Showing 1 - 20 results of 332 for search '"Клиническая фармакология"', query time: 0.72s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
    Academic Journal

    Contributors: Научное исследование выполнено в рамках реализации государственного задания Министерства здравоохранения Российской Федерации «Разработка алгоритмов персонализированного назначения антиагрегантов у пациентов с острым коронарным синдромом» (сроки реализации 2021–2023 гг.).

    Source: Acta Biomedica Scientifica; Том 9, № 5 (2024); 12-21 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/5029/2896; Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and prospects. Science. 2015; 349(6245): 255-260. doi:10.1126/science.aaa8415; Cilluffo G, Fasola S, Ferrante G, Malizia V, Montalbano L, La Grutta S. Machine learning: An overview and applications in pharmacogenetics. Genes (Basel). 2021; 12(10): 1511. doi:10.3390/genes12101511; Kompa B, Hakim JB, Palepu A, Kompa KG, Smith M, Bain PA, et al. Artificial intelligence based on machine learning in pharmacovigilance: A scoping review. Drug Saf. 2022; 45(5): 477-491. doi:10.1007/s40264-022-01176-1; Jiménez-Luna J, Grisoni F, Weskamp N, Schneider G. Artificial intelligence in drug discovery: Recent advances and future perspectives. Expert Opin Drug Discov. 2021; 16(9): 949-959. doi:10.1080/17460441.2021.1909567; Kolluri S, Lin J, Liu R, Zhang Y, Zhang W. Machine learning and artificial intelligence in pharmaceutical research and development: A review. AAPS J. 2022; 24(1): 19. doi:10.1208/s12248-021-00644-3; Krishnaveni C, Arvapalli S, Sharma JV. Artificial intelligence in pharma industry – A review. Int J Innov Pharmaceut Sci Res. 2019; 7(10): 37-50. doi:10.21276/IJIPSR.2019.07.10.506; Garcia-Agundez A, García-Martín E, Eickhoff C. The potential of machine learning in pharmacogenetics, pharmacogenomics and pharmacoepidemiology. Front Pharmacol. 2022; 13: 928527. doi:10.3389/fphar.2022.928527; Zhang L, Tan J, Han D, Zhu H. From machine learning to deep learning: Progress in machine intelligence for rational drug discovery. Drug Discov Today. 2017; 22(11): 1680-1685. doi:10.1016/j.drudis.2017.08.010; Patel V, Shah M. Artificial intelligence and machine learning in drug discovery and development. Intell Med. 2022; 2(3): 134-140. doi:10.1016/j.imed.2021.10.001; Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today. 2021; 26(1): 80-93. doi:10.1016/j.drudis.2020.10.010; Silva P, Jacobs D, Kriak J, Abu-Baker A, Udeani G, Neal G, et al. Implementation of pharmacogenomics and artificial intelligence tools for chronic disease management in primary care setting. J Pers Med. 2021; 11(6): 443. doi:10.3390/jpm11060443; van der Lee M, Swen JJ. Artificial intelligence in pharmacology research and practice. Clin Transl Sci. 2023; 16(1): 31-36. doi:10.1111/cts.13431; Henstock P. Artificial intelligence in pharma: Positive trends but more investment needed to drive a transformation. Arch Pharmacol Therapeutics. 2021; 2(2): 24-28. doi:10.33696/Pharmacol.2.017; Beunk L, Nijenhuis M, Soree B, de Boer-Veger NJ, Buunk AM, Guchelaar HJ, et al. Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene-drug interaction between CYP2D6, CYP3A4 and CYP1A2 and antipsychotics. Eur J Hum Genet. 