumar M., Sonika U., Sachdeva S. et al. Natural History of Asymptomatic Walled-off Necrosis // Cureus. 2023. Vol. 15, No. 2, p. e34646. doi:10.7759/cureus.34646.; Liu Z., Liu P., Xu X. et al. Timing of minimally invasive step-up intervention for symptomatic pancreatic necrotic fluid collections // Clin. Res. Hepatol. Gastroenterol. 2023. Vol. 47, No. 4. Р. 102105. doi:10.1016/j.clinre.2023.102105.

  11. 11
    Academic Journal

    Source: Diagnostic radiology and radiotherapy; Том 16, № 3 (2025); 100-108 ; Лучевая диагностика и терапия; Том 16, № 3 (2025); 100-108 ; 2079-5343

    File Description: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/1149/708; Низовцова Л.А., Морозов С.П., Петряйкин А.В., Босин В.Ю., Сергунова К.А., Владзимирский А.В., Шантаревич М.Ю. К унификации выполнения и интерпретации результатов остеоденситометрии // Вестник рентгенологии и радиологии. 2018. № 99 (3). С. 158–163. https://doi.org/10.20862/0042-4676-2018-99-3-158-163.; Maslaris A., Bungartz M., Layher F. et al. Feasibility Analysis of a Novel Method for the Estimation of Local Bone Mechanical Properties: A Preliminary Investigation of Different Pressure Rod Designs on Synthetic Cancellous Bone Models // Arch. Bone Jt. Surg. 2021. No. 9. Р. 203–210. doi:10.22038/abjs.2020.47854.2365.; Calciolari E., Donos N., Park J.C. et al. Panoramic measures for oral bone mass in detecting osteoporosis: a systematic review and meta-analysis // J. Dent. Res. 2015. No. 94 (3 Suppl). Р. 17S–27S. doi:10.1177/0022034514554949.; Jafari R., Spincemaille P., Zhang J. et al. Deep neural network for water/fat separation: Supervised training, unsupervised training, and no training // Magn. Reson. Med. 2021. No. 85. Р. 2263–2277. doi:10.1002/mrm.28546.; Dixon W.T. Simple proton spectroscopic imaging // Radiology. 1984. Vol. 153. No. 1. Р. 189–194. https://doi.org/10.1148/radiology.153.1.6089263.; Bydder M., Yokoo T., Hamilton G. et al. Relaxation effects in the quantification of fat using gradient echo imaging // Magn. Reson. Imaging. 2008. No. 26 (3). Р. 347– 359. doi:10.1016/j.mri.2007.08.012.; Xin-Chen Huang, Yi-Long Huang, Yi-Tong Guo et al. An experimental study for quantitative assessment of fatty infiltration and blood flow perfusion in quadriceps muscle of rats using IDEAL-IQ and BOLD-MRI for early diagnosis of sarcopenia // Experimental Gerontology. 2023. No. 183. Р. 112322. doi: https://doi.org/10.1016/j.exger.2023.112322.; Петряйкин А.В., Скрипникова И.А. Количественная компьютерная томография, современные данные. Обзор // Медицинская визуализация. 2021. № 25 (4). С. 134–146. https://doi.org/10.24835/1607-0763-1049.; Panina O.Yu., Gromov A.I., Akhmad E.S. et al. Accuracy of fat fraction estimation using Dixon: experimental phantom study // Medical Visualization. 2022. No. 26 (4). Р. 147–158. https://doi.org/10.24835/1607-0763-1160.; Aoki T., Yamaguchi S., Kinoshita S. et al. Quantification of bone marrow fat content using iterative decomposition of water and fat with echo asymmetry and leastsquares estimation (IDEAL): reproducibility, site variation and correlation with age and menopause // British Journal of Radiology. 2016. No. 89. Р. 20150538. https://doi:10.1259/bjr.20150538.; He J., Fang H., Li X. Vertebral bone marrow fat content in normal adults with varying bone densities at 3T magnetic resonance imaging // Acta Radiologica. 2018. No. 60 (4). Р. 509–515. https://doi:10.1177/0284185118786073.; Лукашев А.Д., Ахатов А.Ф., Рыжкин С.А., Михайлов М.К., Залаева Д.Р. Применение МРТ-последовательности DIXON в диагностике изменений губчатого вещества тел позвонков в сопоставлении с данными остеоденситометрии // Медицинская визуализация. 2023. № 27 (3). C. 76–83. https://doi.org/10.24835/1607-0763-1201.; Zhou F., Sheng B., Lv F. Quantitative analysis of vertebral fat fraction and R2* in osteoporosis using IDEAL-IQ sequence // BMC Musculoskelet. Disord. 2023. No. 11. Р. 1–8. doi:10.1186/s12891-023-06846-4.; Bilge E.F., Gulsah G., Elcin Y.A. et al. Fat Fraction Estimation of the Vertebrae in Females Using the T2*-IDEAL Technique in Detection of Reduced Bone Mineralization Level: Comparison With Bone Mineral Densitometry // Journal of Computer Assisted Tomography. 2014. No. 38. P. 320–324. doi:10.1097/RCT.0b013e3182aa4d9d.; Zhao Y., Huang M., Ding J. et al. Prediction of Abnormal Bone Density and Osteoporosis From Lumbar Spine MR Using Modified Dixon Quant in 257 Subjects With Quantitative Computed Tomography as Reference // J. Magn. Reson. Imaging. 2019. No. 49 (2). Р. 390–399. doi:10.1002/jmri.26233.; Liu Z., Huang D., Jiang Y., Ma X., Zhang Y., Chang R. Correlation of R2* with fat fraction and bone mineral density and its role in quantitative assessment of osteoporosis // Eur. Radiol. 2023. No. 33 (9). Р. 6001–6008. doi:10.1007/s00330-023-09599-9.

  12. 12
    Academic Journal

    Source: Diagnostic radiology and radiotherapy; Том 16, № 3 (2025); 17-26 ; Лучевая диагностика и терапия; Том 16, № 3 (2025); 17-26 ; 2079-5343

