-
1Academic Journal
Source: Высшая школа: научные исследования.
Subject Terms: защита яичников, криоконсервация ткани яичников, криоконсервация ооцитов, криоконсервация эмбрионов, противоопухолевая терапия, методы сохранения фертильности
-
2Academic Journal
Subject Terms: искусственное осеменение, sperm quality, stud rams, криоконсервация, sperm activity, artificial insemination, активность спермы, бараны-производители, cryopreservation, качество спермы
File Description: application/pdf
Access URL: https://rep.bsatu.by/handle/doc/23666
-
3Academic Journal
Authors: L. A. Gigolaeva, E. A. Dubenkina, E. V. Semkina, K. D. Ushkova, S. V. Mazka, P. Yu. Zhadanova, Z. A. Imamova, P. M. Barmenkova, N. D. Zhiltsova, D. Sh. Amayeva, Yu. A. Nikishina, O. S. Ushakova, E. D. Tolmacheva, Л. А. Гиголаева, Е. А. Дубенкина, Е. В. Семкина, К. Д. Ушкова, С. В. Мазка, П. Ю. Жаданова, З. А. Имамова, П. М. Барменкова, Н. Д. Жильцова, Д. Ш. Амаева, Ю. А. Никишина, О. С. Ушакова, Е. Д. Толмачева
Source: Obstetrics, Gynecology and Reproduction; Online First ; Акушерство, Гинекология и Репродукция; Online First ; 2500-3194 ; 2313-7347
Subject Terms: этические аспекты, EFP, oocyte cryopreservation, ovarian tissue cryopreservation, vitrification, ovarian reserve, live birth, reproductive autonomy, cost-effectiveness, legal regulation, ethical aspects, ПСФ, криоконсервация ооцитов, криоконсервация ткани яичников, витрификация, овариальный резерв, живорождение, репродуктивная автономия, экономическая эффективность, правовое регулирование
File Description: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2576/1386; Ростовская Т.К., Золотарева О.А. Демографическая стабильность как приоритет демографической политики Российской Федерации. Вопросы управления. 2022;(3):6–18. https://doi.org/10.22394/2304-3369-2022-3-6-18.; Nasab S., Ulin L., Nkele C. et al. Elective egg freezing: what is the vision of women around the globe? Future Sci OA. 2020;6(5):FSO468. https://doi.org/10.2144/fsoa-2019-0068.; Архангельский В.Н., Калачикова О.Н. Возраст матери при рождении первого ребенка: динамика, региональные различия, детерминация. Экономические и социальные перемены: факты, тенденции, прогноз. 2020;13(5):200–17. https://doi.org/10.15838/esc.2020.5.71.1.; Bongaarts J., Blanc A.K. Estimating the current mean age of mothers at the birth of their first child from household surveys. Popul Health Metr. 2015;13:25. https://doi.org/10.1186/s12963-015-0058-9.; Kasaven L.S., Mitra A., Ostrysz P. et al. Exploring the knowledge, attitudes, and perceptions of women of reproductive age towards fertility and elective oocyte cryopreservation for age-related fertility decline in the UK: a cross-sectional survey. Hum Reprod. 2023;38(12):2478–88. https://doi.org/10.1093/humrep/dead200.; Gonda K.J., Domar A.D., Gleicher N., Marrs R.P. Insights from clinical experience in treating IVF poor responders. Reprod Biomed Online. 2018;36(1):12–9. https://doi.org/10.1016/j.rbmo.2017.09.016.; Camaioni A., Ucci M.A., Campagnolo L. et al. The process of ovarian aging: it is not just about oocytes and granulosa cells. J Assist Reprod Genet. 2022;39(4):783–92. https://doi.org/10.1007/s10815-022-02478-0.; Юпатов Е.Ю., Курманбаев Т.Е., Шмидт А.А. и др. Криоконсервация репродуктивной ткани – возможность сохранения фертильности (обзор литературы). Проблемы репродукции. 2020;26(5):99–106. https://doi.org/10.17116/repro20202605199.; Practice Committees of the American Society for Reproductive Medicine and the Society for Assisted Reproductive Technology. Mature oocyte cryopreservation: a guideline. Fertil Steril. 2013;99(1):37–43. https://doi.org/10.1016/j.fertnstert.2012.09.028.; ESHRE Task Force on Ethics and Law, including, Dondorp W., de Wert G., Pennings G. et al. Oocyte cryopreservation for age-related fertility loss. Hum Reprod. 2012;27(5):1231–7. https://doi.org/10.1093/humrep/des029.; Ethics Committee of the American Society for Reproductive Medicine. Electronic address: asrm@asrm.org; Ethics Committee of the American Society for Reproductive Medicine. Planned oocyte cryopreservation for women seeking to preserve future reproductive potential: an Ethics Committee opinion. Fertil Steril. 2018;110(6):1022–8. https://doi.org/10.1016/j.fertnstert.2018.08.027.; Johnston M., Richings N.M., Leung A.et al. A major increase in oocyte cryopreservation cycles in the USA, Australia and New Zealand since 2010 is highlighted by younger women but a need for standardized data collection. Hum Reprod. 2021;36(3):624–35. https://doi.org/10.1093/humrep/deaa320.; Cobo A., García-Velasco J.A., Remohí J., Pellicer A. Oocyte vitrification for fertility preservation for both medical and nonmedical reasons. Fertil Steril. 2021;115(5):1091–101. https://doi.org/10.1016/j.fertnstert.2021.02.006.; Lew R., Foo J., Kroon B. et al. ANZSREI consensus statement on elective oocyte cryopreservation. Aust N Z J Obstet Gynaecol. 2019;59(5):616–26. https://doi.org/10.1111/ajo.13028.; Kasaven L.S., Saso S., Getreu N. et al. Age-related fertility decline: is there a role for elective ovarian tissue cryopreservation? Hum Reprod. 2022;37(9):1970–9. https://doi.org/10.1093/humrep/deac144.; Magnus M.C., Wilcox A.J., Morken N.H. et al. Role of maternal age and pregnancy history in risk of miscarriage: prospective register based study. BMJ. 2019;364:l869. https://doi.org/10.1136/bmj.l869.; te Velde E., Habbema D., Leridon H., Eijkemans M. The effect of postponement of first motherhood on permanent involuntary childlessness and total fertility rate in six European countries since the 1970s. Hum Reprod. 2012;27(4):1179–83. https://doi.org/10.1093/humrep/der455.; Leridon H., Slama R. The impact of a decline in fecundity and of pregnancy postponement on final number of children and demand for assisted reproduction technology. Hum Reprod. 2008;23(6):1312–9. https://doi.org/10.1093/humrep/den106.; Nybo Andersen A.M., Wohlfahrt J., Christens P. et al. Maternal age and fetal loss: population based register linkage study. BMJ. 2000;320(7251):1708–12. https://doi.org/10.1136/bmj.320.7251.1708.; Habbema J.D., Eijkemans M.J., Leridon H., te Velde E.R. Realizing a desired family size: when should couples start? Hum Reprod. 