2023; 8(1): 1-8. doi:10.1038/s41431-023-01347-3; Belle DJ, Singh H. Genetic factors in drug metabolism. Am Fam Physician. 2008; 77(11): 1553-1560.; Wang L, McLeod HL, Weinshilboum RM. Genomics and drug response. N Engl J Med. 2011; 364(12): 1144-1153. doi:10.1056/NEJMra1010600; Adam G, Rampášek L, Safikhani Z, Smirnov P, Haibe-Kains B, Goldenberg A. Machine learning approaches to drug response prediction: Challenges and recent progress. NPJ Precis Oncol. 2020; 4(1): 19. doi:10.1038/s41698-020-0122-1; Gerdes H, Casado P, Dokal A, Hijazi M, Akhtar N, Osuntola R, et al. Drug ranking using machine learning systematically predicts the efficacy of anti-cancer drugs. Nat Commun. 2021; 12(1): 1850. doi:10.1038/s41467-021-22170-8; Chugh H, Singh S. Machine learning applications in rational drug discovery. Drug Design Using Machine Learning. 2022: 97-116. doi:10.1002/9781394167258.ch3; Roche-Lima A, Roman-Santiago A, Feliu-Maldonado R, Rodriguez-Maldonado J, Nieves-Rodriguez BG, Carrasquillo-Carrion K, et al. Machine learning algorithm for predicting warfarin dose in Caribbean Hispanics using pharmacogenetic data. Front Pharmacol. 2020; 10: 1550. doi:10.3389/fphar.2019.01550; Cosgun E, Limdi NA, Duarte CW. High-dimensional pharmacogenetic prediction of a continuous trait using machine learning techniques with application to warfarin dose prediction in African Americans. Bioinformatics. 2011; 27(10): 1384-1389. doi:10.1093/bioinformatics/btr159; International Warfarin Pharmacogenetics Consortium. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009; 360(8): 753-764. doi:10.1056/NEJMoa0809329; Johnson JA, Caudle KE, Gong L, Whirl‐Carrillo M, Stein CM, Scott SA, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for pharmacogenetics‐guided warfarin dosing: 2017 update. Clin Pharmacol Therapeutics. 2017; 102(3): 397-404. doi:10.1002/cpt.668; Asiimwe IG, Zhang EJ, Osanlou R, Jorgensen AL, Pirmohamed M. Warfarin dosing algorithms: A systematic review. Br J Clin Pharmacol. 2021; 87(4): 1717-1729. doi:10.1111/bcp.14608; Ren Y, Yang C, Chen H, Dai D, Wang Y, Zhu H, et al. Pharmacogenetic-guided algorithm to improve daily dose of warfarin in elder Han-Chinese population. Front Pharmacol. 2020; 11: 1014. doi:10.3389/fphar.2020.01014; Carlquist JF, Anderson JL. Using pharmacogenetics in real time to guide warfarin initiation: A clinician update. Circulation. 2011; 124(23): 2554-2559. doi:10.1161/CIRCULATIONAHA.111.019737; Yang T, Zhou Y, Chen C, Lu M, Ma L, Cui Y. Genotype‐guided dosing versus conventional dosing of warfarin: A meta‐analysis of 15 randomized controlled trials. J Clin Pharm Ther. 2019; 44(2): 197-208. doi:10.1111/jcpt.12782; Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, Nicholson T, et al. A randomized trial of genotypeguided dosing of warfarin. N Engl J Med. 2013; 369: 2294-22303. doi:10.1056/NEJMoa1311386; Li X, Li D, Wu JC, Liu ZQ, Zhou HH, Yin JY. Precision dosing of warfarin: Open questions and strategies. Pharmacogenomics J. 2019; 19(3): 219-229. doi:10.1038/s41397-019-0083-3; Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc Neurol. 2017; 2(4): 230-243. doi:10.1136/svn-2017-000101; Harrer S, Shah P, Antony B, Hu J. Artificial intelligence for clinical trial design. Trends Pharmacol Sci. 2019; 40(8): 577-591. doi:10.1016/j.tips.2019.05.005; Patel L, Shukla T, Huang X, Ussery DW, Wang S. Machine learning methods in drug discovery. Molecules. 