    File Description: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/1141/700; Harbeck N., Penault-Llorca F., Cortes J. et al. Breast cancer // Nature Reviews Disease Primers. 2019. Vol. 5, No. 1. Р. 66. doi:10.1038/s41572-019-0111-2.; Baker S.G., Prorok P.C. Breast cancer overdiagnosis in stop-screen trials: more uncertainty than previously reported // Journal of Medical Screening. 2020. Vol. 27, No. 4. Р. 232–236. doi:10.1177/0969141320950784.; Bitencourt A.G., Rossi Saccarelli C., Kuhl C., Morris E.A. Breast cancer screening in average-risk women: towards personalized screening // British Journal of Radiology. 2019. Vol. 92, No. 1103, Art. 20190660. doi:10.1259/bjr.20190660.; Pashayan N., Antoniou A.C., Ivanus U. et al. Personalized early detection and prevention of breast cancer: ENVISION consensus statement // Nature Reviews Clinical Oncology. 2020. Vol. 17, No. 11. Р. 687–705. doi:10.1038/s41571-020-0388-9.; Држевецкая К.С. Обзор подходов к массовому скринингу рака молочной железы в России и мире // Российский электронный журнал лучевой диагностики. 2020. Т. 10, № 4. С. 225–236. https://doi.org/10.21569/2222-7415-2020-10-4-225-236.; Азимханова Г.К., Узакбаева Ж.У. Распространенность рака молочной железы (обзор литературы) // Theoretical and Applied Science. 2020. № 2 (82). С. 350– 354. https://doi.org/10.15863/TAS.2020.02.82.57.; Chhikara B.S., Parang K. Global Cancer Statistics 2022: the trends projection analysis // Chemical Biology Letters. 2023. Vol. 10, No. 1. Р. 451.; Giaquinto A.N., Sung H., Newman L.A., et al. Breast cancer statistics 2024 // CA: A Cancer Journal for Clinicians. 2024. Vol. 74, No. 6. Р. 477–495. doi:10.3322/caac.21863.; Harkness E.F., Astley S.M., Evans D.G. Risk-based breast cancer screening strategies in women // Best Practice & Research Clinical Obstetrics and Gynaecology. 2020. Vol. 65. Р. 3–17. doi:10.1016/j.bpobgyn.2019.11.005.; Allweis T.M., Hermann N., Berenstein-Molho R., Guindy M. Personalized screening for breast cancer: rationale, present practices, and future directions // Annals of Surgical Oncology. 2021. Vol. 28, No. 3. Р. 1204–1216. doi:10.1245/s10434-020-09426-1.; Cerdas M., Farhat J., Elshafie S.I., et al. Exploring the evolution of breast cancer imaging: a review of conventional and emerging modalities // Cureus. 2025. Vol. 17, No. 4. e82762. doi:10.7759/cureus.82762.; Бурдина И.И., Запирова С.Б., Лабазанова П.Г. и др. Развитие маммографии в России и мире // Медицинский алфавит. 2023. № 27. С. 13–20. https://doi.org/10.33667/2078-5631-2023-27-13-20.; Nicosia L., Di Giulio G., Codari M. et al. History of mammography: analysis of breast imaging diagnostic achievements over the last century // Healthcare (Basel). 2023. Vol. 11, No. 11, Art. 1596. doi:10.3390/healthcare11111596.; Aristokli N., Christodoulou C., Masoura K. et al. Comparison of the diagnostic performance of MRI, ultrasound and mammography for detection of breast cancer based on tumor type, breast density and patient’s history: a review // Radiography. 2022. Vol. 28, No. 3. Р. 848–856. doi:10.1016/j.radi.2022.02.003.; Fico N., Pizzuto D., Menciassi A. et al. Breast imaging physics in mammography (Part I) // Diagnostics (Basel). 2023. Vol. 13, No. 20, 3227. doi:10.3390/diagnostics13203227.; Pereira R.O., Chojniak R., Bitencourt A.G.V. et al. Evaluation of the accuracy of mammography, ultrasound and magnetic resonance imaging in suspect breast lesions // Clinics (São Paulo). 2020. Vol. 75. e1805. doi:10.6061/clinics/2020/e1805.; Boca I., Pătraşcu A., Vasile C. et al. Pros and cons for automated breast ultrasound (ABUS): a narrative review // Journal of Personalized Medicine. 2021. Vol. 11, No. 8, P. 703. doi:10.3390/jpm11080703.; Sujlana P.S., Srivastava P.N., Gopinathan A. et al. Digital breast tomosynthesis: image acquisition principles and artifacts // Clinical Imaging. 2019. Vol. 55. Р. 188– 195. doi:10.1016/j.clinimag.2018.07.013.; Canelo-Aybar C., Posso M., Montero-Gutierrez N. et al. Digital breast tomosynthesis compared to diagnostic mammographic projections among women recalled at screening mammography: a systematic review for the ECIBC // Cancer Medicine. 2021. Vol. 10, No. 7. Р. 2191–2204. doi:10.1002/cam4.3776.; Hofvind S., Holen Å. S., Hovda T. et al. Two-view digital breast tomosynthesis versus digital mammography in a population-based screening programme (To-Be): a randomised, controlled trial // The Lancet Oncology. 2019. Vol. 20, No. 6. Р. 795–805. doi:10.1016/S1470-2045(19)30161-5.; Alabousi M., Shahid M., Tagliati F. et al. Digital breast tomosynthesis for breast cancer detection: a diagnostic test accuracy systematic review and meta-analysis // European Radiology. 2020. Vol. 30, No. 3. Р. 2058–2071. doi:10.1007/s00330-019-06467-3.; Skaane P., Bandos A.I., Gullien R. et al. Digital mammography versus digital mammography plus tomosynthesis in breast cancer screening: the Oslo Tomosynthesis Screening Trial // Radiology. 2019. Vol. 291, No. 1. Р. 23–30. doi:10.1148/radiol.2019180622.; Saadatmand S., Lourens M., Boosman H. et al. MRI versus mammography for breast cancer screening in women with familial risk (FaMRIsc): a multicentre, randomised, controlled trial // The Lancet Oncology. 2019. Vol. 20, No. 8. Р. 1136–1147. doi:10.1016/S1470-2045(19)30320-5.; Zhu X., Yao X., Zhang L., Ma L. Diagnostic performance of mammography and magnetic resonance imaging for evaluating mammographically visible breast masses // Journal of International Medical Research. 2021. Vol. 49, No. 9. Art. 0300060520973092. doi:10.1177/0300060520973092.; Lee S.H., Shin H.J., Moon W.K. Diffusion-weighted magnetic resonance imaging of the breast: standardization of image acquisition and interpretation // Korean Journal of Radiology. 2021. Vol. 22, No. 1. Р. 9–33. doi:10.3348/kjr.2020.0803.; Baltzer P.A., Boetes C., Fischer U. et al. Diffusion-weighted imaging of the breast — a consensus and mission statement from the EUSOBI International Breast DWI Working Group // European Radiology. 2020. Vol. 30, No. 3. Р. 1436–1450. doi:10.1007/s00330-019-06374-7.; Bruno F., Tang J., Cheng H., Tsourkas A. Advanced magnetic resonance imaging techniques: technical principles and applications in nanomedicine // Cancers. 2022. Vol. 14, No. 7, Art. 1626. doi:10.3390/cancers14071626.; Серебрякова С.В., Шумакова Т.А., Юхно Е.А., Куцкая А.О. Возможности МР-маммографии в диагностике реконструированной молочной железы после комплексного лечения рака (обзор литературы с собственными клиническими наблюдениями) // Радиология — практика. 2021. № 3. С. 88–102. https://doi.org/10.52560/2713-0118-2021-3-88-102.; Newman L.A. Role of preoperative MRI in the management of newly diagnosed breast cancer patients // Journal of the American College of Surgeons. 2020. Vol. 230, No. 3. Р. 331–339. doi:10.1016/j.jamcollsurg.2019.11.012.; Kuhl C.K. Abbreviated magnetic resonance imaging for breast cancer screening: rationale, concept, and transfer to clinical practice // Annual Review of Medicine. 2019. Vol. 70. Р. 501–519. doi:10.1146/annurev-med-041217-010739.; Foglia E., Castorina P., Gianfredi V. et al. Budget impact analysis of breast cancer screening in Italy: the role of new technologies // Health Services Management Research. 2020. Vol. 33, No. 2. Р. 66–75. doi:10.1177/0951484820920491.; Hernández M. L., Sardanelli F., Giunta D. et al. Abbreviated magnetic resonance imaging in breast cancer: a systematic review of literature // European Journal of Radiology Open. 2021. Vol. 8, Art. 100307. doi:10.1016/j.ejro.2021.100307.; Najjar R. Redefining radiology: a review of artificial intelligence integration in medical imaging // Diagnostics (Basel). 2023. Vol. 13, No. 17, Art. 2760. doi:10.3390/diagnostics13172760.; Tan X.J., Bitencourt A.G.V., Brennan P.C., Tang J. Artificial intelligence in breast imaging: a scientometric umbrella review // Diagnostics (Basel). 2022. Vol. 12, No. 12, Art. 3111. doi:10.3390/diagnostics12123111.; Sheth D., Giger M. L. Artificial intelligence in the interpretation of breast cancer on MRI // Journal of Magnetic Resonance Imaging. 2020. Vol. 51, No. 5. Р. 1310– 1324. doi:10.1002/jmri.26911.; Bitencourt A., Rubin D.L., Vargas H.A. AI-enhanced breast imaging: where are we and where are we heading? // European Journal of Radiology. 2021. Vol. 142, Art. 109882. doi:10.1016/j.ejrad.2021.109882.; McKinney S.M., Sieniek M., Godbole V. et al. International evaluation of an AI system for breast cancer screening // Nature. 2020. Vol. 577, No. 7788. Р. 89–94. doi:10.1038/s41586-019-1799-6.; Kim H.E., Kim H.S., Moon W.K. Changes in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader study // The Lancet Digital Health. 2020. Vol. 2, No. 3. Р. e138–e148. doi:10.1016/S2589-7500(20)30003-0.; Salim M., Rodríguez-Ruiz A., Helvie M.A. et al. External evaluation of three commercial artificial intelligence algorithms for independent assessment of screening mammograms // JAMA Oncology. 2020. Vol. 6, No. 10. Р. 1581–1588. doi:10.1001/jamaoncol.2020.2790.; Larsen M., Heiberg M.L., Balleyguier C., Zahl P.H. Performance of an AI system for breast cancer detection on screening mammograms from BreastScreen Norway // Radiology: Artificial Intelligence. 2024. Art. e230375. doi:10.1148/ryai.230375.; Park E.K., Hong H., Lee S.E., Kim E.K. Impact of AI for digital breast tomosynthesis on breast cancer detection and interpretation time // Radiology: Artificial Intelligence. 2024. Art. e230318. doi:10.1148/ryai.230318.; Lee S.E., Hong H., Kim E.K. Positive predictive values of abnormality scores from a commercial AI-based CAD for mammography // Korean Journal of Radiology. 2024. Vol. 25, No. 7. Р. 741–749. doi:10.3348/kjr.2023.1133.; Carter S., Leslie-Mazwi T., Horvitz E., Mattick J. S. Ethical, legal and social implications of artificial intelligence systems for screening and diagnosis // Conference paper. 2019.; Niehoff J.H., Kalaitzidis J., Kroeger J.R. et al. Evaluation of the clinical performance of an AI-based application for automated analysis of chest X-rays // Scientific Reports. 2023. Vol. 13, No. 1, Art. 3680. doi:10.1038/s41598-023-29661-3.; Geis J.R., Brady A.P., Wu C.C. et al. Ethics of artificial intelligence in radiology: summary of the joint European and North American multisociety statement // Radiology. 2019. Vol. 293, No. 2. Р. 436–440. doi:10.1148/radiol.2019191586.; Tachkov K., Damyanova I., Atanasova K. Barriers to use artificial intelligence methodologies in health technology assessment in Central and East European countries // Frontiers in Public Health. 2022. Vol. 10, Art. 921226. doi:10.3389/fpubh.2022.921226.