2015;30(9):2215–21. https://doi.org/10.1093/humrep/dev148.; Салий М.Г., Ткаченко Л.В., Селина Е.Г. и др. Репродуктивный потенциал современных молодых женщин. Астраханский медицинский журнал. 2022;17(3):66–71. https://doi.org/10.48612/agmu/2022.17.3.66.71.; Hansen K.R., Knowlton N.S., Thyer A.C. et al. A new model of reproductive aging: the decline in ovarian non-growing follicle number from birth to menopause. Hum Reprod. 2008;23(3):699–708. https://doi.org/10.1093/humrep/dem408.; Hassold T., Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet. 2001;2(4):280–91. https://doi.org/10.1038/35066065.; de Toda I.M., Ceprián N., Díaz-Del Cerro E., De la Fuente M. The role of immune cells in oxi-inflamm-aging. Cells. 2021;10(11):2974. https://doi.org/10.3390/cells10112974.; Hodes-Wertz B., Druckenmiller S., Smith M., Noyes N. What do reproductive-age women who undergo oocyte cryopreservation think about the process as a means to preserve fertility? Fertil Steril. 2013;100(5):1343–9. https://doi.org/10.1016/j.fertnstert.2013.07.201.; Pedro J., Brandão T., Schmidt L. et al. What do people know about fertility? A systematic review on fertility awareness and its associated factors. Ups J Med Sci. 2018;123(2):71–81. https://doi.org/10.1080/03009734.2018.1480186.; Nasab S., Shah J.S., Nurudeen K. et al. Physicians' attitudes towards using elective oocyte cryopreservation to accommodate the demands of their career. J Assist Reprod Genet. 2019;36(9):1935–47. https://doi.org/10.1007/s10815-019-01541-7.; Fritz R., Klugman S., Lieman H. et al. Counseling patients on reproductive aging and elective fertility preservation-a survey of obstetricians and gynecologists' experience, approach, and knowledge. J Assist Reprod Genet. 2018;35(9):1613–21. https://doi.org/10.1007/s10815-018-1273-7.; Cobo A., García-Velasco J.A., Coello A. et al. Oocyte vitrification as an efficient option for elective fertility preservation. Fertil Steril. 2016;105(3):755–764.e8. https://doi.org/10.1016/j.fertnstert.2015.11.027.; Giannopapa M., Sakellaridi A., Pana A., Velonaki V.S. Women electing oocyte cryopreservation: characteristics, information sources, and oocyte disposition: a systematic review. J Midwifery Womens Health. 2022;67(2):178–201. https://doi.org/10.1111/jmwh.13332.; Blakemore J.K., Bayer A.H., Smith M.B., Grifo J.A. Infertility influencers: an analysis of information and influence in the fertility webspace. J Assist Reprod Genet. 2020;37(6):1371–8. https://doi.org/10.1007/s10815-020-01799-2.; Baldwin K., Culley L., Hudson N. et al. Oocyte cryopreservation for social reasons: demographic profile and disposal intentions of UK users. Reprod Biomed Online. 2015;31(2):239–45. https://doi.org/10.1016/j.rbmo.2015.04.010.; Inhorn M.C., Birenbaum-Carmeli D., Westphal L.M. et al. Ten pathways to elective egg freezing: a binational analysis. J Assist Reprod Genet. 2018;35(11):2003–11. https://doi.org/10.1007/s10815-018-1277-3.; Jones B.P., Kasaven L., L'Heveder A. et al. Perceptions, outcomes, and regret following social egg freezing in the UK; a cross-sectional survey. Acta Obstet Gynecol Scand. 2020;99(3):324–32. https://doi.org/10.1111/aogs.13763.; Dahhan T., Dancet E.A., Miedema D.V. et al. Reproductive choices and outcomes after freezing oocytes for medical reasons: a follow-up study. Hum Reprod. 2014;29(9):1925–30. https://doi.org/10.1093/humrep/deu137.; Stoop D., Maes E., Polyzos N.P. et al. Does oocyte banking for anticipated gamete exhaustion influence future relational and reproductive choices? A follow-up of bankers and non-bankers. Hum Reprod. 2015;30(2):338–44. https://doi.org/10.1093/humrep/deu317.; Rienzi L., Ubaldi F.M. Oocyte versus embryo cryopreservation for fertility preservation in cancer patients: guaranteeing a women's autonomy. J Assist Reprod Genet. 2015;32(8):1195–6. https://doi.org/10.1007/s10815-015-0507-1.; Kristensen S.G., Andersen C.Y. Cryopreservation of ovarian tissue: opportunities beyond fertility preservation and a positive view into the future. Front Endocrinol (Lausanne). 2018;9:347. https://doi.org/10.3389/fendo.2018.00347.; Oktay K.H., Marin L., Petrikovsky B. et al. Delaying reproductive aging by ovarian tissue cryopreservation and transplantation: is it prime time? Trends Mol Med. 2021;27(8):753–61. https://doi.org/10.1016/j.molmed.2021.01.005.; Chen C. Pregnancy after human oocyte cryopreservation. Lancet. 1986;1(8486):884–6. https://doi.org/10.1016/s0140-6736(86)90989-x.; Argyle C.E., Harper J.C., Davies M.C. Oocyte cryopreservation: where are we now? Hum Reprod Update. 2016;22(4):440–9. https://doi.org/10.1093/humupd/dmw007.; Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology. 2007;67(1):73–80. https://doi.org/10.1016/j.theriogenology.2006.09.014.; Gil-Arribas E., Blockeel C., Pennings G. et al. Oocyte vitrification for elective fertility preservation: a SWOT analysis. Reprod Biomed Online. 2022;44(6):1005–14. https://doi.org/10.1016/j.rbmo.2022.02.001.; Cascante S.D., Blakemore J.K., DeVore S. et al. Fifteen years of autologous oocyte thaw outcomes from a large university-based fertility center. Fertil Steril. 2022;118(1):158–66. https://doi.org/10.1016/j.fertnstert.2022.04.013.; Cobo A., García-Velasco J., Domingo J. et al. Elective and onco-fertility preservation: factors related to IVF outcomes. Hum Reprod. 2018;33(12):2222–31. https://doi.org/10.1093/humrep/dey321.; Walker Z., Lanes A., Ginsburg E. Oocyte cryopreservation review: outcomes of medical oocyte cryopreservation and planned oocyte cryopreservation. Reprod Biol Endocrinol. 2022;20(1):10. https://doi.org/10.1186/s12958-021-00884-0.; Doyle J.O., Richter K.S., Lim J. et al. Successful elective and medically indicated oocyte vitrification and warming for autologous in vitro fertilization, with predicted birth probabilities for fertility preservation according to number of cryopreserved oocytes and age at retrieval. Fertil Steril. 