-
1Academic Journal
Subject Terms: Беларусь, ксенотрансплантация клеток, сахарный диабет, поджелудочная железа
File Description: application/pdf
Access URL: https://rep.vsu.by/handle/123456789/46519
-
2Academic Journal
Authors: Чиркин, А. А., Подолинский, С. Г., Доценко, Э. А.
Subject Terms: ксенотрансплантация клеток, поджелудочная железа, сахарный диабет, Беларусь
File Description: application/pdf
Relation: 5e415b021435db78fe25df71225dfa9a; https://rep.vsu.by/handle/123456789/46519
Availability: https://rep.vsu.by/handle/123456789/46519
-
3Academic Journal
Authors: З.А. Жураев
Subject Terms: Этика, биология, ксенотрансплантация, реинкарнация, взаимоотношения, эвтаназия
Relation: https://zenodo.org/records/5651799; oai:zenodo.org:5651799; https://doi.org/10.5281/zenodo.5651799
-
4Academic Journal
Authors: Флориан Штегер
Source: Медицина и организация здравоохранения, Vol 5, Iss 2 (2020)
Subject Terms: Фриц Яр, моральная философия, Европейская концепция биоэтики, биоэтический императив, этика животных и растений, ксенотрансплантация, Medicine (General), R5-920
File Description: electronic resource
-
5Academic Journal
Source: Медицина и организация здравоохранения, Vol 5, Iss 2 (2020)
-
6Academic Journal
Authors: V. A. Svyatchenko, I. A. Razumov, E. V. Protopopova, A. V. Demina, O. I. Solovieva, E. L. Zavjalov, V. B. Loktev, В. А. Святченко, И. А. Разумов, Е. В. Протопопова, А. В. Демина, О. И. Соловьева, Е. Л. Завьялов, В. Б. Локтев
Source: Vavilov Journal of Genetics and Breeding; Том 22, № 8 (2018); 1040-1045 ; Вавиловский журнал генетики и селекции; Том 22, № 8 (2018); 1040-1045 ; 2500-3259
Subject Terms: ксенотрансплантация, virotherapy, glioblastoma U87 MG, xenotransplantation, виротерапия, глиобластома U87
File Description: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/1807/1163; Akiyama B.M., Laurence H.M., Massey A.R., Costantino D.A., Xie X., Yang Y., Shi P.-Y., Nix J.C., Beckham J.D., Kieft J.S. Zika virus produces noncoding RNAs using a multi-pseudoknot structure that confounds a cellular exonuclease. Science. 2016;354:1148-1152. DOI 10.1126/science.aah3963.; Alonso M.M., Jiang H., Gomez-Manzano C., Fueyo J. Targeting brain tumor stem cells with oncolytic adenoviruses. Methods Mol. Biol. 2012;797:111-125. DOI 10.1007/978-1-61779-340-0_9.; Alvarado A.G., Thiagarajan P.S., Mulkearns-Hubert E.E., Silver D.J., Hale J.S., Alban T.J., Turaga S.M., Jarrar A., Reizes O., Longworth M.S. Glioblastoma cancer stem cells evade innate immune suppression of self-renewal through reduced TLR4 expression. Cell. Stem. Cell. 2017;20:450-461.e4. DOI 10.1016/j.stem.2016.12.001.; Bao S., Wu Q., McLendon R.E., Hao Y., Shi Q., Hjelmeland A.B., Dewhirst M.W., Bigner D.D., Rich J.N. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756-760. DOI 10.1038/nature05236.; Cassady K.A., Bauer D.F., Roth J., Chambers M.R., Shoeb T., Coleman J., Prichard M., Gillespie G.Y., Markert J.M. Pre¬clinical assessment of C134, a chimeric oncolytic herpes simplex virus, in mice and nonhuman primates. Mol. Ther. Oncolytics. 2017;5:1-10. DOI 10.1016/j.omto.2017.02.001.; Cattaneo R., Russell S.J. How to develop viruses into anticancer weapons. PLoS Pathog. 2017;13:e1006190. DOI 10.1371/journal.ppat.1006190.; Chanas A.C., Johnson B.K., Simpson D.I. Antigenic relationships of alphaviruses by a simple micro-culture cross-neutralization method. J. Gen. Virol. 1976;32:295-300. DOI 10.1099/0022-1317-32-2-295.; Chen J., Li Y., Yu T.S., McKay R.M., Burns D.K., Kernie S.G., Parada L.F. