Εμφανίζονται 1 - 20 Αποτελέσματα από 416 για την αναζήτηση '"ЛАБОРАТОРНЫЕ ЖИВОТНЫЕ"', χρόνος αναζήτησης: 0,81δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal
  5. 5
    Academic Journal

    Πηγή: Eurasian Journal of Medical and Natural Sciences; Vol. 5 No. 10 Part 2 (2025): Eurasian Journal of Medical and Natural Sciences; 39-45 ; Евразийский журнал медицинских и естественных наук; Том 5 № 10 Part 2 (2025): Евразийский журнал медицинских и естественных наук; 39-45 ; Yevrosiyo tibbiyot va tabiiy fanlar jurnali; Jild 5 Nomeri 10 Part 2 (2025): Евразийский журнал медицинских и естественных наук; 39-45 ; 2181-287X

    Περιγραφή αρχείου: application/pdf

  6. 6
    Academic Journal

    Πηγή: Translational Medicine; Том 11, № 6 (2024); 491-521 ; Трансляционная медицина; Том 11, № 6 (2024); 491-521 ; 2410-5155 ; 2311-4495

    Περιγραφή αρχείου: application/pdf

    Relation: https://transmed.almazovcentre.ru/jour/article/view/1021/595; Fish RE, Brown MJ, Danneman PJ, Karas AZ (eds.). Anesthesia and Analgesia in Laboratory Animals, 2nd ed. CA: Academic Press; 2008: 656.; Flecknell P. Laboratory Animal Anaesthesia, 4th ed. Academic Press; 2016: 300.; Tranquilli WJ, Thurmon JC, Grimm KA, editors. Lumb and Jones’ veterinary anesthesia and analgesia. Hoboken, NJ: John Wiley & Sons; 2013.; Каркищенко Н.Н., Грачев С.В. (ред.) Руководство по лабораторным животным и альтернативным моделям в биомедицинских исследованиях. М.: Профиль – 2С. 2010: 358.; Smith AJ. Guidelines for planning and conducting high-quality research and testing on animals. Lab Anim Res. 2020; 36:21. DOI:10.1186/s42826-020-00054-0.; Percie du Sert N, Hurst V, Ahluwalia A, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020; 18(7): e3000410. DOI:10.1371/journal.pbio.3000410.; Uhlig C, Krause H, Koch T, et al. Anesthesia and Monitoring in Small Laboratory Mammals Used in Anesthesiology, Respiratory and Critical Care Research: A Systematic Review on the Current Reporting in Top-10 Impact Factor Ranked Journals. PLoS One. 2015; 25;10:8: e0134205. DOI:10.1371/journal.pone.0134205.; Fergusson DA, Avey MT, Barron CC, et al. Canadian Perioperative Anesthesia Clinical Trials Group. Reporting preclinical anesthesia study (REPEAT): Evaluating the quality of reporting in the preclinical anesthesiology literature. PLoS One. 2019; 14:5: e0215221. DOI:10.1371/journal.pone.0215221.; Бунятян А.А., Рябов Г.А., Маневич А.З. Анестезиология и реаниматология. М.: Медицина. 1984.; Meyer RE, Fish RE. Pharmacology of Injectable Anesthetics, Sedatives, and Tranquilizers. In: Fish RE, Brown MJ, Danneman PJ, Karas AZ (eds.). Anesthesia and Analgesia in Laboratory Animals, 2nd ed. CA: Academic Press. 2008: 27–82. DOI:10.1016/B978-012373898-1.50006-1.; Davies NJH, Cashman JN. (eds.) Lee’s Synopsis of Anaesthesia, 13th ed. Elsevier Health Sciences. 2005: 948. DOI:10.1016/j.cacc.2006.02.006.; Brunson DB. Pharmacology of Inhalation Anesthetics. In: Fish RE, Brown MJ, Danneman PJ, Karas AZ (eds.). Anesthesia and Analgesia in Laboratory Animals, 2nd ed. CA: Academic Press. 2008: 83–95.; Navarro KL, Huss M, Smith JC, et al. Mouse Anesthesia: The Art and Science. ILAR J. 2021; 62:1–2; 238–273. DOI:10.1093/ilar/ilab016.; Bigiarelli K, Schepers LE, Soepriatna AH, et al. Use of an Integrated Low-Flow Anesthetic Vaporizer, Ventilator, and Physiological Monitoring System for Rodents. J Vis Exp. 2020; 161: 10.3791/61311. DOI:10.3791/61311.; Ambrisko TD, Klide AM. Evaluation of isoflurane and sevoflurane vaporizers over a wide range of oxygen flow rates. Am J Vet Res. 2006; 67:6; 936–940. DOI:10.2460/ajvr.67.6.936.; Adelsperger AR, Bigiarelli-Nogas KJ, Toore I, et al. Use of a Low-flow Digital Anesthesia System for Mice and Rats. J Vis Exp. 2016; 7:115; 54436. DOI:10.3791/54436.; Damen FW, Adelsperger AR, Wilson KE, et al. Comparison of traditional and integrated digital anesthetic vaporizers. JAALAS. 2015; 54:6; 756–762.; Лапин К.Н., Рыжков И.А., Мальцева В.А. и др. Катетеризация сосудов мелких лабораторных животных при проведении биомедицинских исследований: технологические аспекты метода (обзор). Бюллетень сибирской медицины. 2021; 20:3; 168–181. DOI:10.20538/1682-0363-2021-3-168-181.; Swindle M. Second edition: Swine in the laboratory: Surgery, anesthesia, imaging, and experimental techniques, 2007. DOI:10.1201/9781420009156.; МакКормик Б. (ред.) Базовый курс анестезиолога: учебное пособие, электронный вариант. Перевод с англ. под ред. Э. В. Недашковского, В. В. Кузькова. Архангельск: Северный государственный медицинский университет. 2010: 238.; Loer SA, Scheeren TWL, Tarnow J. Desflurane Inhibits Hypoxic Pulmonary Vasoconstriction in Isolated Rabbit Lungs. Anesthesiology. 1995; 83; 552–556. DOI:10.1097/00000542-199509000-00014.; Hedenqvist P, Roughan JV, Antunes L, et al. Induction of anaesthesia with desflurane and isoflurane in the rabbit. Lab Anim. 2001; 35:2; 172–9. DOI:10.1258/0023677011911561.; Gaertner DJ, Hallman TM, Hankenson FC, et al. Anesthesia and Analgesia for Laboratory Rodents. In: Fish RE, Brown MJ, Danneman PJ, Karas AZ (eds.). Anesthesia and Analgesia in Laboratory Animals, 2nd ed. CA: Academic Press. 2008: 239–297.; Royse CF, Liew DFL, Wright CE, et al. Persistent Depression of Contractility and Vasodilation with Propofol but Not with Sevoflurane or Desflurane in Rabbits. Anesthesiology. 2008; 108:1; 87–93. DOI:10.1097/01.anes.0000296077.32685.26.; Kilicaslan A, Belviranli M, Okudan N, et al. Single and repeated sevoflurane or desflurane exposure does not impair spatial memory performance of young adult mice. Fundam Clin Pharmacol. 2013; 27:6; 641–9. DOI:10.1111/fcp.12027.; Niikura R, Miyazaki T, Takase K, et al. Assessments of prolonged effects of desflurane and sevoflurane on motor learning deficits in aged AppNL-G-F/ NL-G-F mice. Mol Brain. 2022; 7; 15:1; 32. DOI:10.1186/s13041-022-00910-1.; Hedley J. (ed.) BSAVA Small Animal Formulary 10th ed. Part B: Exotic Pets. British small animal veterinary association; 2020: 348.; Процак Е.С., Борщев Ю.Ю., Галагудза М.М. Роль оценки основных гемодинамических параметров в современной экспериментальной практике. Регионарное кровообращение и микроциркуляция. 2023; 22:1; 103–109. DOI:10.24884/1682-6655-2023-22-1-103-109.; Wenger S. Anesthesia and Analgesia in Rabbits and Rodents. Journal of Exotic Pet Medicine. 2012; 21:1; 7–16. DOI:10.1053/j.jepm.2011.11.010.; Mikołajczyk A. Safe and effective anaesthesiological protocols in domestic pig. Ann. Warsaw Univ. Life Sci. – SGGW, Anim. Sci. 2016; 55:2; 219–227.; Tendillo FJ, Mascías A, Santos M, et al. Cardiopulmonary and analgesic effects of xylazine, detomidine, medetomidine, and the antagonist atipamezole in isoflurane-anesthetized swine. Lab Anim Sci. 1996; 46:2; 215–9.; Turner PV, Albassam MA. Susceptibility of rats to corneal lesions after injectable anesthesia. Comp Med. 2005; 55:2; 175–82.; Doerning BJ, Brammer DW, Chrisp CE, et al. Nephrotoxicity of tiletamine in New Zealand white rabbits. Lab Anim Sci. 1992; 42:3; 267–9.; Hull RM. Guideline Limit Volumes for Dosing Animals in The Preclinical Stage of Safety Evaluation. Human & Experimental Toxicology. 