  13. 13
  14. 14
    Academic Journal

    Source: Eurasian Journal of Medical and Natural Sciences; Vol. 5 No. 10 (2025): Eurasian Journal of Medical and Natural Sciences; 314-325 ; Евразийский журнал медицинских и естественных наук; Том 5 № 10 (2025): Евразийский журнал медицинских и естественных наук; 314-325 ; Yevrosiyo tibbiyot va tabiiy fanlar jurnali; Jild 5 Nomeri 10 (2025): Евразийский журнал медицинских и естественных наук; 314-325 ; 2181-287X

    File Description: application/pdf

  15. 15
    Academic Journal

    Source: Bulletin of the Academy of Sciences of Moldova. Medical Sciences; Vol. 80 No. 3 (2024): Medical Sciences; 34-40 ; Buletinul Academiei de Științe a Moldovei. Științe medicale; Vol. 80 Nr. 3 (2024): Ştiinţe medicale; 34-40 ; Вестник Академии Наук Молдовы. Медицина; Том 80 № 3 (2024): Медицина; 34-40 ; 1857-0011

    File Description: application/pdf

  16. 16
    Academic Journal

    Source: Obstetrics, Gynecology and Reproduction; Online First ; Акушерство, Гинекология и Репродукция; Online First ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2567/1383; Bray F., Laversanne M., Sung H. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229–63. https://doi.org/10.3322/caac.21834.; Игнатьева В.И., Концевая А.В., Калинина А.М. и др. Социально-экономическая эффективность мероприятий по раннему выявлению онкологических заболеваний при диспансеризации. Профилактическая медицина. 2024;27(1):36–44. https://doi.org/10.17116/profmed20242701136.; Abdallah Hasaneen M., Ali I.K., Gamal A.M., Khalil A.K. Assessment of health problems caused by gynecological malignancies treatments. Menoufia Nurs J. 2021;6(2):51–64.; Hutchcraft M.L., Miller R.W. Bleeding from gynecologic malignancies. Obstet Gynecol Clin North Am. 2022;49(3):607–22. https://doi.org/10.1016/j.ogc.2022.02.022.; Лоран О.Б., Синякова Л.А., Текеев М.А. Урологические осложнения у онкогинекологических больных. Урология. 2013;(5):108–11.; Khan S.R., Arshad M., Wallitt K. et al. What's new in imaging for gynecologic cancer? Curr Oncol Rep. 2017;19(12):85. https://doi.org/10.1007/s11912-017-0640-3.; Zhou X.H., Yang D.N., Zou Y.X. et al. Long-term survival trend of gynecological cancer: a systematic review of population-based cancer registration data. Biomed Environ Sci. 2024;37(8):897–921. https://doi.org/10.3967/bes2024.133.; Moradi B., Hejazian S.S., Tahamtan M. et al. Imaging the post-treatment pelvis with gynecologic cancers. Abdom Radiol (NY). 2024;49(4):1248–63. https://doi.org/10.1007/s00261-023-04163-x.; Рубцова Н.А., Березовская Т.П., Быченко В.Г. и др. Лучевая диагностика рака шейки матки. Консенсус экспертов. Медицинская визуализация. 2024;28(1):141–56. https://doi.org/10.24835/1607-0763-1341.; Adamo S.H., Gereke B.J., Shomstein S., Schmidt J. From "satisfaction of search" to "subsequent search misses": a review of multiple-target search errors across radiology and cognitive science. Cogn Res Princ Implic. 2021;6(1):59. https://doi.org/10.1186/s41235-021-00318-w.; Moyett J.M., Howell E.P., Broadwater G. et al. Understanding the spectrum of malignant bowel obstructions in gynecologic cancers and the application of the Henry score. Gynecol Oncol. 2023;174:114–20. https://doi.org/10.1016/j.ygyno.2023.04.023.; Lee Y.C., Jivraj N., O'Brien C. et al. Malignant bowel obstruction in advanced gynecologic cancers: an updated review from a multidisciplinary perspective. Obstet Gynecol Int. 2018;2018:1867238. https://doi.org/10.1155/2018/1867238.; Siddiqui E. Differentiating large from small bowel. In: Essential Radiology Review. Eds. A. Eltorai, C. Hyman, T. Healey. Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-26044-6_78.; Nelms D.W., Kann B.R. Imaging modalities for evaluation of intestinal obstruction. Clin Colon Rectal Surg. 2021;34(4):205–18. https://doi.org/10.1055/s-0041-1729737.; Солопова А.Е., Терновой С.К., Алипов В.И., Макацария А.Д. Сравнительная характеристика диффузионно-взвешенных последовательностей МРТ и мультиспиральной компьютерной томографии в стадировании рака яичников. Акушерство, Гинекология и Репродукция. 2017;11(1):19–25. https://doi.org/10.17749/2313-7347.2017.11.1.019-025.; Pavlovic K., Lange D., Chew B.H. Stents for malignant ureteral obstruction. Asian J Urol. 2016;3(3):142–9. https://doi.org/10.1016/j.ajur.2016.04.002.; Perri T., Meller E., Ben-Baruch G. et al. Palliative urinary diversion in patients with malignant ureteric obstruction due to gynaecological cancer. BMJ Support Palliat Care. 2022;12(e6):e855–e861. https://doi.org/10.1136/bmjspcare-2019-001771.; Medina A.A., García I.L., Tello F.G. et al. The challenging management of malignant ureteral obstruction: analysis of a series of 188 cases. Curr Urol. 2024;18(1):34–42. https://doi.org/10.1097/CU9.0000000000000183.; Chao K.S., Leung W.M., Grigsby P.W. et al. The clinical implications of hydronephrosis and the level of ureteral obstruction in stage IIIB cervical cancer. Int J Radiat Oncol Biol Phys. 1998;40(5):1095–100. https://doi.org/10.1016/s0360-3016(97)00899-7.; Dyer R.B., Chen M.Y., Zagoria R.J. Intravenous urography: technique and interpretation. Radiographics. 2001;21(4):799–821. https://doi.org/10.1148/radiographics.21.4.g01jl26799.; Zhu G.G., Rais-Bahrami S. Diagnosis and management of obstructive uropathy in the setting of advanced pelvic malignancies. J Nephrol Res. 2015;1(3):90–6. https://doi.org/10.17554/j.issn.2410-0579.2015.01.21.; Taylor A.T., Blaufox M.D., De Palma D. et al. Guidance document for structured reporting of diuresis renography. Semin Nucl Med. 2012;42(1):41–8. https://doi.org/10.1053/j.semnuclmed.2010.12.006.; Blaufox M.D., De Palma D., Taylor A. et al. The SNMMI and EANM practice guideline for renal scintigraphy in adults. Eur J Nucl Med Mol Imaging. 2018;45(12):2218–28. https://doi.org/10.1007/s00259-018-4129-6.; Абдурахманов Р.А. Чрескожная пункционная нефростомия в положении на спине у пациентки с аппаратом внешней фиксации на костях таза после дорожно-транспортного происшествия. Казанский медицинский журнал. 2020;101(2):275–8. https://doi.org/10.17816/KMJ2020-275.; Chow P.M., Chiang I.N., Chen C.Y. et al. Malignant ureteral obstruction: functional duration of metallic versus polymeric ureteral stents. PLoS One. 2015;10(8):e0135566. https://doi.org/10.1371/journal.pone.0135566.; Неймарк А.