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488:522-526. DOI 10.1038/nature11287.; Garcez P.P., Loiola E.C., Madeiro da Costa R., Higa L.M., Trindade P., Delvecchio R., Nascimento J.M., Brindeiro R., Tanuri A., Rehen S.K. Zika virus impairs growth in human neurospheres and brain organoids. Science. 2016;352:816-818. DOI 10.1126/science.aaf6116.; Kaufmann J.K., Chiocca E.A. Glioma virus therapies between bench and bedside. Neuro-Oncology. 2014;16:334-351. DOI 10.1093/neuonc/not310.; Lazear H.M., Govero J., Smith A.M., Platt D.J., Fernandez E., Miner J.J., Diamond M.S. A mouse model of Zika virus pathogenesis. Cell. Host. Microbe. 2016;19:720-730. DOI 10.1016/j.chom.2016.03.010.; Li H., Saucedo-Cuevas L., Regla-Nava J.A., Chai G., Sheets N., Tang W., Terskikh A.V., Shresta S., Gleeson J.G. Zika virus infects neural progenitors in the adult mouse brain and alters proliferation. Cell Stem Cell. 2016;19:593-598. DOI 10.1016/j.stem.2016.08.005.; Luplertlop N., Suwanmanee S., Muangkaew W., Ampawong S., Kitisin T., Poovorawan Y. The impact of Zika virus infection on human neuroblastoma (SH-SY5Y) cell line. J. Vector Borne Dis. 2017; 54(3):207-214. PMID 29097635.; Mazar J., Li Y., Rosado A., Phelan P., Kedarinath K., Parks D., Alexander K., Westmoreland T. Zika virus as an oncolytic treatment of human neuroblastoma cells requires CD24. PLoS One. 2018;13(7): e0200358. DOI 10.1371/journal.pone.0200358.; Ming G.L., Tang H., Song H. Advances in Zika virus research: Stem cell models, challenges, and opportunities. Cell Stem Cell. 2016; 19:690-702. DOI 10.1016/j.stem.2016.11.014.; Miska J., Rashid A.I., Chang A.L., Muroski M.E., Han Y., Zhang L., Lesniak M.S. Anti-GITR therapy promotes immunity against malignant glioma in a murine model. Cancer Immunol. Immunother. 2016;65:1555-1567. DOI 10.1007/s00262-016-1912-8.; Niks M., Otto M. Towards an optimized MTT assay. J. Immunol. Methods. 1990;130:149-151. DOI 10.1016/0022-1759(90)90309-J.; Qian X., Nguyen H.N., Song M.M., Hadiono C., Ogden S.C., Hammack C., Yao B., Hamersky G.R., Jacob F., Zhong C. Brain-regionspecifc organoids using mini-bioreactors for modeling ZIKV exposure. Cell. 2016;165:1238-1254. DOI 10.1016/j.cell.2016.04.032.; Simmonds P., Becher P., Buch J., Gould E. ICTV Virus taxonomy profle: Flaviviridae. J. Gen. Virol. 2017;98(1):2-3. DOI 10.1099/jgv.0.000672.; Shan C., Xie X., Muruato A.E., Rossi S.L., Roundy C.M., Azar S.R., Yang Y., Tesh R.B., Bourne N., Barrett A.D. An infectious cDNA clone of Zika virus to study viral virulence, mosquito transmission, and antiviral inhibitors. Cell Host Microbe. 2016;19:891-900. DOI 10.1016/j.chom.2016.05.004.; Shchelkunov S.N., Razumov I.A., Kolosova I.V., Romashchenko A.V., Zavjalov E.L. Virotherapy of the malignant U87 human glioblastoma in the orthotopic xenotransplantation mouse SCID model. Dokl. Biochem. Biophys. 2018;478(1):30-33. DOI 10.1134/S1607672918010088.; Stupp R., Hegi M.E., Mason W.P., van den Bent M.J., Taphoorn M.J., Janzer R.C., Ludwin S.K., Allgeier A., Fisher B., Belanger K. National Cancer Institute of Canada Clinical Trials Group. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EOR TC-NCIC trial. Lancet Oncol. 2009;10:459-466. DOI 10.1016/S1470-2045(09)70025-7.; Swartwout B.K. Zlotnick M.G., Saver A.E., McKenna C.M., Bertke A.S. Zika virus persistently and productively infects primary adult sensory neurons in vitro. Pathogens. 2017;6(4). pii E49. DOI 10.3390/pathogens6040049.; Zhu Z., Gorman M.J., McKenzie L.D., Chai J.N., Hubert C.G., Prager B.C. Zika virus has oncolytic activity against glioblastoma stem cells. J. Exp. Med. 2017;214(10):2843-2857. DOI 10.1084/jem.20171093.; https://vavilov.elpub.ru/jour/article/view/1807
-
7Academic Journal