1995; 14:3; 305–307. DOI:10.1177/096032719501400312.; Diehl KH, Hull R, Morton D, et al. A Good Practice Guide to the Administration of Substances and Removal of Blood Including Routes and Volumes. Journal of Applied Toxicology. 2001; 21:1; 15–23. DOI:10.1002/jat.727.; Morton DB, Jenning M, Buckwell A, et al. Refining Procedures for the Administration of Substances. Report of the BVAAWF/FRAME/RSPCA/UFAW Joint Working Group on Refinement. Laboratory Animals. 2001; 35:1; 1–41. DOI:10.1258/0023677011911345.; Ahmadi-Noorbakhsh S, Farajli Abbasi M, Ghasemi M, et al. Anesthesia and analgesia for common research models of adult mice. Lab Anim Res. 2022; 13:38:1; 40. DOI:10.1186/s42826-022-00150-3.; Corletto F. Multimodal and balanced analgesia. Vet Res Commun. 2007; 1; 59–63. DOI:10.1007/s11259-007-0085-5.; Овечкин А.М., Баялиева А.Ж., Ежевская А.А. и др. Послеоперационное обезболивание. Клинические рекомендации. Вестник интенсивной терапии имени А. И. Салтанова. 2019; 4; 9–33. DOI:10.21320/1818-474X-2019-4-9-33.; Burton M, Conway R, Mishkin N, et al. Pharmacokinetics of gabapentin after single, oral administration in domestic rabbits (Oryctolagus cuniculus). Journal of Exotic Pet Medicine. 2023; 45:5; 1–5. DOI:10.1053/J.JEPM.2023.02.001.; d’Ovidio D, Adami C. Locoregional Anesthesia in Exotic Pets. Vet Clin North Am Exot Anim Pract. 2019; 22:2; 301–314. DOI:10.1016/j.cvex.2019.01.007.; Lerche P, Aarnes T, Covey-Crump G, et al. Handbook of Small Animal Regional Anesthesia and Analgesia Techniques. 2016. DOI:10.1002/9781119159490.; Skarda RT. Local and regional anesthesia in ruminants and swine. Vet Clin North Am Food Anim Pract. 1996; 12:3; 579–626. DOI:10.1016/s0749-0720(15)30390-x.; Ouchi K, Sekine J, Koga Y, et al. Establishment of an animal model of sedation using epidural anesthesia that uses the tail-flick test for evaluating local anesthetic effects in rats. Exp Anim. 2013; 62:2; 137–44. DOI:10.1538/expanim.62.137.; Adolphs J, Schmidt DK, Mousa SA, et al. Thoracic epidural anesthesia attenuates hemorrhage-induced impairment of intestinal perfusion in rats. Anesthesiology. 2003; 99:3; 685–92. DOI:10.1097/00000542-200309000-00025.; Rahman MM, Lee JY, Kim YH, et al. Epidural and Intrathecal Drug Delivery in Rats and Mice for Experimental Research: Fundamental Concepts, Techniques, Precaution, and Application. Biomedicines 2023; 10:11:5; 1413. DOI:10.3390/biomedicines11051413.; Kim NH, Lee SH, Lee SJ. Percutaneous transforaminal epidural injection method in an experimental rat: minimally invasive drug delivery method to spinal epidural space. Ann Rehabil Med. 2012; 36:5; 640–647. DOI:10.5535/arm.2012.36.5.640.; Yashpal K, Katz J, Coderre TJ. Effects of Preemptive or Postinjury Intrathecal Local Anesthesia on Persistent Nociceptive Responses in Rats: Confounding Influences of Peripheral Inflammation and the General Anesthetic Regimen. Anesthesiology. 1996; 84:5; 1119–1128. DOI:10.1097/00000542-199605000-00014.; Yahalom B, Athiraman U, Soriano SG, et al. Spinal anesthesia in infant rats: development of a model and assessment of neurologic outcomes. Anesthesiology. 2011; 114:6; 1325–35. DOI:10.1097/ALN.0b013e31821b5729.; Carbone E, Lindstrom K, Diep S, et al. Duration of action of sustained-release buprenorphine in 2 strains of mice. JALAAS. 2012; 51:6; 815–819.; Mayer J, Mans C. Rodents. In: Carpenter J, Marion C, eds. Exotic Animal Formulary. 5thed. St. Louis, MO: Elsevier. 2018; 459–493.; Foley P, Kendall L, Turner P. Clinical management of pain in rodents. Comp Med. 2019; 69:6; 468–489. DOI:10.30802/AALAS-CM-19-000048.; Morrisey J, Carpenter J. Ferrets, Rabbits, and Rodents: Clinical Medicine and Surgery. 3rd ed. St. Louis, MO: Saunders/Elservier; 2012.; Plumb D. Plumb’s Veterinary Drug Handbook. Blackwell Pub: Electronic-App; 2019.; Nishiyori M, Ueda H. Prolonged gabapentin analgesia in an experimental mouse model of fibromyalgia. Mol Pain. 2008; 6:4; 52. DOI:10.1186/1744-8069-4-52.; Tubbs JT, Kissling GE, Travlos GS, et al. Effects of buprenorphine, meloxicam, and flunixin meglumine as postoperative analgesia in mice. J Am Assoc Lab Anim Sci. 2011; 50:2; 185–91.; Kang SC, Jampachairsri K, Seymour TL, et al. Use of liposomal bupivacaine for postoperative analgesia in an incisional pain model in rats (Rattus norvegicus). JALAAS. 2017; 56:1; 63–68.; Durst MS, Arras M, Palme R, et al. Lidocaine and bupivacaine as part of multimodal pain management in a C57BL/6J laparotomy mouse model. Sci Rep. 2021; 25:11:1; 10918. DOI:10.1038/s41598-021-90331-2.; Van Pelt LF. Ketamine and xylazine for surgical anesthesia in rats. J Am Vet Med Assoc. 1977; 1:171:9; 842–4.; Grint NJ, Murison PJ. A comparison of ketamine-midazolam and ketamine-medetomidine combinations for induction of anaesthesia in rabbits. Vet Anaesth Analg. 2008; 35:2; 113–21. DOI:10.1111/j.1467-2995.2007.00362.x.; Cagle LA, Franzi LM, Epstein SE, et al. Injectable Anesthesia for Mice: Combined Effects of Dexmedetomidine, Tiletamine-Zolazepam, and Butorphanol. Anesthesiol Res Pract. 2017; 2017:9161040. DOI:10.1155/2017/9161040.; Vovk AN, Karantysh G, Kosenko PO, et al. Principles of therapy and care of laboratory animals after chronic administration into Xylasine-ZoletylВ® Anesthesia. International Journal of Veterinary Science and Research. 2020; 114–117. DOI:10.17352/ijvsr.000062.; Limprasutr V, Sharp P, Jampachaisri K, et al. Tiletamine/zolazepam and dexmedetomidine with tramadol provide effective general anesthesia in rats. Animal Model Exp Med. 2021; 2:4:1; 40–46. DOI:10.1002/ame2.12143.; Baxter MG, Murphy KL, Taylor PM, et al. Chloral hydrate is not acceptable for anesthesia or euthanasia of small animals. Anesthesiology. 2009; 111:1; 209. DOI:10.1097/ALN.0b013e3181a8617e.; Silverman J, Muir WW. 3rd. A review of laboratory animal anesthesia with chloral hydrate and chloralose. Lab Anim Sci. 1993; 43:3; 210–6.; Билан Д.С., Кельмансон И.В., Белоусов В.В. Влияние типа анестезии и условий прокрашивания тканей мозга красителем 2,3,5-трифенилтетразолием хлористым (ТТХ) на оценку ишемического повреждения мозга крыс на ранних стадиях патогенеза. Вестник РГМУ. 2017; 6; 67–74. DOI:10.24075/vrgmu.2017-06-11.; Silachev DN, Usatikova EA, Pevzner IB, et al. Effect of Anesthetics on Efficiency of Remote Ischemic Preconditioning. Biochemistry (Mosc). 2017; 82:9; 1006–1016. DOI:10.1134/S0006297917090036.; https://transmed.almazovcentre.ru/jour/article/view/1021