2020; 25(22): 5277. doi:10.3390/molecules25225277; Lin CC, Wang YC, Chen JY, Liou YJ, Bai YM, Lai IC, et al. Artificial neural network prediction of clozapine response with combined pharmacogenetic and clinical data. Comput Methods Programs Biomed. 2008; 91(2): 91-99. doi:10.1016/j.cmpb.2008.02.004; Chiu YC, Chen HI, Zhang T, Zhang S, Gorthi A, Wang LJ, et al. Predicting drug response of tumors from integrated genomic profiles by deep neural networks. BMC Med Genomics. 2019; 12(Suppl 1): 143-155. doi:10.1186/s12920-018-0460-9; Russell LE, Zhou Y, Almousa AA, Sodhi JK, Nwabufo CK, Lauschke VM. Pharmacogenomics in the era of next generation sequencing – From byte to bedside. Drug Metab Rev. 2021; 53(2): 253-278. doi:10.1080/03602532.2021.1909613; Chiu YC, Chen HI, Gorthi A, Mostavi M, Zheng S, Huang Y, et al. Deep learning of pharmacogenomics resources: Moving towards precision oncology. Brief Bioinform. 2020; 21(6): 2066-2083. doi:10.1093/bib/bbz144; Hertz DL, Ramsey LB, Gopalakrishnan M, Leeder JS, Van Driest SL. Analysis approaches to identify pharmacogenetic associations with pharmacodynamics. Clin Pharmacol Ther. 2021; 110(3): 589-594. doi:10.1002/cpt.2312; Yeh CH, Chou YJ, Tsai TH, Hsu PW, Li CH, Chan YH, et al. Artificial-intelligence-assisted discovery of genetic factors for precision medicine of antiplatelet therapy in diabetic peripheral artery disease. Biomedicines. 2022; 10(1): 116. doi:10.3390/biomedicines10010116; Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med. 2009; 360(4): 354-362. doi:10.1056/nejmoa0809171; Тарасочкина Д.С., Полунина Е.А., Севостьянова И.В., Воронина Л.П., Кантемирова Б.И. Взаимосвязи уровня фракталкина и показателей эхокардиоскопии при артериальной гипертензии, стенокардии напряжения и их сочетании. Кубанский научный медицинский вестник. 2015; (4): 119-123.; Сычев Д.А., Шуев Г.Н., Торбенков Е.С., Адриянова М.А. Персонализированная медицина: взгляд клинического фармаколога. Consilium Medicum. 2017; 19(1): 61-68.; Sahu A, Mishra J, Kushwaha N. Artificial intelligence (AI) in drugs and pharmaceuticals. Comb Chem High Throughput Screen. 2022; 25(11): 1818-1837. doi:10.2174/1386207325666211207153943; Roosan D, Chok J, Baskys A, Roosan MR. PGxKnow: A pharmacogenomics educational HoloLens application of augmented reality and artificial intelligence. Pharmacogenomics. 2022; 23(4): 235-245. doi:10.2217/pgs-2021-0120; Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019; 17: 1-9. doi:10.1186/s12916-019-1426-2; Wang F, Preininger A. AI in health: State of the art, challenges, and future directions. Yearb Med Inform. 2019; 28(1): 16-26. doi:10.1055/s-0039-1677908; Auwerx C, Sadler MC, Reymond A, Kutalik Z. From pharmacogenetics to pharmaco-omics: Milestones and future directions. HGG Adv. 2022; 3(2): 100100. doi:10.1016/j.xhgg.2022.100100; Arabi AA. Artificial intelligence in drug design: Algorithms, applications, challenges and ethics. Fut Drug Discov. 2021; 3(2): FDD59. doi:10.4155/fdd-2020-0028; https://www.actabiomedica.ru/jour/article/view/5029

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    Contributors: The study was performed without external funding., Работа выполнена без спонсорской поддержки.

