Showing 1 - 20 results of 1,019 for search '"КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА"', query time: 0.82s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Source: II МЕЖДУНАРОДНАЯНАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ «ИННОВАЦИОННОЕ РАЗВИТИЕ СОВРЕМЕННОЙ НАУКИ: НОВЫЕ ПОДХОДЫ И АКТУАЛЬНЫЕ ИССЛЕДОВАНИЯ». :266-269

  5. 5
  6. 6
  7. 7
    Academic Journal
  8. 8
    Academic Journal

    Contributors: Работа выполнена при финансовой поддержке БРФФИ (проект Ф23М-017 и проект Ф23-108).

    Source: Doklady of the National Academy of Sciences of Belarus; Том 69, № 3 (2025); 192-197 ; Доклады Национальной академии наук Беларуси; Том 69, № 3 (2025); 192-197 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2025-69-3

    File Description: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1251/1252; James M., Cassidy D., Wilson K. F., Horvat J., Withers R. L. Oxygen vacancy ordering and magnetism in the rare earth stabilized perovskite form of SrCoO3–δ. Solid State Sciences, 2004, vol. 6, no. 7, pp. 655–662. https://doi.org/10.1016/j.solidstatesciences.2003.03.001; Ishiwata S., Kobayashi W., Terasaki I., Kato K., Takata M. Structure-property relationship in the ordered-perovskite-related oxide Sr3.12Eu0.88Co4O10.5. Physical Review B, 2007, vol. 75, art. 220406. https://doi.org/10.1103/PhysRevB.75.220406; Istomin S. Ya., Grins J., Svensson G., Drozhzhin O. A., Kozhevnikov V. L., Antipov E. V., Attfield J. P. Crystal structure of the novel complex cobalt oxide Sr0.7Y0.3CoO2.62. Chemistry of Materials, 2003, vol. 15, no. 21, pp. 4012–4020. https://doi.org/10.1021/cm034263e; Lanovsky R., Tereshko N., Mantytskaya O., Fedotova V., Kozlenko D., Ritter C., Bushinsky M. The structure, magnetic and magnetotransport properties of Sr1−x YCoO3−δ layered cobaltites. Physica Status Solidi B, 2022, vol. 259, no. 8, art. 2100636. https://doi.org/10.1002/pssb.202100636; Sheptyakov D., Pomjakushin V. Yu., Drozhzhin O. A., Istomin S. Ya., Antipov E. V., Bobrikov I. A., Balagurov A. M. Correlation of chemical coordination and magnetic ordering in Sr3YCo4O10.5+δ (δ = 0.02 and 0.26). Physical Review B, 2009, vol. 80, art. 024409. https://doi.org/10.1103/PhysRevB.80.024409; Long Y., Kaneko Y., Ishiwata S., Taguchi Y., Tokura Y. Synthesis of cubic SrCoO3 single crystal and its anisotropic magnetic and transport properties. Journal of Physics: Condensed Matter, 2011, vol. 23, art. 245601. https://doi.org/10.1088/0953-8984/24/24/245601; Rietveld H. M. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 1969, vol. 2, pp. 65–71. https://doi.org/10.1107/S0021889869006558; Rodriguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 1993, vol. 192, no. 1–2, pp. 55–69. https://doi.org/10.1016/0921-4526(93)90108-I; Finger L. W., Cox D. E., Jephcoat A. P. A correction for powder diffraction peak asymmetry due to axial divergence. Journal of Applied Crystallography, 1994, vol. 27, no. 6, pp. 892–900. https://doi.org/10.1107/S0021889894004218; Li Y., Kim Y. N., Cheng J., Alonso J. A., Hu Z., Chin Y.-Y., Takami T., Fernandez-Diaz M. T., Lin H.-J., Chen C.-T., Tjeng L. Y., Manthiram A., Goodenough J. B. Oxygen-deficient perovskite Sr0.7Y0.3CoO2.65−δ as a cathode for intermediate-temperature solid oxide fuel cells. Chemistry of Materials, 2011, vol. 23, no. 22, pp. 5037–5044. https://doi.org/10.1021/cm202542q; Yamaguchi S., Okimoto Y., Tokura Y. Local lattice distortion during the spin-state transition in LaCoO3. Physical Review B, 1997, vol. 55, no. 14, art. 8666. https://doi.org/10.1103/PhysRevB.55.R8666; Cooper S. L., Egami T., Goodenough J. B., Zhou J.-S. Localized to itinerant electronic transition in perovskite oxides. New York, Springer, 2003, vol. 98.; https://doklady.belnauka.by/jour/article/view/1251