  7. 7
    Academic Journal

    Πηγή: Food systems; Vol 8, No 1 (2025); 114-123 ; Пищевые системы; Vol 8, No 1 (2025); 114-123 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2025-8-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/713/381; Nielsen, O. H., Soendergaard, C., Vikner, M. E., Weiss, G (2018). Rational management of iron-deficiency anemia in inflammatory bowel disease. Nutrients, 10(1), Article 82. https://doi.org/10.3390/nu10010082; Stevens, G. A., Paciorek, C. J., Flores-Urrutia, M. C., Borghi, E., Namaste, S., Wirth, J. P. et al. (2022). National, regional, and global estimates of anaemia by severity in women and children for 2000–19: A pooled analysis of populationrepresentative data. The Lancet Global Health, 10(5), e627-e639. https://doi.org/10.1016/s2214-109x(22)00084-5; Kumar, P., Sharma, H., Sinha, D. (2021). Socio-economic inequality in anaemia among men in India: A study based on cross-sectional data. BMC Public Health, 21(1), Article 1345. https://doi.org/10.1186/s12889-021-11393-5; Редакционная статья. (2020). Отчет о работе Экспертного совета «Актуальные вопросы железодефицита в Российской Федерации». Терапия, 6(5(39)), 10–19.; Ciont, C., Mesaroș, A., Pop, O. L., Vodnar, D. C. (2023). Iron oxide nanoparticles carried by probiotics for iron absorption: A systematic review. Journal of Nanobiotechnology, 21(1), Article 124. https://doi.org/10.1186/s12951-023-01880-9; Kumari, A., Chauhan, A. K. (2022). Iron nanoparticles as a promising compound for food fortification in iron deficiency anemia: A review. Journal of Food Science and Technology, 59(9), 3319–3335. https://doi.org/10.1007/s13197-021-05184-4; Shubham, K., Anukiruthika, T., Dutta, S., Kashyap, A. V., Moses, J. A., Anandharamakrishnan, C. (2020). Iron deficiency anemia: A comprehensive review on iron absorption, bioavailability and emerging food fortification approaches. Trends in Food Science and Technology, 99, 58–75. https://doi.org/10.1016/j.tifs.2020.02.021; Henare, S. J., Singh, N. N., Ellis, A. M., Moughan, P. J., Thompson, A. K., Walczyk, T. (2019). Iron bioavailability of a casein-based iron fortificant compared with that of ferrous sulfate in whole milk: A randomized trial with a crossover design in adult women. The American Journal of Clinical Nutrition, 110(6), 1362–1369. https://doi.org/10.1093/ajcn/nqz237; Hurrell, R. F. (2022). Ensuring the efficacious iron fortification of foods: A tale of two barriers. Nutrients, 14(8), Article 1609. https://doi.org/10.3390/nu14081609; Husmann, F. M., Stierli, L., Bräm, D. S., Zeder, C., Krämer, S. D., Zimmermann, M. B. et al. (2022). Kinetics of iron absorption from ferrous fumarate with and without galacto-oligosaccharides determined from stable isotope appearance curves in women. The American Journal of Clinical Nutrition, 115(3), 949–957. https://doi.org/10.1093/ajcn/nqab361; Ahmad, A. M. R., Ahmed, W., Iqbal, S., Javed, M., Rashid, S. (2021). Prebiotics and iron bioavailability? Unveiling the hidden association-A review. Trends in Food Science and Technology, 110, 584–590. https://doi.org/10.1016/j.tifs.2021.01.085; Коденцова, В. М., Рисник, Д. В., Бессонов, В. В. (2023). Соединения железа для обогащения пищевых продуктов: сравнительный анализ эффективности. Микроэлементы в медицине, 24(1), 10–19.; Blanco-Rojo, R., Vaquero, M. P. (2019). Iron bioavailability from food fortification to precision nutrition. A review. Innovative Food Science and Emerging Technologies, 51, 126–138. https://doi.org/10.1016/j.ifset.2018.04.015; Askri, D., Ouni, S., Galai, S., Chovelon, B., Arnaud, J., Sturm, N. et al. (2019). Nanoparticles in foods? A multiscale physiopathological investigation of iron oxide nanoparticle effects on rats after an acute oral exposure: Trace element biodistribution and cognitive capacities. Food and Chemical Toxicology, 127, 173–181. https://doi.org/10.1016/j.fct.2019.03.006; Singh, K., Chopra, D. S., Singh, D., Singh, N. (2022). Nano-formulations in treatment of iron deficiency anemia: An overview. Clinical Nutrition ESPEN, 52, 12–19. https://doi.org/10.1016/j.clnesp.2022.08.032; Serov, D. A., Baimler, I. V., Burmistrov, D. E., Baryshev, A. S., Yanykin, D. V., Astashev, M. E. et al. (2022). The development of new nanocomposite Polytetrafluoroethylene/Fe2O3 NPs to prevent bacterial contamination in meat industry. Polymers, 14(22), Article 4880. https://doi.org/10.3390/polym14224880; Gudkov, S. V., Burmistrov, D. E., Lednev, V. N., Simakin, A. V., Uvarov, O. V., Kucherov, R. N. et al. (2022). Biosafety construction composite based on iron oxide nanoparticles and PLGA. Inventions, 7(3), Article 61. https://doi.org/10.3390/inventions7030061; Siddiqui, M. A., Wahab, R., Saquib, Q., Ahmad, J., Farshori, N. N., Al-Sheddi, E. S. et al. (2023). Iron oxide nanoparticles induced cytotoxicity, oxidative stress, cell cycle arrest, and DNA damage in human umbilical vein endothelial cells. Journal of Trace Elements in Medicine and Biology, 80, Article 127302. https://doi.org/10.1016/j.jtemb.2023.127302; Ince, M., Ince, O. K., Ondrasek, G. (2020). Biochemical toxicology — Heavy metals and nanomaterials. IntechOpen: London, UK, 2020. https://doi.org/10.5772/intechopen.85340; Kheiri, S., Liu, X., Thompson, M. (2019). Nanoparticles at biointerfaces: Antibacterial activity and nanotoxicology. Colloids and Surfaces B: Biointerfaces, 184, Article 110550. https://doi.org/10.1016/j.colsurfb.2019.110550; Sarimov, R. M., Nagaev, E. I., Matveyeva, T. A., Binhi, V. N., Burmistrov, D. E., Serov, D. A. et al. (2022). Investigation of aggregation and disaggregation of selfassembling nano-sized clusters consisting of individual iron oxide nanoparticles upon interaction with HEWL protein molecules. Nanomaterials, 12(22), Article 3960. https://doi.org/10.3390/nano12223960; Sarkar, A., Sil, P. C. (2014). Iron oxide nanoparticles mediated cytotoxicity via PI3K/AKT pathway: Role of quercetin. Food and chemical Toxicology, 71, 106–115. https://doi.org/10.1016/j.fct.2014.06.003; Bardestani, A., Ebrahimpour, S., Esmaeili, A., Esmaeili, A. (2021). Quercetin attenuates neurotoxicity induced by iron oxide nanoparticles. Journal of Nanobiotechnology, 19(1), Article 327. https://doi.org/10.1186/s12951-021-01059-0; Benzie, I. F. F., Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292; Chernukha, I., Fedulova, L., Vasilevskaya, E., Kulikovskii, A., Kupaeva, N., Kotenkova, E. (2021). Antioxidant effect of ethanolic onion (Allium cepa) husk extract in ageing rats. Saudi Journal of Biological Sciences, 28(5), 2877–2885. https://doi.org/10.1016/j.sjbs.2021.02.020; Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70–77. https://doi.org/10.1016/0003-9861(59)90090-6; Marklund, S., Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47(3), 469–474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x; Величко, А. К., Соловьев, В. Б., Генгин, М. Т. (2009). Методы лабораторного определения общей перекись разрушающей активности ферментов растений. Известия Пензенского государственного педагогического университета им. В. Г. Белинского, 18, 44–48.; Семченко, В. В., Барашкова, С. А., Ноздрин, В. И., Артемьев, В. Н. (2006). Гистологическая техника. Учебное пособие. Омск–Орел: Омская областная типография, 2006.; Pereira, D. I. A., Bruggraber, S. F. A., Faria, N., Poots, L. K., Tagmount, M. A., Aslam, M. F. et al. (2014). Nanoparticulate iron (III) oxo-hydroxide delivers safe iron that is well absorbed and utilised in humans. Nanomedicine: Nanotechnology, Biology and Medicine, 10(8), 1877–1886. https://doi.org/10.1016/j.nano.2014.06.012; El-Kady, M. M., Ansari, I., Arora, C., Rai, N., Soni, S., Verma, D. K. et al. (2023). Nanomaterials: A comprehensive review of applications, toxicity, impact, and fate to environment. Journal of Molecular Liquids, 370, Article 121046. https://doi.org/10.1016/j.molliq.2022.121046; Foujdar, R., Chopra, H. K., Bera, M. B., Chauhan, A. K., Mahajan, P. (2021). Effect of probe ultrasonication, microwave and sunlight on biosynthesis, bioactivity and structural morphology of punica granatum peel’s polyphenols-based silver nanoconjugates. Waste and Biomass Valorization, 12, 2283–2302. https://doi.org/10.1007/s12649-020-01175-2; Yuan, S., Dong, P.-Y., Ma, H.-H., Liang, S.-L., Li, L., Zhang, X.-F. (2022). Antioxidant and biological activities of the Lotus root polysaccharide-iron (III) complex. Molecules, 27(20), Article 7106. https://doi.org/10.3390/molecules27207106; Ghosh, R., Arcot, J. (2022). Fortification of foods with nano-iron: Its uptake and potential toxicity: Current evidence, controversies, and research gaps. Nutrition Reviews, 80(9), 1974–1984. https://doi.org/10.1093/nutrit/nuac011; Mahesh, T., Menon, V. P. (2004). Quercetin allievates oxidative stress in streptozotocin-induced diabetic rats. Phytotherapy Research, 18(2), 123–127. https://doi.org/10.1002/ptr.1374; Kejík, Z., Kaplánek, R., Masařík, M., Babula, P., Matkowski, A., Filipenský, P. et al. (2021). Iron complexes of flavonoids-antioxidant capacity and beyond. International Journal of Molecular Sciences, 22(2), Article 646. https://doi.org/10.3390/ijms22020646; Li, J., Chang, X., Chen, X., Gu, Z., Zhao, F., Chai, Z. et al. (2014). Toxicity of inorganic nanomaterials in biomedical imaging. Biotechnology Advances, 32(4), 727–743. https://doi.org/10.1016/j.biotechadv.2013.12.009; Fang, S., Zhuo, Z., Yu, X., Wang, H., Feng, J. (2018). Oral administration of liquid iron preparation containing excess iron induces intestine and liver injury, impairs intestinal barrier function and alters the gut microbiota in rats. Journal of Trace Elements in Medicine and Biology, 47, 12–20. https://doi.org/10.1016/j.jtemb.2018.01.002; Whittaker, P., Hines, F. A., Robl, M. G., Dunkel, V. C. (1996). Histopathological evaluation of liver, pancreas, spleen, and heart from iron-overloaded sprague-dawley rats. Toxicologic Pathology, 24(5), 558–563. https://doi.org/10.1177/019262339602400504; He, H., Huang, Q., Liu, C., Jia, S., Wang, Y., An, F. et al. (2019). Effectiveness of AOS — iron on iron deficiency anemia in rats. RSC Advances, 9(9), 5053–5063. https://doi.org/10.1039/C8RA08451C; Guo, R., Zhang, L., Song, D., Yu, B., Song, C., Chen, H. et al. (2024). Endogenous iron biomineralization in the mouse spleen of metabolic diseases. Fundamental Research. https://doi.org/10.1016/j.fmre.2024.07.004 (In Press, Corrected Proof); Sripetchwandee, J., Kongkaew, A., Kumfu, S., Chattipakorn, N., Chattipakorn, S. C. (2025). Modulating mitochondrial dynamics preserves cognitive performance via ameliorating iron-mediated brain toxicity in iron-overload rats. European Journal of Pharmacology, 593, Article 177379. https://doi.org/10.1016/j.ejphar.2025.177379; Turovsky, E. A., Plotnikov, E. Y., Simakin, A. V., Gudkov, S. V., Varlamova, E. G. (2025). New magnetic iron nanoparticle doped with selenium nanoparticles and the mechanisms of their cytoprotective effect on cortical cells under ischemialike conditions. Archives of Biochemistry and Biophysics, 764, Article 110241. https://doi.org/10.1016/j.abb.2024.110241; https://www.fsjour.com/jour/article/view/713