Authors: Evgenii G. Skurikhin, Olga Pershina, Natalia Ermakova, Angelina Pakhomova, Mariia Zhukova, Edgar Pan, Lubov Sandrikina, Darius Widera, Lena Kogai, Nikolai Kushlinskii, Aslan Kubatiev, Sergey G. Morozov, Alexander Dygai
Source: Int J Mol Sci
International Journal of Molecular Sciences; Volume 23; Issue 24; Pages: 15780
International journal of molecular sciences. 2022. Vol. 23, № 24. P. 15780 (1-16)Subject Terms: Mitogen-Activated Protein Kinase Kinases, 0301 basic medicine, 0303 health sciences, Lung Neoplasms, Льюиса карцинома легких, human reprogrammed CD8+ T-cells, Lewis lung carcinoma, C57BL/6 mice, xenotransplantation, antimetastatic activity, Programmed Cell Death 1 Receptor, мыши, CD8-Positive T-Lymphocytes, ксенотрансплантация, Article, перепрограммирование, 3. Good health, Mice, Inbred C57BL, Mice, Carcinoma, Lewis Lung, 03 medical and health sciences, CD8+Т-клетки, антиметастатическая активность, Animals, Humans, Follow-Up Studies
File Description: application/pdf
-
8Academic Journal
Authors: Цимбалюк, В. І., Пічкур, Л. Д., Вербовська, С. А., Акінола, С. Т., Васлович, В. В., Дерябіна, О. Г., Похоленко, Я. О., Топорова, О. К., Шувалова, Н. С., Кордюм, В. А., Цымбалюк, В. И., Пичкур, Л. Д., Вербовская, С. А., Акинола, С. Т., Дерябина, О. Г., Tsymbaliuk, V. I., Pichkur, L. D., Verbovska, S. А., Akinola, S. Т., Vaslovich, V. V., Deriabina, E. G., Pokholenko, I. O., Toporova, O. K., Shuvalova, N. S., Коrdium, V. А.
Subject Terms: експериментальний алергічний енцефаломієліт, мезенхімальні стовбурові клітини, інтер- лейкін-10, трансфекція гена, ксенотрансплантація, экспериментальный аллергический энцефаломиелит, мезенхимальные стволовые клетки, интерлейкин-10, трансфекция гена, ксенотрансплантация, experimental allergic encephalomyelitis, mesenchymal stem cells, interleukin-10, transfection of the gene, xenotransplantation, 575:616-089.843:611-013.395:576.3/.4:616.832-002-056.3-092.9
File Description: application/pdf
-
9Academic Journal
Source: Clinical endocrinology and endocrine surgery; № 1(42) (2013); 3-14
Клиническая эндокринология и эндокринная хирургия; № 1(42) (2013); 3-14
Клінічна ендокринологія та ендокринна хірургія; № 1(42) (2013); 3-14Subject Terms: hypocorticism, combined xenotransplantation, tissue culture, adrenal gland, hepatocytes, гипокортицизм, комбинированная ксенотрансплантация, тканевая культура, надпочечные железы, гепатоциты, 3. Good health
File Description: application/pdf
-
10Academic Journal
Authors: R. B. Aitnazarov, N. S. Yudin, R. S. Kiril’chuk, N. N. Kochnev, S. P. Knyazev, M. I. Voevoda, Р. Б. Айтназаров, Н. С. Юдин, Р. С. Кирильчук, Н. Н. Кочнев, С. П. Князев, М. И. Воевода
Source: Vavilov Journal of Genetics and Breeding; Том 20, № 6 (2016); 756-761 ; Вавиловский журнал генетики и селекции; Том 20, № 6 (2016); 756-761 ; 2500-3259
Subject Terms: ксенотрансплантация, Siberian mini pig, Large White breed, Landras breed, wild boar, porcine endogenous retrovirus, DNA, envA gene, copy number, xenotransplantation, сибирская миниатюрная свинья, крупная белая порода, порода ландрас, дикий кабан, свиной эндогенный ретровирус, ДНК, ген envA, число копий
File Description: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/846/847; Aitnazarov R.B., Nikitin S.V., Knyazev S.P., Yudin N.S. The saturation of genome of the pig by porcine endogenous retroviruses: the influence of heredity and environment. Innovatsii i prodovolstvennaya bezopasnost = Innovations and food security. 2014;2:41-49. (in Russian); Aitnazarov R.B., Yudin N.S., Nikitin S.V., Ermolayev V.I., Voevoda M.I. Identification of whole genomes of endogenous retroviruses in Siberian miniature pigs. Rus. J. Genetics: Applied Research. 