Showing 1 - 20 results of 74 for search '"КУЛЬТУРЫ КЛЕТОК"', query time: 0.80s Refine Results
  1. 1
    Academic Journal

    Contributors: This study was conducted by the Scientific Centre for Expert Evaluation of Medicinal Products as part of the applied research funded under State Assignment No. 056-00001-25-00 (R&D Registry No. 124022200103-5)., Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00001-25-00 на проведение прикладных научных исследований (номер государственного учета НИР 124022200103-5).

    Source: Regulatory Research and Medicine Evaluation; Том 15, № 1 (2025); 44-56 ; Регуляторные исследования и экспертиза лекарственных средств; Том 15, № 1 (2025); 44-56 ; 3034-3453 ; 3034-3062 ; 10.30895/1991-2919-2025-15-1

    File Description: application/pdf

    Relation: https://www.vedomostincesmp.ru/jour/article/view/733/1801; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/733/823; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/733/825; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/733/831; Халимова АА, Орлов АС, Таубэ АА. Анализ локализации производства биотехнологических лекарственных препаратов в России с учетом происхождения активных фармацевтических субстанций. Ведомости Научного центра экспертизы средств медицинского применения. Регуляторные исследования и экспертиза лекарственных средств. 2024;14(1):53–61. https://doi.org/10.30895/1991-2919-2024-14-1-53-61; Gogesch P, Dudek S, van Zandbergen G, Waibler Z, Anzaghe M. The role of Fc receptors on the effectiveness of therapeutic monoclonal antibodies. Int J Mol Sci. 2021;22(16):8947. https://doi.org/10.3390/ijms22168947; Wang X, An Z, Luo W, Xia N, Zhao Q. Molecular and functional analysis of monoclonal antibodies in support of biologics development. Protein Cell. 2018;9(1):74–85. https://doi.org/10.1007/s13238-017-0447-x; Alt N, Zhang TY, Motchnik P, Taticek R, Quarmby V, Schlothauer T, et al. Determination of critical quality attributes for monoclonal antibodies using quality by design principles. Biologicals. 2016;44(5):291–305. https://doi.org/10.1016/j.biologicals.2016.06.005; Gao X, Wang W, Tesar D, Wei B, Eschelbach J, Kelley RF, Jiang G. An approach to bioactivity assessment for critical quality attribute identification based on antibody-antigen complex structure. J Pharm Sci. 2021;110(4):1652–60. https://doi.org/10.1016/j.xphs.2020.12.027; Joshi S, Rathore AS, Krull IS. Analytical characterization of biotherapeutic products, Part II: The analytical toolbox. LCGC North Am. 2018;36(11):814–22.; Rathore AS, Dash R. Tools for functional assessment of biotherapeutics. LCGC North Am. 2021;39(6):272–77.; Cedeño-Arias M, Sánchez-Ramírez J, Blanco-Santana R, Rengifo-Calzado E. Validation of a flow cytometry based binding assay for evaluation of monoclonal antibody recognizing EGF receptor. Sci Pharm. 2011;79(3):569–81. https://doi.org/10.3797/scipharm.1104-18; Kamen L, Myneni S, Langsdorf C, Kho E, Ordonia B, Thakurta T, et al. A novel method for determining antibody-dependent cellular phagocytosis. J Immunol Methods. 2019;468:55–60. https://doi.org/10.1016/j.jim.2019.03.001; Dash R, Singh SK, Chirmule N, Rathore AS. Assessment of functional characterization and comparability of biotherapeutics: a review. AAPS J. 2021;24(1):15. https://doi.org/10.1208/s12248-021-00671-0; Heinrich L, Tissot N, Hartmann DJ, Cohen R. Comparison of the results obtained by ELISA and surface plasmon resonance for the determination of antibody affinity. J Immunol Methods. 2010;352(1–2):13–22. https://doi.org/10.1016/j.jim.2009.10.002; Register AC, Tarighat SS, Lee HY. Bioassay development for bispecific antibodies-challenges and opportunities. Int J Mol Sci. 2021;22(10):5350. https://doi.org/10.3390/ijms22105350; Wang L, Yu C, Wang J. Development of reporter gene assays to determine the bioactivity of biopharmaceuticals. Biotechnol Adv. 2020;39:107466. https://doi.org/10.1016/j.biotechadv.2019.107466; Chen W, Pandey M, Sun H, Rolong A, Cao M, Liu D, et al. Development of a mechanism of action-reflective, dual target cell-based reporter bioassay for a bispecific monoclonal antibody targeting human CTLA-4 and PD-1. MAbs. 2021;13(1):1914359. https://doi.org/10.1080/19420862.2021.1914359; Lallemand С, Liang F, Staub F, Simansour M, Vallette B, Huang L, et al. A novel system for the quantification of the ADCC activity of therapeutic antibodies. J Immunol Res. 2017;2017:1–19. https://doi.org/10.1155/2017/3908289; Wang L, Yu C, Yang Y, Gao K, Wang J. Development of a robust reporter gene assay to measure the bioactivity of anti-PD-1/anti-PD-L1 therapeutic antibodies. J Pharm Biomed Anal. 2017;145:447–53 https://doi.org/10.1016/j.jpba.2017.05.011; Alhazmi HA, Albratty M. Analytical techniques for the characterization and quantification of monoclonal antibodies. Pharmaceuticals (Basel). 2023;16(2):291. https://doi.org/10.3390/ph16020291; Bansal R, Dash R, Rathore AS. Impact of mAb aggregation on its biological activity: Rituximab as a case study. J Pharm Sci. 2020;109(9):2684–98. https://doi.org/10.1016/j.xphs.2020.05.015; Tada M, Ishii-Watabe A, Suzuki T, Kawasaki N. Development of a cell-based assay measuring the activation of FcγRIIa for the characterization of therapeutic monoclonal antibodies. PLoS One. 2014;9(4):e95787. https://doi.org/10.1371/journal.pone.0095787; Geigert J. Quality attributes of a biopharmaceutical. In: Geigert J. The challenge of CMC regulatory compliance for biopharmaceuticals. Switzerland: Springer; 2019. P. 311–29.; Алпатова НА, Гайдерова ЛА, Яковлев АК, Мотузова ЕВ, Лысикова СЛ, Солдатов АА, Авдеева ЖИ. Особенности определения специфической активности биотехнологических лекарственных средств. Биопрепараты. Профилактика, диагностика, лечение. 2017;17(1):13–26. EDN: YHSSGL; Prior S, Hufton SE, Fox B, Dougall T, Rigsby P, Bristow A. International standards for monoclonal antibodies to support pre- and post-marketing product consistency: Evaluation of a candidate international standard for the bioactivities of rituximab. MAbs. 2018;10(1):129–42. https://doi.org/10.1080/19420862.2017.1386824; Rižner TL, Adamski J. It is high time to discontinue use of misidentified and contaminated cells: Guidelines for description and authentication of cell lines. J Steroid Biochem Mol Biol. 2018;182:1–3. https://doi.org/10.1016/j.jsbmb.2017.12.017; Мельникова ЕВ, Меркулова ОВ, Меркулов ВА, Олефир ЮВ, Ручко СВ, Бокованов ВЕ. Идентификация клеточных линий человека с использованием метода генотипирования короткими тандемными повторами: мировая практика. Биофармацевтический журнал. 2015;7(6):3–10. EDN: VRRBXF; Хорольский МД, Семенова ИС, Мельникова ЕВ, Олефир ЮВ. Применение метода коротких тандемных повторов для аутентификации клеточных линий. БИОпрепараты. Профилактика, диагностика, лечение. 2019;19(4):251–60. https://doi.org/10.30895/2221-996X-2019-19-4-251-260; White JR, Abodeely M, Ahmed S, Debauve G, Johnson E, Meyer DM, et al. Best practices in bioassay development to support registration of biopharmaceuticals. Biotechniques. 2019;67(3):126–37. https://doi.org/10.2144/btn-2019-0031; Zimmermann H, Gerhard D, Dingermann T, Hothorn LA. Statistical aspects of design and validation of microtitre-plate-based linear and non-linear parallel in vitro bioassays. Biotechnol J. 2010;5(1):62–74. https://doi.org/10.1002/biot.200900146; Surowka M, Klein C. A pivotal decade for bispecific antibodies? MAbs. 2024;16(1):2321635. https://doi.org/10.1080/19420862.2024.2321635; Nie S, Wang Z, Moscoso-Castro M, D’Souza P, Lei C, Xu J, Gu J. Biology drives the discovery of bispecific antibodies as innovative therapeutics. Antib Ther. 2020;3(1):18–62. https://doi.org/10.1093/abt/tbaa003; Mohan N, Ayinde S, Peng H, Dutta S, Shen Y, Falkowski VM. Structural and functional characterization of IgG- and non-IgG-based T-cell-engaging bispecific antibodies. Front Immunol. 2024;15:1376096. https://doi.org/10.3389/fimmu.2024.1376096; Lee HY, Contreras E, Register AC, Wu Q, Abadie K, Garcia K, et al. Development of a bioassay to detect T-cell-activating impurities for T-cell-dependent bispecific antibodies. Sci Rep. 2019;9(1):3900. https://doi.org/10.1038/s41598-019-40689-1; Lee HY, Schaefer G, Lesaca I, Lee CV, Wong PY, Jiang G. “Two-in-One” approach for bioassay selection for dual specificity antibodies. J Immunol Methods. 2017;448:74–9. https://doi.org/10.1016/j.jim.2017.05.011; Головинская ОВ, Лысикова СЛ, Лебедева ЮН, Алпатова НА, Мовсесянц АА, Меркулов ВА. Рекомендации по изложению методики оценки биологической (специфической) активности биотехнологических лекарственных препаратов в нормативной документации. БИОпрепараты. Профилактика, диагностика, лечение. 2018;18(3):168–74. https://doi.org/10.30895/2221-996X-2018-18-3-168-174; https://www.vedomostincesmp.ru/jour/article/view/733