  8. 8
  9. 9
  10. 10
  11. 11
    Academic Journal

    Πηγή: Food systems; Vol 6, No 4 (2023); 440-448 ; Пищевые системы; Vol 6, No 4 (2023); 440-448 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2023-6-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/334/258; Rivero-Pino, F., Espejo-Carpio, F.J., Guadix, E.M. (2021). Identification of dipeptidyl peptidase IV(DPP-IV) inhibitory peptides from vegetable protein sources. Food Chemistry, 354, Article 129473. https://doi.org/10.1016/j.foodchem.2021.129473; Vaskovsky, A.M., Chvanova, M.S., Rebezov, M.B. (2020). Creation of digital twins of neural network technology of personalization of food products for diabetics. Conference Proceedings — 4th Scientific School on Dynamics of Complex Networks and their Application in Intellectual Robotics, DCNAIR, 251–253, Article 9216776. https://doi.org/10.1109/DCNAIR50402.2020.9216776; Тутельян, В.А., Шарафетдинов, Х.Х., Лапик, И.А., Воробьева, И.С., Суханов, Б.П. (2014). Приоритеты в разработке специализированных пищевых продуктов оптимизированного состава для больных сахарным диабетом 2 типа. Вопросы питания, 83(6), 41–51. https://doi.org/10.24411/0042-8833-2014-00060; Шарафетдинов, Х.Х., Плотникова, О.А., Назарова, А.М., Кондратьева, О.В. (2017). Специализированные пищевые продукты с модифицированным углеводным профилем в коррекции метаболических нарушений при сахарном диабете 2 типа. Вопросы питания, 86(6), 56–66. https://doi.org/10.24411/0042-8833-2017-00006; Кочеткова, А.А., Воробьева, И.С., Воробьева, В.М., Шарафетдинов, Х.Х., Плотникова, О.А., Пилипенко, В.В. и др. (2018). Специализированные пищевые продукты с модифицированным углеводным профилем для диетической коррекции рациона больных сахарным диабетом 2 типа. Вопросы питания, 87(6), 76–88. https://doi.org/10.24411/0042-8833-2018-10069; Hemker, A.K., Nguyen, L.T., Karwe, M., Salvi, D. (2020). Effects of pressureassisted enzymatic hydrolysis on functional and bioactive properties of tilapia (Oreochromis niloticus) by-product protein hydrolysates. LWT, 122, Article 109003. https://doi.org/10.1016/j.lwt.2019.109003; Sanchez, A., Vazquez, A. (2017). Bioactive peptides: A review. Food Quality and Safety, 1(1), 29–46. https://doi.org/10.1093/fqs/fyx006; Bhandari, D., Rafiq, S., Gat, Y., Gat, P., Waghmare, R., Kumar, V. (2020). A review on bioactive peptides: Physiological functions, bioavailability and safety. International Journal of Peptide Research and Therapeutics. 26, 139–150. https://doi.org/10.1007/s10989-019-09823-5; Elam, E., Feng, J., Lv, Y.-M., Ni, Z.-J., Sun, P., Thakur, K. et al. (2021). Recent advances on bioactive food derived anti-diabetic hydrolysates and peptides from natural resources. Journal of Functional Foods, 86, Article 104674. https://doi.org/10.1016/j.jff.2021.104674; Chen, F., Jiang, H., Lu, Y., Chen, W., Huang, G. (2019). Identification and in silico analysis of antithrombotic peptides from the enzymatic hydrolysates of Tenebrio molitor larvae. European Food Research and Technology, 245, 2687–2695. https://doi.org/10.1007/s00217-019-03381-2; Рязанцева, К.А., Агаркова, Е.Ю., Кручинин, А.Г. (2019). Гидролизаты молочной сыворотки как ингредиенты для повышения функциональных свойств молочных продуктов. Молочная река, 4(76), 26–28.; Рязанцева, К.А. (2020). Гидролизаты сывороточного белка как источник биологически активных пептидов для включения в функциональные продукты питания. Актуальные вопросы молочной промышленности, межотраслевые технологии и системы управления качеством, 1(1), 475–480. https://doi.org/10.37442/978-5-6043854-1-8-2020-1-475-480; Chen, R., Chen, G. (2022). Personalized nutrition for people with diabetes and at risk of diabetes has begun. Journal of Future Foods, 2(3), 193–202. https://doi.org/10.1016/j.jfutfo.2022.06.001; Kapoor, M.P., Ishihara, N., Okubo, T. (2016). Soluble dietary fibre partially hydrolysed guar gum markedly impacts on postprandial hyperglycaemia, hyperlipidaemia and incretins metabolic hormones over time in healthy and glucose intolerant subjects. Journal of Functional Foods, 24, 207–220. https://doi.org/10.1016/j.jff.2016.04.008; Salas-Salvadó, J., Becerra-Tomás, N., Papandreou, C., Bullo, M. (2019). Dietary patterns emphasizing the consumption of plant foods in the management of type 2 diabetes: A narrative review. Advances in Nutrition, 10(Suppl 4), S320-S331. https://doi.org/10.1093/advances/nmy102; Xu, R., Bu, Y.-G., Zhao, M.-L., Tao, R., Luo, J., Li, Y. (2020). Studies on antioxidant and α-glucosidase inhibitory constituents of chinese toon bud (Toona sinensis). Journal of Functional Foods, 73, Article 104108. https://doi.org/10.1016/j.jff.2020.104108; Akinyede, A.I., Ayibiowu, E.O., Fakologbon, T., Awolu, O.O., Fagbemi, T.N. (2023). Nutritional assessment, glycemic indices and anti-diabetic potentials of dough meal generated from optimized blends of matured plantain, soya cake and wheat bran flours. Journal of Future Foods, 3(4), 374–382. https://doi.org/10.1016/j.jfutfo.2023.03.008; Oyedemi, S.O., Oyedemi, B.O., Ijeh, I.I., Ohanyerem, P.E., Coopoosamy, R.M., Aiyegoro, O.A. (2017). Alpha-amylase and antioxidative inhibition capacity of some anti-diabetic plants used by the traditional healers in Southeastern Nigeria. The Scientific World Journal, 2017, Article 3592491. https://doi.org/10.1155/2017/3592491; Wang, C. Y., Zheng, L., Su, G., Zeng, X.-A., Sun, B., Zhao, M. (2020). Evaluation and exploration of potentially bioactive peptides in casein hydrolysates against liver oxidative damage in STZ/HFD induced diabetic rats. Journal of Agricultural and Food Chemistry, 68(8), 2393–2405. https://doi.org/10.1021/acs.jafc.9b07687; Wang, Q., Chen, R., Zhang, C., Inam-U-LIah, Piao, F., Shi, X. (2019). NGF protects bone marrow mesenchymal stem cells against 2,5-hexanedione-induced apoptosis in vitro via Akt/Bad signal pathway. Molecular and Cellular Biochemistry, 457(1–2), 133–143. https://doi.org/10.1007/s11010-019-03518-7; Lunt, H., Carr, A.C., Heenan, H.F., Vlasiuk, E., Zawari, M., Prickett, T. et al. (2023). People with diabetes and hypovitaminosis C fail to conserve urinary vitamin C. Journal of Clinical and Translational Endocrinology, 31, Article 100316. https://doi.org/10.1016/j.jcte.2023.100316; Рябцева, С.А., Храмцов, А.Г., Будкевич, Р.О., Анисимов, Г.С., Чукло, А.О., Шпак, М.А. (2020). Физиологические эффекты, механизмы действия и применение лактулозы. Вопросы питания, 89(2), 5–20. https://doi.org/10.24411/0042-8833-2020-10012; Табаторович, А.Н., Резниченко, И.Ю. (2019). Разработка и оценка качества диабетического желейного мармелада «Каркаде», обогащенного янтарной кислотой. Техника и технология пищевых производств, 49(2), 320–329. https://doi.org/10.21603/2074-9414-2019-2-320-329; Zinina, O., Merenkova, S., Galimov, D. (2021). Optimization of microbial hydrolysis parameters of poultry by-products using probiotic microorganisms to obtain protein hydrolysates. Fermentation, 7(3), Article 122. https://doi.org/10.3390/fermentation7030122; Khvostov, D.V., Vostrikova, N.L., Chernukha, I.M. (2022). Methodology for the identification of bioactive and marker peptides in the organs of cattle and pigs. Theory and Practice of Meat Processing, 7(2), 118–124. https://doi.org/10.21323/2414-438X-2022-7-2-118-124; Tsugawa, H., Nakabayashi, R., Mori, T., Yamada, Y., Takahashi, M., Rai, A. et al. (2019). A cheminformatics approach to characterize metabolomes in stable-isotope-labeled organisms. Nature Methods, 16, 295–298. http://doi.org/10.1038/s41592-019-0358-2; Karkischenko, V.N., Skvortsova, V.I., Gasanov, M.T., Fokin, Y.V., Nesterov, M.S., Petrova, N.V. et al. (2021). Inhaled [D-Ala2]-Dynorphin 1–6 prevents hyperacetylation and release of high mobility group Box 1 in a mouse model of acute lung Injury. Journal of Immunology Research, 2021, Article 4414544. https://doi.org/10.1155/2021/4414544; Minkiewicz, P., Iwaniak, A., Darewicz, M. (2019). BIOPEP-UWM database of bioactive peptides: Current opportunities. International Journal of Molecular Sciences, 20(23), Article 5978. https://doi.org/10.3390/ijms20235978; PeptideRanker. Retrieved from http://distilldeep.ucd.ie/PeptideRanker/ Accessed November 17, 2022; Можейко, Л.А. (2013). Экспериментальные модели для изучения сахарного диабета Часть I. Аллоксановый диабет. Журнал Гродненского государственного медицинского университета, 3(43), 26–29.; Smith, K., Taylor, G.S., Brunsgaard, L.H., Walker, M., Davies, K.A.B., Stevenson, E. J. (2022). Thrice daily consumption of a novel, premeal shot containing a low dose of whey protein increases time in euglycemia during 7 days of free-living in individuals with type 2 diabetes. BMJ Open Diabetes Research and Care, 10(3), Article e002820. https://doi.org/10.1136/bmjdrc*2022-002820; Горячева, М.А., Макарова, М.Н. (2016). Особенности проведения глюкозотолерантного теста у мелких лабораторных грызунов (мыши и крысы). Международный вестник ветеринарии, 3, 155–159.; Агаркова, Е.Ю., Рязанцева, К.А., Кручинин, А.Г. (2020). Противодиабетическая активность белков молочной сыворотки. Техника и технология пищевых производств, 50(2), 306–318, https://doi.org/10.21603/2074-9414-2020-2-306-318; Du, X., Jing, H., Wang, L., Huang, X., Wang, X., Wang, H. (2022). Characterization of structure, physicochemical properties, and hypoglycemic activity of goat milk whey protein hydrolysate processed with different proteases. LWT, 159, Article 113257. https://doi.org/10.1016/j.lwt.2022.113257; Yagi, M., Uenaka, S., Ishizaki, K., Sakiyama, C., Takeda, R., Yonei, Y. (2020). Effect of the postprandial blood glucose on lemon juice and rice intake. Glycative Stress Research, 7(2), 174–180. https://doi.org/10.24659/gsr.7.2_174; Avila, F., Jimenez-Aspee, F., Cruz, N., Gomez, C., Gonzalez, M. A., Ravello, N. (2019). Additive effect of maqui (Aristotelia chilensis) and lemon (Citrus x limon) juice in the postprandial glycemic responses after the intake of high glycemic index meals in healthy men. NFS Journal, 17, 8–16. https://doi.org/10.1016/j.nfs.2019.09.001; https://www.fsjour.com/jour/article/view/334

