Εμφανίζονται 1 - 20 Αποτελέσματα από 20 για την αναζήτηση '"Концентрация водорода"', χρόνος αναζήτησης: 0,71δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Συγγραφείς: Rusakov, O.M.

    Πηγή: Геофизический журнал, Vol 42, Iss 6 (2020)
    Geofizicheskiy Zhurnal; Vol. 42 No. 6 (2020); 59-99
    Геофизический журнал; Том 42 № 6 (2020); 59-99
    Геофізичний журнал; Том 42 № 6 (2020); 59-99

    Περιγραφή αρχείου: application/pdf

  3. 3
    Academic Journal

    Πηγή: Alternative Energy and Ecology (ISJAEE); № 13-15 (2019); 52-61 ; Альтернативная энергетика и экология (ISJAEE); № 13-15 (2019); 52-61 ; 1608-8298

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/1700/1468; Namagatsu J., Nakagawa N., Muranaka Y., Zenitani T., Akimitsu J. Superconductivity at 39 K in magnesium diboride. Nature, 2001;410:63–4.; Rosner H., Kitaigorodsky A., Pickett W.E. Prediction of high Tc superconductivity in hole-doped LiBC. Phys. Rev. Lett., 2002;88:127001. 1-4.; Wörle M., Nesper R. MgB2C2, a new graphite-related refractory compound. J Alloys Compd, 1994;216:75–83.; Wörle M., Nesper R., Mair G., Schwarz M., Schnering H.G. LiBC e a completely intercalated heterographite. Z Anorg Allg Chem., 1995;621:1153–9.; Pronin A.V., Pucher K., Lunkenheimer P., Krimmel A., Loidl A. Electronic and optical properties of LiBC. Phys. Rev B, 2003;67:132502. 1-4.; Mickelson W., Cumings J., Han W.Q., Zettl A. Effects of carbon doping on superconductivity in magnesium diboride. Phys Rev B, 2002;65:052505. 1-3.; Zhao L., Klavins P., Liu K. Synthesis and properties of hole-doped Li1-xBC. J Appl Phys, 2003;93:8653–5.; Emori S., Takahashi Y., Takano Y., Takase K., Watanabe T. Process for producing hole doped lithium borocarbide. Patent WO 2009028505 A1. 2008.; Ai Q., Fu Z.J., Cheng Y., Chen M.L. Electronic structure and thermodynamic properties of LiBC under high pressure. Chin Phys B, 2008;17:2639.; Saengdeejing A., Wang Y., Liu Z.K. Structural and thermodynamic properties of compounds in the Mg– B–C system from first-principles calculations. Intermetallics, 2010;18:803–8.; Nesper R. New electrode materials, in particular for rechargeable lithium ion batteries. Patent US 20110020706 A1. 2011.; Liu Z.L., Chen Y., Tan N.N., Gou Q.Q. First-principle calculations for thermodynamic properties of LiBC under high temperature and high pressure. Commun Theor Phys., 2006;46:573.; Lazicki A., Yoo C.S., Cynn H., Evans W.J., Pickett W.E., Olamit J., et al. Search for superconductivity in LiBC at high pressure: diamond anvil cell experiments and first-principles calculations. Phys Rev B, 2007;75:054507. 1-6.; Wörle M., Fischbach U., Widmer D., Krumeich F., Nesper R., Evers J., et al. The high-pressure phase of MgB2C2. J Inorg Gen Chem, 2010;636:2543–9.; Langer T., Dupke S., Dippel C., Winter M., Eckert H., Pöttgen R. LiBC–synthesis, electrochemical and solid-state NMR investigations. Z Naturforsch., 2012;67b:1212–20.; Caputo R. Exploring the structure-composition phase space of lithium borocarbide, LixBC for x ≤ 1. RSC Adv 2013;3:10230–41.; Krumeich F., Wörle M., Reibisch P., Nesper R. Characterization of LiBC by phase-contrast scanning transmission electron microscopy. Micron, 2014;63:64–8.; Nesper R. Structure and chemical bonding in Zintl-phases containing lithium. Solid St Chem., 1990;20:1–45.; Ramirez R., Nesper R., Schnering H.G., Bohm M.C. Structure and chemical bonding in Zintl-phases containing lithium. Z Naturforsch., 1987;A42:670.; Mair G. On the lithiumeboron system [Ph.D. diss]. University of Stuttgart; 1984.; Hlinka J., Zelezn'y V., Gregora I., Pokorn'y J., Fogg A.M., Claridge J.B., et al. Vibrational properties of hexagonal LiBC: Infrared and Raman spectroscopy. Phys Rev B, 2003;68:220510. 1-4.; Hlinka J., Gregora I., Pronin A.V., Loidl A. LiBC by polarized Raman spectroscopy: evidence for lower crystal symmetry. Phys Rev B 2003;67:020504. 1-4.; Souptel S., Hossain Z., Behr G., Löser W., Geibel C. Synthesis and physical properties of LiBC intermetallics. Solid St Commun, 2003;125:17–21.; Kobayashi K., Arai M. LiBC and related compounds under high pressure. Phys C, 2003;388–389:201–2.; Renker B., Schober H., Adelmann P., Schweiss P., Bohnen K.P., Heid R. Lattice dynamics of LiBC. Phys Rev B, 2004:69.; Kudo T., Nakamori Y., Orimo S., Badica P., Togano K. Hydrogen effect on synthesis processes and electrical resistivities of LiBC. J Jpn Inst Met., 2005;69:433–8.; Liu K, Klavins P, Zhao L. Synthesis of LiBC and hole-doped Li1-xBC. Patent US 7144562 B2. 