И., Раздорская М.В. Актуальные проблемы урогинекологии. недержание мочи у женщин (лекция). Акушерство, Гинекология и Репродукция. 2011;5(4):27–34.; Cohen A., Lim C.S., Davies A.H. Venous thromboembolism in gynecological malignancy. Int J Gynecol Cancer. 2017;27(9):1970–8. https://doi.org/10.1097/IGC.0000000000001111.; Слуханчук Е.В., Бицадзе В.О., Солопова А.Г. и др. Тромбовоспаление у онкологических больных. Акушерство, Гинекология и Репродукция. 2022;16(5):611–22. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.355.; Wharin C., Tagalakis V. Management of venous thromboembolism in cancer patients and the role of the new oral anticoagulants. Blood Rev. 2014;28(1):1–8. https://doi.org/10.1016/j.blre.2013.11.001.; Satoh T., Matsumoto K., Tanaka Y.O. et al. Incidence of venous thromboembolism before treatment in cervical cancer and the impact of management on venous thromboembolism after commencement of treatment. Thromb Res. 2013;131(4):e127–32. https://doi.org/10.1016/j.thromres.2013.01.027.; Jeong S.Y., Kim T.J., Park B.K. Epithelial ovarian cancer: a review of preoperative imaging features indicating suboptimal surgery. J Gynecol Oncol. 2020;31(4):e57. https://doi.org/10.3802/jgo.2020.31.e57.; Abeler V.M., Røyne O., Thoresen S. et al. Uterine sarcomas in Norway. A histopathological and prognostic survey of a total population from 1970 to 2000 including 419 patients. Histopathology. 2009;54(3):355–64. https://doi.org/10.1111/j.1365-2559.2009.03231.x.; Roma A.A., Barbuto D.A., Samimi S.A. et al. Vascular invasion in uterine sarcomas and its significance. A multi-institutional study. Hum Pathol. 2015;46(11):1712–21. https://doi.org/10.1016/j.humpath.2015.07.011.; Özcan J., Dülger Ö., Küpelioğlu L. et al. Uterine sarcoma in a 14 year-old girl presenting with uterine rupture. Gynecol Oncol Rep. 2014;10:44–6. https://doi.org/10.1016/j.gynor.2014.05.004.; Hindman N., Kang S., Fournier L. et al. MRI evaluation of uterine masses for risk of leiomyosarcoma: a consensus statement. Radiology. 2023;306(2):e211658. https://doi.org/10.1148/radiol.211658.; Tirumani S.H., Ojili V., Gunabushanam G. et al. MDCT of abdominopelvic oncologic emergencies. Cancer Imaging. 2013;13(2):238–52. https://doi.org/10.1102/1470-7330.2013.0025.; Chan L.Y., Lau T.K., Wong S.F., Yuen P.M. Pyometra. What is its clinical significance? J Reprod Med. 2001;46(11):952–6.; Vyas S., Kumar A., Prakash M. et al. Spontaneous perforation of pyometra in a cervical cancer patient: a case report and literature review. Cancer Imaging. 2009;9(1):12–4. https://doi.org/10.1102/1470-7330.2009.0002.; Щукина Н.А., Буянова С.Н. Гнойно-септические осложнения после гинекологических операций. Медицинский алфавит. 2017;1(3):20–5.; De Blasis I., Vinci V., Sergi M.E. et al. Early and late onset complications of gynaecologic surgery: a multimodality imaging approach. Facts Views Vis Obgyn. 2017;9(1):5–14.; Horvath S., George E., Herzog T.J. Unintended consequences: surgical complications in gynecologic cancer. Womens Health (Lond). 2013;9(6):595–604. https://doi.org/10.2217/whe.13.60.; Ebott J, Has P, Raker C, Robison K. Bowel Resection Outcomes in Ovarian Cancer Cytoreductive Surgery by Surgeon Specialty. JAMA Surg. 2024;159(10):1188–94. https://doi.org/10.1001/jamasurg.2024.2924.; Paspulati R.M., Dalal T.A. Imaging of complications following gynecologic surgery. Radiographics. 2010;30(3):625–42. https://doi.org/10.1148/rg.303095129.; Mandava A., Koppula V., Sharma G. et al. Evaluation of genitourinary fistulas in pelvic malignancies with etiopathologic correlation: role of cross sectional imaging in detection and management. Br J Radiol. 2020;93(1111):20200049. https://doi.org/10.1259/bjr.20200049.; Lakhman Y., Nougaret S., Miccò M. et al. Role of MR imaging and FDG PET/CT in selection and follow-up of patients treated with pelvic exenteration for gynecologic malignancies. Radiographics. 2015;35(4):1295–313. https://doi.org/10.1148/rg.2015140313.; Nougaret S., Lambregts D.M.J., Beets G.L. et al. Imaging in pelvic exenteration-a multidisciplinary practice guide from the ESGAR-SAR-ESUR-PelvEx collaborative group. Eur Radiol. 2025;35(5):2681–91. https://doi.org/10.1007/s00330-024-10940-z.; Sbarra M., Miccò M., Corvino M. et al. CT findings after pelvic exenteration: review of normal appearances and most common complications. Radiol Med. 2019;124(7):693–703. https://doi.org/10.1007/s11547-019-01009-9.; Hur H.C., Guido R.S., Mansuria S.M. et al. Incidence and patient characteristics of vaginal cuff dehiscence after different modes of hysterectomies. J Minim Invasive Gynecol. 2007;14(3):311–7. https://doi.org/10.1016/j.jmig.2006.11.005.; Nezhat C., Burns M.K., Wood M. et al. Vaginal cuff dehiscence and evisceration: a review. Obstet Gynecol. 2018;132(4):972–85. https://doi.org/10.1097/AOG.0000000000002852.; Ramirez P.T., Klemer D.P. Vaginal evisceration after hysterectomy: a literature review. Obstet Gynecol Surv. 2002;57(7):462–7. https://doi.org/10.1097/00006254-200207000-00023.; Hamilton J.D., Kumaravel M., Censullo M.L. et al. Multidetector CT evaluation of active extravasation in blunt abdominal and pelvic trauma patients. Radiographics. 2008;28(6):1603–16. https://doi.org/10.1148/rg.286085522.; Wortman J.R., Landman W., Fulwadhva U.P. et al. CT angiography for acute gastrointestinal bleeding: what the radiologist needs to know. Br J Radiol. 2017;90(1075):20170076. https://doi.org/10.1259/bjr.20170076.; Crosby-Nwaobi R.R., Faithfull S. High risk of urinary tract infections in post-operative gynaecology patients: a retrospective case analysis. Eur J Cancer Care (Engl). 2011;20(6):825–31. https://doi.org/10.1111/j.1365-2354.2011.01283.x.; Glaser G., Dinoi G., Multinu F. et al. Reduced lymphedema after sentinel lymph node biopsy versus lymphadenectomy for endometrial cancer. Int J Gynecol Cancer. 2021;31(1):85–91. https://doi.org/10.1136/ijgc-2020-001924.; Pleth Nielsen C.K., Sørensen M.M., Christensen H.K., Funder J.A. Complications and survival after total pelvic exenteration. Eur J Surg Oncol. 2022;48(6):1362–7. https://doi.org/10.1016/j.ejso.2021.12.472.; Causa Andrieu P.I., Woo S., Rios-Doria E. et al. The role of imaging in pelvic exenteration for gynecological cancers. Br J Radiol. 