  12. 12
    Academic Journal

    Πηγή: Regulatory Research and Medicine Evaluation; Том 14, № 3 (2024); 265-282 ; Регуляторные исследования и экспертиза лекарственных средств; Том 14, № 3 (2024); 265-282 ; 3034-3453 ; 3034-3062 ; 10.30895/1991-2919-2024-14-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.vedomostincesmp.ru/jour/article/view/630/1457; https://www.vedomostincesmp.ru/jour/article/view/630/1377; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/630/524; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/630/525; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/630/532; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/630/533; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/630/534; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/630/535; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/630/536; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/630/537; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/630/538; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/630/579; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/630/580; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/630/581; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/630/582; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/630/583; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/630/611; Куценко СА. Основы токсикологии: научно-методическое издание. СПб: Фолиант; 2004. EDN: QKMWIB; Крышень КЛ, Мошков АЕ, Демяновский МН, Ковалева МА. Экспериментальное исследование фармакологической безопасности лекарственных средств, применяемых для купирования лихорадочного синдрома в детском возрасте. Безопасность и риск фармакотерапии. 2020;8(3):151–9. https://doi.org/10.30895/2312-7821-2020-8-3-151-159; Han KS, Woo DH. Classification of advanced me thods for evaluating neurotoxicity. Mol Cell Toxicol. 2021;17(4):377–83. https://doi.org/10.1007/s13273-021-00161-6; Slater C. Diverse aspects of vulnerability at the neuromuscular junction. Brain. 2012;135(4):997–8. https://doi.org/10.1093/brain/aws057; Stubbs EB Jr. Targeting the blood-nerve barrier for the management of immune-mediated peripheral neuropathies. Exp Neurol. 2020;331:113385. https://doi.org/10.1016/j.expneurol.2020.113385; Sheikh S, Alvi U, Soliven B, Rezania K. Drugs that induce or cause deterioration of myasthenia gravis: an update. J Clin Med. 2021;10(7):1537. https://doi.org/10.3390/jcm10071537; Jones MR, Urits I, Wolf J, Corrigan D, Colburn L, Peterson E, et al. Drug-induced peripheral neuropathy: a narrative review. Curr Clin Pharmacol. 2020;15(1):38–48. https://doi.org/10.2174/1574884714666190121154813; Misra UK, Kalita J. Toxic neuropathies. Neurol India. 2009;57(6):697–705. https://doi.org/10.4103/0028-3886.59463; Pellacani C, Eleftheriou G. Neurotoxicity of antineoplastic drugs: mechanisms, susceptibility, and neuroprotective strategies. Adv Med Sci. 2020;65(2):265–85. https://doi.org/10.1016/j.advms.2020.04.001; Grisold W, Carozzi VA. Toxicity in peripheral nerves: an overview. Toxics. 2021;9(9):218. https://doi.org/10.3390/toxics9090218; Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite M, et al. Lessons learned from the fate of Astra-Zeneca’s drug pipeline: a five-dimensional framework. Nat Rev Drug Discov. 2014;13(6):419–31. https://doi.org/10.1038/nrd4309; Chi LH, Burrows AD, Anderson RL. Can preclinical drug development help to predict adverse events in clinical trials? Drug Discov Today. 2022;27(1):257–68. https://doi.org/10.1016/j.drudis.2021.08.010; Masjosthusmann S, Barenys M, El-Gamal M, Geerts L, Gerosa L, Gorreja A, et al. Literature review and appraisal on alternative neurotoxicity testing methods. EFSA Supporting Publications. 2018;15(4):1410E. https://doi.org/10.2903/sp.efsa.2018.en-1410; Chinn GA, Pearn ML, Vutskits L, Mintz CD, Loepke AW, Lee JJ et al. Standards for preclinical research and publications in developmental anaesthetic neurotoxicity: expert opinion statement from the SmartTots preclinical working group. Br J Anaesth. 2020;124(5):585–93. https://doi.org/10.1016/j.bja.2020.01.011; Shih HP, Zhang X, Aronov AM. Drug discovery effectiveness from the standpoint of therapeutic mechanisms and indications. Nat Rev Drug Discov. 2017;17(1):19–33. https://doi.org/10.1038/nrd.2017.194; Александров ИВ, Егорова ЕИ, Васина ЕЮ, Новиков ВК, Матыко ПГ, Галагудза ММ. Экспериментальные исследования на животных в эпоху трансляционной медицины. Какими им быть? Трансляционная медицина. 2017;4(2):52–70. https://doi.org/10.18705/2311-4495-2017-4-2-52-70; Llorens J, Li AA, Ceccatelli S, Suñol C. Strategies and tools for preventing neurotoxicity: to test, to predict and how to do it. Neurotoxicology. 2012;33(4):796–804. https://doi.org/10.1016/j.neuro.2012.01.019; Cashman CR, Höke A. Mechanisms of distal axonal degeneration in peripheral neuropathies. Neurosci Lett. 2015;596:33–50. https://doi.org/10.1016/j.neulet.2015.01.048; Hauser S, ed. Harrison’s Neurology in Clinical Medicine. San Francisco: McGraw-Hill; 2010.; Wasinska-Borowiec W, Abri Aghdam K, Matias Saari J, Grzybowski A. An updated review on the most common agents causing toxic optic neuropathies. Current Pharm Des. 2017;23(4):586–95. https://doi.org/10.2174/1381612823666170124113826; Lindhard Madsen M, Du H, Ejskjær N, Jensen P, Madsen J, Dybkær K. Aspects of vincristine-induced neuropathy in hematologic malignancies: a systematic review. Cancer Chemother Pharmacol. 2019;84(3):471–85. https://doi.org/10.1007/s00280-019-03884-5; Одинак ММ, Дыскин ДЕ. Клиническая диагностика в неврологии. СПб: СпецЛит; 2010. EDN: QLVPQP; Tilson HA. Behavioral indices of neurotoxicity: what can be measured? Neurotoxicol Teratol. 1987;9(6):427–43. https://doi.org/10.1016/0892-0362(87)90055-9; Schönfeld LM, Dooley D, Jahanshahi A, Temel Y, Hendrix S. Evaluating rodent motor functions: which tests to choose? Neurosci Biobehav Rev. 2017;83:298–312. https://doi.org/10.1016/j.neubiorev.2017.10.021; van Dellen A, Blakemore C, Deacon R, York D, Hannan AJ. Delaying the onset of Huntington’s in mice. Nature. 