    Source: Regulatory Research and Medicine Evaluation; Том 12, № 2 (2022); 205-213 ; Регуляторные исследования и экспертиза лекарственных средств; Том 12, № 2 (2022); 205-213 ; 3034-3453 ; 3034-3062

    File Description: application/pdf

    Relation: https://www.vedomostincesmp.ru/jour/article/view/430/774; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/430/252; Клиническая фармакология в здравоохранении, образовании и науке. Качественная клиническая практика. 2020;(2S):7–66. https://doi.org/10.37489/2588-0519-2020-S2; Mentré F, Friberg LE, Duffull S, French J, Lauffenburger DA, Lang Li, et al. Pharmacometrics and systems pharmacology 2030. Clin Pharmacol Ther. 2020;107(1):76–8. https://doi.org/10.1002/cpt.1683; Pacanowski M, Liu Q. Precision Medicine 2030. Clin Pharmacol Ther. 2020;107(1):62–4. https://doi.org/10.1002/cpt.1675; Denny JC, Collins FS. Precision medicine in 2030—seven ways to transform healthcare. Cell. 2021;184(6):1415–9. https://doi.org/10.1016/j.cell.2021.01.015; Allegaert K, Flint R, Smits A. Pharmacokinetic modelling and Bayesian estimation-assisted decision tools to optimize vancomycin dosage in neonates: only one piece of the puzzle. Expert Opin Drug Metab Toxicol. 2019;15(9):735–49. https://doi.org/10.1080/17425255.2019.1655540; Mehrotra N, Bhattaram A, Earp JC, Florian J, Krudys K, Lee JE, et al. Role of quantitative clinical pharmacology in pediatric approval and labeling. Drug Metab Dispos. 2016;44(7):924–33. https://doi.org/10.1124/dmd.116.069559; Holford N, Karlsson MO. Time for quantitative clinical pharmacology: a proposal for a pharmacometrics curriculum. Clin Pharmacol Ther. 2007;82(1): 103–5. https://doi.org/10.1038/sj.clpt.6100231; Jean D, Naik K, Milligan L, Hall S, Huang SM, Isoherranen N, et al. Development of best practices in physiologically based pharmacokinetic modeling to support clinical pharmacology regulatory decision-making—A workshop summary. CPT: Pharmacometrics Syst Pharmacol. 2021;10(11):1271–5. https://doi.org/10.1002/psp4.12706; Brouwer KLR, Schmidt S, Floren LC, Johnson JA. Clinical pharmacology education — the decade ahead. Clin Pharmacol Ther. 2020;107(1):37–9. https://doi.org/10.1002/cpt.1652; Van Driest SL, Choi L. Real-world data for pediatric pharmacometrics: can we upcycle clinical data for research use? Clin Pharmacol Ther. 2019;106(1):84–6. https://doi.org/10.1002/cpt.1416; Venkatakrishnan K, Benincosa LJ. Diversity and inclusion in drug development: rethinking intrinsic and extrinsic factors with patient centricity. Clin Pharmacol Ther. Published online September 22, 2021. https://doi.org/10.1002/cpt.2416; Swift B, Jain L, White C, Chandrasekaran V, Bhandari A, Hughes DA, Jadhav PR. Innovation at the intersection of clinical trials and real-world data science to advance patient care. Clin Transl Sci. 2018;11(5):450–60. https://doi.org/10.1111/cts.12559; Shahin MH, Abdel-Rahman S, Hartman D, Johnson JA, Mitchell DY, Reynolds KS, et al. The patient-centered future of clinical pharmacology. Clin Pharmacol Ther. 2020;107(1):72–5. https://doi.org/10.1002/cpt.1681; Hill-McManus D, Marshall S, Liu J, Willke RJ, Hughes DA. Linked pharmacometric-pharmacoeconomic modeling and simulation in clinical drug development. Clin Pharmacol Ther. 2021;110(1):49–63. https://doi.org/10.1002/cpt.2051; https://www.vedomostincesmp.ru/jour/article/view/430

  15. 15
  16. 16
    Academic Journal

    Contributors: Not specified, Не указан

    Source: Pediatric pharmacology; Том 18, № 4 (2021); 304-313 ; Педиатрическая фармакология; Том 18, № 4 (2021); 304-313 ; 2500-3089 ; 1727-5776