  9. 9
    Academic Journal

    Contributors: Ministry of Science and Higher Education of the Russian Federation

    Source: Chemistry; Том 17, № 1 (2025): Вестник Южно-Уральского государственного университета. Серия: Химия; 186–190 ; Химия; Том 17, № 1 (2025): Вестник Южно-Уральского государственного университета. Серия: Химия; 186–190 ; 2412-0413 ; 2076-0493

    File Description: application/pdf

  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
    Academic Journal

    Contributors: The study was performed using the equipment of the Center for Shared Use at the MIREA – Russian Technological University, the Research Equipment Sharing Center of Physical Methods for Studying Substances and Materials at the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, and the Center for Shared Use at the Kurchatov Institute National Research Center—IREA with the support of the Ministry of Science and Higher Education of the Russian Federation., Работа выполнена с использованием оборудования ЦКП РТУ МИРЭА, ЦКП ФМИ ИОНХ РАН и ЦКП «ИРЕА-Курчатовский институт» при поддержке Министерства науки и высшего образования Российской Федерации.

    Source: Fine Chemical Technologies; Vol 18, No 6 (2023); 583-594 ; Тонкие химические технологии; Vol 18, No 6 (2023); 583-594 ; 2686-7575 ; 2410-6593

    File Description: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/2016/1986; https://www.finechem-mirea.ru/jour/article/view/2016/1987; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/2016/1130; Varma A., Mukasyan A.S., Rogachev A.S., Manukyan K.V. Solution Combustion Synthesis of Nanoscale Materials. Chem. Rev. 2016,116(23):14493–14586. https://doi.org/10.1021/acs.chemrev.6b00279; Stojanovic B.D., Dzunuzovic A.S., Ilic N.I. Review of methods for the preparation of magnetic metal oxides. In: Magnetic Ferroelectric, and Multiferroic Metal Oxides. 2018. P. 333–360. https://doi.org/10.1016/B978-0-12-811180-2.00017-7; Zhuravlev V.D., Bamburov V.G., Beketov A.R., Perelyaeva L.A., Baklanova I.V., Sivtsova O.V., Vasil’ev V.G., Vladimirova E.V., Shevchenko V.G., Grigorov I.G. Solution combustion synthesis of α-Al2O3 using urea. Ceram. Int. 2013;39(2):1379–1384. https://doi.org/10.1016/j.ceramint.2012.07.078; Abu-Zied B.M. Controlled synthesis of praseodymium oxide nanoparticles obtained by combustion route: Effect of calcination temperature and fuel to oxidizer ratio. Appl. Surf. Sci. 2019;471:246–255. https://doi.org/10.1016/j.apsusc.2018.12.007; Get’man E.I., Oleksii Yu.A., Radio S.V., Ardanova L.I. Determining the phase stability of luminescent materials based on the solid solutions of oxyorthosilicates (Lu1−xLnx)[(SiO4)0.5O0.5], where Ln = La−Yb. Fine Chem. Technol. 2020;15(5):54–62. https://doi.org/10.32362/2410-6593-2020-15-5-54-62; Lupin M.S., Peters G.E. Thermal decomposition of aluminum, iron and manganese complexes of urea. Thermochim. Acta. 1984;73(1–2):79–87. https://doi.org/10.1016/0040-6031(84)85178-3; Siekierski S., Salomon M., Mioduski T. (Eds.). Solubilities Data Series. V. 13. Scandium, Yttrium, Lanthanum and Lanthanide Nitrates. London: Pergamon; 1983. 514 p.; Худайбергенова Н., Сулайманкулов К. Системы нитрат гадолиния–карбамид–вода и нитрат иттербия–карбамид–вода при 30°С. Журн. неорган. химии. 1980;25(8):2254–2260.; Aitimbetov K., Sulaimankulov K.S., Batyuk A.G., Ismailov V. Systems erbium chloride–urea–water and erbium nitrate–urea–water at 30°C. Russ. J. Inorg. Chem. 1975;20(9):1391–1395.; Savinkina E.V., Karavaev I.A., Grigoriev M.S., Buzanov G.A., Davydova M.N. A series of urea complexes with rare-earth nitrates: Synthesis, structure and thermal decomposition. Inorg. Chim. Acta. 2022;532:120759. https://doi.org/10.1016/j.ica.2021.120759; Караваев И.А., Савинкина Е.В., Григорьев М.С., Бузанов Г.А., Козерожец И.В. Новые координационные соединения нитрата скандия с карбамидом – предшественники для получения наноразмерного оксида скандия. Журн. неорган. химии. 2022;67(8):1080–1086. https://doi.org/10.31857/S0044457X22080189; Savinkina E.V., Karavaev I.A., Grigoriev M.S. Crystal structures of praseodymium nitrate complexes with urea, precursors for solution combustion synthesis of nanoscale praseodymium oxides. Polyhedron. 2020;192:114875. https://doi.org/10.1016/j.poly.2020.114875; Sanctis S., Hoffmann R.C., Koslowski N., Foro S., Bruns M., Schneider J.J. Aqueous Solution Processing of Combustible Precursor Compounds into Amorphous Indium Gallium Zinc Oxide (IGZO) Semiconductors for Thin Film Transistor Applications. Chem. Asian J. 2018;13:3912. https://doi.org/10.1002/asia.201801371; Ullah S., Branquinho R., Mateus T., Martins R., Fortunato E., Rasheed T., Sher F. Solution Combustion Synthesis of Transparent Conducting Thin Films for Sustainable Photovoltaic Applications. Sustainability. 2020,12:10423. https://doi.org/10.3390/su122410423