2000;404:721–22. https://doi.org/10.1038/35008142; Deacon RM. Measuring motor coordination in mice. J Vis Exp. 2013;75:e2609. https://doi.org/10.3791/2609; Воронина ТА, Середенин СБ. Методические указания по изучению транквилизирующего (анксиолитического) действия фармакологических веществ. В кн.: Хабриев РУ, ред. Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ. М.: Медицина; 2005. EDN: QCIIOB; Ахапкина ВИ, Воронина ТА. Изучение противоинсультного действия фенотропила на модели геморрагического инсульта (интрацеребральная посттравматическая гематома) у крыс. Нервные болезни. 2006;(1):37–42. EDN: OOKJEX; Brooks SP, Dunnett SB. Tests to assess motor phenotype in mice: a user’s guide. Nat Rev Neurosci. 2009;10(7):519–29. https://doi.org/10.1038/nrn2652; Takeshita H, Yamamoto K, Nozato S, Inagaki T, Tsuchimochi H, Shirai M, et al. Modified forelimb grip strength test detects aging-associated physiological decline in skeletal muscle function in male mice. Sci Rep. 2017;(7):42323. https://doi.org/10.1038/srep42323; Mintz EL, Passipieri JA, Lovell DY, Christ GJ. Applications of in vivo functional testing of the rat tibialis anterior for evaluating tissue engineered skeletal muscle repair. J Vis Exp. 2016;(116):54487. https://doi.org/10.3791/54487; Chiu CS, Weber H, Adamski S, Rauch A, Gentile MA, Alves SE. Non-invasive muscle contraction assay to study rodent models of sarcopenia. BMC Musculoskelet Disord. 2011;12:246. https://doi.org/10.1186/1471-2474-12-246; Чичева ММ, Вихарева ЕВ, Мальцев АВ, Устюгов АА. Эволюция методик оценки моторной функции лабораторных грызунов, моделирующих нейродегенеративные заболевания. Biomed Chem Res Meth. 2018;1(3):e00030. https://doi.org/10.18097/bmcrm00030; Hsieh TH, Tsai JY, Wu YN, Hwang IS, Chen TI, Chen JJJ. Time course quantification of spastic hypertonia following spinal hemisection in rats. Neuroscience. 2010;167(1):185–98. https://doi.org/10.1016/j.neuroscience.2010.01.064; Ильинский НС, Тюнин МА, Матросова МО. Методические подходы к оценке паралитического синдрома токсического генеза в экспериментах на грызунах. Лабораторные животные для научных исследований. 2021;(3):71–4. https://doi.org/10.29296/2618723X-2021-03-09; Aoki KR. A comparison of the safety margins of botulinum neurotoxin serotypes A, B, and F in mice. Toxicon. 2001;39(12):1815–20. https://doi.org/10.1016/s0041-0101(01)00101-5; Broide RS, Rubino J, Nicholson GS, Ardila MC, Brown MS, Aoki KR, et al. The rat Digit Abduction Score (DAS) assay: a physiological model for assessing botulinum neurotoxininduced skeletal muscle paralysis. Toxicon. 2013;71:18–24. https://doi.org/10.1016/j.toxicon.2013.05.004; Nishitani A, Yoshihara T, Tanaka M, Kuwamura M, Asano M, Tsubota Y, et al. Muscle weakness and impaired motor coordination in hyperpolarization-activated cyclic nucleotide-gated potassium channel 1-deficient rats. Exp Anim. 2020;69(1):11–7. https://doi.org/10.1538/expanim.19-0067; Turner PV, Pang DS, Lofgren JL. A review of pain assessment methods in laboratory rodents. Comp Med. 2019;69(6):451–67. https://doi.org/10.30802/AALAS-CM-19-000042; Deuis JR, Dvorakova LS, Vetter I. Methods used to evaluate pain behaviors in rodents. Front Mol Neurosci. 2017;10:284. https://doi.org/10.3389/fnmol.2017.00284с; Modi AD, Parekh A, Pancholi YN. Evaluating pain behaviours: widely used mechanical and thermal methods in rodents. Behav Brain Res. 2023;446:114417. https://doi.org/10.1016/j.bbr.2023.114417; Bohic M, Pattison LA, Jhumka ZA. Mapping the neuroethological signatures of pain, analgesia, and recovery in mice. Neuron. 2023;111(18):2811–2830.e8. https://doi.org/10.1016/j.neuron.2023.06.008; Presto P, Ji G, Junell R, Griffin Z, Neugebauer V. Fear extinction-based inter-individual and sex differences in pain-related vocalizations and anxiety-like behaviors but not nocifensive reflexes. Brain Sci. 2021;11(10):1339. https://doi.org/10.3390/brainsci11101339; Palazzo E, Marabese I, Gargano F, Guida F, Belardo C, Maione S. Methods for evaluating sensory, affective and cognitive disorders in neuropathic rodents. Curr Neuropharmacol. 2021;19(6):736–46. https://doi.org/10.2174/1570159X18666200831153117; Chao D, Tran H, Hogan QH, Pan B. Analgesic dorsal root ganglion field stimulation blocks both afferent and efferent spontaneous activity in sensory neurons of rats with monosodium iodoacetate-induced osteoarthritis. Osteoarthritis Cartilage. 2022;30(11):1468–81. https://doi.org/10.1016/j.joca.2022.08.008; Бондаренко ДА, Дьяченко ИА, Скобцов ДИ, Мурашев АН. In vivo модели для изучения анальгетической активности. Биомедицина. 2011;(2):84–94. EDN: NVYEMF; Liu Q, Liu J, Guo M. Comparison of retinal degeneration treatment with four types of different mesenchymal stem cells, human induced pluripotent stem cells and RPE cells in a rat retinal degeneration model. J Transl Med. 2023;21(1):910. https://doi.org/10.1186/s12967-023-04785-1; Gaillard D, Stratford JM. Measurement of behavioral taste responses in mice: two-bottle preference, lickometer, and conditioned taste-aversion tests. Curr Protoc Mouse Biol. 2016;6(4):380–407. https://doi.org/10.1002/cpmo.18; McFadden SL, Simmons AM, Erbe C, Thomas JA. Behavioral and physiological audiometric methods for animals. In: Erbe C, Thomas JA, eds. Exploring animal behavior through sound. Springer; 2022. https://doi.org/10.1007/978-3-030-97540-1_10; Arevalo N. Open-source JL olfactometer for awake behaving recording of brain activity for mice engaged in olfactory tasks. In: Paredes RG, Portillo W, Bedos M, eds. Animal models of reproductive behavior. New York: Humana; 2023. https://doi.org/10.1007/978-1-0716-3234-5_6; Kimura J. Electrodiagnosis in diseases of nerve and muscle: principles and practice. Oxford University Press; 2013. https://doi.org/10.1093/med/9780199738687.001.0001; Тюнин МА, Ильинский НС, Гоголевский АС, Кручинин ЕГ, Гладких ВД, Мацейчик ВА, Матросова МО. Электрофизиологические методы диагностики нарушений нервно-мышечной передачи при острых отравлениях фосфорорганическими соединениями. Военно-медицинский журнал. 2020;341(10):11–9. EDN: NSYNCD; https://www.vedomostincesmp.ru/jour/article/view/630