    File Description: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/2050/1282; Lalonde RL, Honig P. Clinical pharmacology in the era of biotherapeutics. Clin Pharmacol Ther. 2008;84(5):533-536. doi:10.1038/clpt.2008.182; Федеральный закон РФ от 12 апреля 2010 г. № 61-ФЗ «Об обращении лекарственных средств» (ред. от 03 июля 2016 г. с изм. и доп., вступ. в силу с 01 января 2017 г.).; Darrow JJ. FDA Approval and Regulation of Pharmaceuticals, 1983-2018. JAMA. 2020;323(2):164-176. doi:10.1001/jama.2019.20; Тотолян А.А., Фрейдлин И.С. Клетки иммунной системы: учебное пособие. — СПб.: Наука; 2000. — 231 с.; Bourne T, Fossati G, Nesbitt A. A PEGylated Fab' fragment against tumor necrosis factor for the treatment of Crohn disease: exploring a new mechanism of action. BioDrugs. 2008;22(5):331-337. doi:10.2165/00063030-200822050-00005; Биологические препараты. Терапевтические моноклональные антитела с позиции клинической фармакологии / под общ. ред. А.С. Колбина. — СПб: ЦОП «Профессия»; 2019. — 80 с.; Porter RR. Structural studies of immunoglobulins. Science. 1973;180(4087):713-716. doi:10.1126/science.180.4087.713; Edelman GM. Antibody structure and molecular immunology. Science. 1973;180(4088):830-840. doi:10.1126/sci-ence.180.4088.830; Voss JE. Engineered single-domain antibodies tackle COVID variants. Nature. 2021;595(7866):176-178. doi:10.1038/d41586-021-01721-5; Будчанов Ю.И. Моноклональные антитела. Использование в диагностике заболеваний и лечебные моноклональные антитела: методические рекомендации. — Тверь; 2012. — 22 с.; Dostalek M, Gardner I, Gurbaxani B, et al. Pharmacokinetics, pharmacodynamics and physiologically-based pharmacokinetic modelling of monoclonal antibodies. Clin Pharmacokinet. 2013;52(2):83-124. doi:10.1007/s40262-012-0027-4; Morrison C. Nanobody approval gives domain antibodies a boost. Nat Rev Drug Discov. 2019;18(7):485-487. doi:10.1038/d41573-019-00104-w; Wong H., Chow TW. Physiologically Based Pharmacokinetic Modeling of Therapeutic Proteins. J Pharm Sci. 2017;106(9):2270-2275. doi:10.1016/j.xphs.2017.03.038; Мазуров В.И., Трофимов Е.А. Инновационные методы лечения системных аутоиммунных заболеваний // Вестник РАМН. — 2015. — Т. 70. — № 2. — С. 165-168. doi:10.15690/vramn.v70i2.1309; Лила А.М., Насонов Е.Л., Олюнин Ю.А., Галушко Е.А. Актуальные аспекты современной ревматологии // Терапия. — 2018. — Т. 4. — № 4. — С. 10-17.; Государственный реестр лекарственных средств. Доступно по: http://grls. rosminzdrav.ru. Ссылка активна на 29.07.2021.; Насонов Е.Л., Лила А.М. Ингибиция интерлейкина 6 при иммуновоспалительных ревматических заболеваниях: достижения, перспективы и надежды // Научно-практическая ревматология. — 2017. — Т. 55. — № 6. — С. 590-599. doi:10.14412/1995-4484-2017-590-599; ACTEMRA® (tocilizumab) injection, for intravenous or subcutaneous use: Highlights of prescribing information. 2021. p. 49. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125472s044lbl.pdf#page=49. Accessed on September 29, 2021.; Chau CH, Steeg PS, Figg WD. Antibody-drug conjugates for cancer. Lancet. 2019;394(10200):793-804. doi:10.1016/S0140-6736(19)31774-X; Kersh AE, Ng S, Chang YM, et al. Targeted Therapies: Immunologic Effects and Potential Applications Outside of Cancer. J Clin Pharmacol. 2018;58(1):7-24. doi:10.1002/jcph.1028; Martins JP Kennedy PJ, Santos HA, et al. A comprehensive review of the neonatal Fc receptor and its application in drug delivery. Pharmacol Ther. 2016;161:22-39. doi:10.1016/j.pharmthera.2016.03.007; Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84(5):548-558. doi:10.1038/clpt.2008.170; Haller CA, Cosenza ME, SullivanJT. Safety issues specific to clinical development of protein therapeutics. Clin Pharmacol Ther. 2008;84(5):624-627. doi:10.1038/clpt.2008.158.; Wiseman GA, Kornmeh E, Leigh B, et al. Radiation dosimetry results and safety correlations from 90Y-ibritumomab tiuxetan radioimmunotherapy for relapsed or refractory non-Hodgkin's lymphoma: combined data from 4 clinical trials. J Nucl Med. 2003;44(3):465-474.; Чичасова Н.