2006.; Fogg A.M., Darling G.R., Claridge J.B., Meldrum J., Rosseinsky M.J. The chemical response of main-group extended solids to formal mixed valency: the case of LixBC. Phil Trans R Soc A, 2008;366:55–62.; Ravindran P., Vajeeston P., Vidya R., Kjekshus A., Fjellvåg H. Detailed electronic structure studies on superconducting MgB2 and related compounds. Phys Rev B, 2001;64:224509. 1-15.; Harima H. Energy band structures of MgB2 and related compounds. Phys C, 2002;18:378–81.; Mori T., Takayama-Muromachi E. Hole doping of MgB2C2, a MgB2 related [B/C] layered compound. Cur Appl Phys, 2004;4:276–9.; Takenobu T., Ito T., Chi Dam Hieu, Prassides K., Iwasa Y. Intralayer carbon substitution in the MgB2 superconductor. Phys Rev B, 2001;64:134513. 1-9.; Bharathi A., Balaselvi S.J., Kalavathi S., Reddy G.L.N., Sastry V.S., Hariharan Y., et al. Carbon solubility and superconductivity in MgB2. Phys C Supercond, 2002;370:211–8.; Cava R.J., Zandbergen H.W., Inumaru K. The substitutional chemistry of MgB2. Phys C, 2003;385:8–15.; Avdeev M., Jorgensen J.D., Ribeiro R.A., Bud'ko S.L., Canfield P.C. Crystal chemistry of carbon-substituted MgB2. Phys C Supercond, 2003;387:301–6.; Balaselvi S.J., Gayathri N., Bharathi A., Sastry V.S., Hariharan Y. Peculiarities in the carbon substitution of MgB2. Phys C Supercond, 2004;407:31–8.; Kazakov S.M., Puzniak R., Rogacki K., Mironov A.V., Zhigadlo N.D., Jun J., et al. Carbon substitution in MgB2 single crystals: structural and superconducting properties. Phys Rev B, 2004;71:024533. 1-22.; Lebe'gue S., Arnaud B., Alouani M. Molecular dynamics simulation and chemical bonding analysis of MgB2C2. Compt Mat Sci., 2006;37:220–5.; Yan S.C., Zhou L., Yan G., Wang Q.Y., Lu Y.F. Effect of carbon doping on the formation and stability of MgB2 phase. J. Alloys Compd., 2008;459:452–6.; Bengtson A.K., Bark C.W., Giencke J., Dai W., Xi X., Eom C.B., et al. Impact of substitutional and interstitial carbon defects on lattice parameters in MgB2. J Appl Phys., 2010;107:023902. 1-4.; Kang D.B. Structural arrangements and bonding analysis of MgB2C2. Bull Korean Chem Soc., 2010;31:2565–70.; Bohnenstiehl S.D. Thermal analysis, phase equilibria, and superconducting properties in MgB2 and carbon doped MgB2. Ohio: Ohio State University; 2012.; Yan H., Zhang M., Wei Q., Guo P. Ab initio studies of ternary semiconductor BeB2C2. Compt Mat Sci., 2013;68:174–80.; Zuttel A. Smart carbon-based materials for hydrogen storage. Dubendorf, Switzerland: EMPA Project 130509; 2013.; Liu P., Vajo J.J. Thermodynamically tuned nanophase materials for reversible hydrogen storage. Washington: Project review ID #ST18; 2007.; Churchard A.J., Banach E., Borgschulte A., Caputo R., Chen J.C., Clary D., et al. A multifaceted approach to hydrogen storage. Phys Chem Chem Phys., 2011;13:16955–72.; Nakamori Y., Orimo S. Synthesis and characterization of single phase LixBC (x = 0.5 and 1.0), using Li hydride as a starting material. J Alloys Comp., 2004;370:L7–9.; Klebanoff L., Keller J. 5 years of hydrogen storage research in US DOE Metal Hydride Center of Excellence. Int J Hydrogen Energy, 2013;38:4533–76.; Reibisch P. Low-dimensional compounds and composites for lithium exchange as well as for electronic and for ionic conductivity enhancement [Ph.D. diss]. No 21946. Zurich, Germany. 2014.; Albert B., Schmitt K. CaB2C2: reinvestigation of a semiconducting boride carbide with a layered structure and an interesting boron/carbon ordering scheme. Inorg Chem., 1990;38:6159–63.; Smirnov A.A. Theory of interstitial alloys. Moscow: Nauka; 1979 [in Russian].; Smirnov A.A. Generalized theory of alloys ordering. Kiev: Naukova Dumka; 1986 [in Russian].; Smirnov A.A. Theory of phase transformations and arrangement of atoms in interstitial alloys. Kiev: Naukova Dumka; 1992 [in Russian].; Matysina Z.A., Schur D.V. Hydrogen and solid phase transformations in metals, alloys and fullerites. Dnepropetr Nauka i Obraz., 2002 [in Russian].; Matysina Z.A., Zaginaichenko S.Yu., Schur D.V. Solubility of admixtures in metals, alloys, intermetallic compounds, fullerites. Dnepropetr Nauka i Obraz., 2006 [in Russian].; Schur D.V., Zaginaichenko S.Yu., Matysina Z.A., Pishuk V.K. Hydrogen in lanthanum-nickel storage alloys. J Alloys Compd., 2002;330–2:70–5.; Zaginaichenko S.Yu., Matysina Z.A., Schur D.V. Hydrogen in lanthanum-magnesium-nickel alloys of L22, D2d, L60 structures. Phys Metals Latest Technol., 2007;104:453–64.; Matysina Z.A., Zaginaichenko S.Yu., Schur D.V. Hydrogen sorption properties of magnesium intermetallics. Nanosyst Nanomater Nanotechnologies, 2012;37:883–93.; https://www.isjaee.com/jour/article/view/1700