  2. 2
    Academic Journal

    Contributors: The results of this work were obtained using the equipment of the Center for Collective Use “Analytical Center of the Saint-Petersburg Chemical Pharmaceutical University” (agreement No. 075-15-2021-685) with financial support from the Ministry of Science and Higher Education of the Russian Federation (MSHE RF), as part of State Program SP-47 “Scientific and Technological Development of the Russian Federation” (2019–2030) (project 0113-2019-0006), and Project 95445054 of the Saint Petersburg State University. Cell cultures were obtained and maintained using the equipment of the large-scale research facility “All-Russian Collection of Cell Cultures of Higher Plants” of the IPPRAS (ARCCC HP IPPRAS) and supported by the State Project 122042700045-3 of the MSHE RF. Bioreactor cultivation of plant cell suspensions and biomass production were carried out using the equipment of the large-scale research facility “Experimental Biotechnological Facility” of the IPPRAS (EBF IPPRAS) and supported by the State Project 122042600086-7 of the MSHE RF., Работа выполнена с использованием оборудования ЦКП «Аналитический центр ФГБОУ ВО СПХФУ Минздрава России» в рамках соглашения №075-15-2021-685 от 26 июля 2021 года при финансовой поддержке Минобрнауки России, в рамках госпрограммы ГП-47 «Научно-технологическое развитие Российской Федерации» (2019–2030) (тема № 0113-2019-0006) и проекта № 95445054 Санкт-Петербургского государственного университета. Культуры клеток были получены и поддерживались с использованием оборудования УНУ «Всероссийская коллекция культур клеток высших растений» при поддержке государственного задания Министерства науки и высшего образования РФ № 122042700045-3. Выращивание культур клеток в биореакторах и получение биомассы проводили с использованием оборудований УНУ «Опытный биотехнологический комплекс ИФР РАН» при поддержке государственного задания Министерства науки и высшего образования РФ № 122042600086-7.

    Source: Drug development & registration; Том 14, № 1 (2025); 332-348 ; Разработка и регистрация лекарственных средств; Том 14, № 1 (2025); 332-348 ; 2658-5049 ; 2305-2066