В., Насонов Е.Л. Безопасность применения генно-инженерных биологических препаратов при ревматоидном артрите // Современная ревматология. — 2010. — Т. 1. — № 10. — С. 46-58.; Cook J, Weiner D, Powell J. Regarding Combined Pediatric and Adult Trials Submitted to the US Food and Drug Administration 2012-2018. din Pharmacol Ther. 2021;109(5):1181. doi:10.1002/cpt.2076; Колбин А.С. Клиническая фармакология для педиатров: учебное пособие. — М.: ГЭОТАР-Медиа; 2020. — 288 с.; Sun H, Temeck JW, Chambers W, et al. Extrapolation of Efficacy in Pediatric Drug Development and Evidence-based Medicine: Progress and Lessons Learned. Ther Innov Regul Sci. 2017;2017:1-7. doi:10.1177/2168479017725558; Баранов А.А. Российский национальный педиатрический формуляр / под ред. А.А. Баранова. — М.: ГЭОТАР-Медиа; 2009. — 912 с. [Baranov AA. Rossiiskii natsional’nyi pediatricheskii formulyar. Baranov AA, ed. Moscow: GEOTAR-Media; 2009. 912 p. (In Russ).]; Намазова-Баранова Л.С., Вишнёва Е.А., Добрынина Е.А. и др. Оценка качества жизни с помощью вопросника Health Utilities Index у детей c бронхиальной астмой тяжелого пер-систирующего течения на фоне лечения омализумабом // Педиатрическая фармакология. — 2017. — Т. 14. — № 5. — С. 356-365. doi:10.15690/pf.v14i5.1783; Карачунский А.И., Румянцева Ю.В., фон Штакельберг А. Анти-CD19-моноклональные антитела при острой лимфобластной лейкемии у детей // Российский журнал детской гематологии и онкологии (РЖДГиО). — 2016. — Т. 3. — № 4. — С. 60-72. doi:10.17650/2311-1267-2016-3-4-60-72; Алексеева Е.И., Бзарова Т.М., Валиева С.И. и др. Эффективность и безопасность человеческих моноклональных антител к ФНО а у детей с ювенильным идиопатическим артритом при первичной и вторичной неэффективности других генно-инженерных биологических препаратов // Вопросы современной педиатрии. — 2012. — Т. 11. — № 4. — С. 82-88. doi:10.15690/vsp.v11i4.363; Edlund H, Melin J, Parra-Guillen ZP, Kloft C. Pharmacokinetics and pharmacokinetic-pharmacodynamic relationships of monoclonal antibodies in children. Clin Pharmacokinet. 2015;54(1):35-80. doi:10.1007/s40262-014-0208-4; Liu XI, Dallmann A, Wang Y-M, et al. Monoclonal Antibodies and Fc-Fusion Proteins for Pediatric Use: Dosing, Immunogenicity, and Modeling and Simulation in Data Submitted to the US Food and Drug Administration. J Clin Pharmacol. 2019;59(8):1130-1143. doi:10.1002/jcph.1406; Zhao L, Ji P, Li Z, et al. The antibody drug absorption following subcutaneous or intramuscular administration and its mathematical description by coupling physiologically based absorption process with the conventional compartment pharmacokinetic model. J Clin Pharmacol. 2013;53(3):314-325. doi:10.1002/jcph.4; Ryman JT, Meibohm B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol. 2017;6(9):576-588. doi:10.1002/psp4.12224; Shah DK, Betts AM. Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn. 2012;39(1):67-86. doi:10.1007/s10928-011-9232-2; Robbie GJ, Zhao L, Mondick J, et al. Population pharmacokinetics of palivizumab, a humanized anti-respiratory syncytial virus monoclonal antibody, in adults and children. Antimicrob Agents Chemother. 2012;56(9):4927-4936. doi:10.1128/AAC.06446-11; Ternant D, Paintaud G, Trachtman H, et al. A possible influence of age on absorption and elimination of adalimumab in focal segmental glomerulosclerosis (FSGS). Eur J Clin Pharmacol. 2016;72(2):253-255. doi:10.1007/s00228-015-1973-1; Ku LC, Smith PB. Dosing in neonates: Special considerations in physiology and trial design. Pediatr Res. 2015;77(1-1):2-9. doi:10.1038/pr.2014.143; Bellini C, Boccardo F, Bonioli E, Campisi C. Lymphodynamics in the fetus and newborn. Lymphology. 