  13. 13
    Academic Journal

    Συνεισφορές: The study reported in this publication was carried out as part of publicly funded research project No. 056-00026-24-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. 124022300127-0)., Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00026-24-00 на проведение прикладных научных исследований (номер государственного учета НИР 124022300127-0).

    Πηγή: Regulatory Research and Medicine Evaluation; Том 14, № 3 (2024); 330-337 ; Регуляторные исследования и экспертиза лекарственных средств; Том 14, № 3 (2024); 330-337 ; 3034-3453 ; 3034-3062 ; 10.30895/1991-2919-2024-14-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.vedomostincesmp.ru/jour/article/view/637/1462; https://www.vedomostincesmp.ru/jour/article/view/637/1385; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/637/612; Рудакова ЕБ, Серова ОФ, Стрижова ТВ, Федорова ЕА, Острина СЯ. Роль лютеинизирующего гормона в овариальной стимуляции в программах экстракорпорального оплодотворения (обзор литературы). Проблемы репродукции. 2022;28(1):129–35. https://doi.org/10.17116/repro202228011129; Орлова НА, Ковнир СВ, Ходак ЮА, Ползиков МА, Воробьев ИИ. Рекомбинантный лютеинизирующий гормон человека для лечения бесплодия: получение линий-продуцентов. Акушерство, гинекология и репродукция. 2017;11(3):33–42. https://doi.org/10.17749/2313-7347.2017.11.3.033-042; Mullen MP, Cooke D, Crow M. Structural and functional roles of FSH and LH as glycoproteins regulating reproduction in mammalian species. In: Vizcarra J, ed. Gonadotropin. Chapter 8. InTech; 2013. P. 155–80. https://doi.org/10.5772/48681; Steelman SL, Pohley FM. Assay of the follicle-stimulating hormone based on the augmentation with human chorionic gonadotropin. Endocrinology. 1953;53(6):604–16. https://doi.org/10.1210/endo-53-6-604; Burn JH, Finney DJ, Goodwin LG. Biological standardization. London: Oxford University Press; 1952.; Урбах ВЮ. Биометрические методы. Статистическая обработка опытных данных в биологии, сельском хозяйстве и медицине. М.: Наука; 1964.; Беленький МЛ. Элементы количественной оценки фармакологического эффекта. Л.: Медгиз; 1963.; https://www.vedomostincesmp.ru/jour/article/view/637