    File Description: application/pdf

    Relation: https://www.pharmjournal.ru/jour/article/view/2010/1364; https://www.pharmjournal.ru/jour/article/downloadSuppFile/2010/2686; Сахарный диабет 2 типа у взрослых. Клинические рекомендации. М.: Общественная организация «Российская ассоциация эндокринологов»; 2022. 251 с.; Ye J., Wu Y., Yang S., Zhu D., Chen F., Chen J., Ji X., Hou K. The global, regional and national burden of type 2 diabetes mellitus in the past, present and future: a systematic analysis of the Global Burden of Disease Study 2019. Frontiers in Endocrinology. 2023;14:1192629. DOI:10.3389/fendo.2023.1192629.; Khan M. A. B., Hashim M. J., King J. K., Govender R. D., Mustafa H., Al Kaabi J. Epidemiology of Type 2 Diabetes – Global Burden of Disease and Forecasted Trends. Journal of Epidemiology and Global Health. 2020;10(1):107–111. DOI:10.2991/jegh.k.191028.001.; Chen H., Huang X., Dong M., Wen S., Zhou L., Yuan X. The Association Between Sarcopenia and Diabetes: From Pathophysiology Mechanism to Therapeutic Strategy. Diabetes, Metabolic Syndrome and Obesity. 2023;16:1541–1554. DOI:10.2147/DMSO.S410834.; Suriano F., Vieira-Silva S., Falony G., Roumain M., Paquot A., Pelicaen R., Regnier M., Delzenne N. M., Raes J., Muccioli G. G., Hul M. V., Cain P. D. Novel insights into the genetically obese (ob/ob) and diabetic (db/db) mice: two sides of the same coin. Microbiome. 2021;9(1):147. DOI:10.1186/s40168-021-01097-8.; Sima A. A., Robertson D. M. Peripheral neuropathy in mutant diabetic mouse [C57BL/Ks (db/db)]. Acta Neuropathologica. 1978;41(2):85–89. DOI:10.1007/BF00689757.; Sima A. A., Robertson D. M. Peripheral neuropathy in the diabetic mutant mouse. An ultrastructural study. Laboratory Investigation. 1979;40(6):627–632.; Lin-Shiau S.-Y., Liu S.-H., Lin M.-J. Use of ion channel blockers in the exploration of possible mechanisms involved in the myopathy of diabetic mice. Naunyn-Schmiedeberg's Archives of Pharmacology. 1993;348(3):311–318. DOI:10.1007/BF00169161.; Zenker J., Poirot O., de Preux Charles A. S., Arnaud E., Médard J.-J., Lacroix C., Kuntzer T., Chrast R. Altered distribution of juxtaparanodal K v 1.2 subunits mediates peripheral nerve hyperexcitability in type 2 diabetes mellitus. The Journal of Neuroscience. 2012;32(22):7493–7498. DOI:10.1523/JNEUROSCI.0719-12.2012.; Eshima H., Tamura Y., Kakehi S., Nakamura K., Kurebayashi N., Murayama T., Kakigi R., Sakurai T., Kawamori R., Watada H. Dysfunction of muscle contraction with impaired intracellular Ca 2+ handling in skeletal muscle and the effect of exercise training in male db/db mice. Journal of Applied Physiology. 2019;126(1):170-182. DOI:10.1152/japplphysiol.00048.2018.; Bayley J. S., Pedersen T. H., Nielsen O. B. Skeletal muscle dysfunction in the db/db mouse model of type 2 diabetes. Muscle & Nerve. 2016;54(3):460–468. DOI:10.1002/mus.25064.; Nguyen M.-H., Cheng M., Koh T. J. Impaired muscle regeneration in ob/ob and db/db mice. The Scientific World JOURNAL. 2011;11:1525–1535. DOI:10.1100/tsw.2011.137.; Wang X., Hu Z., Hu J., Du J., Mitch W. E. Insulin resistance accelerates muscle protein degradation: Activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. Endocrinology. 2006;147(9):4160–4168. DOI:10.1210/en.2006-0251.; Kim K. W., Baek M.-O., Choi J.-Y., Son K. H., Yoon M.-S. Analysis of the Molecular Signaling Signatures of Muscle Protein Wasting Between the Intercostal Muscles and the Gastrocnemius Muscles in db/db Mice. International Journal of Molecular Sciences. 2019;20(23):6062. DOI:10.3390/ijms20236062.; Wang M., Pu D., Zhao Y., Chen J., Zhu S., Lu A., Liao Z., Sun Y., Xiao Q. Sulforaphane protects against skeletal muscle dysfunction in spontaneous type 2 diabetic db/db mice. Life Sciences. 2020;255:117823. DOI:10.1016/j.lfs.2020.117823.; Yu J., Loh K., Yang H.-Q., Du M.-R., Wu Y.-X., Liao Z.-Y., Guo A., Yang Y.-F., Chen B., Zhao Y.-X., Chen J.-L., Zhou J., Sun Y., Xiao Q. The Whole-transcriptome Landscape of Diabetes-related Sarcopenia Reveals the Specific Function of Novel lncRNA Gm20743. Communications Biology. 2022;5(1):774. DOI:10.1038/s42003-022-03728-8.; Pollari E., Prior R., Robberecht W., Van Damme P., Van Den Bosch L. In Vivo Electrophysiological Measurement of Compound Muscle Action Potential from the Forelimbs in Mouse Models of Motor Neuron Degeneration. Journal of Visualized Experiments. 2018;(136):57741. DOI:10.3791/57741.; Rutkove S. B., Chen Z.-Z., Pandeya S., Callegari S., Mourey T., Nagy J. A., Nath A. K. Surface Electrical Impedance Myography Detects Skeletal Muscle Atrophy in Aged Wildtype Zebrafish and Aged gpr27 Knockout Zebrafish. Biomedicines. 2023;11(7):1938. DOI:10.3390/biomedicines11071938.; Chugh D., Iyer C. C., Wang X., Bobbili P., Rich M. M., Arnold W. D. Neuromuscular junction transmission failure is a late phenotype in aging mice. Neurobiology of Aging. 2020;86:182–190. DOI:10.1016/j.neurobiolaging.2019.10.022.; Padilla C. J., Harrigan M. E., Harris H., Schwab J. M., Rutkove S. B., Rich M. M., Clark B. C., Arnold W. D. Profiling age-related muscle weakness and wasting: neuromuscular junction transmission as a driver of age-related physical decline. GeroScience. 2021;43(3):1265–1281. DOI:10.1007/s11357-021-00369-3.; Приходько В. А., Матузок Т. М., Оковитый С. В. Нарушения нейромышечной передачи у лептинрезистентных мышей. Биомедицина. 2023;19(3):77–81. DOI:10.33647/2074-5982-19-3-77-81.; Gregory N. S., Gibson-Corley K., Frey-Law L., Sluka K. A. Fatigue-enhanced hyperalgesia in response to muscle insult: induction and development occur in a sex-dependent manner. Pain. 2013;154(12):2668–2676. DOI:10.1016/j.pain.2013.07.047.; Gregory N. S., Brito R. G., Oliveira Fusaro M. C. G., Sluka K. A. ASIC3 Is Required for Development of Fatigue-Induced Hyperalgesia. Molecular Neurobiology. 2016;53(2):1020–1030. DOI:10.1007/s12035-014-9055-4.; Lesnak J. B., Inoue S., Lima L., Rasmussen L., Sluka K. A. Testosterone protects against the development of widespread muscle pain in mice. Pain. 2020;161(12):2898–2908. DOI:10.1097/j.pain.0000000000001985.; Воронков А. В., Поздняков Д. И., Руковицина В. М., Оганесян Э. Т. Влияние новых производных хромон-3-альдегида на развитие мышечной дисфункции в условиях эксперимента. Крымский терапевтический журнал. 2018;4:67–71.; Maurissen J. P. J., Marable B. R., Andrus A. K., Stebbins K. E. Factors affecting grip strength testing. Neurotoxicology and Teratology. 2003;25(5):543–553. DOI:10.1016/s0892-0362(03)00073-4.; Baker C., Retzik-Stahr C., Singh V., Plomondon R., Anderson V., Rasouli N. Should metformin remain the first-line therapy for treatment of type 2 diabetes? Therapeutic Advances in Endocrinology and Metabolism. 2021;12:2042018820980225. DOI:10.1177/2042018820980225.; Lyu Q., Wen Y., He B., Zhang X., Chen J., Sun Y., Zhao Y., Xu L., Xiao Q., Deng H. The ameliorating effects of metformin on disarrangement ongoing in gastrocnemius muscle of sarcopenic and obese sarcopenic mice. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease. 2022;1868(11):166508. DOI:10.1016/j.bbadis.2022.166508.; Petrocelli J. J., McKenzie A. I., de Hart N. M. M. P., Reidy P. T., Mahmassani Z. S., Keeble A. R., Kaput K. L., Wahl M. P., Rondina M. T., Marcus R. L., Welt C. K., Holland W. L., Funai K., Fry C. S., Drummond M. J. Disuse-induced muscle fibrosis, cellular senescence, and senescence-associated secretory phenotype in older adults are alleviated during re-ambulation with metformin pre-treatment. Aging Cell. 2023;22(11):e13936. DOI:10.1111/acel.13936.; Бажанова Е. Д., Оковитый С. В., Белых М. А. Влияние 4,4'-(пропандиамидо)дибензоата натрия и метформина на динамику апоптоза и пролиферации гепатоцитов у мышей с сахарным диабетом и ожирением. Экспериментальная и клиническая фармакология. 2018;81(5):17–20. DOI:10.30906/0869-2092-2018-81-5-17-20.; Белых М. А. Влияние 4,4'-(пропандиамидо)дибензоата натрия на проявления экспериментального неалкогольного стеатогепатита. Биомедицина. 2021;17(3):95–99. DOI:10.33647/2074-5982-17-3-95-99.; Li Z., Ji G. E. Ginseng and obesity. Journal of Ginseng Research. 2018;42(1):1–8. DOI:10.1016/j.jgr.2016.12.005.; Povydysh M. N., Titova M. V., Ivanov I. M., Klushin A. G., Kochkin D. V., Galishev B. A., Popova E. V., Ivkin D. Y., Luzhanin V. G., Krasnova M. V., Demakova N. V., Nosov A. M. Effect of phytopreparations based on bioreactor-grown cell biomass of Dioscorea deltoidea, Tribulus terrestris and Panax japonicus on carbohydrate and lipid metabolism in type 2 diabetes mellitus. Nutrients. 2021;13(11):3811. DOI:10.3390/nu13113811.; Povydysh M. N., Titova M. V., Ivkin D. Y., Krasnova M. V., Vasilevskaya E. R., Fedulova L. V., Ivanov I. M., Klushin A. G., Popova E. V., Nosov A. M. The hypoglycemic and hypocholesterolemic activity of Dioscorea deltoidea, Tribulus terrestris and Panax japonicus cell culture biomass in rats with high-fat diet-induced obesity. Nutrients. 2023;15(3):656. DOI:10.3390/nu15030656.; Titova M. V., Popova E. V., Ivanov I. M., Fomenkov A A., Nebera E. A., Vasilevskaya E. R., Tolmacheva G. S., Kotenkova E. A., Klychnikov O. I., Metalnikov P. S., Tyurina T. M., Paek K.-Y. Toxicological evaluation of ginsenoside-rich cell culture biomass of Panax japonicus produced in a large-scale bioreactor system. Industrial Crops and Products. 2024;208:117761. DOI:10.1016/j.indcrop.2023.117761.; Spruss A., Kanuri G., Stahl C., Bischoff S. C., Bergheim I. Metformin protects against the development of fructose-induced steatosis in mice: role of the intestinal barrier function. Lab Invest. 2012;92(7):1020–1032. DOI:10.1038/labinvest.2012.75.; Белых М. А., Оковитый С. В. Оценка эффективности нового производного малоновой кислоты в качестве антистеатозного средства при высокожировой диете у мышей. Экспериментальная и клиническая фармакология. 2018;81(S):28–29.; Attele A. S., Zhou Y.-P., Xie J.-T., Wu J. A., Zhang L., Dey L., Pugh W., Rue P. A., Polonsky K. S., Yuan C.-S. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes. 2002;51(6):1851–1858. DOI:10.2337/diabetes.51.6.1851.; Приходько В. А., Алексеева Ю. С., Захлевная Д. А., Болотова В. Ц. Влияние экстракта живучки туркестанской на восстановление сократимости мышц после электростимуляционного утомления у мышей. В сб.: Пути и формы совершенствования фармацевтического образования. Актуальные вопросы разработки и исследования новых лекарственных средств: Сборник трудов IХ Международной научно-методической конференции «Фармобразование-2023». 