2016;105(2):459–466.e2. https://doi.org/10.1016/j.fertnstert.2015.10.026.; Hirsch A., Hirsh Raccah B., Rotem R. et al. Planned oocyte cryopreservation: a systematic review and meta-regression analysis. Hum Reprod Update. 2024;30(5):558–68. https://doi.org/10.1093/humupd/dmae009.; Orvieto R. What is the expected live birth rate per thawed oocyte? Hum Reprod Update. 2024;30(5):648–9. https://doi.org/10.1093/humupd/dmae015.; Practice Committee of the American Society for Reproductive Medicine. Electronic address: asrm@asrm.org. Evidence-based outcomes after oocyte cryopreservation for donor oocyte in vitro fertilization and planned oocyte cryopreservation: a guideline. Fertil Steril. 2021;116(1):36–47. https://doi.org/10.1016/j.fertnstert.2021.02.024.; Miner S.A., Miller W.K., Grady C., Berkman B.E. "It's just another added benefit": women's experiences with employment-based egg freezing programs. AJOB Empir Bioeth. 2021;12(1):41–52. https://doi.org/10.1080/23294515.2020.1823908.; Lockwood G., Fauser B.C. Social egg freezing: who chooses and who uses? Reprod Biomed Online. 2018;37(4):383–4. https://doi.org/10.1016/j.rbmo.2018.08.003.; Franasiak J.M., Forman E.J., Hong K.H. et al. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil Steril. 2014;101(3):656–663.e1. https://doi.org/10.1016/j.fertnstert.2013.11.004.; Iglesias C., Banker M., Mahajan N. et al. Ethnicity as a determinant of ovarian reserve: differences in ovarian aging between Spanish and Indian women. Fertil Steril. 2014;102(1):244–9. https://doi.org/10.1016/j.fertnstert.2014.03.050.; Porcu E., Cillo G.M., Cipriani L. et al. Impact of BRCA1 and BRCA2 mutations on ovarian reserve and fertility preservation outcomes in young women with breast cancer. J Assist Reprod Genet. 2020;37(3):709–15. https://doi.org/10.1007/s10815-019-01658-9.; Wennberg A.L. Social freezing of oocytes: a means to take control of your fertility. Ups J Med Sci. 2020;125(2):95–8. https://doi.org/10.1080/03009734.2019.1707332.; Tsafrir A., Ben-Ami I., Eldar-Geva T. et al. Clinical outcome of planned oocyte cryopreservation at advanced age. J Assist Reprod Genet. 2022;39(11):2625–33. https://doi.org/10.1007/s10815-022-02633-7.; Ovarian Stimulation TEGGO, Bosch E., Broer S., Griesinger G. et al. ESHRE guideline: ovarian stimulation for IVF/ICSI†. Hum Reprod Open. 2020;2020(2):hoaa009. https://doi.org/10.1093/hropen/hoaa009.; Giles J., Cruz M., Cobo A. et al. Medroxyprogesterone acetate: an alternative to GnRH-antagonist in oocyte vitrification for social fertility preservation and preimplantation genetic testing for aneuploidy. Reprod Biomed Online. 2023;47(2):103222. https://doi.org/10.1016/j.rbmo.2023.04.013.; Pai A.H., Sung Y.J., Li C.J. et al. Progestin Primed Ovarian Stimulation (PPOS) protocol yields lower euploidy rate in older patients undergoing IVF. Reprod Biol Endocrinol. 2023;21(1):72. https://doi.org/10.1186/s12958-023-01124-3.; Lee S.S., Sutter M., Lee S. et al. Self-reported quality of life scales in women undergoing oocyte freezing versus in vitro fertilization. J Assist Reprod Genet. 2020;37(10):2419–25. https://doi.org/10.1007/s10815-020-01916-1.; Sandhu S., Hickey M., Koye D.N. et al. Eggsurance? A randomized controlled trial of a decision aid for elective egg freezing. Hum Reprod. 2024;39(8):1724–34. https://doi.org/10.1093/humrep/deae121.; Greenwood E.A., Pasch L.A., Hastie J. et al. To freeze or not to freeze: decision regret and satisfaction following elective oocyte cryopreservation. Fertil Steril. 2018;109(6):1097–1104.e1. https://doi.org/10.1016/j.fertnstert.2018.02.127.; Platts S., Trigg B., Bracewell-Milnes T. et al. Exploring women's attitudes, knowledge, and intentions to use oocyte freezing for non-medical reasons: a systematic review. Acta Obstet Gynecol Scand. 2021;100(3):383–93. https://doi.org/10.1111/aogs.14030.; Tsafrir A., Holzer H., Miron-Shatz T. et al. 'Why have women not returned to use their frozen oocytes?': a 5-year follow-up of women after planned oocyte cryopreservation. Reprod Biomed Online. 2021;43(6):1137–45. https://doi.org/10.1016/j.rbmo.2021.08.026.; Loreti S., Darici E., Nekkebroeck J. et al. A 10-year follow-up of reproductive outcomes in women attempting motherhood after elective oocyte cryopreservation. Hum Reprod. 2024;39(2):355–63. https://doi.org/10.1093/humrep/dead267.; Kakkar P., Geary J., Stockburger T. et al. Outcomes of social egg freezing: a cohort study and a comprehensive literature review. J Clin Med. 2023;12(13):4182. https://doi.org/10.3390/jcm12134182.; Leung A.Q., Baker K., Vaughan D. et al. Clinical outcomes and utilization from over a decade of planned oocyte cryopreservation. Reprod Biomed Online. 2021;43(4):671–9. https://doi.org/10.1016/j.rbmo.2021.06.024.; Cascante S.D., Grifo J.A., Licciardi F. et al. The effects of age, mature oocyte number, and cycle number on cumulative live birth rates after planned oocyte cryopreservation. J Assist Reprod Genet. 2024;41(11):2979–85. https://doi.org/10.1007/s10815-024-03175-w.; Caughey L.E., White K.M., Lensen S., Peate M. Elective egg freezers' disposition decisions: a qualitative study. Fertil Steril. 2023;120(1):145–60. https://doi.org/10.1016/j.fertnstert.2023.02.022.; Cascante S.D., Berkeley A.S., Licciardi F. et al. Planned oocyte cryopreservation: the state of the ART. Reprod Biomed Online. 2023;47(6):103367. https://doi.org/10.1016/j.rbmo.2023.103367.; Goldman K.N., Kramer Y., Hodes-Wertz B. et al. Long-term cryopreservation of human oocytes does not increase embryonic aneuploidy. Fertil Steril. 2015;103(3):662–8. https://doi.org/10.1016/j.fertnstert.2014.11.025.; Stigliani S., Moretti S., Anserini P. et al. Storage time does not modify the gene expression profile of cryopreserved human metaphase II oocytes. Hum Reprod. 