  16. 16
    Academic Journal

    Contributors: This research was funded by the Guangdong Provincial Science and Technology Program, Grant no. 2022A0505050082 (Study concept and design) and by the section 4.1.38 “Development and research of electrical insulating materials for stators of reversible electrical machines based on iron-containing encapsulated materials with a given direction of magnetic flux” of the State Scientific Research Program “Materials Science, New Materials and Technologies” for 2021–2025, subprogram “Multifunctional and composite materials” (Experimental investigations, Methodology, Data interpretation), Работа выполнена при поддержке программы науки и технологий провинции Гуандун, грант № 2022A0505050082 (концепция и дизайн исследования) и задания 4.1.38 «Разработка и исследование электроизоляционных материалов для статоров обратимых электрических машин на основе железосодержащих капсулированных материалов с заданным направлением магнитного потока» Государственной программы научных исследований «Материаловедение, новые материалы и технологии» на 2021–2025 гг. подпрограммы «Многофункциональные и композиционные материалы» (экспериментальные исследования, методология, интерпретация данных)

    Source: Doklady of the National Academy of Sciences of Belarus; Том 67, № 6 (2023); 508-516 ; Доклады Национальной академии наук Беларуси; Том 67, № 6 (2023); 508-516 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2023-67-6

    File Description: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1167/1168; Peiseler L., Cabrera Serrenho A. How can current German and EU policies be improved to enhance the reduction of CO2 emissions of road transport? Revising policies on electric vehicles informed by stakeholder and technical assessments. Energy Policy, 2022, vol. 168, art. 113124. https://doi.org/10.1016/j.enpol.2022.113124; Chau K.-T., Li W., Lee C. H. T. Challenges and opportunities of electric machines for renewable energy. Progress in Electromagnetics Research B, 2012, vol. 42, pp. 45–74. https://doi.org/10.2528/pierb12052001; Fassbender D., Zakharov V., Minav T. Utilization of electric prime movers in hydraulic heavy-duty-mobile-machine implement systems. Automation in Construction, 2021, vol. 132, art. 103964. https://doi.org/10.1016/j.autcon.2021.103964; Shokrollahi H., Janghorban K. Soft magnetic composite materials (SMCs). Journal of Materials Processing Technology, 2007, vol. 189, no. 1–3, pp. 1–12. https://doi.org/10.1016/j.jmatprotec.2007.02.034; Birčáková Z., Kollár P., Weidenfeller B., Füzer J., Bureš R., Fáberová M. Reversible and irreversible magnetization processes along DC hysteresis loops of Fe-based composite materials. Journal of Magnetism and Magnetic Materials, 2019, vol. 483, pp. 183–190. https://doi.org/10.1016/j.jmmm.2019.03.115; Guan W. W., Shi X. Y., Xu T. T., Wan K., Zhang B. W., Liu W., Su