28–29 сентября 2023. Воронеж. Воронеж: Воронежский государственный университет; 2023. С. 619–623. DOI:10.17308/978-5-9273-3827-6-2023-619-623.; Inamura N., Fujisige A., Miyake S., Ono A., Tsuchiya T. The effects of temperature on the mechanical performance in fatigued single muscle fibers of the frog induced by twitch and tetanus. The Japanese Journal of Physiology. 2000;50(1):49–57. DOI:10.2170/jjphysiol.50.49.; Fitch S., McComas A. Influence of human muscle length on fatigue. The Journal of Physiology. 1985;362(1):205–213. DOI:10.1113/jphysiol.1985.sp015671.; Bruton J., Pinniger G. J., Lännergren J., Westerblad H. The effects of the myosin-II inhibitor N-benzyl-p-toluene sulphonamide on fatigue in mouse single intact toe muscle fibres. Acta Physiologica. 2006;186(1):59–66. DOI:10.1111/j.1748-1716.2005.01499.x.; Allen D. G., Lamb G. D., Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiological Reviews. 2008;88(1):287–332. DOI:10.1152/physrev.00015.2007.; Wan J.-J., Qin Z., Wang P.-Y., Sun Y., Liu X. Muscle fatigue: general understanding and treatment. Experimental & Molecular Medicine. 2017;49(10):e384. DOI:10.1038/emm.2017.194.; Germinario E., Esposito A., Midrio M., Peron S., Palade P. T., Betto R., Danieli-Betto D. High-frequency fatigue of skeletal muscle: role of extracellular Ca 2+ . European Journal of Applied Physiology. 2008;104(3):445–453. DOI:10.1007/s00421-008-0796-5.; Khairullin A. E., Teplov A. Y., Grishin S. N., Farkhutdinov A. M., Ziganshin A. U. The thermal sensitivity of purinergic modulation of contractile activity of locomotor and respiratory muscles in mice. Biophysics. 2019;64(5):812–817. DOI:10.1134/S0006350919050075.; Vesga-Castro C., Aldazabal J., Vallejo-Illarramendi A., Paredes J. Contractile force assessment methods for in vitro skeletal muscle tissues. eLife. 2022;11:e77204. DOI:10.7554/eLife.77204.; Wineinger M. A., Walsh S. A., Abresch T. Muscle fatigue in animal models of neuromuscular disease. American Journal of Physical Medicine & Rehabilitation. 2002;81(11):S81–S98. DOI:10.1097/00002060-200211001-00010.; Yamada T., Ashida Y., Tamai K., Kimura I., Yamauchi N., Naito A., Tokuda N., Westerblad H., Andersson D. C., Himori K. Improved skeletal muscle fatigue resistance in experimental autoimmune myositis mice following high-intensity interval training. Arthritis Research & Therapy. 2022;24(1):156. DOI:10.1186/s13075-022-02846-2.; Lindqvist J., Pénisson-Besnier I., Iwamoto H., Li M., Yagi N., Ochala J. A myopathy-related actin mutation increases contractile function. Acta Neuropathologica. 2012;123(5):739–746. DOI:10.1007/s00401-012-0962-z.; Gineste C., De Winter J. M., Kohl C., Witt C. C., Giannesini B., Brohm K., Le Fur Y., Gretz N., Vilmen C., Pecchi E., Jubeau M., Cozzone P. J., Stienen G. J. M., Granzier H., Labeit S., Ottenheijm C. A. C., Bendahan D., Gondin J. In vivo and in vitro investigations of heterozygous nebulin knock-out mice disclose a mild skeletal muscle phenotype. Neuromuscular Disorders. 2013;23(4):357–369. DOI:10.1016/j.nmd.2012.12.011.; Gineste C., Ottenheijm C., Le Fur Y., Banzet S., Pecchi E., Vilmen C., Cozzone P. J. , Koulmann N., Hardeman E. C., Bendahan D., Gondin J. Alterations at the cross-bridge level are associated with a paradoxical gain of muscle function in vivo in a mouse model of nemaline myopathy. PLoS ONE. 2014;9(9):e109066. DOI:10.1371/journal.pone.0109066.; Williams J. H., Ward C. W., Klug G. A. Fatigue-induced alterations in Ca2+ and caffeine sensitivities of skinned muscle fibers. Journal of Applied Physiology. 1993;75(2):586–593. DOI:10.1152/jappl.1993.75.2.586.; Moldovan M., Krarup C. Evaluation of Na + /K + pump function following repetitive activity in mouse peripheral nerve. Journal of Neuroscience Methods. 2006;155(2):161–171. DOI:10.1016/j.jneumeth.2005.12.015.; Hwang J. H., Kang S. Y., Jung H. W. Effects of American wild ginseng and Korean cultivated wild ginseng pharmacopuncture extracts on the regulation of C2C12 myoblasts differentiation through AMPK and PI3K/Akt/mTOR signaling pathway. Molecular Medicine Reports. 2022;25(6):192. DOI:10.3892/mmr.2022.12708.; Kim A., Park S.-M., Kim N. S., Lee H. Ginsenoside Rc, an Active Component of Panax ginseng, Alleviates Oxidative Stress-Induced Muscle Atrophy via Improvement of Mitochondrial Biogenesis. Antioxidants. 2023;12(8):1576. DOI:10.3390/antiox12081576.; Estaki M., Noble E. G. North American ginseng protects against muscle damage and reduces neutrophil infiltration after an acute bout of downhill running in rats. Applied Physiology, Nutrition, and Metabolism. 2014;40(2):116–121. DOI:10.1139/apnm-2014-0331.; Cristina-Souza G., Santos-Mariano A. C., Lima-Silva A. E., Costa P. L., Domingos P. R., Silva S. F., Abreu W. C., De-Oliveira F. R., Osiecki R. Panax ginseng Supplementation Increases Muscle Recruitment, Attenuates Perceived Effort, and Accelerates Muscle Force Recovery After an Eccentric-Based Exercise in Athletes. Journal of Strength and Conditioning Research. 2022;36(4):991–997. DOI:10.1519/JSC.0000000000003555.; Zhang H., Zhao C., Hou J., Su P., Yang Y., Xia B., Zhao X., He R., Wang L., Cao C., Liu T., Tian J. Red ginseng extract improves skeletal muscle energy metabolism and mitochondrial function in chronic fatigue mice. Frontiers in Pharmacology. 2022;13:1077249. DOI:10.3389/fphar.2022.1077249.; Ahmad S. S., Chun H. J., Ahmad K., Choi I. Therapeutic applications of ginseng for skeletal muscle-related disorder management. Journal of Ginseng Research. 2024;48(1):12–19. DOI:10.1016/j.jgr.2023.06.003.; Van Le T. H., Lee G. J., Long Vu H. K., Know S. W., Nguyen N. K., Park J. H., Nguyen M. D. Ginseng Saponins in Different Parts of Panax vietnamensis. Chemical and Pharmaceutical Bulletin. 2015;63(11):950–954. DOI:10.1248/cpb.c15-00369.; Jeong J.-J., Van Le T. H., Lee S.-Y., Eun S.-H., Nguyen M. D., Park J. H., Kim D.-H. Anti-inflammatory effects of vina-ginsenoside R2 and majonoside R2 isolated from Panax vietnamensis and their metabolites in lipopolysaccharide-stimulated macrophages. International Immunopharmacology. 2015;28(1):700–706. DOI:10.1016/j.intimp.2015.07.025.; Tran Q. L., Adnyana I. K., Tezuka Y., Harimaya Y., Saiki I., Kurashige Y., Tran Q. K., Kadota S. Hepatoprotective effect of majonoside R2, the major saponin from Vietnamese ginseng (Panax vietnamensis). Planta Medica. 2002;68(5):402–406. DOI:10.1055/s-2002-32069.; Thu V. T., Yen N. T. H., Tung N. H., Bich P. T., Han J., Kim H. K. Majonoside-R2 extracted from Vietnamese ginseng protects H9C2 cells against hypoxia/reoxygenation injury via modulating mitochondrial function and biogenesis. Bioorganic & Medicinal Chemistry Letters. 2021;36:127814. DOI:10.1016/j.bmcl.2021.127814.; Chan H.-H., Hwang T.-L., Bhaskar Reddy M. V., Li D.-T., Qian K., Bastow K. F., Lee K.-H., Wu T.-S. Bioactive constituents from the roots of Panax japonicus var. major and development of a LC-MS/MS method for distinguishing between natural and artifactual compounds. Journal of Natural Products. 2011;74(4):796–802. DOI:10.1021/np100851s.; Yousuf Y., Datu A., Barnes B., Amini-Nik S., Jeschke M. G. Metformin alleviates muscle wasting post-thermal injury by increasing Pax7-positive muscle progenitor cells. Stem Cell Research & Therapy. 2020;11(1):18. DOI:10.1186/s13287-019-1480-x.; Kang M. J., Moon J. W., Lee J. O., Kim J. H., Jung E. J., Kim S. J., Oh J. Y., Wu S. W., Lee P. R., Park S. H., Kim H. S. Metformin induces muscle atrophy by transcriptional regulation of myostatin via HDAC6 and FoxO3a. Journal of Cachexia, Sarcopenia and Muscle. 2021;13(1):605–620. DOI:10.1002/jcsm.12833.; Walton R. G., Dungan C. M., Long D. E., Tuggle S. C., Kosmac K., Peck B. D., Bush H. M., Villasante Tezanos A. G., McGwin G., Windham S. T., Ovalle F., Bamman M. M., Kern P. A., Peterson C. A. Metformin blunts muscle hypertrophy in response to progressive resistance exercise training in older adults: A randomized, double-blind, placebo-controlled, multicenter trial: The MASTERS trial. Aging Cell. 2019;18(6):e13039. DOI:10.1111/acel.13039.; Соколова А. В., Климова А. В., Драгунов Д. О., Артюнов Г. П. Оценка влияния терапии метформином на величину мышечной массы и мышечной силы у больных с и без сахарного диабета. Метаанализ 15 исследований. Российский кардиологический журнал. 2021;26(3):4331. DOI:10.15829/1560-4071-2021-4331.; Deacon R. M. J. Measuring the strength of mice. Journal of Visualized Experiments. 2013;(76):2610. DOI:10.3791/2610.; Sharma A. N., Elased K. M., Garrett T. L., Lucot J. B. Neurobehavioral deficits in db/db diabetic mice. Physiology & Behavior. 2010;101(3):381–388. DOI:10.1016/j.physbeh.2010.07.002.; Prikhodko V. A., Matuzok T. M., Okovityi S. V. Cognitive and behavioural dysfunction in leptin-resistant mice. In: Proceedings of the 29th International Annual ISBS “Stress and Behavior” Neuroscience and Biological Psychiatry Conference. 18-19 May 2023. Saint Petersburg. 2023. P. 18.; De Gregorio C., Contador D., Campero M., Ezquer M., Ezquer F. Characterization of diabetic neuropathy progression in a mouse model of type 2 diabetes mellitus. Biology Open. 2018;7(9):bio036830. DOI:10.1242/bio.036830.; Roberts T. J., Gabaldón A. M. Interpreting muscle function from EMG: lessons learned from direct measurements of muscle force. Integrative and Comparative Biology. 2008;48(2):312–320. DOI:10.1093/icb/icn056.; Ingalls C. P., Warren G. L., Lowe D. A., Boorstein D. B., Armstrong R. B. Differential effects of anesthetics on in vivo skeletal muscle contractile function in the mouse. Journal of Applied Physiology. 1996;80(1):332–340. DOI:10.1152/jappl.1996.80.1.332.; Coelho Nepomuceno A., Landucci Politani E., Landucci Politani da Silva E., Salomone R., Losso Longo M. V., Grassi Salles A., Marques de Faria J. C., Gemperli R. Tibial and fibular nerves evaluation using intraoperative electromyography in rats. Acta Cirurgica Brasileira. 2016;31(8):542–548. DOI:10.1590/S0102-865020160080000007.; Hershenson M., Brouillette R. T., Olsen E., Hunt C. E. The effect of chloral hydrate on genioglossus and diaphragmatic activity. Pediatric Research. 1984;18(6):516–519. DOI:10.1203/00006450-198406000-00006.; Zealear D., Li Y., Huang S. An Implantable System For Chronic In Vivo Electromyography. Journal of Visualized Experiments. 2020;21;(158):10.3791/60345. DOI:10.3791/60345.; https://www.pharmjournal.ru/jour/article/view/2010