2021;94(1125):20201460. https://doi.org/10.1259/bjr.20201460.; Roeske J.C., Lujan A., Rotmensch J. et al. Intensity-modulated whole pelvic radiation therapy in patients with gynecologic malignancies. Int J Radiat Oncol Biol Phys. 2000;48(5):1613–21. https://doi.org/10.1016/s0360-3016(00)00771-9.; Caruso G., Wagar M.K., Hsu H.C. et al. Cervical cancer: a new era. Int J Gynecol Cancer. 2024;34(12):1946–70. https://doi.org/10.1136/ijgc-2024-005579.; Klopp A.H., Enserro D., Powell M. et al. Radiation therapy with or without cisplatin for local recurrences of endometrial cancer: results from an NRG Oncology/GOG prospective randomized multicenter clinical trial. J Clin Oncol. 2024;42(20):2425–35. https://doi.org/10.1200/JCO.23.01279.; Portelance L., Chao K.S., Grigsby P.W. et al. Intensity-modulated radiation therapy (IMRT) reduces small bowel, rectum, and bladder doses in patients with cervical cancer receiving pelvic and para-aortic irradiation. Int J Radiat Oncol Biol Phys. 2001;51(1):261–6. https://doi.org/10.1016/s0360-3016(01)01664-9.; Jacobsen M.C., Maheshwari E., Klopp A.H., Venkatesan A.M. Image-guided radiotherapy for gynecologic malignancies: what the radiologist needs to know. Radiol Clin North Am. 2023;61(4):725–47. https://doi.org/10.1016/j.rcl.2023.02.012.; Ladbury C., Sueyoshi M.H., Brovold N.M. et al. Stereotactic body radiation therapy for gynecologic malignancies: a case-based Radiosurgery Society Practice Review. Pract Radiat Oncol. 2024;14(3):252–66. https://doi.org/10.1016/j.prro.2023.09.008.; Venkat P.S., Parikh N., Beron P. Recent advances in gynecologic radiation oncology. Curr Opin Obstet Gynecol. 2019;31(1):38–42. https://doi.org/10.1097/GCO.0000000000000519.; Viswanathan A.N., Lee L.J., Eswara J.R. et al. Complications of pelvic radiation in patients treated for gynecologic malignancies. Cancer. 2014;120(24):3870–83. https://doi.org/10.1002/cncr.28849.; Charra-Brunaud C., Harter V., Delannes M. et al. Impact of 3D image-based PDR brachytherapy on outcome of patients treated for cervix carcinoma in France: results of the French STIC prospective study. Radiother Oncol. 2012;103(3):305–13. https://doi.org/10.1016/j.radonc.2012.04.007.; Lindegaard J.C., Fokdal L.U., Nielsen S.K. et al. MRI-guided adaptive radiotherapy in locally advanced cervical cancer from a Nordic perspective. Acta Oncol. 2013;52(7):1510–9. https://doi.org/10.3109/0284186X.2013.818253.; Pötter R., Dimopoulos J., Georg P. et al. Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer. Radiother Oncol. 2007;83(2):148–55. https://doi.org/10.1016/j.radonc.2007.04.012.; Vittrup A.S., Kirchheiner K., Pötter R. et al. Overall severe morbidity after chemo-radiation therapy and magnetic resonance imaging-guided adaptive brachytherapy in locally advanced cervical cancer: results from the EMBRACE-I study. Int J Radiat Oncol Biol Phys. 2023;116(4):807–24. https://doi.org/10.1016/j.ijrobp.2023.01.002.; Papadopoulou I., Stewart V., Barwick T.D. et al. Post-radiation therapy imaging appearances in cervical carcinoma. Radiographics. 2016;36(2):538–53. https://doi.org/10.1148/rg.2016150117.; Fawaz Z.S., Barkati M., Beauchemin M.C. et al. Cervical necrosis after chemoradiation for cervical cancer: case series and literature review. Radiat Oncol. 2013;8:220. https://doi.org/10.1186/1748-717X-8-220.; Zulfiqar M., Shetty A., Yano M. et al. Imaging of the vagina: spectrum of disease with emphasis on MRI appearance. Radiographics. 2021;41(5):1549–68. https://doi.org/10.1148/rg.2021210018.; Maturen K.E., Feng M.U., Wasnik A.P. et al. Imaging effects of radiation therapy in the abdomen and pelvis: evaluating "innocent bystander" tissues. Radiographics. 2013d;33(2):599–619. https://doi.org/10.1148/rg.332125119.; Addley H.C., Vargas H.A., Moyle P.L. et al. Pelvic imaging following chemotherapy and radiation therapy for gynecologic malignancies. Radiographics. 2010;30(7):1843–56. https://doi.org/10.1148/rg.307105063.; Gullì C., Russo L., Gavrila D. et al. Pelvic insufficiency fractures in locally advanced cervical cancer: the diagnostic yield of post-treatment MRI in a tertiary centre. Eur J Radiol. 2025;183:111918. https://doi.org/10.1016/j.ejrad.2025.111918.; Meixel A.J., Hauswald H., Delorme S., Jobke B. From radiation osteitis to osteoradionecrosis: incidence and MR morphology of radiation-induced sacral pathologies following pelvic radiotherapy. Eur Radiol. 2018;28(8):3550–9. https://doi.org/10.1007/s00330-018-5325-2.; Chopra S., Gupta S., Kannan S. et al. Late toxicity after adjuvant conventional radiation versus image-guided intensity-modulated radiotherapy for cervical cancer (PARCER): a randomized controlled trial. J Clin Oncol. 2021;39(33):3682–92. https://doi.org/10.1200/JCO.20.02530.; Феденко А.А., Конев А.А., Горбунова В.А. Лечение лейомиосарком матки. Cаркомы костей, мягких тканей и опухоли кожи. 2014;(1):56–63.; Abu-Hejleh T., Mezhir J.J., Goodheart M.J., Halfdanarson T.R. Incidence and management of gastrointestinal perforation from bevacizumab in advanced cancers. Curr Oncol Rep. 2012;14(4):277–84. https://doi.org/10.1007/s11912-012-0238-8.; Albano D., Benenati M., Bruno A. et al. Imaging side effects and complications of chemotherapy and radiation therapy: a pictorial review from head to toe. Insights Imaging. 2021;12(1):76. https://doi.org/10.1186/s13244-021-01017-2.; Patil N.S., Larocque N., van der Pol C.B. et al. Chemotherapy-induced toxicities: an imaging primer. Can Assoc Radiol J. 2023;74(2):432–45. https://doi.org/10.1177/08465371221120263.; Torrisi J.M., Schwartz L.H., Gollub M.J. et al. CT findings of chemotherapy-induced toxicity: what radiologists need to know about the clinical and radiologic manifestations of chemotherapy toxicity. Radiology. 2011;258(1):41–56. https://doi.org/10.1148/radiol.10092129.; Furtado V.F., Melamud K., Hassan K. et al. Imaging manifestations of immune-related adverse effects in checkpoint inhibitor therapies: a primer for the radiologist. Clin Imaging. 2020;63:35–49. https://doi.org/10.1016/j.clinimag.2020.02.006.; Russo L., Avesani G., Gui B. et al. Immunotherapy-related imaging findings in patients with gynecological malignancies: what radiologists need to know. Korean J Radiol. 2021;22(8):1310–22. https://doi.org/10.3348/kjr.2020.1299.; https://www.gynecology.su/jour/article/view/2567