2015;30(11):2519–26. https://doi.org/10.1093/humrep/dev232.; Van Reckem M., Blockeel C., Bonduelle M. et al. Health of 2-year-old children born after vitrified oocyte donation in comparison with peers born after fresh oocyte donation. Hum Reprod Open. 2021;2021(1):hoab002. https://doi.org/10.1093/hropen/hoab002.; Da Luz C.M., Caetano M.A., Berteli T.S. et al. The impact of oocyte vitrification on offspring: a systematic review. Reprod Sci. 2022;29(11):3222–34. https://doi.org/10.1007/s43032-022-00868-4.; Katsani D., Paraschou N., Panagouli E. et al. Social egg freezing – a trend or modern reality? J Clin Med. 2024;13(2):390. https://doi.org/10.3390/jcm13020390.; Fuchs Weizman N., Baram S., Montbriand J., Librach C.L. Planned oocyte cryopreservation (Planned OC): systematic review and meta-analysis of cost-efficiency and patients' perspective. BJOG. 2021;128(6):950–62. https://doi.org/10.1111/1471-0528.16555.; van Loendersloot L.L., Moolenaar L.M., Mol B.W. et al. Expanding reproductive lifespan: a cost-effectiveness study on oocyte freezing. Hum Reprod. 2011;26(11):3054–60. https://doi.org/10.1093/humrep/der284.; Yang I.J., Wu M.Y., Chao K.H. et al. Usage and cost-effectiveness of elective oocyte freezing: a retrospective observational study. Reprod Biol Endocrinol. 2022;20(1):123. https://doi.org/10.1186/s12958-022-00996-1.; Devine K., Mumford S.L., Goldman K.N. et al. Baby budgeting: oocyte cryopreservation in women delaying reproduction can reduce cost per live birth. Fertil Steril. 2015;103(6):1446–1453.e1-2. https://doi.org/10.1016/j.fertnstert.2015.02.029.; Stoop D., Nekkebroeck J., Devroey P. A survey on the intentions and attitudes towards oocyte cryopreservation for non-medical reasons among women of reproductive age. Hum Reprod. 2011;26(3):655–61. https://doi.org/10.1093/humrep/deq367.; Blakemore J.K., Grifo J.A., DeVore S.M. et al. Planned oocyte cryopreservation-10-15-year follow-up: return rates and cycle outcomes. Fertil Steril. 2021;115(6):1511–20. https://doi.org/10.1016/j.fertnstert.2021.01.011.; Paulson R.J., Boostanfar R., Saadat P. et al. Pregnancy in the sixth decade of life: obstetric outcomes in women of advanced reproductive age. JAMA. 2002;288(18):2320–3. https://doi.org/10.1001/jama.288.18.2320.; ESHRE Guideline Group on Female Fertility Preservation; Anderson R.A., Amant F., Braat D. et al. ESHRE guideline: female fertility preservation. Hum Reprod Open. 2020;2020(4):hoaa052. https://doi.org/10.1093/hropen/hoaa052.; Selter J.H., Woodward J., Neal S. Survey assessing policies regarding patient age and provision of fertility treatment in the United States. J Assist Reprod Genet. 2023;40(9):2117–27. https://doi.org/10.1007/s10815-023-02877-x.; Stoop D., van der Veen F., Deneyer M. et al. Oocyte banking for anticipated gamete exhaustion (AGE) is a preventive intervention, neither social nor nonmedical. Reprod Biomed Online. 2014;28(5):548–51. https://doi.org/10.1016/j.rbmo.2014.01.007.; Shkedi-Rafid S., Hashiloni-Dolev Y. Egg freezing for age-related fertility decline: preventive medicine or a further medicalization of reproduction? Analyzing the new Israeli policy. Fertil Steril. 2011;96(2):291–4. https://doi.org/10.1016/j.fertnstert.2011.06.024.; Zhong H., Liao Q., Liu J. et al. Expert consensus on multidisciplinary approach to the diagnosis and treatment of primary hyperparathyroidism in pregnancy in China. Endocrine. 2023;82(2):282–95. https://doi.org/10.1007/s12020-023-03392-w.; Stern C.J., Gook D., Hale L.G. et al. Delivery of twins following heterotopic grafting of frozen-thawed ovarian tissue. Hum Reprod. 2014;29(8):1828. https://doi.org/10.1093/humrep/deu119.; Tammiste T., Kask K., Padrik P. et al. A case report and follow-up of the first live birth after heterotopic transplantation of cryopreserved ovarian tissue in Eastern Europe. BMC Womens Health. 2019;19(1):65. https://doi.org/10.1186/s12905-019-0764-8.; Pacheco F., Oktay K. Current success and efficiency of autologous ovarian transplantation: a meta-analysis. Reprod Sci. 2017;24(8):1111–20. https://doi.org/10.1177/1933719117702251.; Rosendahl M., Simonsen M.K., Kjer J.J. The influence of unilateral oophorectomy on the age of menopause. Climacteric. 2017;20(6):540–4. https://doi.org/10.1080/13697137.2017.1369512.; https://www.gynecology.su/jour/article/view/2576
-
4Academic Journal
Authors: A. A. Zagidullina, L. A. Dzhambulatova, M. A. Shatueva, T. B. Dongak, Y. S. Laubakh, D. S. Shakirova, A. S. Golantsev, Kh. R. Payzulaeva, D. P. Yastrebova, A. M. Aksenov, E. S. Goncharova, M. A. Ozhereleva, D. G. Sargsyan, А. А. Загидуллина, Л. А. Джамбулатова, М. А. Шатуева, Т. Б. Донгак, Я. С. Лаубах, Д. С. Шакирова, А. С. Голанцев, Х. Р. Пайзулаева, Д. П. Ястребова, А. М. Аксенов, Е. С. Гончарова, М. А. Ожерельева, Д. Г. Саргсян
Contributors: The authors declare no funding, Авторы заявляют об отсутствии финансовой поддержки
Source: Obstetrics, Gynecology and Reproduction; Vol 19, No 3 (2025); 389-407 ; Акушерство, Гинекология и Репродукция; Vol 19, No 3 (2025); 389-407 ; 2500-3194 ; 2313-7347
Subject Terms: гонадотоксичность, BC, fertility preservation, oocyte cryopreservation, embryo cryopreservation, ovarian tissue cryopreservation, gonadotoxicity, РМЖ, сохранение фертильности, криоконсервация яйцеклеток, криоконсервация эмбрионов, криоконсервация ткани яичников
File Description: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2387/1347; Мерабишвили В.М., Семиглазов В.Ф., Комяхов А.В. и др. Состояние онкологической помощи в России: рак молочной железы. Эпидемиология и выживаемость больных. Влияние эпидемии бета-варианта коронавируса SARS-CoV-2 (клинико-популяционное исследование). Опухоли женской репродуктивной системы. 2023;19(3):16–24. https://doi.org/10.17650/1994-4098-2023-19-3-16-24.; Тюляндин С.А., Стенина М.Б., Фролова М.А. Практические инструменты, облегчающие выбор адъювантной лекарственной терапии у больных операбельным люминальным HER2-негативным раком молочной железы. Злокачественные опухоли. 2024;14(2):51–7. https://doi.org/10.18027/2224-5057-2024-003.; Павлова В.И., Белая Ю.А., Воронцов А.Ю. и др. Результаты научно-исследовательской работы Российского общества онкомаммологов «Использование искусственного интеллекта для раннего выявления рака молочной железы». Опухоли женской репродуктивной системы. 2023;19(2):54–60. https://doi.org/10.17650/1994-4098-2023-19-2-54-60.; Ахапкина Е.