H. L., Zou Z. Q., Du Y. W. Synthesis of wellinsulated Fe–Si–Al soft magnetic composites via a silane-assisted organic/inorganic composite coating route. Journal of Physics and Chemistry of Solids, 2021, vol. 150, art. 109841. https://doi.org/10.1016/j.jpcs.2020.109841; Zhang Y., Dong Y., Zhou B., Chi Q., Chang L., Gong M., Huang J., Pan Y., He A., Li J., Wang X. Poly-para-xylylene enhanced Fe-based amorphous powder cores with improved soft magnetic properties via chemical vapor deposition. Materials & Design, 2020, vol. 191, art. 108650. https://doi.org/10.1016/j.matdes.2020.108650; Wu C., Gao X., Zhao G., Jiang Y., Yan M. Two growth mechanisms in one-step fabrication of the oxide matrix for FeSiAl soft magnetic composites. Journal of Magnetism and Magnetic Materials, 2018, vol. 452, pp. 114–119. https://doi.org/10.1016/j.jmmm.2017.12.032; Ashby M. F., Ferreira P., Schodek D. L. Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers and Architects. Butterworth-Heinemann, 2009. 560 p. https://doi.org/10.1016/b978-0-7506-8149-0.x0001-3; Gheiratmand T., Madaah Hosseini H. R. Finemet nanocrystalline soft magnetic alloy: Investigation of glass forming ability, crystallization mechanism, production techniques, magnetic softness and the effect of replacing the main constituents by other elements. Journal of Magnetism and Magnetic Materials, 2016, vol. 408, pp. 177–192. https://doi.org/10.1016/j.jmmm.2016.02.057; Shokrollahi H., Janghorban K. Different annealing treatments for improvement of magnetic and electrical properties of soft magnetic composites. Journal of Magnetism and Magnetic Materials, 2007, vol. 317, no. 1–2, pp. 61–67. https://doi.org/10.1016/j.jmmm.2007.04.011; Qian L., Peng J., Xiang Z., Pan Y., Lu W. Effect of annealing on magnetic properties of Fe/Fe3O4 soft magnetic composites prepared by in-situ oxidation and hydrogen reduction methods. Journal of Alloys and Compounds, 2019, vol. 778, pp. 712–720. https://doi.org/10.1016/j.jallcom.2018.11.184; Hsiang H.-I., Fan L.-F., Hung J.-J. Phosphoric acid addition effect on the microstructure and magnetic properties of iron-based soft magnetic composites. Journal of Magnetism and Magnetic Materials, 2018, vol. 447, pp. 1–8. https://doi.org/10.1016/j.jmmm.2017.08.096; Nakamura R., Matsubayashi G., Tsuchiya H., Fujimoto S., Nakajima H. Transition in the nanoporous structure of iron oxides during the oxidation of iron nanoparticles and nanowires. Acta Materialia, 2009, vol. 57, no. 14, pp. 4261–4266. https://doi.org/10.1016/j.actamat.2009.05.023; Taghvaei A. H., Shokrollahi H., Janghorban K. Properties of iron-based soft magnetic composite with iron phosphatesilane insulation coating. Journal of Alloys and Compounds, 2009, vol. 481, no. 1–2, pp. 681–686. https://doi.org/10.1016/j.jallcom.2009.03.074; https://doklady.belnauka.by/jour/article/view/1167

  17. 17
  18. 18
  19. 19
  20. 20