2006;39(3):110-117.; Malik P Edginton A. Pediatric physiology in relation to the pharmacokinetics of monoclonal antibodies. Expert Opin Drug Metab Toxicol. 2018;14(6):585-599. doi:10.1080/17425255.2018.1482278; Edginton AN, Schmitt W, Willmann S. Development and evaluation of a generic physiologically based pharmacokinetic model for children. Clin Pharmacokinet. 2006;45(10):1013-1034. doi:10.2165/00003088-200645100-00005; Sarin H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res. 2010;2:14. doi:10.1186/2040-2384-2-14; Heymann MA, Iwamoto HS, Rudolph AM. Factors affecting changes in the neonatal systemic circulation. Annu Rev Physiol. 1981;43: 371-383. doi:10.1146/annurev.ph.43.030181.002103; Tassani P Schad H, Schreiber C, et al. Extravasation of albumin after cardiopulmonary bypass in newborns. J Cardiothorac Vasc Anesth. 2007;21(2):174-178. doi:10.1053/j.jvca.2006.01.010; Malik PRV, Hamadeh A, Phipps C, et al. Population PBPK modelling of trastuzumab: a framework for quantifying and predicting inter-individual variability. J Pharmacokinet Pharmacodyn. 2017;44(3):277-290. doi:10.1007/s10928-017-9515-3; Parving HH, Klebe JG, Ingomar CJ. Simultaneous determination of plasma volume and transcapillary escape rate with 131 I-labelled albumin and T-1824 in the newborn. Acta Paediatr Scand. 1973;62(3):248-252. doi:10.1111/j.1651-2227.1973.tb08100.x; Battistini N, Virgili F, Severi S, et al. Relative expansion of extracellular water in obese vs. normal children. J Appl Physiol. 1995;79(1):94-96. doi:10.1152/jappl.1995.79.1.94; Шабалов Н.П. Неонатология: учебное пособие: в 2 т. — 7-е изд., перераб. и доп. — М.: ГЭОТАР-Медиа; 2020. — Т. 2. — 752 с.; Touwslager RN, Houben AJ, Tan FE, et al. Growth and endothelial function in the first 2 years of life. J Pediatr. 2015;166(3):666-671. e1. doi:10.1016/j.jpeds.2014.11.059; Fjaertoft G, Hakansson L, Foucard T, et al. CD64 (Fcgamma receptor I) cell surface expression on maturing neutrophils from preterm and term newborn infants. Acta Paediatr. 2005;94(3):295-302. doi:10.1111/j.1651-2227.2005.tb03072.x; Tian Z, Sutton BJ, Zhang X. Distribution of rat neonatal Fc receptor in the principal organs of neonatal and pubertal rats. J Recept Signal Transduct Res. 2014;34(2):137-142. doi:10.3109/10799893.2013.865745; Cianga C, Cianga P, Plamadeala P, et al. Nonclassical major histocompatibility complex I-like Fc neonatal receptor (FcRn) expression in neonatal human tissues. Hum Immunol. 2011;72(12):1176-1187. doi:10.1016/j.humimm.2011.08.020; Mankarious S, Lee M, Fischer S, et al. The half-lives of IgG subclasses and specific antibodies in patients with primary immunodeficiency who are receiving intravenously administered immunoglobulin. J Lab Clin Med. 1988;112(5):634-640.; Aksu G, Genel F, Koturoglu G, et al. Serum immunoglobulin (IgG, IgM, IgA) and IgG subclass concentrations in healthy children: a study using nephelometric technique. Turk J Pediatr. 2006;48(1):19-24.; He XS, Holmes TH, Zhang C, et al. Cellular immune responses in children and adults receiving inactivated or live attenuated influenza vaccines. J Virology. 2006;80:11756-11766. doi:10.1128/JVI.01460-06; Xu Z, Davis HM, Zhou H. Rational development and utilization of antibody-based therapeutic proteins in pediatrics. Pharmacol Ther. 2013;137:225-247.; Purple Book. Database of Licensed Biological Products. 2021. Available online: https://purplebooksearch.fda.gov. Accessed on July 29, 2021.; Козлов И.Г. Моноклональные антитела — новая эра в фармакологии и терапии // Лечебное дело. — 2006. — № 1. — С. 26-31.; FDA's Center for Drug Evaluation and Research (CDER). Novel Drug Approvals for 2016. Available online: https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2016. Accessed on July 29, 2021.; https://www.pedpharma.ru/jour/article/view/2050

  17. 17
  18. 18
  19. 19
  20. 20