  17. 17
    Academic Journal

    Contributors: the study was supported by grant from the Moscow Department of Health No. 2112–9/22., исследование поддержано грантом Департамента здравоохранения города Москвы № 2112–9/22.

    Source: Diagnostic radiology and radiotherapy; Том 16, № 1 (2025); 66-73 ; Лучевая диагностика и терапия; Том 16, № 1 (2025); 66-73 ; 2079-5343

    File Description: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/1067/677; Kim C., Vassilyadi M., Forbes J.K., Moroz N.W., Camacho A., Moroz P.J. Traumatic spinal injuries in children at a single level 1 pediatric trauma centre: report of a 23-year experience // Can. J. Surg. 2016. Vol. 59, No. 3. P. 205–212. doi:10.1503/cjs.014515.; Залетина А.В., Виссарионов С.В., Баиндурашвили А.Г., Кокушин Д.Н., Соловьёва К.С. Повреждения позвоночника и спинного мозга у детского населения // Международный журнал прикладных и фундаментальных исследований. 2017. T. 12, № 1. С. 69–73. doi:10.17513/mjpfi.11965.; Понина И.В., Новосёлова И.Н., Валиуллина С.А., Ахадов Т.А., Божко О.В., Лукьянов В.И., Попова О.В. Особенности нутритивного статуса детей с позвоночно-спинномозговой травмой на ранних этапах восстановления // Российский педиатрический журнал. 2022. Т. 25, № 5. C. 333–336. doi:10.46563/1560-9561-2022-25-5-333-336.; Beirowski B., Adalbert R., Wagner D., Grumme D.S., Addicks K., Ribchester R.R. et al. The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves // BMC Neurosci. 2005. Vol. 6. P. 6. doi:10.1186/1471-2202-6-6.; Buss A., Brook G.A., Kakulas B., Martin D., Franzen R., Schoenen J. et al. Gradual loss of myelin and formation of an astrocytic scar during Wallerian degeneration in the human spinal cord // Brain. 2004. Vol. 127, No. 1. P. 34–44. doi:10.1093/brain/awh001.; Божко О.В., Ублинский М.В., Ахадов T.A., Воронкова Е.В., Кобзева А.А., Мельников И.А. Диффузионно-тензорная визуализация спинного мозга у здоровых детей // Российский педиатрический журнал. 2024. Т. 27, № 5. С. 350–355. doi:10.46563/1560-9561-2024-27-5-350-355.; Dong Q., Welsh R.C., Chenevert T.L., Carlos R.C., Maly-Sundgren P., Gomez-Hassan D.M. et al. Clinical applications of diffusion tensor imaging // J. Magn Reson Imaging. 2004. Vol. 19, No. 1. P. 6–18. doi:10.1002/jmri.10424.; Ахадов Т.А., Ублинский М.В., Каньшина Д.С., Божко О.В., Мельников И.А., Гачок И.В. и др. Диффузионная магнитно-резонансная визуализация для оценки состояния спинного мозга: физические и технические основы, клинический опыт: учебное пособие. М.: ИП Горшенева А.В., 2024. 86 с. ISBN 978-5-6044538-5-8.; Fiani B., Noblett C., Nanney J., Doan T., Pennington E., Jarrah R. et al. Diffusion tensor imaging of the spinal cord status post trauma // Surg. Neurol. Int. 2020. Vol. 11. P. 276. doi:10.25259/SNI_495_2020.; Mulcahey M.J., Samdani A., Gaughan J., Barakat N., Faro S., Betz R.R. et al. Diffusion tensor imaging in pediatric spinal cord injury: Preliminary examination of reliability and clinical correlation // Spine (Phila Pa 1976). 2012. Vol. 37, No. 13. P. 797. doi:10.1097/BRS.0b013e3182470a08.; Mulcahey M.J., Samdani A.F., Gaughan J.P., Barakat N., Faro S., Shah P. et al. Diagnostic accuracy of diffusion tensor imaging for pediatric cervical spinal cord injury // Spinal Cord. 2013. Vol. 51, No. 7. P. 532–537. doi:10.1038/sc.2013.36.; Krisa L., Middleton D.M., Saksena S, Faro S.H., Leiby B.E., Mohamed F.B. et al. Clinical Utility of Diffusion Tensor Imaging as a Biomarker to Identify Microstructural Changes in Pediatric Spinal Cord Injury // Top Spinal. Cord Inj. Rehabil. 2022. Vol. 28, No. 2. P. 1–12. doi:10.46292/sci21–00048.; Roberts T.T., Leonard G.R., Cepela D.J. Classifications In Brief: American Spinal Injury Association (ASIA) Impairment Scale // Clin. Orthop. Relat. Res. 2017. Vol. 475, No. 5. P. 1499–1504. doi:10.1007/s11999-016-5133-4.; Wilm B.J., Gamper U., Henning A., Pruessmann K.P., Kollias S.S., Boesiger P. Diffusion-weighted imaging of the entire spinal cord // NMR Biomed. 2009. Vol. 22, No. 2. P. 174–181. doi:10.1002/nbm.1298.; De Leener B., Lévy S., Dupont S.M., Fonov V.S., Stikov N., Louis Collins D. et al. SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data // Neuroimage. 2017. Vol. 145. Pt A. P. 24–43. doi:10.1016/j.neuroimage.2016.10.009.; David G., Pfyffer D., Vallotton K., Pfender N., Thompson A., Weiskopf N. et al. Longitudinal changes of spinal cord grey and white matter following spinal cord injury // J. Neurol Neurosurg Psychiatry. 2021. Vol. 92, No. 11. P. 1222–1230. doi:10.1136/jnnp-2021-326337.; Freund P., Seif M., Weiskopf N., Friston K., Fehlings M.G., Thompson A.J. et al. MRI in traumatic spinal cord injury: from clinical assessment to neuroimaging biomarkers // Lancet Neurol. 2019. Vol. 18. № 12. P. 1123–1135. doi:10.1016/S1474-4422(19)30138-3.; Seif M., Ziegler G., Freund P. Progressive Ventricles Enlargement and Cerebrospinal Fluid Volume Increases as a Marker of Neurodegeneration in Patients with Spinal Cord Injury: A Longitudinal Magnetic Resonance Imaging Study. // J. Neurotrauma. 2018. Vol. 35, No. 24. P. 2941–2946. doi:10.1089/neu.2017.5522.; Fissel J.A., Farah M.H. The influence of BACE1 on macrophage recruitment and activity in the injured peripheral nerve // J. Neuroinflammation. 2021. Vol. 18, No. 1. P. 71. doi:10.1186/s12974-021-02121-2.; Tian R., Zhou Y., Ren Y., Zhang Y., Tang W. Wallerian degeneration: From mechanism to disease to imaging. // Heliyon. 2024. Vol. 11, No. 1. e40729. doi:10.1016/j.heliyon.2024.e40729.; Fischer T., Stern C., Freund P., Schubert M., Sutter R. Wallerian degeneration in cervical spinal cord tracts is commonly seen in routine T2-weighted MRI after traumatic spinal cord injury and is associated with impairment in a retrospective study // Eur. Radiol. 2021. Vol. 31, No. 5. P. 2923–2932. doi:10.1007/s00330-020-07388-2.; Poulen G., Perrin F.E. Advances in spinal cord injury: insights from non-human primates // Neural Regen Res. 2024. Vol. 19, No. 11. P. 2354–2364. doi:10.4103/NRR.NRR-D-23-01505.; Grumbles R.M., Thomas C.K. Motoneuron Death after Human Spinal Cord Injury // J. Neurotrauma. 2017. Vol. 34, No. 3. P. 581–590. doi:10.1089/neu.2015.4374.; Hill CE. A view from the ending: Axonal dieback and regeneration following SCI // Neurosci. Lett. 2017. Vol. 652. P. 11–24. doi:10.1016/j.neulet.2016.11.002.; Beirowski B., Nógrádi A., Babetto E., Garcia-Alias G., Coleman M.P. Mechanisms of axonal spheroid formation in central nervous system Wallerian degeneration // J. Neuropathol. Exp. Neurol. 2010. Vol. 69, No. 5. P. 455–472. doi:10.1097/NEN.0b013e3181da84db.; DeFrancesco-Lisowitz A., Lindborg J.A., Niemi J.P., Zigmond R.E. The neuroimmunology of degeneration and regeneration in the peripheral nervous system // Neuroscience. 2015. Vol. 302. P. 174–203. doi:10.1016/j.neuroscience.2014.09.027.; Schading S., Emmenegger T.M., Freund P. Improving Diagnostic Workup Following Traumatic Spinal Cord Injury: Advances in Biomarkers // Curr. Neurol. Neurosci. Rep. 2021. Vol. 21, No. 9. P. 49. doi:10.1007/s11910-021-01134-x.; Guleria S., Gupta R.K., Saksena S., Chandra A., Srivastava R.N., Husain M. et al. Retrograde Wallerian degeneration of cranial corticospinal tracts in cervical spinal cord injury patients using diffusion tensor imaging // J. Neurosci Res. 2008. Vol. 86, No. 10. P. 2271–2280. doi:10.1002/jnr.21664.; Koskinen E., Brander A., Hakulinen U., Luoto T., Helminen M., Ylinen A. et al. Assessing the state of chronic spinal cord injury using diffusion tensor imaging // J. Neurotrauma. 2013. Vol. 30, No. 18. P. 1587–1595. doi:10.1089/neu.2013.2943.