2014;4(6):523-525. DOI 10.1134/S2079059714060021.; Akiyoshi D.E., Denaro M., Zhu H., Greenstein J.L., Banerjee P., Fishman J.A. Identification of a full-length cDNA for an endogenous retrovirus of miniature swine. J. Virology. 1998;72(5):4503-4507.; Bosch S., Arnauld C., Jestin A. Study of full-length porcine endogenous retrovirus genomes with envelope gene polymorphism in a specificpathogen- free Large White swine herd. J. Virology. 2000;74(18): 8575-8581.; Denner J. Recombinant porcine endogenous retroviruses (PERV-A/C): a new risk for xenotransplantation? Archives Virology. 2008;153(8): 1421-1426. DOI 10.1007/s00705-008- 0141-7.; Denner J. How active are porcine endogenous retroviruses (PERVs)? Viruses. 2016;8(8):E215. DOI 10.3390/v8080215.; Ekser B., Cooper D.K., Tector A.J. The need for xenotransplantation as a source of organs and cells for clinical transplantation. Intern. J. Surgery. 2015;23:199-204. DOI 10.1016/j.ijsu.2015.06.066.; Frühauf J.H., Mertsching H., Giri S., Frühauf N.R., Bader A. Porcine endogenous retrovirus released by a bioartificial liver infects primary human cells. Liver International. 2009;29(10):1553-1561. DOI 10.1111/j.1478-3231.2009.02087.x.; Godehardt A.W., Rodrigues Costa M., Tönjes R.R. Review on porcine endogenous retrovirus detection assays–impact on quality and safety of xenotransplants. Xenotransplantation. 2015;22(2):95-101. DOI 10.1111/xen.12154.; Herring C., Quinn G., Bower R., Parsons N., Logan N.A., Brawley A., Elsome K., Whittam A., Fernandez-Suarez X.M., Cunningham D., Onions D., Langford G., Scobie L. Mapping full- length porcine endogenous retroviruses in a large white pig. J. Virology. 2001;75(24): 12252-12265.; Karlas A., Irgang M., Votteler J., Specke V., Ozel M., Kurth R., Denner J. Characterisation of a human cell-adapted porcine endogenous retrovirus PERV-A/C. Ann. Transplantation. 2010;15(2):45-54.; Kimsa M.C., Strzalka-Mrozik B., Kimsa M.W., Gola J., Nicholson P., Lopata K., Mazurek U. Porcine endogenous retroviruses in xenotransplantation – molecular aspects. Viruses. 2014;6(5):2062-2083. DOI 10.3390/v6052062.; Le Tissier P., Stoye J.P., Takeuchi Y., Patience C., Weiss R.A. Two sets of human-tropic pig retrovirus. Nature. 1997;389(6652):681-682.; Lee D., Kim N.Y., Bae G.E., Lee H.J., Kwon M., Kim S.S., Lee H.T., Yang J.M., Kim Y.B. Transmissible infection of human 293T cells with porcine endogenous retroviruses subgroup А from NIH-miniature pig. Transplantation Proceed. 2008;40(10):3742-3745. DOI 10.1016/j.transproceed.2008.09.035.; Lee D., Lee J., Yoon J.K., Kim N.Y., Kim G.W., Park C., Oh Y.K., Kim Y.B. Rapid determination of PERV copy number from porcine genomic DNA by real-time polymerase chain reaction. Animal Biotechnol. 2011;22(4):175-180. DOI 10.1080/10495398.2011.595294.; Li Z., Ping Y., Shengfu L., Yangzhi Z., Jingqiu C., Youping L., Hong B. Variation of host cell tropism of porcine endogenous retroviruses expressed in chinese Banna minipig inbred. Intervirology. 2006;49(4): 185-191.; Liu G., Li Z., Pan M., Ge M., Wang Y., Gao Y. Genetic prevalence of porcine endogenous retrovirus in chinese experimental miniature pigs. Transplantation Proceed. 2011;43(7):2762-2769. DOI 10.1016/j.transproceed.2011.06.061.; Ma Y., Yang Y., Lv M., Yan Q., Zheng L., Ding F., Wu J., Tian K., Zhang J. Real-time quantitative polymerase chain reaction with SYBR green I detection for estimating copy numbers of porcine endogenous retrovirus from Chinese miniature pigs. Transplantation Proceed. 2010;42(5):1949-1952. DOI 10.1016/j.transproceed. 