  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Source: Биотехнология в растениеводстве, животноводстве и сельскохозяйственной микробиологии. :102-103

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
    Academic Journal

    Source: Microbiology&Biotechnology; No. 1(48) (2020); 60-68 ; Микробиология и биотехнология; № 1(48) (2020); 60-68 ; Мікробіологія і біотехнологія; № 1(48) (2020); 60-68 ; 2307-4663 ; 2076-0558

    File Description: application/pdf

  13. 13
  14. 14
  15. 15
    Academic Journal

    Contributors: Работа выполнена в рамках госзадания ИИФ УрО РАН (регистрационный номер НИОКТР № АААА-А18-118020590108-7).

    Source: Medical Immunology (Russia); Том 21, № 4 (2019); 725-736 ; Медицинская иммунология; Том 21, № 4 (2019); 725-736 ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-2019-4

    File Description: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/1882/1169; Авдеева А.С., Кусевич Д.А. Роль лабораторных биомаркеров в прогнозировании эффективности терапии ритуксимабом при ревматоидном артрите (новые данные) // Научно-практическая ревматология, 2017. T. 55, № 3. C. 295-303.; Алексеева Е.И. Ювенильный идиопатический артрит: клиническая картина, диагностика, лечение // Вопросы современной педиатрии, 2015. T. 14, № 1. C. 78-94.; Алексеева Е.И., Бзарова Т.М. Ювенильный ревматоидный артрит. В кн.: Педиатрия. Национальное руководство. Краткое издание / под ред. А.А. Баранова. М.: ГЭОТАР-Медиа, 2014. 768 с; Герцев А.В., Закревский Ю.Н. Характеристика нейропептидно-цитокинового звена иммунитета у больных с полиморбидной сердечно-сосудистой патологией, протекающей на фоне тревожно-депрессивных расстройств // Медицинская иммунология, 2018. Т. 20, № 2. С. 277-284. doi:10.15789/1563-0625-2018-2-277-284.; Демьянов А.В., Котов А.Ю., Симбирцев А.С. Диагностическая ценность исследования уровней цитокинов в клинической практике // Цитокины и воспаление, 2003. T. 2, № 3. C. 20-35.; Каледа М.И., Никишина И.П., Шаповаленко А.Н., Костарева О.М., Федоров Е.С. Феномен нейтропении на фоне терапии тоцилизумабом у пациентов с ювенильным идиопатическим артритом // Научно-практическая ревматология, 2017. Т. 55, № 6. С. 662-667.; Кетлинский С.А., Симбирцев А.С. Цитокины. СПб.: Фолиант, 2008. 552 с.; Кожевников А.Н., Поздеева Н.А., Конев М.А., Селизов В.В., Прокопович Е.В., Никитин М.С., Москаленко А.В., Афоничев К.А. Ювенильный артрит: клинико-инструментальная картина и дифференциальная диагностика // Ортопедия, травматология и восстановительная хирургия детского возраста, 2014. Т. 2, № 4. С. 66-73.; Коненков В.И., Ракова И.Г., Авдошина В.В., Гельфгат Е.Л. Комплексная оценка уровня спонтанной продукции цитокинов в культуре мононуклеарых клеток периферической крови здорового человека // Цитокины и воспаление, 2005. № 2. C. 33-37; Костик М.М. Применение анакинры у пациентов с криопиринассоциированными периодическими синдромами и другими аутовоспалительными заболеваниями // Вопросы современной педиатрии, 2016.; Т. 15, № 6. С. 576-583.; Никишина И.П., Каледа М.И. Современная фармакотерапия системного ювенильного артрита // Научно-практическая ревматология, 2015. Т. 53, № 1. С. 84-93.; Пашнина И.А., Криволапова И.М., Козлова Е.С., Скоробогатова О.В., Тузанкина И.А., Черешнев В.А. Аутоантитела при ювенильных артритах у детей // Российский иммунологический журнал, 2013. Т. 7 (16), № 4. С. 437-444.; Полушина Л.Г., Светлакова Е.Н., Семенцова Е.А., Мандра Ю.В., Базарный В.В. Клинико-патогенетическое значение некоторых цитокинов при пародонтите // Медицинская иммунология, 2017. Т. 19, № 6. С. 803-806. doi:10.15789/1563-0625-2017-6-803-806.; Симбирцев А.С. Цитокины в патогенезе инфекционных и неинфекционных заболеваний человека // Медицинский академический журнал, 2013. T. 13, № 3. C. 18-41.; Чернышева О.Е., Конюшевская А.А., Вайзер Н.В., Балычевцева И.В. Ювенильный артрит: терминология, классификация, диагностические критерии, этиология, патогенез, современные аспекты (обзор литературы) // Травма, 2017. Т. 18. № 4. С. 16-24.; Aggarwal А., Mishra R. Cytokine production by peripheral blood mononuclear cells patients with juvenile idiopathic arthritis. Indian Pediatrics., 2002, no. 39, pp. 739-742.; Barut K., Adrovic A., Şahin S., Kasapçopur O. Juvenile idiopathic arthritis. Balkan Med. J., 2017, Vol. 34, no. 2, pp. 90-101.; Brescia A.C., Simonds M.M., Sullivan K.E., Rose C.D. Secretion of pro-inflammatory cytokines and chemokines and loss of regulatory signals by fibroblast-like synoviocytes in juvenile idiopathic arthritis. Proteomics Clin. Appl., 2017, Vol. 11, no. 5-6.; Chyuan I.T., Chen J.Y. Role of interleukin- (IL-) 17 in the pathogenesis and targeted therapies in spondyloarthropathies. Mediators Inflamm., 2018, 2403935, 8 p. doi:10.1155/2018/2403935.; de Jager. Cytokines in juvenile idiopathic arthritis. Ann. Rheum. Dis., 2017, Vol. 76, no. 2, pp. 16-17.; de Jager, Hoppenreijs E.P.A.H., Wulffraat N.M., Wedderburn L.R, Kuis W., Prakken B.J. Blood and synovial fluid cytokine signatures in patients with juvenile idiopathic arthritis: a cross-sectional study. Ann. Rheum. Dis., 2007, no. 66, pp. 589-598.; Dong C., Fu T., Ji J., Li Z., Gu Z. The role of interleukin-4 in rheumatic diseases. Clin. Exp. Pharmacol. Physiol., 2018, Vol. 45, no. 8, pp. 747-754.; Guo L., Lu M.P., Dong G.J., Teng L.P., Xu Y.P., Zou L.X., Zheng Q. Clinical and laboratory features of macrophage activation syndrome. Zhongguo Dang Dai Er Ke Za Zhi, 2017, Vol. 19, no. 2, pp. 188-192.; Guo L., Lu M.P., Tang Y.M., Teng L.P., Xu Y.P., Zou L.X., Zheng R.J., Zheng Q. Serum cytokine levels in children with newly diagnosed active systemic juvenile idiopathic arthritis. Zhongguo Dang Dai Er Ke Za Zhi, 2014, Vol. 16, no. 12, pp. 1241-1244.; Gohar F., Kessel Ch., Lavric M., Holzinger D., Foell D. Review of biomarkers in systemic juvenile idiopathic arthritis: helpful tools or just playing tricks? Arthritis Res. Ther., 2016, Vol. 18, p. 163.; Harsini S., Ziaee V., Maddah M., Rezaei A., Sadr M., Zoghi S., Moradinejad M.H., Tahghighi F., Aghighi Y., Rezaei N. Interleukin 10 and transforming growth factor beta 1 gene polymorphisms in juvenile idiopathic arthritis. Bratisl. Med. J., 2016, Vol. 117, no. 5, рр. 258-262.; Heney D., Whicher T.J. Factors affecting the measurement of cytokines in biological fluids: implications for their clinical measurement. Ann. Clin. Biochem., 1995, no. 32, pp. 358-368.; Hong K.H., Cho M.L., Min S.Y., Shin Y.J., Yoo S.A., Choi J.J., Kim W.U., Song S.W., Chо C.S. Effect of interleukin-4 on vascular endothelial growth factor production in rheumatoid synovial fibroblasts. Clin. Exp. Immunol., 2007, Vol. 147, no. 3, pp. 573-579.; Horai R., Saijo S., Tanioka H., Nakae S., Sudo K., Okahara A., Ikuse T., Asano M., Iwakura Y. Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist-deficient mice. J. Exp. Med., 2000, Vol. 191, no. 2, рр. 313-320.; Huang J.L., Kuo M.L., Hung I.J., Wu C.J., Ou L.H., Cheng J.H. Lowered IL-4-producing T cells and decreased IL-4 secretion in peripheral blood from subjects with juvenile rheumatoid arthritis. Chang Gung Med. J., 2001, Vol. 24, no. 2, pp. 77-83.; Johdi N.A., Mazlan L., Sagap I., Jamal R. Profiling of cytokines, chemokines and other soluble proteins as a potential biomarker in colorectal cancer and polyps. Cytokine, 2017, no. 99, рр. 35-42.; Kawasumi H., Gono T., Tanaka E., Kaneko H., Kawaguchi Y., Yamanaka H. Clinical characteristics and cytokine profiles of organizing pneumonia in patients with rheumatoid arthritis treated with or without biologics. J. Rheumatol., 2014, Vol. 43, no. 4, pp. 738-744.; Kutukculer N., Caglayan S., Aydogdu F. Study of pro-inflammatory (TNF-alpha, IL-1alpha, IL-6) and T-cellderived (IL-2, IL-4) cytokines in plasma and synovial fluid of patients with juvenile chronic arthritis: correlations with clinical and laboratory parameters. Clin. Rheumatol., 1998, Vol. 17, no. 4, pp. 288-292.; Lee C.K., Lee E.Y., Chung S.M., Mun S.H., Yoo B., Moon H.B. Effects of disease-modifying antirheumatic drugs and antiinflammatory cytokines on human osteoclastogenesis through interaction with receptor activator of nuclear factor kappa B, osteoprotegerin, and receptor activator of nuclear factor kappa B ligand. Arthritis Rheum., 2004, Vol. 50, no. 12, pp. 3831-3843.; Lijiao J., Meiping L.U., Li G., Jianqiang W.U., Lixia Z., Yiping X.U. Serum levels of Th1/Th2 cytokines in children with non-systemic juvenile idiopathic arthritis. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2016, Vol. 45, no. 3, pp. 281-286.; Muller K., Herner E.B., Stagg A., Bendtzen K., Woo P. Inflammatory cytokines and cytokine antagonists in whole blood cultures of patients with systemic juvenile chronic arthritis. Br. J. Rheumatol., 1998, Vol. 37, no. 5, pp. 562-569.; Opal S.M., DePalo V.A. Anti-inflammatory cytokines. Chest, 2000, Vol. 117, no. 4, pp. 1162-1172.; Paramalingam S.S., Thumboo J., Vasoo S., Thio S.T., Connie Tse C., Fong K-Y. In vivo pro- and antiinflammatory cytokines in normal and patients with rheumatoid arthritis. Ann. Acad. Med. Singapore, 2007, Vol. 36, pp. 96-99.; Park M.J., Lee S.H., Kim E.K., Lee E.J., Baek J.A., Park S.H., Kwok S.K., Cho M.L. Interleukin-10 produced by myeloid-derived suppressor cells is critical for the induction of Tregs and attenuation of rheumatoid inflammation in mice. Sci. Rep., 2018, Vol. 8, no. 1, p. 3753.; Petra A.I., Tsilioni I., Taracanova A., Katsarou-Katsari A., Theoharides T.C. Interleukin 33 and interleukin 4 regulate interleukin 31 gene expression and secretion from human laboratory of allergic diseases 2 mast cells stimulated by substance P and/or immunoglobulin E. Allergy Asthma Proc., 2018, no. 39, pp. 153-160.; Pignatti P., Vivarelli M., Meazza C., Rizzolo M.G., Martini A., De Benedetti F. Abnormal regulation of interleukin 6 in systemic juvenile idiopathic arthritis. J. Rheumatol., 2001, Vol. 28, no. 7, pp. 1670-1676.; Prieur A.M., Roux-Lombard P., Dayer J.M. Dynamics of fever and the cytokine network in systemic juvenile arthritis. Rev. Rhum. Engl. Ed., 1996, Vol. 63, no. 3, рр. 163-170.; Raziuddin S., Bahabri S., Al-Dalaan, Siraj A.K., Al-Sedairy S. A mixed Th1/Th2 cell cytokine response predominantes in systemic onset juvenile rheumatoid arthritis: immunoregulatory IL-10 function. Clin. Immunol. Immunopatol., 1998, no. 86, pp. 192-198.; Sadeghi A., Pezeshgi A., Karimimoghaddam A., Moghimi M., Kamali K., Naseri M., Esmaeilzadeh A. Evaluation of anti-mutated citrullinated vimentin antibodies, anti-cyclic citrullinated peptide antibodies in patients with rheumatoid arthritis in comparison with other rheumatic diseases; a nephrology point of view. J. Nephropharmacol., 2017, Vol. 6, no. 2, рр. 98-105.; Sapan H.B., Paturusi I., Jusuf I., Patellongi I., Massi M.N., Pusponegoro A.D., Arief S.K., Labeda I., Islam A.A., Rendy L., Hatta M. Pattern of cytokine (IL-6 and IL-10) level as inflammation and anti-inflammation mediator of multiple organ dysfunction syndrome (MODS) in polytrauma. Int. J. Burn Trauma, 2016, Vol. 6, no. 2, pp. 37-43.; Singh A.K., Misra R., Aggarwal A. Th-17 associated cytokines in patients with reactive arthritis/undifferentiated spondyloarthropathy. Clin. Rheumatol., 2011, Vol. 30, no. 6, pp. 771-776.; Shahin A.A., Shaker O.G., Kamal N., Hafez H.A., Gaber W., Shahin H.A. Circulating interleukin-6, soluble interleukin-2 receptors, tumor necrosis factor alpha, and interleukin-10 levels in juvenile chronic arthritis: correlations with soft tissue vascularity assessed by power Doppler sonography. Rheumatol Int., 2002, Vol. 22, no. 2, pp. 84-88.; Swart J.F, van Dijkhuizen E.H.P., Wulffraat N.M., Sytze de Roock. Clinical juvenile arthritis disease activity score proves to be a useful tool in treat-to-target therapy in juvenile idiopathic arthritis. Ann. Rheum. Dis., 2018, Vol. 77, pp. 336-342.; Tong Y., Yang T., Wang J., Zhao T., Wang L., Kang Y., Cheng C., Fan Y. Elevated plasma chemokines for eosinophils in neuromyelitis optica spectrum disorders during remission. Front. Neurol., 2018, Vol. 9, no. 44, pp. 1-7.; Vastert S.J., de Jager W., Noordman B.J., Holzinger D., Kuis W., Prakken B.J., Wulffraat N.M. Effectiveness of first-line treatment with recombinant interleukin-1 receptor antagonist in steroid-naive patients with new-onset systemic juvenile idiopathic arthritis. Arthritis Rheumatol., 2014, Vol. 66, no. 4, pp. 1034-1043.; Yamamoto A., Sato К., Miyoshi F., Shindo Y., Yoshida Y., Yokota K., Nakajima K., Akiba H., Asanuma Y., Akiyama Y., Mimura T. Analisis of cytokine production patterns of peripheriel blood mononuclear cells from a rheumatoid arthritis patient successfully treated witch rituximab. Mod. Rheumatol., 2010, no. 2, pp. 183-187.; Yoshimura A., Wakabayashi Y., Mori T. Cellular and molecular basis for the regulation of inflammation by TGF-beta. J. Biochem., 2010, Vol. 147, no. 6, рр. 781-792.; Yu F.Y., Xie C.Q., Jiang C.L., Sun J.T., Huang X.W. TNFα increases inflammatory factor expression in synovial fibroblasts through the toll like receptor 3 mediated ERK/AKT signaling pathway in a mouse model of rheumatoid arthritis. Mol. Med. Rep., 2018, Vol. 17, no. 6, pp. 8475-8483.; https://www.mimmun.ru/mimmun/article/view/1882