  18. 18
    Academic Journal

    Source: Diagnostic radiology and radiotherapy; Том 16, № 1 (2025); 113-125 ; Лучевая диагностика и терапия; Том 16, № 1 (2025); 113-125 ; 2079-5343

    File Description: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/1072/681; Ramachandran A., Srivastava D.N., Madhusudhan K.S. Gallbladder cancer revisited: the evolving role of a radiologist // Br. J. Radiol. 2021. Jan 1; Vol. 94, No. 1117. Р. 20200726. doi:10.1259/bjr.20200726.; Ciardiello D., Maiorano B.A., Parente P., Rodriquenz M.G., Latiano T.P., Chiarazzo C., Pazienza V., Guerrera L.P., Amoruso B., Normanno N., Martini G., Ciardiello F., Martinelli E., Maiello E. Immunotherapy for Biliary Tract Cancer in the Era of Precision Medicine: Current Knowledge and Future Perspectives // Int. J. Mol. Sci. 2022. Jan 13; Vol. 23, No. 2. Р. 820. doi:10.3390/ijms23020820.; Zhao L., Xing D., Pang K., Meng F., Xing Y., Ding Q. The effect of MRI combined with CT on the diagnostic rate of cholangiocarcinoma // Panminerva Med. 2023. Mar; Vol. 65, No. 1. Р. 125–126. doi:10.23736/S0031-0808.21.04339-1.; Lamarca A., Edeline J., Goyal L. How I treat biliary tract cancer // ESMO Open. 2022 Feb; Vol. 7, No. 1. Р. 100378. doi:10.1016/j.esmoop.2021.100378.; Riddell Z.C., Corallo C., Albazaz R., Foley K.G. Gallbladder polyps and adenomyomatosis // Br. J. Radiol. 2023. Feb; Vol. 96, No. 1142. Р. 20220115. doi:10.1259/bjr.20220115.; Sun D., Xu Z., Cao S., Wu H., Lu M., Xu Q., Wang K., Ji G. Imaging features based on CT and MRI for predicting prognosis of patients with intrahepatic cholangiocarcinoma: a single-center study and meta-analysis // Cancer Imaging. 2023. Jun 7; Vol. 23, No. 1. Р. 56. doi:10.1186/s40644-023-00576-5.; Yu M.H., Kim Y.J., Park H.S., Jung S.I. Benign gallbladder diseases: Imaging techniques and tips for differentiating with malignant gallbladder diseases // World J. Gastroenterol. 2020. Jun 14; Vol. 26, No. 22. Р. 2967–2986. doi:10.3748/wjg.v26.i22.2967.; Corvera C.U., Blumgart L.H., Akhurst T., DeMatteo R.P., D’Angelica M., Fong Y. et al. 18F-Fluorodeoxyglucose positron emission tomography influences management decisions in patients with biliary cancer // J. Am. Coll Surg. 2008. Vol. 206. Р. 57–65. doi:10.1016/j.jamcollsurg.2007.07.002.; Veldhuijzen van Zanten S.E.M., Pieterman K.J., Wijnhoven B.P.L., Pruis I.J., Groot Koerkamp B., van Driel L.M.J.W., Verburg F.A., Thomeer M.G.J. FAPI PET versus FDG PET, CT or MRI for Staging Pancreatic-, Gastric- and Cholangiocarcinoma: Systematic Review and Head-to-Head Comparisons of Diagnostic Performances // Diagnostics (Basel). 2022. Aug 12; Vol. 12, No. 8. Р. 1958. doi:10.3390/diagnostics12081958.

  19. 19
    Academic Journal

    Source: Cancer Urology; Том 20, № 4 (2024); 90-97 ; Онкоурология; Том 20, № 4 (2024); 90-97 ; 1996-1812 ; 1726-9776

    File Description: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/1831/1581; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1831/1531; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1831/1532; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1831/1533; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1831/1534; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1831/1535; Клинические рекомендации. Рак предстательной железы. Минздрав России, 2021–2022–2023 (20.01.2023).; Злокачественные новообразования в России в 2023 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, О.В. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2024. 276 с.; Sung H., Ferlay J., Siegel R.L. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021;71(3):209–49. DOI:10.3322/caac.21660; Bergengren O., Pekala K.R., Matsoukas K. et al. 2022 Update on prostate cancer epidemiology and risk factors – a systematic review. Eur Urol 2023;84(2):191–206. DOI:10.1016/j.eururo.2023.04.021; Siegel D.A., O’Neil M.E., Richards T.B. et al. Prostate cancer incidence and survival, by stage and race/ethnicity – United States, 2001–2017. MMWR Morb Mortal Wkly Rep 2020;69(41):1473–80. DOI:10.15585/mmwr.mm6941a1; Mottet N., Bellmunt J., Bolla M. et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol 2017;71(4):618–29. DOI:10.1016/j.eururo.2016.08.003; Глыбочко П.В., Аляев Ю.Г., Крупинов Г.Е. и др. Диагностика и лечение локального рецидива рака предстательной железы с использованием гистосканирования и высокоинтенсивного фокусированного ультразвука у пациентов после радикальной простатэктомии. Урология 2014;(5):72–6.; Artibani W., Porcaro A.B., De Marco V. et al. Management of biochemical recurrence after primary curative treatment for prostate cancer: a review. Urol Int 2018;100(3):251–62. DOI:10.1159/000481438; Новиков Р.В. Радиоизотопная лимфосцинтиграфия при раке предстательной железы: современный взгляд на проблему. Экспериментальная и клиническая урология 2017;(2). Доступно по: https://cyberleninka.ru/article/n/radioizotopnaya-limfostsintigrafiya-pri-rake-predstatelnoy-zhelezy-sovremennyy-vzglyad-na-problemu; Ploussard G., Fossati N., Wiegel T. et al. Management of persistently elevated prostate-specific antigen after radical prostatectomy: a systematic review of the literature. Eur Urol Oncol 2021;4(2):150–69. DOI:10.1016/j.euo.2021.01.001; Mohler J.L., Antonarakis E.S., Armstrong A.J. et al. Prostate Cancer, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2019;17(5):479–505. DOI:10.6004/jnccn.2019.0023; Turkbey B., Rosenkrantz A.B., Haider M.A. et al. Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur Urol 2019;76(3):340–51. DOI:10.1016/j.eururo.2019.02.033; Corcoran N.M., Hong M.K., Casey R.G. et al. Upgrade in Gleason score between prostate biopsies and pathology following radical prostatectomy significantly impacts upon the risk of biochemical recurrence. BJU Int 2011;108(8 Pt 2):E202–10. DOI:10.1111/j.1464-410X.2011.10119.x; García-Barreras S., Sanchez-Salas R., Mejia-Monasterio C. et al. Biochemical recurrence-free conditional probability after radical prostatectomy: a dynamic prognosis. Int J Urol 2019;26(7):725–30. DOI:10.1111/iju.13982; Abbas T.O., Al-Naimi A.R., Yakoob R.A. et al. Prostate cancer metastases to the rectum: a case report. World J Surg Oncol 2011;9:56. DOI:10.1186/1477-7819-9-56; Yoo S., Kim J.K., Jeong I.G. Multiparametric magnetic resonance imaging for prostate cancer: a review and update for urologists. Korean J Urol 2015;56(7):487–97. DOI:10.4111/kju.2015.56.7.487; Sandgren K., Westerlinck P., Jonsson J.H. et al. Imaging for the detection of locoregional recurrences in biochemical progression after radical prostatectomy – a systematic review. Eur Urol Focus 2019;5(4):550–60. DOI:10.1016/j.euf.2017.11.001; Oppenheimer D.C., Weinberg E.P., Hollenberg G.M. et al. Multiparametric magnetic resonance imaging of recurrent prostate cancer. J Clin Imaging Sci 2016;6:18. DOI:10.4103/2156-7514.181494; Barrett T., Gill A.B., Kataoka M.Y. et al. DCE and DW MRI in monitoring response to androgen deprivation therapy in patients with prostate cancer: a feasibility study. Magn Reson Med 2012;67(3):778–85. DOI:10.1002/mrm.23062; Hotker A.M., Mazaheri Y., Zheng J. et al. Prostate cancer: assessing the effects of androgen-deprivation therapy using quantitative diffusion-weighted and dynamic contrast-enhanced MRI. Eur Radiol 2015;25(9):2665–72. DOI:10.1007/s00330-015-3688-1; Jie C., Rongbo L., Ping T. The value of diffusion-weighted imaging in the detection of prostate cancer: a meta-analysis. Eur Radiol 2014;24(8):1929–41. DOI:10.1007/s00330-014-3201-2; Mocikova I., Babela J., Balaz V. Prostate cancer – the role of magnetic resonance imaging. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2012;156(2):103–7. DOI:10.5507/bp.2012.025; Chen Y.J., Chu W.C., Pu Y.S. et al. Washout gradient in dynamic contrast-enhanced MRI is associated with tumor aggressiveness of prostate cancer. J Magn Reson Imaging 2012;36(4):912–9. DOI:10.1002/jmri.23723; Park H., Kim S.H., Kim J.Y. Dynamic contrast-enhanced magnetic resonance imaging for risk stratification in patients with prostate cancer. Quant Imaging Med Surg 2022;12(1):742–51. DOI:10.21037/qims-21-455; Cornford P., Bellmunt J., Bolla M. et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol 2017;71(4):630–42. DOI:10.1016/j.eururo.2016.08.002; Valle L.F., Lehrer E.J., Markovic D. et al. A systematic review and meta-analysis of local salvage therapies after radiotherapy for prostate cancer (MASTER). Eur Urol 2021;80(3):280–92. DOI:10.1016/j.eururo.2020.11.010; Солодкий В.А., Павлов А.Ю., Цыбульский А.Д. Спасительная брахитерапия высокой мощности дозы при местном рецидиве рака предстательной железы после радикальных радиотерапевтических методов лечения. Онкоурология 2016;12(4):81–6. DOI:10.17650/1726-9776-2016-12-4-81-86; Spratt D.E., Dess R.T., Zumsteg Z.S. et al. A systematic review and framework for the use of hormone therapy with salvage radiation therapy for recurrent prostate cancer. Eur Urol 2018;73(2):156–65. DOI:10.1016/j.eururo.2017.06.027; Schmidt-Hegemann N.S., Zamboglou C., Mason M. et al. ESTRO-ACROP recommendations for evidence-based use of androgen deprivation therapy in combination with external-beam radiotherapy in prostate cancer. Radiother Oncol 2023;183:109544. DOI:10.1016/j.radonc.2023.109544; https://oncourology.abvpress.ru/oncur/article/view/1831