С., Макиева М.И., Хохлова С.В. и др. Особенности состояния здоровья детей, рожденных у матерей с раком молочной железы во время беременности: обзор литературы. Неонатология: новости, мнения, обучение. 2023;11(4):21–5. https://doi.org/10.33029/2308-2402-2023-11-4-21-25.; Llarena N.C., Estevez S.L., Tucker S.L., Jeruss J.S. Impact of fertility concerns on tamoxifen initiation and persistence. J Natl Cancer Inst. 2015;107(10):djv202. https://doi.org/10.1093/jnci/djv202.; Oktay K., Harvey B.E., Partridge A.H. et al. Fertility preservation in patients with cancer: ASCO Clinical Practice Guideline Update. J Clin Oncol. 2018;36(19):1994–2001. https://doi.org/10.1200/JCO.2018.78.1914.; Vuković P., Kasum M., Raguž J. et al. Fertility preservation in young women with early-stage breast cancer. Acta Clin Croat. 2019;58(1):147–56. https://doi.org/10.20471/acc.2019.58.01.19.; Partridge A.H., Pagani O., Abulkhair O. et al. First international consensus guidelines for breast cancer in young women (BCY1). Breast. 2014;23(3):209–20. https://doi.org/10.1016/j.breast.2014.03.011.; Lambertini M., Del Mastro L., Pescio M.C. et al. Cancer and fertility preservation: international recommendations from an expert meeting. BMC Med. 2016;14:1. https://doi.org/10.1186/s12916-015-0545-7.; Переводчикова Н.И., Стенина М.Б. Современные возможности индивидуализации лекарственной терапии рака молочной железы. Российский онкологический журнал. 2016;21(1–2):18–25. https://doi.org/10.18821/1028-9984-2015-21-1-18-25.; Вартанян Э.В., Доброхотова Ю.Э., Девятова Е.А., Цатурова К.А. Сохранение женской фертильности при онкологических заболеваниях. Проблемы репродукции. 2020;26(4):68–76. https://doi.org/10.17116/repro20202604168.; Castillo C., Camejo N. Impact of breast cancer treatments on fertility and the importance of timing for a fertility preservation intervention. Rev Senol Patol Mam. 2022;35(4):305–11. https://doi.org/10.1016/j.senol.2021.08.004.; Mauri D., Gazouli I., Zarkavelis G. et al. Chemotherapy associated ovarian failure. Front Endocrinol. 2020;11:572388. https://doi.org/10.3389/fendo.2020.572388.; Wang S., Pei L., Hu T. et al. Protective effect of goserelin on ovarian reserve during (neo)adjuvant chemotherapy in young breast cancer patients: a prospective cohort study in China. Hum Reprod. 2021;36(4):976–86. https://doi.org/10.1093/humrep/deaa349.; Blumenfeld Z. Fertility preservation in women with malignancy: future endeavors. Clin Med Insights Reprod Health. 2019;13:1179558119872490. https://doi.org/10.1177/1179558119872490.; Çelebi F., Ordu Ç., Ilgün S. et al. The effect of systemic chemotherapy on ovarian function: a prospective clinical trial. Eur J Breast Health. 2020;16(3):177–82. https://doi.org/10.5152/ejbh.2020.5114.; Зикиряходжаев А.Д., Новикова О.В., Рассказова Е.А. Возможность беременностей и родов после лечения рака молочной железы. Архив акушерства и гинекологии имени В.Ф. Снегирева. 2017;4(3):149–53. https://doi.org/10.18821/2313-8726-2017-4-3-149-153.; Белоусов Д.Ю., Чеберда А.Е. Адъювантная гормональная терапия на ранней стадии эстрогенположительного рака молочной железы: систематический обзор и сетевой метаанализ. Пациентоориентированная медицина и фармация. 2023;1(2):75–84. https://doi.org/10.37489/2949-1924-0017.; Имянитов Е.Н. Эволюция системного лечения гормонозависимого рака молочной железы: от чередования препаратов к комбинированной терапии. Опухоли женской репродуктивной системы. 2016;12(2):46–51. https://doi.org/10.17650/1994-4098-2016-12-2-46-51.; Tremont A., Lu J., Cole J.T. Endocrine therapy for early breast cancer: updated review. Ochsner J. 2017;17(4):405–11.; Назаренко Т.А., Пароконная А.А., Шарипова Н.Ю. Применение ингибиторов ароматазы у больных раком молочной железы в программах вспомогательных репродуктивных технологий. Проблемы репродукции. 2012;(2):72–6.; Савельева М.И., Голубенко Е.О., Созаева Ж.А. и др. Анализ осложнений эндокринотерапии тамоксифеном при раке молочной железы: клинические и фармакогенетические аспекты. Современная oнкология. 2022;24(3):361–7. https://doi.org/10.26442/18151434.2022.3.201783.; Shandley L.M., Spencer J.B., Fothergill A. et al. Impact of tamoxifen therapy on fertility in breast cancer survivors. Fertil Steril. 2017;107(1):243–252.e5. https://doi.org/10.1016/j.fertnstert.2016.10.020.; Kim H.J., Noh W.C., Nam S.J. et al. Five-year changes in ovarian function restoration in premenopausal patients with breast cancer taking tamoxifen after chemotherapy: an ASTRRA study report. Eur J Cancer. 2021;151:190–200. https://doi.org/10.1016/j.ejca.2021.03.017.; Шевченко Ю.А., Кузнецова М.С., Христин А.А. и др. Современная терапия рака молочной железы: от тамоксифена до Т-клеточной инженерии. Сибирский онкологический журнал. 2022;21(5):109–22. https://doi.org/10.21294/1814-4861-2022-21-5-109-122.; Mehta P., Bothra S.J. PARP inhibitors in hereditary breast and ovarian cancer and other cancers: а review. Adv Genet. 2021;108:35–80. https://doi.org/10.1016/bs.adgen.2021.08.002.; Li J., Li Q., Zhang L. et al. Poly-ADP-ribose polymerase (PARP) inhibitors and ovarian function. Biomed Pharmacother. 2023;157:114028. https://doi.org/10.1016/j.biopha.2022.114028.; Артамонова Е.В., Коваленко Е.И., Болотина Л.В. и др. Ингибиторы CDK4/6 в терапии метастатического рака молочной железы. Выбор оптимальной терапии эстроген-рецептор-положительного HER2-отрицательного метастатического рака молочной железы: общероссийский анализ предпочтений врачей («Прометей») – первые результаты опроса. Опухоли женской репродуктивной системы. 2020;16(3):37–45. https://doi.org/10.17650/1994-4098-2020-16-3-37-45.; Dong F., Meng T.G., Li J. et al. Inhibition of CDK4/6 kinases causes production of aneuploid oocytes by inactivating the spindle assembly checkpoint and accelerating first meiotic progression. Biochim Biophys Acta Mol Cell Res. 2021;1868(7):119044. https://doi.org/10.1016/j.bbamcr.2021.119044.; Scavone G., Ottonello S., Blondeaux E. et al. The role of cyclin-dependent kinases (CDK) 4/6 in the ovarian tissue and the possible effects of their exogenous inhibition. Cancers. 