  16. 16
  17. 17
    Academic Journal

    Relation: http://rour.neicon.ru:80/xmlui/bitstream/rour/206981/1/nora.pdf; Храмченкова, О.М. Цитотоксическая активность ацетоновых экстрактов из лишайников в отношении линии кератиноцитов человека HaCAT / О.М. Храмченкова, М.В. Матвеенков // Известия Гомельского государственного университета имени Ф. Скорины. Сер.: Естественные науки. – 2018. – № 3 (108). – С. 81–86.; https://openrepository.ru/article?id=206981

  18. 18
    Academic Journal

    Source: Problems of Particularly Dangerous Infections; № 4 (2018); 6-14 ; Проблемы особо опасных инфекций; № 4 (2018); 6-14 ; 2658-719X ; 0370-1069 ; 10.21055/0370-1069-2018-4

    File Description: application/pdf

    Relation: https://journal.microbe.ru/jour/article/view/1080/989; Armstrong N., Hou W., Tang Q. Biological and historical overview of Zika virus. WorldJ. Virol. 2017; 6(1):1-8. DOI:10.5501/wjv.v6.i1.1.; Sikka V, Chattu V K., Popli R.K., Galwankar S.C., Kelkar D., Sawicki S.G., Stawicki S.P, Papadimos T. J. The Emergence of Zika Virus as a Global Health Security Threat: A Review and a Consensus Statement of the INDUSEM Joint Working Group (JWG). J. Glob. Infect. Dis. 2016, 8(1):3—15. DOI:10.4103/0974-777X.176140.; Bearcroft W.G. Zika virus infection experimentally induced in a human volunteer. Trans. R. Soc. Trop. Med. Hyg. 1956; 50(5):442-8. PubMed PMID: 13380987.; Lanciotti R.S., Kosoy O.L., Laven J.J., Velez J.O., Lambert A.J., Johnson A.J., Stanfield S.M., Duffy M.R. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007; Emerg. Infect. Dis. 2008; 14(8):1232—9. DOI:10.3201/eid1408.080287.; Попова А.Ю., Ежлова Е.Б., Демина Ю.В., Топорков А.В., Викторов Д.В., Смелянский В.П., Жуков К.В., Бородай Н.В., Шпак И.М., Куличенко А.Н., Михеев ВН., Малеев В.В., Шипулин А.Г. Лихорадка Зика: состояние проблемы на современном этапе. Проблемы особо опасных инфекций. 2016; 1:5—12. DOI:10.21055/0370-1069-2016-1-5-12.; Acosta-Reyes J., Navarro E., Herrera M.J., Goenaga E., Ospina M.L., Parra E., Mercado M., Chaparro P., Beltran M., Gunturiz M.L., Pardo L., Valencia C., Huertas S., Rodriguez J., Ruiz G., Valencia D., Haddad L.B., Tinker S.C., Moore C.A., Baquero H. Severe Neurologic Disorders in 2 Fetuses with Zika Virus Infection, Colombia. Emerg. Infect. Dis. 2017; 23(6):982-4. DOI:10.3201/eid2306.161702.; Waggoner J.J., Pinsky B.A. Zika Virus: Diagnostics for an Emerging Pandemic Threat. J. Clin. Microbiol. 2016; 54(4):860-7. DOI:10.1128/JCM.00279-16.; Nicastri E., Castilletti C., Balestra P., Galgani S., Ippolito G. Zika Virus Infection in the Central Nervous System and Female Genital Tract. Emerg. Infect. Dis. 2016; 22(12):2228-30. DOI:10.3201/eid2212.161280.; Allard A., Althouse B.M., Hebert-Dufresne L., Scarpino S.V. The risk of sustained sexual transmission of Zika is underestimated. PLoS Pathog. 2017; 13(9):e1006633. DOI:10.1371/journal.ppat.1006633.; Vorona G.A., Lanni S.M. Fetal Magnetic Resonance Imaging Evaluation of a 21-Week Fetus With Zika Virus Infection. Pediatr. Neurol. 2016; 65:98-9. DOI:10.1016/j.pediatrneurol.2016.07.014.; Sanin-Blair J.E., Gutierrez-Marquez C., Herrera D.A Vossough A. Fetal Magnetic Resonance Imaging Findings in Prenatal Zika Virus Infection. Fetal. Diagn. Ther. 2017; 42(2):153-7. DOI:10.1159/000454860.; Linden V.V., Linden H.V. Junior, Leal M.C., Rolim E.L. Filho, Linden A.V., Aragao M.F.V.V., Brainer-Lima A.M., Cruz D.D.C.S., Ventura L.O., Florencio T.L.T., Cordeiro M.T., Caudas S.D.S. Neto, Ramos R.C. Discordant clinical outcomes of congenital Zika virus infection in twin pregnancies. Arq. Neuropsiquiatr. 2017; 75(6):381-6. DOI:10.1590/0004-282X20170066.; de Araujo T.V., Martelli C.T., de Souza W.V. Zika virus and microcephaly - Authors’ reply. Lancet. Infect. Dis. 2016; 16(12):1332. DOI:10.1016/S1473-3099(16)30457-1.; Schwartzmann P.V., Ramalho L.N., Neder L., Vilar F.C., Ayub-Ferreira S.M., Romeiro M.F., Takayanagui O.M., Dos Santos A.C., Schmidt A., Figueiredo L.T., Arena R., Simoes M.V. Zika Virus Meningoencephalitis in an Immunocompromised Patient. Mayo Clin. Proc. 2017; 92(3):460-6. DOI:10.10167j.mayocp.2016.12.019.; Wijdicks E.F., Klein C.J. Guillain-Barre Syndrome. Mayo Clin. Proc. 2017;92(3):467-479. DOI:10.1016/j.mayocp.2016.12.002.; Edupuganti S., Natrajan M.S., Rouphael N., Lai L., Xu Y, Feldhammer M., Hill C., Patel S.M., Johnson S.J., Bower M., Gorchakov R., Berry R., Murray K.O., Mulligan M.J. Biphasic Zika Illness With Rash and Joint Pain. Open Forum Infect. Dis. 2017; 4(3):ofx133. DOI:10.1093/ofid/ofx133.; Priyamvada L., Quicke K.M., Hudson W.H., Onlamoon N., Sewatanon J., Edupuganti S., Pattanapanyasat K., Chokephaibulkit K., Mulligan M.J., Wilson P.C., Ahmed R., Suthar M.S., Wrammert J. Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus. Proc. Natl. Acad. Sci USA. 2016; 113(28):7852-7. DOI:10.1073/pnas.1607931113.; Lum F.M., Couderc T., Chia B.S., Ong R.Y, Her Z., Chow A., Leo YS., Kam YW., Renia L., Lecuit M., Ng L.F.P. Antibody-mediated enhancement aggravates chikungunya virus infection and disease severity. Sci. Rep. 2018; 8(1):1860. DOI:10.1038/s41598-018-20305-4.; Rastogi M., Sharma N., Singh S.K. Flavivirus NS1: a multifaceted enigmatic viral protein. Virol. J. 2016; 13:131. DOI:10.1186/s12985-016-0590-7.; Chuang Y.C., Lin J., Lin YS., Wang S., Yeh T.M. Dengue Virus Nonstructural Protein 1-Induced Antibodies Cross-React with Human Plasminogen and Enhance Its Activation. J. Immunol. 2016; 196(3):1218-26. DOI:10.4049/jimmunol.1500057.; Xia H., Luo H., Shan C., Muruato A.E., Nunes B.T.D., Medeiros D.B.A., Zou J., Xie X., Giraldo M.I., Vasconcelos P.F.C., Weaver S.C., Wang T., Rajsbaum R., Shi P.Y. An evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction. Nat. Commun. 2018; 9(1):414. DOI:10.1038/s41467-017-02816-2.; Esteves E., Rosa N., Correia M.J., Arrais J.P., Barros M. New Targets for Zika Virus Determined by Human-Viral Interactomic: A Bioinformatics Approach. Biomed Res. Int. 2017; 2017:1734151. DOI:10.1155/2017/1734151.; Lin D., Li L., Xie T., Yin Q., Saksena N., Wu R., Li W., Dai G., Ma J., Zhou X., Chen X. Codon usage variation of Zika virus: the potential roles of NS2B and NS4A in its global pandemic. Virus Res. 2018; 247:71-83. DOI:10.1016/j.virusres.2018.01.014.; Koma T., Veljkovic V, Anderson D.E., Wang L.F., Rossi S.L., Shan C., Shi P.Y’, Beasley D.W., Bukreyeva N., Smith J.N., Hallam S., Huang C., von Messling V, Paessler S. Zika virus infection elicits auto-antibodies to C1q. Sci. Rep. 2018; 8(1):1882. DOI:10.1038/s41598-018-20185-8.; Sheridan M.A., Yunusov D., Balaraman V, Alexenko A.P, Yabe S., Verjovski-Almeida S., Schust D.J., Franz A.W., Sadovsky Y, Ezashi T., Roberts R.M. Vulnerability of primitive human placental trophoblast to Zika virus. Proc. Natl. Acad. Sci. USA. 2017; 114(9):E1587-E1596. DOI:10.1073/pnas.1616097114.; Pagani I., Ghezzi S., Ulisse A., Rubio A., Turrini F., Garavaglia E., Candiani M., Castilletti C., Ippolito G., Poli G., Broccoli V, Panina-Bordignon P., Vicenzi E. Human Endometrial Stromal Cells Are Highly Permissive to Productive Infection by Zika Virus. Sci. Rep. 2017; 7:44286. DOI:10.1038/srep44286.; Lanko K., Eggermont K., Patel A., Kaptein S., Delang L., Verfaillie C.M., Neyts J. Replication of the Zika virus in different iPSC-derived neuronal cells and implications to assess efficacy of antivirals. Antiviral Res. 2017; 145:82-6. DOI:10.1016/j.antiviral.2017.07.010.; Oh Y., Zhang F., Wang Y, Lee E.M., Choi I.Y, Lim H., Mirakhori F., Li R., Huang L., Xu T., Wu H., Li C., Qin C.F., Wen Z., Wu Q.F., Tang H., Xu Z., Jin P., Song H., Ming G.L., Lee G. Zika virus directly infects peripheral neurons and induces cell death. Nat. Neurosci. 