2010.01.054.; Mang R., Maas J., Chen X., Goudsmit J., van der Kuyl A.C. Identification of a novel type C porcine endogenous retrovirus: evidence that copy number of endogenous retroviruses increases during host inbreeding. J. General Virology. 2001;82(Pt. 8):1829-1834.; Marcucci K.T., Argaw T., Wilson C.A., Salomon D.R. Identification of two distinct structural regions in a human porcine endogenous retrovirus receptor, HuPAR2, contributing to function for viral entry. Retrovirology. 2009;6(3):1-15. DOI 10.1186/1742-4690-6-3.; Mazurek U., Kimsa M.C., Strzalka-Mrozik B., Kimsa M.W., Adamska J., Lipinski D., Zeyland J., Szalata M., Slomski R., Jura J., Smorag Z., Nowak R., Gola J. Quantitative analysis of porcine endogenous retroviruses in different organs of transgenic pigs generated for xenotransplantation. Current Microbiology. 2013;67(4):505-514. DOI 10.1007/s00284-013- 0397-3.; Morozov V.A., Morozov A.V., Rotem A., Barkai U., Bornstein S., Denner J. Extended microbiological characterization of Göttingen minipigs in the context of xenotransplantation: detection and vertical transmission of hepatitis E virus. PLoS One. 2015;10(10):e0139893. DOI 10.1371/journal.pone.0139893.; Nakaya Y., Shojima T., Yasuda J., Imakawa K., Miyazawa T. Epigenetic regulation on the 5’- proximal CpG island of human porcine endogenous retrovirus subgroup A receptor 2/GPR172B. Microbes Infect. 2011;13(1):49-57. DOI 10.1016/j.micinf.2010.09.014.; Niebert M., Tonjes R.R. Evolutionary spread and recombination of porcine endogenous retroviruses in suiformes. J. Virology. 2005;79(1): 649-654.; Nikitin S.V., Yudin N.S., Knyazev S.P., Aitnazarov R.B., Kobzev V.F., Bekenev V.A., Savvina M.A., Ermolaev V.I. Frequency of chromosomes carrying endogenous retroviruses in the populations of domestic pig and wild boar. Genetika = Genetics (Moscow). 2008;44(6):789- 797. (in Russian); Quereda J.J., Herrero-Medrano J.M., Abellaneda J.M., García-Nicolás O., Martínez-Alarcón L., Pallarés F.J., Ramírez P., Muñoz A., Ramis G. Porcine endogenous retrovirus copy number in different pig breeds is not related to genetic diversity. Zoonoses Public Health. 2012; 59(6):401-407. DOI 10.1111/j.1863-2378.2012.01467.x.; Rebrikov D.V., Samatov G.A., Trofimov D.Y., Semenov P.A., Savilova A.M., Kofiadi I.A., Abramov D.D. PTsR «v real’nom vremeni» [Real- time PCR]. Moscow, BINOM. Laboratoriya znaniy Publ., 2009. (in Russian); Sedlak R.H., Jerome K.R. Viral diagnostics in the era of digital polymerase chain reaction. Diagnostic Microbiology Infectious Disease. 2013;75(1):1-4. DOI 10.1016/j.diagmicrobio.2012.10.009.; Shimatsu Y., Yamada K., Horii W., Hirakata A., Sakamoto Y., Waki S., Sano J., Saitoh T., Sahara H., Shimizu A., Yazawa H., Sachs D.H., Nunoya T. Production of cloned NIBS (Nippon Institute for Biological Science) and α-1, 3-galactosyltransferase knockout MGH miniature pigs by somatic cell nuclear transfer using the NIBS breed as surrogates. Xenotransplantation. 2013;20(3):157-164. DOI 10.1111/xen.12031.; Specke V., Rubant S., Denner J. Productive infection of human primary cells and cell lines with porcine endogenous retroviruses. Virology. 2001;285(2):177-180.; Tikhonov V.N. Laboratornye mini-svin’i, genetika i mediko-biologicheskoe ispolzovanie [Laboratory Mini-pigs: Genetics and Biomedical Use]. Novosibirsk, SB RAS Publ., 2010. (in Russian); Yang L., Güell M., Niu D., George H., Lesha E., Grishin D., Aach J., Shrock E., Xu W., Poci J., Cortazio R., Wilkinson R.A., Fishman J.A., Church G. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science. 2015;350(6264):1101-1104. DOI 10.1126/science.aad1191.; Yu P., Zhang L., Li S.F., Cheng J.Q., Lu Y.R., Zeng Y.Z., Li Y.P., Bu H. A rapid method for detection of the copy number of porcine endogenous in swine. J. Rapid Methods Automation Microbiology. 