  20. 20
    Academic Journal

    Source: Cancer Urology; Том 20, № 4 (2024); 24-32 ; Онкоурология; Том 20, № 4 (2024); 24-32 ; 1996-1812 ; 1726-9776

    File Description: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/1854/1583; Thompson J.E., Moses D., Shnier R. et al. Multiparametric magnetic resonance imaging guided diagnostic biopsy detects significant prostate cancer and could reduce unnecessary biopsies and over detection: a prospective study. J Urol 2014;192:67. DOI:10.1016/j.juro.2014.08.118; Tan N., Lin W.C., Khoshnoodi P. et al. In-bore 3-T MR-guided transrectal targeted prostate biopsy: Prostate Imaging Reporting and Data System Version 2-based diagnostic performance for detection of prostate cancer. Radiology 2017;283:130–9. DOI:10.1148/radiol.2016152827; Turkbey B., Rosenkrantz A.B., Haider M.A. et al. Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur Urol 2019;76(3):340–51. DOI:10.1016/j.eururo.2019.02.033; Sonn G.A., Fan R.E., Ghanouni P. et al. Prostate magnetic resonance imaging interpretation varies substantially across radiologists. Eur Urol Focus 2019;5:592. DOI:10.1016/j.euf.2017.11.010; Benjamin P., Kristian D.S., Molly P. et al. MRI PI-RADS scores are associated with prostate cancer upstaging on surgical pathology. Prostate 2022;82(3):352–8. DOI:10.1002/pros.24280; Sung K.H., Sang H.S., Hak J.K. et al. Temporal changes of PIRADS scoring by radiologists and correlation to radical prostatectomy pathological outcomes. Prostate Int 2022;10(4):188–93. DOI:10.1016/j.prnil.2022.07.001; Соколов Е.А., Велиев Е.И., Велиев Р.А. и др. Оценка онкологических результатов радикальной простатэктомии в зависимости от данных мультипараметрической магнитно-резонансной томографии и селекция пациентов для нервосберегающей техники. Онкоурология 2020;16(2):74–81. DOI:10.17650/1726-9776-2020-16-2-74-81; O’Connor L., Wang A., Walker S.M. et al. Use of multiparametric magnetic resonance imaging (mpMRI) in localized prostate cancer. Expert Rev Med Devices 2020;17(5):435–42. DOI:10.1080/17434440.2020.1755257; Somford D.M., Hamoen E.H., Futterer J.J. et al. The predictive value of endorectal 3 Tesla multiparametric magnetic resonance imaging for extraprostatic extension in patients with low, intermediate and high risk prostate cancer. J Urol 2013;190:1728–34. DOI:10.1016/j.juro.2013.05.021; Izak F., Amirali S., Neil M. et al. PI-RADS version 2 category on 3 Tesla multiparametric prostate magnetic resonance imaging predicts oncologic outcomes in Gleason 3+4 prostate cancer on biopsy. J Urol 2019;201(1):91–7. DOI:10.1016/j.juro.2018.08.043; Hassan O., Han M., Zhou A. et al. Incidence of extraprostatic extension at radical prostatectomy with pure Gleason score 3 + 3 = 6 (Grade Group 1) cancer: implications for whether Gleason score 6 prostate cancer should be renamed “not cancer” and for selection criteria for active surveillance. J Urol 2018;199(6):1482–7. DOI:10.1016/j.juro.2017.11.067; Yossepowitch O., Briganti A., Eastham J.A. et al. Positive surgical margins after radical prostatectomy: a systematic review and contemporary update. Eur Urol 2014; 65:303–13. DOI:10.1016/j.eururo.2013.07.039; Preston M.A., Blute M.L. Positive surgical margins after radical prostatectomy: does it matter? Eur Urol 2014;65:314–31. DOI:10.1016/j.eururo.2013.08.037; Abdollah F., Abdo A., Sun M. et al. Pelvic lymph node dissection for prostate cancer: adherence and accuracy of the recent guidelines. Int J Urol 2013;20:405–10. DOI:10.1111/j.1442-2042.2012.03171.x; Huang C., Song G., Wang H. et al. Multiparametric magnetic resonance imaging-based nomogram for predicting prostate cancer and clinically significant prostate cancer in men undergoing repeat prostate biopsy. Biomed Res Int 2018:6368309. DOI:10.1155/2018/6368309; Cookson M.S., Aus G., Burnett A.L. et al. Variation in the definition of biochemical recurrence in patients treated for localized prostate cancer: the American Urological Association Prostate Guidelines for Localized Prostate Cancer Update Panel report and recommendations for a standard in the reporting of surgical outcomes. J Urol 2007;177:540–5. DOI:10.1016/j.juro.2006.10.097; Rajwa P., Mori K., Huebner N.A. et al. The prognostic association of prostate MRI PI-RADS v2 assessment category and risk of biochemical recurrence after definitive local therapy for prostate cancer: a systematic review and meta-analysis. J Urol 2021;206(3):507–16. DOI:10.1097/JU.0000000000001821; https://oncourology.abvpress.ru/oncur/article/view/1854