2017; 20(91:1209-12. DOI:10.1038/nn.4612.; Cairns D.M., Chwalek K., Moore YE., Kelley M.R., Abbott R.D., Moss S., Kaplan D.L. Expandable and Rapidly Differentiating Human Induced Neural Stem Cell Lines for Multiple Tissue Engineering Applications. Stem Cell Reports. 2016; 7(3):557—570. DOI:10.1016/j.stemcr.2016.07.017.; Chan J.F., Yip C.C., Tsang J.O., Tee K.M., Cai J.P., Chik K.K., Zhu Z., Chan C.C., Choi G.K., Sridhar S., Zhang A.J., Lu G., Chiu K., Lo A.C., Tsao S.W., Kok K.H., Jin D.Y, Chan K.H., Yuen K.Y Differential cell line susceptibility to the emerging Zika virus: implications for disease pathogenesis, non-vector-borne human transmission and animal reservoirs. Emerg. Microbes Infect. 2016; 5:e93. DOI:10.1038/emi.2016.99.; Morrison T.E., Diamond M.S. Animal Models of Zika Virus Infection, Pathogenesis, and Immunity. J. Virol.2017; 91(8): e00009-17. DOI:10.1128/JVI.00009-17.; Newman C.M., Dudley D.M., Aliota M.T., Weiler A.M., Barry G.L., Mohns M.S., Breitbach M.E., Stewart L.M., Buechler C.R., Graham M.E., Post J., Schultz-Darken N., Peterson E., Newton W., Mohr E.L., Capuano S. 3rd, O’Connor D.H., Friedrich T.C. Oropharyngeal mucosal transmission of Zika virus in rhesus ma-caques. Nat. Commun. 2017; 8(1):169. DOI:10.1038/s41467-017-00246-8.; Silveira E.L.V., Rogers K.A., Gumber S., Amancha P., Xiao P., Woollard S.M., Byrareddy S.N., Teixeira M.M., Villinger F. Immune Cell Dynamics in Rhesus Macaques Infected with a Brazilian Strain of Zika Virus. J. Immunol. 2017; 199(3):1003—11. DOI:10.4049/jimmunol.1700256.; Carroll T., Lo M., Lanteri M., Dutra J., Zarbock K., Silveira P., Rourke T., Ma Z.M., Fritts L., O’Connor S., Busch M., Miller C.J. Zika virus preferentially replicates in the female reproductive tract after vaginal inoculation of rhesus macaques. PLoS Pathog. 2017; 13(7):e1006537. DOI:10.1371/journal.ppat.1006537.; Mohr E.L., Block L.N., Newman C.M., Stewart L.M., Koenig M., Semler M., Breitbach M.E., Teixeira L.B.C., Zeng X., Weiler A.M., Barry G.L., Thoong T.H., Wiepz G.J., Dudley D.M., Simmons H.A., Mejia A., Morgan T.K., Salamat M.S., Kohn S., Antony K.M., Aliota M.T., Mohns M.S., Hayes J.M., Schultz-Darken N., Schotzko M.L., Peterson E., Capuano S. 3rd, Osorio J.E., O’Connor S.L., Friedrich T.C., O’Connor D.H., Golos T.G. Ocular and uteroplacental pathology in a macaque pregnancy with con¬genital Zika virus infection. PLoS One. 2018; 13(1):e0190617. DOI:10.1371/journal.pone.0190617.; Mavigner M., Raper J., Kovacs-Balint Z., Gumber S., O’Neal J.T., Bhaumik S.K, Zhang X., Habib J., Mattingly C., McDonald C.E., Avanzato V, Burke M.W., Magnani D.M., Bailey V.K., Watkins D.I., Vanderford T.H., Fair D., Earl E., Feczko E., Styner M., Jean S.M., Cohen J.K., Silvestri G., Johnson R.P., O’Connor D.H., Wrammert J., Suthar M.S., Sanchez M.M., Alvarado M.C., Chahroudi A. Postnatal Zika virus infection is associated with persistent abnormalities in brain structure, function, and behavior in infant macaques. Sci. Transl. Med. 2018; 10(435): eaao6975. DOI:10.1126/scitranslmed.aao6975.; Darbellay J., Lai K., Babiuk S., Berhane Y, Ambagala A., Wheler C., Wilson D., Walker S., Potter A., Gilmour M., Safronetz D., Gerdts V, Karniychuk U. Neonatal pigs are susceptible to experimental Zika virus infection. Emerg. Microbes Infect. 2017; 6(2):e6. DOI:10.1038/emi.2016.133.; Wichgers Schreur P. J., van Keulen L., Anjema D., Kant J., Kortekaas J. Microencephaly in fetal piglets following in utero in-oculation of Zika virus. Emerg. Microbes Infect. 2018; 7(1):42. DOI:10.1038/s41426-018-0044-y.; Winkler C.W., Woods T.A., Rosenke R., Scott D.P., Best S.M., Peterson K.E. Sexual and Vertical Transmission of Zika Virus in anti-interferon receptor-treated Rag1-deficient mice. Sci. Rep. 2017; 7(1):7176. DOI:10.1038/s41598-017-07099-7.; Zukor K., Wang H., Siddharthan V., Julander J.G., Morrey J.D. Zika virus-induced acute myelitis and motor deficits in adult in-terferon afi/y receptor knockout mice. J. Neurovirol. 2018; 24(3):273— 290. DOI:10.1007/s13365-017-0595-z.; Rossi S.L., Tesh R.B., Azar S.R., Muruato A.E., Hanley K.A., Auguste A.J., Langsjoen R.M., Paessler S Vasilakis N., Weaver S.C. Characterization of a Novel Murine Model to Study Zika Virus. Am. J. Trop. Med. Hyg. 2016; 94(6):1362-9. DOI:10.4269/ajtmh.16-0111.; Dowall S.D., Graham V.A, Rayner E., Hunter L., Atkinson B., Pearson G., Dennis M., Hewson R. Lineage-dependent differences in the disease progression of Zika virus infection in type-I interferon receptor knockout (A129) mice. PLoS Negl. Trop. Dis. 2017; 11(7):e0005704. DOI:10.1371/iournal.nntd.0005704.; Secundino N.F.C., Chaves B.A., Orfano A.S., Silveira K. R.D., Rodrigues N.B., Campolina T.B., Nacif-Pimenta R., Villegas L.E.M., Silva B.M., Lacerda M.V.G., Norris D.E., Pimenta P.F.P. Zika virus transmission to mouse ear by mosquito bite: a laboratory model that replicates the natural transmission process. Parasit. Vectors. 2017; 10(1):346. DOI:10.1186/s13071-017-2286-2.; Uraki R., Hwang J., Jurado K.A., Householder S., Yockey L.J., Hastings A.K., Homer R.J., Iwasaki A., Fikrig E. Zika virus causes testicular atrophy. Sci. Adv. 2017; 3(2):e1602899. DOI:10.1126/sciadv.1602899.; Sheng Z.Y, Gao N., Wang Z.Y., Cui X.Y, Zhou D.S., Fan D.Y, Chen H., Wang P.G., An J. Sertoli Cells Are Susceptible to ZIKV Infection in Mouse Testis. Front. Cell Infect. Microbiol. 2017; 7:272. DOI:10.3389/fcimb.2017.00272.; Shi Y, Li S., Wu Q., Sun L., Zhang J., Pan N., Wang Q., Bi Y, An J., Lu X., Gao G.F., Wang X. Vertical Transmission of the Zika Virus Causes Neurological Disorders in Mouse Offspring. Sci. Rep. 2018; 8611:3541. DOI:10.1038/s41598-018-21894-w.; Miller L.J., Nasar F., Schellhase C.W., Norris S.L., Kimmel A.E., Valdez S.M., Wollen-Roberts S.E., Shamblin J.D., Sprague T.R., Lugo-Roman L.A., Jarman R.G., Yoon I.K., Alera M.T., Bavari S., Pitt M.L.M., Haddow A.D. Zika Virus Infection in Syrian Golden Hamsters and Strain 13 Guinea Pigs. Am. J. Trop. Med. Hyg. 2018; 98(3):864-7. DOI:10.4269/ajtmh.17-0686.; Goodfellow F.T., Tesla B., Simchick G., Zhao Q., Hodge T., Brindley M.A, Stice S.L. Zika Virus Induced Mortality and Microcephaly in Chicken Embryos. Stem Cells Dev. 2016; 25(22):1691-7. DOI:10.1089/scd.2016.0231.; Cairns D.M., Boorgu D.S.S.K., Levin M., Kaplan D.L. Niclosamide rescues microcephaly in a humanized in vivo model of Zika infection using human induced neural stem cells. Biol. Open. 2018; 7(1): bio031807. DOI:10.1242/bio.031807.; Chen Q., Wu J., Ye Q., Ma F., Zhu Q., Wu Y, Shan C., Xie X., Li D., Zhan X., Li C., Li X.F., Qin X., Zhao T., Wu H., Shi P.Y., Man J., Qin C.F. Treatment of Human Glioblastoma with a Live Attenuated Zika Virus Vaccine Candidate. MBio. 2018; 9(5):e01683— 18. DOI:10.1128/mBio.01683-18.; https://journal.microbe.ru/jour/article/view/1080