  4. 4
  5. 5
  6. 6
    Academic Journal

    Συγγραφείς: Г.В. Микитин, G.V. Mykytyn

    Πηγή: Системи обробки інформації. — 2014. — № 8(124). 183-190 ; Системы обработки информации. — 2014. — № 8(124). 183-190 ; Information Processing Systems. — 2014. — № 8(124). 183-190 ; 1681-7710

    Περιγραφή αρχείου: application/pdf

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
    Academic Journal

    Πηγή: Journal of Mechanical Engineering NTUU "Kyiv Polytechnic Institute"; № 70 (2014); 130-136
    Вісник Національного технічного університету України "Київський політехнічний інститут". Серія Машинобудування; № 70 (2014); 130-136

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://journal.mmi.kpi.ua/old/article/view/33629

  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
    Academic Journal

    Πηγή: Вісник НТУУ «КПІ». Машинобудування: збірник наукових праць

    Περιγραφή αρχείου: С. 130-136; application/pdf

    Relation: Сиротюк А. М. Оцінювання міцності та ризику руйнування трубопроводу за дії воденьвмісних середовищ / Сиротюк А. М., Дмитрах І. М. // Вісник НТУУ «КПІ». Машинобудування : збірник наукових праць. – 2014. – № 1(70). – С. 130–136. – Бібліогр.: 15 назв.; https://ela.kpi.ua/handle/123456789/15751

    Διαθεσιμότητα: https://ela.kpi.ua/handle/123456789/15751

  18. 18
    Academic Journal

    Πηγή: Вісник НТУУ «КПІ». Машинобудування: збірник наукових праць

    Περιγραφή αρχείου: С. 81-89; application/pdf

    Relation: Дмитрах І. М. Деформування та опір руйнуванню трубопровідних сталей у воденьвмісному середовищі / Дмитрах І. М., Сиротюк А. М., Лещак Р. Л. // Вісник НТУУ «КПІ». Машинобудування : збірник наукових праць. – 2014. – № 3(72). – С. 81–89. – Бібліогр.: 13 назв.; https://ela.kpi.ua/handle/123456789/15882

    Διαθεσιμότητα: https://ela.kpi.ua/handle/123456789/15882

  19. 19
  20. 20