  14. 14
  15. 15
    Academic Journal

    Πηγή: Regulatory Research and Medicine Evaluation; Том 14, № 3 (2024); 283-294 ; Регуляторные исследования и экспертиза лекарственных средств; Том 14, № 3 (2024); 283-294 ; 3034-3453 ; 3034-3062 ; 10.30895/1991-2919-2024-14-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.vedomostincesmp.ru/jour/article/view/629/1458; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/629/623; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/629/635; Енгалычева ГН, Сюбаев РД, Горячев ДВ. Исследования фармакологической безопасности лекарственных средств: экспертная оценка полученных результатов Ведомости Научного центра экспертизы средств медицинского применения.2017;7(2):92–7. https://doi.org/10.30895/1991-2919-2017-7-2-92-97; Pognan F, Beilmann M, Boonen H, Czich A, Dear G, Hewitt P, et al. The evolving role of investigative toxicology in the pharmaceutical industry. Nat Rev Drug Discov. 2023;22(4):317–35. https://doi.org/10.1038/s41573-022-00633-x; Wu H, Huang J. Drug-induced nephrotoxicity: pathogenic mechanisms, biomarkers and prevention strategies. Current Drug Metabolism. 2018;19(7):559–67. https://doi.org/10.2174/1389200218666171108154419; Kim SY, Moon A. Drug-induced nephrotoxicity and its biomarkers. Biomolecules & Therapeutics. 2012;20(3):268–72. http://dx.doi.org/10.4062/biomolther.2012.20.3.268; Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3(8):711–6. https://doi.org/10.1038/nrd1470; Troth SP, Simutis F, Friedman GS, Todd S, Sistare FD. Kidney safety assessment: current practices in drug development. Seminars in Nephrology. 2019;39(2):120–31. https://doi.org/10.1016/j.semnephrol.2018.12.002; Евтеев ВА, Семенова ИС, Бунятян НД, Прокофьев АБ. Оценка нефротоксических свойств фавипиравира на модели клеточной линии RPTEC. Безопасность и риск фармакотерапии. 2023;11(4):423–29. https://doi.org/10.30895/2312-7821-2023-11-4-423-429; Евтеев ВА, Бунятян НД, Демченкова ЕЮ, Прокофьев АБ. Сравнительная оценка рекомендаций по доклиническим исследованиям межлекарственного взаимодействия на уровне транспортеров. Ведомости Научного центра экспертизы средств медицинского применения. 2023;13(4):560–6. https://doi.org/10.30895/1991-2919-2023-13-4-560-566; Брюханов ВМ, Зверев ЯФ, Лампатов ВВ, Жариков АЮ. Методические подходы к изучению функции почек в эксперименте на животных. Нефрология. 2009;13(3):52–62.; Васютина МЛ, Галагудза ММ, Гущин ЯА, Ивкин ДЮ, Ильинский НС, Матуа АЗ и др. Референтные интервалы. Показатели нормы у лабораторных животных В кн: Консультант GLP-Planet 2022. Мнение фармацевтической отрасли. СПб., 2022. С. 72–95.; Павлова ВЮ, Денисенко ВЕ, Чеснокова ЛД, Анешина ИИ. Диагностические возможности исследования мочи. Фундаментальная и клиническая медицина. 2022;7(4):122–35. https://doi.org/10.23946/2500-0764-2022-7-4-122-135; Kurien BT, Everds NE, Scofield RH. Experimental animal urine collection: a review. Laboratory Animals. 2004; 38(4):333–61. https://doi.org/10.1258/0023677041958945; Yadav SN, Ahmed N, Nath AJ, Mahanta D, Kalita MK. Urinalysis in dog and cat: a review. Veterinary World. 2020;13(10):2133–41. https://doi.org/10.14202/vetworld.2020.2133-2141; Трофимец ЕИ, Кательникова АЕ, Крышень КЛ. Получение образцов мочи у лабораторных животных (обзор). Лабораторные животные для научных исследований. 2021;01:30–47. https://doi.org/10.29296/2618723X-2021-01-04; Мирошников МВ, Султанова КТ, Ковалева МА, Акимова МА, Макарова МН. Определение референтных интервалов клиренса эндогенного креатинина у лабораторных животных. Лабораторные животные для научных исследований. 2022;4:21–30. https://doi.org/10.57034/2618723X-2022-04-03; Jenkins JR. Rodent Diagnostic Testing. Journal of Exotic Pet Medicine. 2008;17(1).16–25. https://doi.org/10.1053/j.jepm.2007.12.004; Jenkins JR. Rabbit diagnostic testing. Journal of Exotic Pet Medicine. 2008;17(1):4–15. https://doi.org/10.1053/j.jepm.2007.12.003; Yadav SN, Ahmed N, Nath AJ, Mahanta D, Kalita MK. Urinalysis in dog and cat: a review. Veterinary World. 2020;13(10).2133. https://doi.org/10.14202/vetworld.2020.2133-2141; Grahofer A, Björkman S, Peltoniemi O. Diagnosis of endometritis and cystitis in sows: use of biomarkers. Journal of Animal Science. 2020;98(1):107–16. https://doi.org/10.1093/jas/skaa144; Park HK, Cho JW, Lee BS, Park H, Han JS, Yang MJ, et al. Reference values of clinical pathology parameters in cynomolgus monkeys (Macaca fascicularis) used in preclinical studies. Laboratory Animal Research. 2016;32:79–86. https://doi.org/10.5625/lar.2016.32.2.79; Luong RH. The laboratory mouse. In: Kurtz DM, Travlos GS, eds. The clinical chemistry of laboratory animals. 2018.; Lyon MF. Hulse EV. An inherited kidney disease of mice resembling human nephronophthisis. Journal of Medical Genetics. 1971;8(1):41–8. https://doi.org/10.1136/jmg.8.1.41; Clifford CB, Simmons JH. The laboratory hamster. In: Kurtz DM, Travlos GS, eds. The clinical chemistry of laboratory animals. 2018. P. 1–32.; Fent K, Mayer E, Zbinden G. Nephrotoxicity screening in rats: a validation study. Arch Toxicol. 1988;61:349–58. https://doi.org/10.1007/BF00334615; Трашков АП, Васильев АГ, Коваленко АЛ, Тагиров НС. Метаболическая терапия мочекаменной болезни на различных моделях поражения почек у крыс. Экспериментальная и клиническая фармакология. 2015;78(3):17–21. https://doi.org/10.30906/0869-2092-2015-78-3-17-21; Cernochova H, Hundakova A, Bardi E, Knotek Z. Biochemical profile of urine in guinea pigs (Cavia porcellus). Vet Med-Czech 2020;65(10):445–50. https://doi.org/10.17221/32/2020-VETMED; Melillo A. Rabbit clinical pathology. Journal of Exotic Pet Medicine. 2007;16(3)135–45. https://doi.org/10.1053/j.jepm.2007.06.002; Eshar D, Wyre NR, Brown DC. Urine specific gravity values in clinically healthy young pet ferrets (Mustela furo). Journal of Small Animal Practice. 2012;53(2):115–9. https://doi.org/10.1111/j.1748-5827.2011.01173.x; Reece WO, The Kidneys and Urinary System. In: Reece WO ed. Dukes’ Physiology of Domestic Animals. 2015. P. 157–202; Park HK, Cho JW, Lee BS, Park H, Han JS, Yang MJ, et al. Reference values of clinical pathology parameters in cynomolgus monkeys (Macaca fascicularis) used in preclinical studies. Laboratory Animal Research. 2016;32(2):79–86. https://doi.org/10.5625/lar.2016.32.2.79; Winn CB, Issa EB, Curcillo CP, Townes CA, Burns MA, Patterson MM. Daily water intake by common marmosets (Callithrix jacchus) and recommendations regarding fluid regulation. Journal of the American Association for Laboratory Animal Science. 2019;58(1):16–20. https://doi.org/10.30802/AALAS-JAALAS-18-000046; Kovacikova J, Winter C, Loffing-Cueni D, Loffing J, Finberg KE, Lifton RP, et al. The connecting tubule is the main site of the furosemide-induced urinary acidification by the vacuolar H+-ATPase. Kidney international. 2006;70(10):1706–16.; Washington IM, Van Hoosier G. Clinical biochemistry and hematology. In: Suckow MA, Stevens KA, Wilson RP. ed. The laboratory rabbit, guinea pig, hamster, and other rodents. Academic Press. 2012. Р. 57–116.; Reagan WJ, VanderLind B, Shearer A, Botts S. Influence of urine pH on accurate urinary protein determination in Sprague-Dawley rats. Veterinary clinical pathology. 2007;36(1):73–78.; Sauer MB, Dulac H, Clark S, Moffitt KM, Price J, Dambach D et al. Clinical pathology laboratory values of rats housed in wire-bottom cages compared with those of rats housed in solid-bottom cages. Journal of the American Association for Laboratory Animal Science. 2006;45(1):30–35.; Van Metre DC, Angelos SM. Miniature pigs. Veterinary Clinics of North America: Exotic Animal Practice. 1999;2(3):519-37. https://doi.org/10.1016/S1094-9194(17)30108-1; Yamada N, Sato J, Kanno T, Wako Y, Tsuchitani M. Morphological study of progressive glomerulonephropathy in common marmosets (Callithrix jacchus). Toxicologic Pathology. 2013;41(8):1106-15. https://doi.org/10.1177/0192623313478206; Collins MG, Rogers NM, Jesudason S, Kireta S, Brealey J, Coates PT. Spontaneous glomerular mesangial lesions in common marmoset monkeys (Callithrix jacchus): a benign non-progressive glomerulopathy. Journal of Medical Primatology. 2014;43(6):477–87. https://doi.org/10.1111/jmp.12134; Everds NE, Ramaiah L. The laboratory rat. In: Kurtz DM, Travlos GS, eds. The clinical chemistry of laboratory animals. 2018. P. 33–79; Sharp P. The laboratory guinea pig. In: Kurtz DM, Travlos GS, eds. The clinical chemistry of laboratory animals. 2018. P. 305–31; Patterson MM, Fox JG. 9 The laboratory ferret. In: Kurtz DM, Travlos GS, eds. The clinical chemistry of laboratory animals. 2018. P. 331–44; Stricker-Krongrad A, Brown LD, Bouchard GF, Swindle MM, Casteel SW.5 The laboratory pig. In: Kurtz DM, Travlos GS, eds. The clinical chemistry of laboratory animals. 2018. P. 154–211; Meyer S, Fuchs D, Meier M. Ultrasound and photoacoustic imaging of the kidney: basic concepts and protocols. In: Pohlmann A, Niendorf T. ed. Preclinical MRI of the kidney: methods and protocols. Springer Nature, 2021. P. 109–130; Greco A, Mancini M, Gargiulo S, Gramanzini M, Claudio PP, Brunetti A, et al. Ultrasound biomicroscopy in small animal research: applications in molecular and preclinical imaging. BioMed Research International. 2012;2012. https://doi.org/10.1155/2012/519238; Moran CM, Thomson AJW. Preclinical ultrasound imaging—a review of techniques and imaging applications. Frontiers in Physics. 2020;8:124. https://doi.org/10.3389/fphy.2020.00124; Banzato T, Bellini L, Contiero B, Selleri P, Zotti A. Abdominal ultrasound features and reference values in 21 healthy rabbits. Veterinary Record. 2015;176(4):101–101. https://doi.org/10.1136/vr.102657; https://www.vedomostincesmp.ru/jour/article/view/629

  16. 16
  17. 17
    Academic Journal

    Πηγή: Вестник Бурятской государственной сельскохозяйственной академии имени В. Р. Филиппова. :109-115

  18. 18
  19. 19
  20. 20