2023;15(20):4923. https://doi.org/10.3390/cancers15204923.; Catlin N.R., Bowman C.J., Engel S.M et al. Reproductive and developmental toxicity assessment of palbociclib, a CDK4/6 inhibitor, in Sprague-Dawley rats and New Zealand White rabbits. Reprod Toxicol. 2019;88:76–84. https://doi.org/10.1016/j.reprotox.2019.07.016.; Болотина Л.В. Стратегия лекарственной терапии метастатического рака молочной железы в условиях расширения палитры противоопухолевых средств. Вопросы онкологии. 2024;70(2):248–58. https://doi.org/10.37469/0507-3758-2024-70-2-248-258.; Garutti M., Lambertini M., Puglisi F. Checkpoint inhibitors, fertility, pregnancy, and sexual life: a systematic review. ESMO Open. 2021;6(5):100276. https://doi.org/10.1016/j.esmoop.2021.100276.; Пигарова Е.А., Шутова А.С., Дзеранова Л.К. Коррекция эндокринных осложнений онкоиммунотерапии. Ожирение и метаболизм. 2022;19(4):418–30. https://doi.org/10.14341/omet12828.; Нуралиева Н.Ф., Трошина Е.А., Мельниченко Г.А. Поражение желез внутренней секреции как осложнение иммунотерапии в практике онколога. Клиническая и экспериментальная тиреоидология. 2018;14(4):174–82. https://doi.org/10.14341/ket9875.; Charmsaz S., Scott A.M., Boyd A.W. Targeted therapies in hematological malignancies using therapeutic monoclonal antibodies against Eph family receptors. Exp Hematol. 2017;54:31–9. https://doi.org/10.1016/j.exphem.2017.07.003.; Mandó P., Waisberg F., Pasquinelli R. et al. HER2-directed therapy in advanced breast cancer: benefits and risks. Onco Targets Ther. 2023;16:115–32. https://doi.org/10.2147/OTT.S335934.; Артамонова Е.В., Лубенникова Е.В. Оптимальный выбор неоадъювантной терапии HER2-положительного рака молочной железы. Анализ предпочтений врачей в Российской Федерации. Медицинский алфавит. 2023;(27):7–12. https://doi.org/10.33667/2078-5631-2023-27-7-12.; Levi M., Goshen-Lago T., Yerushalmi R. et al. Anti-HER2/neu antibody reduces chemotherapy-induced ovarian toxicity-from bench to bedside. Biomedicines. 2020;8(12):577. https://doi.org/10.3390/biomedicines8120577.; Lambertini M., Campbell C., Bines J. et al. Adjuvant anti-HER2 therapy, treatment-related amenorrhea, and survival in premenopausal HER2-positive early breast cancer patients. J Natl Cancer Inst. 2019;111(1):86–94. https://doi.org/10.1093/jnci/djy094.; Адамян Л.В., Носов В.Б., Степанян А.А. Лечение, сохраняющее фертильность у онкологических пациентов: чем мы можем помочь в XXI веке? Проблемы репродукции. 2024;30(1):26–63. https://doi.org/10.17116/repro20243001126.; Poorvu P.D., Hu J., Zheng Y. et al. Treatment-related amenorrhea in a modern, prospective cohort study of young women with breast cancer. NPJ Breast Cancer. 2021;7(1):99. https://doi.org/10.1038/s41523-021-00307-8.; Дашян Г.А., Семиглазов В.Ф., Криворотько П.В. и др. Новые перспективы применения препарата Кадсила® при раке молочной железы. Опухоли женской репродуктивной системы. 2015;11(4):46–52. https://doi.org/10.17650/1994-4098-2015-11-4-46-52.; Cui W., Francis P.A., Loi S. et al. Assessment of ovarian function in phase III (neo)adjuvant breast cancer clinical trials: a systematic evaluation. J Natl Cancer Inst. 2021;113(12):1770–8. https://doi.org/10.1093/jnci/djab111.; Афонин Г.В., Рагулин Ю.А., Гулидов И.А. и др. Эффективность адъювантной лучевой терапии в режиме гипофракционирования у больных операбельным раком молочной железы. Сибирский онкологический журнал. 2018;17(5):37–44. https://doi.org/10.21294/1814-4861-2018-17-5-37-44.; Beyer S., Sandu A., White J. Impact and timing of breast cancer radiation therapy and fertility preservation. Curr Breast Cancer Rep. 2020;12(4):375–80. https://doi.org/10.1007/s12609-020-00394-9.; Краснопольская К.В., Крстич Е.В., Горская О.С. и др. Место агонистов гонадотропин-рилизинг-гормонов в репродуктивной медицине. Проблемы репродукции. 2012;(2):65–7.; Пустотина О.А. Агонисты гонадотропин-рилизинг-гормона и add-back-терапия. Российский вестник акушера-гинеколога. 2023;23(2):63–9. https://doi.org/10.17116/rosakush20232302163.; Li Z.Y., Dong Y.L., Cao X.Z. et al. Gonadotropin-releasing hormone agonists for ovarian protection during breast cancer chemotherapy: a systematic review and meta-analysis. Menopause. 2022;29(9):1093–100. https://doi.org/10.1097/GME.0000000000002019.; Lambertini M., Boni .L, Michelotti A. et al. Ovarian suppression with triptorelin during adjuvant breast cancer chemotherapy and long-term ovarian function, pregnancies, and disease-free survival: a randomized clinical trial. JAMA. 2015;314(24):2632–40. https://doi.org/10.1001/jama.2015.17291.; Краснопольская К.В., Назаренко Т.А., Здановский В.М. и др. Влияние количественных параметров фолликулогенеза при контролируемой стимуляции яичников на эффективность ЭКО. Проблемы репродукции. 2017;23(3):55–61. https://doi.org/10.17116/repro201723355-61.; Park S.Y., Jeong K., Cho E.H., Chung H.W. Controlled ovarian hyperstimulation for fertility preservation in women with breast cancer: practical issues. Clin Exp Reprod Med. 2021;48(1):1–10. https://doi.org/10.5653/cerm.2020.03594.; Cavagna F., Pontes A., Cavagna M. et al. Specific protocols of controlled ovarian stimulation for oocyte cryopreservation in breast cancer patients. Curr Oncol. 2018;25(6):e527–e532. https://doi.org/10.3747/co.25.3889.; Baig A.S., Camuñas N.G., Sánchez P.P. et al. Controlled ovarian stimulation initiated at different phases of the menstrual cycle for fertility preservation in oncological patients: a retrospective study. Reprod Sci. 2023;30(8):2547–53. https://doi.org/10.1007/s43032-023-01175-2.; Cascante S.D., Berkeley A.S., Licciardi F. et al. Planned oocyte cryopreservation: the state of the ART. Reprod Biomed Online. 2023;47(6):103367. https://doi.org/10.1016/j.rbmo.2023.103367.; Lambertini M., Peccatori F.A., Demeestere I. et al. Fertility preservation and post-treatment pregnancies in post-pubertal cancer patients: ESMO Clinical Practice Guidelines. Ann Oncol. 