2007; 15:199-205.; Yu P., Zhang P., Zhang L., Li S.F., Cheng J.Q., Lu Y.R., Li Y.P., Bu H. Studies on long-term infection of human cells with porcine endogenous retrovirus. Acta Virologica. 2009;53(3):169-174.; Yudin N.S., Aitnazarov R.B., Ermolaev V.I. Porcine endogenous retroviruses: what are the risks of infection transmission in xenotransplantation? Rus. J. Genet. Appl. Res. 2011;1(6):532-539. DOI 10.1134/S207905971106013X.; Zhang P., Yu P., Wang W., Zhang L., Li S., Bu H. An effective method for the quantitative detection of porcine endogenous retrovirus in pig tissues. In Vitro Cellular & Develop. Biology – Animal. 2010; 46(5):408-410. DOI 10.1007/s11626-009-9264-8.; https://vavilov.elpub.ru/jour/article/view/846
-
11Academic Journal
Authors: Pichkur, L. D., Verbovska, S. А., Vaslovich, V. V., Akinola, S. Т., Deriabina, O. G., Pokholenko, Ya. O., Toporova, O. K., Shuvalova, N. S., Коrdium, V. А.
Source: Ukrainian Neurological Journal; № 1 (2018); 56—63
Украинский неврологический журнал; № 1 (2018); 56—63
Український неврологічний журнал; № 1 (2018); 56—63Subject Terms: експериментальний алергійний енцефаломієліт, мезенхімальні стовбурові клітини, інтерлейкін-10, ксенотрансплантація, экспериментальный аллергический энцефаломиелит, мезенхимальные стволовые клетки, интерлейкин-10, ксенотрансплантация, experimental allergic encephalomyelitis, mesenchymal stem cells, interleukin-10, xenotrans- plantation, 3. Good health
File Description: application/pdf
Access URL: http://ukrneuroj.com.ua/article/view/128954
-
12Academic Journal
Authors: I K Abdrakhmanov, N B Savenko, Yu A Kuznetsov, M A Selyugin, L P Dyakonov
Source: RUDN Journal of Agronomy and Animal Industries, Vol 0, Iss 4, Pp 70-76 (2011)
Subject Terms: сахарный диабет, ксенотрансплантация, бета-клетки, островковые клетки поджелудочной железы, плоды кролика, стрептозотоцин, лабораторные мыши, Agriculture
File Description: electronic resource
-
13Academic Journal
Authors: R. B. Aitnazarov, N. S. Yudin, S. V. Nikitin, V. I. Ermolayev, M. I. Voevoda, Р. Б. Айтназаров, Н. С. Юдин, С. В. Никитин, В. И. Ермолаев, М. И. Воевода
Contributors: РФФИ, СО РАН, Президиум РАН, базовый бюджетный проект № VI.53.12
Source: Vavilov Journal of Genetics and Breeding; Том 18, № 2 (2014); 294-297 ; Вавиловский журнал генетики и селекции; Том 18, № 2 (2014); 294-297 ; 2500-3259
Subject Terms: селекция, miniature pigs, xenografting, breeding, мини-свиньи, ксенотрансплантация
File Description: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/250/252; Айтназаров Р.Б. Молекулярно-генетический анализ эндогенных ретровирусов у некоторых пород домашних свиней и диких кабанов: Автореф. дис. … канд. биол. наук. Новосибирск, 2006. 16 с.; Никитин С.В., Юдин Н.С., Князев С.П. и др. Оценка частоты хромосом, содержащих свиные эндогенные ретровирусы, в популяциях домашней свиньи и дикого кабана // Генетика. 2008. Т. 44. № 6. С. 789–797.; Тихонов В.Н. Лабораторные мини-свиньи, генетика и медико-биологическое использование. Новосибирск: Изд-во СО РАН, 2010. 304 с.; Юдин Н.С., Айтназаров Р.Б., Ермолаев В.И. Эндогенные ретровирусы свиньи: насколько велик риск при ксенотрансплантации? // Вавилов. журн. генет. и селекции. 2011. Т. 15. № 2. С. 340–350.; Jin H., Inoshima Y., Wu D. et al. Expression of porcine endogenous retrovirus in peripheral blood leukocytes from ten different breeds // Transplant Infectious Disease. 2000. V. 2. No. 1. P. 11–14.; https://vavilov.elpub.ru/jour/article/view/250
Availability: https://vavilov.elpub.ru/jour/article/view/250
-
14Academic Journal
Authors: Sobchenko, V.F.