  19. 19
    Academic Journal

    Source: Food systems; Vol 1, No 3 (2018); 33-37 ; Пищевые системы; Vol 1, No 3 (2018); 33-37 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2018-1-3

    File Description: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/17/51; https://www.fsjour.com/jour/article/view/17/52; Каркищенко, Н.Н. (2005). Основы биомоделирования. М, Издательство ВПК. — 608 с. ISBN5–902313–04-X; Anisimov, V.N., Khavinson, V. Kh. (2010). Peptide bioregulation of aging: Results and prospects. Biogerontology, 11(2), 139–149.; Гильдеева, Г.Н. (2015). Актуальные проблемы доклинических исследований: переход к альтернативной in vitro-токсикологии. Вестник Росздравнадзора, 5, 59–62.; Garle, M.J., Fentem, J.H., Fry, J.R. (1994).In vitro cytotoxicity tests for the prediction of acute toxicityin vivo. Toxicology in vitro, 8(6), 1303–1312.; Holme, J.A., Dybing, E. (2002). The use of in vitro methods for hazard characterization of chemicals. Toxicology Letters, 127(1–3), 135–141.; Guth,K., Schäfer-Korting, M., Fabian, E., Landsiedel, R., van Ravenzwaay, B.(2015). Suitability of skin integrity tests for dermal absorption studies in vitro. Toxicology in Vitro, 29(1), 113–123.; Verstraelen, S., Jacobs, A., De Wever, B., Vanparys, P. (2013). Improvement of the Bovine Corneal Opacity and Permeability (BCOP) assay as an in vitro alternative to the Draize rabbit eye irritation test. Toxicology in Vitro, 27(4), 1298–1311.; Трахтенберг, И.М., Коваленко, В.М., Кокшарова, Н.В., Жминько, П.Г. (2008). Альтернативные методы и тест-системы. Лекарственная токсикология. Киев, Авицена. —272 с.; Satish Rao, B.S., Sreedevi, M.V., Nageshwar Rao,B. (2009). Cytoprotective and antigenotoxic potential of Mangiferin, a glucosylxanthone against cadmium chloride induced toxicity in HepG2 cells. Food Chemical Toxicology, 47(3), 592–600.; Camenisch, G., Alsenz, J., Van De Waterbeemd, H., Folkers, G. (1998). Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs’ lipophilicity and molecular weight. European Journal of Pharmaceutical Sciences, 6(4), 313–319.; Sambuy, Y., De Angelis, I., Ranaldi, G., Scarino, M.L., Stammati, A., Zucco, F. (2005). The Caco-2 cell line as a model of the intestinal barrier: Influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biology and Toxicology, 21(6), 1–26.; Friberg, D., Bryant, J., Shannon, W., Whiteside, T.L. (1994). In vitro cytokine production by normal human peripheral blood mononuclear cells to measure their immunocompetence and state of activation. Clinical and Diagnostic Laboratory Immunology, 1(3), 261–268.; Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237.; Al-Nasiry, S., Geusens, N., Hanssens, M., Luyten, C., Pijnenborg, R. (2007). The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Human Reproduction, 22(5), 1304–1309.; Лисицкая, К.В., Николаев, И.В., Торкова, А.А., Попов, В.О., Королёва, О.В. (2012). Анализ функциональных свойств биологически активных веществ на моделях эукариотических клеток (обзор). Прикладная биохимия и микробиология, 48(6), 581–598.; Van Vark, L.C., Bertrand, M., Akkerhuis, K.M., Brugts, J.J., Fox, K., Mourad, J.J., Boersma E. (2012). Angiotensin-converting enzyme inhibitors reduce mortality in hypertension: A meta-analysis of randomized clinical trials of renin-angiotensin-aldosterone system inhibitors involving 158 998 patients. European Heart Journal, 33(16), 2088–2097.; https://www.fsjour.com/jour/article/view/17

  20. 20