2020;31(12):1664–78. https://doi.org/10.1016/j.annonc.2020.09.006.; Mahajan N. Fertility preservation in female cancer patients: an overview. J Hum Reprod Sci. 2015;8(1):3–13. https://doi.org/10.4103/0974-1208.153119.; Rosenberg E., Fredriksson A., Einbeigi Z. et al. No increased risk of relapse of breast cancer for women who give birth after assisted conception. Hum Reprod Open. 2019;2019(4):hoz039. https://doi.org/10.1093/hropen/hoz039.; Arecco L., Blondeaux E., Bruzzone M. et al. Safety of fertility preservation techniques before and after anticancer treatments in young women with breast cancer: a systematic review and meta-analysis. Hum Reprod. 2022;37(5):954–68. https://doi.org/10.1093/humrep/deac035.; Fraison E., Huberlant S., Labrune E. et al. Live birth rate after female fertility preservation for cancer or haematopoietic stem cell transplantation: a systematic review and meta-analysis of the three main techniques; embryo, oocyte and ovarian tissue cryopreservation. Hum Reprod. 2023;38(3):489–502. https://doi.org/10.1093/humrep/deac249.; Da Luz C.M., Caetano M.A., Berteli T.S. et al. The impact of oocyte vitrification on offspring: a systematic review. Reprod Sci. 2022;29(11):3222–34. https://doi.org/10.1007/s43032-022-00868-4.; Юпатов Е.Ю., Курманбаев Т.Е., Шмидт А.А. и др. Криоконсервация репродуктивной ткани – возможность сохранения фертильности (обзор литературы). Проблемы репродукции. 2020;26(5):99–106. https://doi.org/10.17116/repro20202605199.; Рухляда Н.Н., Казанцев В.А. Вопросы онкофертильности – обзор современных методов криоконсервации яичниковой ткани. Проблемы репродукции. 2018;24(1):53–6. https://doi.org/10.17116/repro201824153-56.; Albamonte M.I., Vitullo A.D. Preservation of fertility in female and male prepubertal patients diagnosed with cancer. J Assist Reprod Genet. 2023;40(12):2755–67. https://doi.org/10.1007/s10815-023-02945-2.; Dolmans M.M., von Wolff M., Poirot C. et al. Transplantation of cryopreserved ovarian tissue in a series of 285 women: a review of five leading European centers. Fertil Steril. 2021;115(5):1102–15. https://doi.org/10.1016/j.fertnstert.2021.03.008.; Boutas I., Kontogeorgi A., Koufopoulos N. et al. Breast cancer and fertility preservation in young female patients: a systematic review of the literature. Clin Pract. 2023;13(6):1413–26. https://doi.org/10.3390/clinpract13060127.; Sánchez-Serrano M., Crespo J., Mirabet V. et al. Twins born after transplantation of ovarian cortical tissue and oocyte vitrification. Fertil Steril. 2010;93(1):268.e11–3. https://doi.org/10.1016/j.fertnstert.2009.09.046.; Jensen A.K., Macklon K.T., Fedder J. et al. 86 successful births and 9 ongoing pregnancies worldwide in women transplanted with frozen-thawed ovarian tissue: focus on birth and perinatal outcome in 40 of these children. J Assist Reprod Genet. 2017;34(3):325–36. https://doi.org/10.1007/s10815-016-0843-9.; Klock S.C., Lindheim S.R. Disposition of unused cryopreserved embryos: opportunities and liabilities. Fertil Steril. 2023;119(1):1–2. https://doi.org/10.1016/j.fertnstert.2022.10.036.; Barcroft J., Dayoub N., Thong K.J. Fifteen year follow-up of embryos cryopreserved in cancer patients for fertility preservation. J Assist Reprod Genet. 2013;30(11):1407–13. https://doi.org/10.1007/s10815-013-0024-z.; Oktay K., Turan V., Bedoschi G. et al. Fertility preservation success subsequent to concurrent aromatase inhibitor treatment and ovarian stimulation in women with breast cancer. J Clin Oncol. 2015;33(22):2424–9. https://doi.org/10.1200/JCO.2014.59.3723.; Go K.J., Romanski P.A., Bortoletto P. et al. Meeting the challenge of unclaimed cryopreserved embryos. Fertil Steril. 2023;119(1):15–20. https://doi.org/10.1016/j.fertnstert.2022.09.323.; Pomeroy K.O., Comizzoli P., Rushing J.S. et al. The ART of cryopreservation and its changing landscape. Fertil Steril. 2022;117(3):469–76. https://doi.org/10.1016/j.fertnstert.2022.01.018.; Herraiz S., Buigues A., Díaz-García C. et al. Fertility rescue and ovarian follicle growth promotion by bone marrow stem cell infusion. Fertil Steril. 2018;109(5):908–918.e2. https://doi.org/10.1016/j.fertnstert.2018.01.004.; Umer A., Khan N., Greene D.L. et al. The therapeutic potential of human umbilical cord derived mesenchymal stem cells for the treatment of premature ovarian failure. Stem Cell Rev Rep. 2023;19(3):651–66. https://doi.org/10.1007/s12015-022-10493-y.; Del-Pozo-Lérida S., Salvador C., Martínez-Soler F. et al. Preservation of fertility in patients with cancer (Review). Oncol Rep. 2019;41(5):2607–14. https://doi.org/10.3892/or.2019.7063.; Peng X., Cheng C., Zhang X. et al. Design and application strategies of natural polymer Biomaterials in artificial ovaries. Ann Biomed Eng. 2023;51(3):461–78. https://doi.org/10.1007/s10439-022-03125-6.; Wu T., Gao Y.Y., Su J. et al. Three-dimensional bioprinting of artificial ovaries by an extrusion-based method using gelatin-methacryloyl bioink. Climacteric. 2022;25(2):170–8. https://doi.org/10.1080/13697137.2021.1921726.; Pei W., Fu L., Guo W. et al. Efficacy and safety of mesenchymal stem cell therapy for ovarian ageing in a mouse model. Stem Cell Res Ther. 2024;15(1):96. https://doi.org/10.1186/s13287-024-03698-0.; Jones G., Hughes J., Mahmoodi N. et al. What factors hinder the decision-making process for women with cancer and contemplating fertility preservation treatment? Hum Reprod Update. 2017;23(4):433–57. https://doi.org/10.1093/humupd/dmx009.; Barjasteh S., Farnam F., Elsous A. et al. Overcoming reproductive and psychological concerns of breast cancer survivors: a randomized controlled Trial. J Family Reprod Health. 2022;16(1):52–60. https://doi.org/10.18502/jfrh.v16i1.8594.; Logan S., Anazodo A. The psychological importance of fertility preservation counseling and support for cancer patients. Acta Obstet Gynecol Scand. 2019;98(5):583–97. https://doi.org/10.1111/aogs.13562.; Ko J.K.Y., Cheung C.S.Y., Cheng H.H.Y. et al. Knowledge, attitudes and intention on fertility preservation among breast cancer patients. Sci Rep. 2023;13(1):9645. https://doi.org/10.1038/s41598-023-36377-w.; Петров И.А., Дмитриева М.Л., Тихоновская О.А. и др. Современный взгляд на естественную фертильность. Российский вестник акушера-гинеколога. 2017;17(2):4–12. https://doi.org/10.17116/rosakush20171724-12.; https://www.gynecology.su/jour/article/view/2387