Source: Scientific Bulletin of UNFU; Том 25 № 5 (2015): Науковий вісник НЛТУ України; 93-100 ; Научный вестник НЛТУ Украины; Том 25 № 5 (2015): Научный Вестник НЛТУ Украины; 93-100 ; Scientific Bulletin of UNFU; Vol 25 No 5 (2015): Scientific Bulletin of UNFU; 93-100 ; 2519-2477 ; 1994-7836
Subject Terms: inventory, collection, ornamental plants, vegetative duplication, homo-, hetero-, xeno-transplantation, copulation, budding, trunk, инвентаризация, коллекция, декоративные растения, вегетативное размножение, гомо-, гетеро-, ксенотрансплантация, копулировка, окулировка, штамб, інвентаризація, колекція, декоративні рослини, вегетативне розмноження, ксенотрансплантація, копулювання, окулірування
-
15Academic Journal
Source: Вестник медицинского института «Реавиз»: Реабилитация, врач и здоровье, Vol 0, Iss 1, Pp 117-130 (2022)
Subject Terms: ксенотрансплантация, биомедицинская этика, религия, Medicine (General), R5-920, relig, phil
Availability: https://doi.org/10.20340/vmi-rvz.2022.1.TX.1
-
16Academic Journal
Authors: Зиновьева, Н., Мелерзанов, А., Петерсен, Е., Климюк, Н., Волкова, Н., Дух, А., Трусова, И., Вольф, Э., Брем, Г.
Subject Terms: ТРАНСГЕННЫЕ СВИНЬИ, КСЕНОТРАНСПЛАНТАЦИЯ, ДОНОРЫ ОРГАНОВ И ТКАНЕЙ, ПЕРЕСАДКА КОЖИ, СЕРДЕЧНЫЕ КЛАПАНЫ СВИНЕЙ
File Description: text/html
-
17Academic Journal
Authors: Волкова, Н., Зиновьева, Н., Доцев, А., Волкова, Л., Русакова, Е., Эрнст, Л., Брем, Г.
Subject Terms: КСЕНОТРАНСПЛАНТАЦИЯ, ТРАНСГЕНЕЗ, КРОЛИКИ, ЭКСПРЕССИЯ ТРАНСГЕНА
File Description: text/html
-
18Academic Journal
Authors: Можейко, Л., Можейко, М.
Subject Terms: ДИАБЕТ, АЛЛОИ КСЕНОТРАНСПЛАНТАЦИЯ, ПОДЖЕЛУДОЧНАЯ ЖЕЛЕЗА, В-КЛЕТКИ
File Description: text/html
-
19Academic Journal
Subject Terms: САХАРНЫЙ ДИАБЕТ, КСЕНОТРАНСПЛАНТАЦИЯ, БЕТА-КЛЕТКИ, ОСТРОВКОВЫЕ КЛЕТКИ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ, ПЛОДЫ КРОЛИКА, СТРЕПТОЗОТОЦИН, ЛАБОРАТОРНЫЕ МЫШИ
File Description: text/html
-
20Academic Journal
Authors: Абдрахманов, И., Савенко, Н.
Subject Terms: САХАРНЫЙ ДИАБЕТ, КСЕНОТРАНСПЛАНТАЦИЯ, β-КЛЕТКИ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ, ЭНДОКРИНОЛОГИЯ
File Description: text/html