-
5Academic Journal
Authors: Kudratova , Rano
Source: Eurasian Journal of Medical and Natural Sciences; Vol. 5 No. 10 (2025): Eurasian Journal of Medical and Natural Sciences; 305-313 ; Евразийский журнал медицинских и естественных наук; Том 5 № 10 (2025): Евразийский журнал медицинских и естественных наук; 305-313 ; Yevrosiyo tibbiyot va tabiiy fanlar jurnali; Jild 5 Nomeri 10 (2025): Евразийский журнал медицинских и естественных наук; 305-313 ; 2181-287X
Subject Terms: Бесплодие, экстракорпоральное оплодотворение (ЭКО), вспомогательные репродуктивные технологии (ВРТ), репродуктивное здоровье, перенос эмбрионов, криоконсервация, искусственный интеллект в медицине, показатели успешности, Узбекистан, глобальные тенденции здравоохранения, Infertility, In Vitro Fertilization (IVF), Assisted Reproductive Technologies (ART), Reproductive Health, Embryo Transfer, Cryopreservation, Artificial Intelligence in Medicine, Success Rates, Uzbekistan, Global Health Trends
File Description: application/pdf
Availability: https://in-academy.uz/index.php/EJMNS/article/view/63218
-
6Academic Journal
Authors: I. R. Abdulazimova, L. L. Mezhidova, R. S. Barkinkhoeva, Z. U. Zarieva, Z. Kh. Abadieva, Kh. R. Magamadova, A. L. Vazikaeva, A. A. Bzhekshieva, D. A. Bogatyreva, E. A. Kauts, M. A. Bayanova, Kh. U. Umarova, Kh. A. Satuev, M. A.F. Qasem, И. Р. Абдулазимова, Л. Л. Межидова, Р. С. Баркинхоева, З. У. Зариева, З. Х. Абадиева, Х. Р. Магамадова, А. Л. Вазикаева, А. А. Бжекшиева, Д. А. Богатырёва, Э. А. Кауц, М. А. Баянова, Х. У. Умарова, Х. А. Сатуев, М. А.Ф. Касем
Source: Obstetrics, Gynecology and Reproduction; Online First ; Акушерство, Гинекология и Репродукция; Online First ; 2500-3194 ; 2313-7347
Subject Terms: криоконсервация, assisted reproductive technologies, cryopreservation, вспомогательные репродуктивные технологии
File Description: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2516/1359; Zegers-Hochschild F., Adamson G.D., de Mouzon J. et al. The International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) Revised Glossary on ART Terminology, 2009. Hum Reprod. 2009;24(11):2683–7. https://doi.org/10.1093/humrep/dep343.; Bártolo A., Reis S., Monteiro S. et al. Psychological adjustment of infertile men undergoing fertility treatments: an association with sperm parameters. Arch Psychiatr Nurs. 2016;30(5):521–6. https://doi.org/10.1016/j.apnu.2016.04.014.; Тювина Н.А., Николаевская А.О. Бесплодие и психические расстройства у женщин. Неврология, нейропсихиатрия, психосоматика. 2019;11(4):117–24. https://doi.org/10.14412/2074-2711-2019-4-117-124.; Beke A. Genetic causes of female infertility. Exp Suppl. 2019;111:367–83. https://doi.org/10.1007/s11934-019-0942-0.; Жураев И.И., Хайдаров О.Л., Бобокулов Н.А. Мужское бесплодие. Proceedings of International Conference on Scientific Research in Natural and Social Sciences.2023;2(3):163–70.; Tschudin S., Bitzer J. Psychological aspects of fertility preservation in men and women affected by cancer and other life-threatening diseases. Hum Reprod Update. 2009;15(5):587–97. https://doi.org/10.1093/humupd/dmp016.; Kenney L.B., Antal Z., Ginsberg J.P. et al. Improving male reproductive health after childhood, adolescent, and young adult cancer: progress and future directions for survivorship Research. J Clin Oncol. 2018;36(21):2160–8. https://doi.org/10.1200/JCO.2017.76.3839.; Dishuck C.F., Perchik J.D., Porter K.K. et al. Advanced imaging in female infertility. Curr Urol Rep. 2019;20(11):77. https://doi.org/10.1007/s11934-019-0942-0.; Bala R., Singh V., Rajender S. et al. Environment, lifestyle, and female infertility. Reprod Sci. 2021;28(3):617–38. https://doi.org/10.1007/s43032-020-00279-3.; Mustafa M., Sharifa A.M., Hadi J.E. et al. Male and female infertility: causes, and management. IOSR J Dent Med Sci. 2019;18(9):27–32. https://doi.org/10.9790/0853-1809132732.; Арипова Т.У., Мусаходжаева Д.А., Файзуллаева Н.Я., Ярмухамедов А.С. Различные аспекты бесплодия у мужчин (обзор литературы). Журнал теоретической и клинической медицины. 2020;(4):141–5.; Галимов Ш.Н., Божедомов В.А., Галимова Э.Ф. и др. Мужское бесплодие: молекулярные и иммунологические аспекты: моногафия. М.: ГЭОТАР-Медиа, 2020. 204 с.; Киракосян Е.В., Назаренко Т.А., Павлович С.В. Поиск причин формирования нарушений репродуктивной системы: обзор научных исследований. Акушерство и гинекология. 2021;(11):18–25. https://doi.org/10.18565/aig.2021.11.18-25.; No C.O. Female age-related fertility decline. Fertil Steril. 2014;101(3):633–4. https://doi.org/10.1016/j.fertnstert.2013.12.032.; Сонголова Е.Н. Контроль учета ЭКО по ОМС. Материалы Второго съезда медицинских статистиков Москвы «Статистика здравоохранения нового времени». М., 2020. 84–6.; Sidorova T.F. Philosophical analysis of procreation in the value dimension. Population and Economics. 2020;4(4):57–66. https://doi.org/10.3897/popecon.4.e58271.; Шевлюк Н.Н. Фундаментальные основы, биологические, медицинские и социальные аспекты вспомогательных репродуктивных технологий: история создания, современное состояние и перспективы. Журнал анатомии и гистопатологии. 2024;13(2):100–9. https://doi.org/10.18499/2225-7357-2024-13-2-100-109.; Walters E.M., Benson J.D., Woods E.J. et al. The history of sperm cryopreservation. In: Spermbanking: Theory and practice. Cambridge University Press, 2009. 1–10.; Castellani C. Spermatozoan biology from Leeuwenhoek to Spallanzani. J Hist Biol. 1973;6:37–68. https://doi.org/10.1007/BF00137298.; Lovelock J.E. The haemolysis of human red blood-cells by freezing and thawing. Biochim Biophys Acta. 1953;10(3):414–26. https://doi.org/10.1016/0006-3002(53)90273-X.; Jang T.H., Park S.C., Yang J.H. et al. Cryopreservation and its clinical applications. Integr Med Res. 2017;6(1):12–8. https://doi.org/10.1016/j.imr.2016.12.001.; Shenfield F., de Mouzon J., Scaravelli G. et al. ESHRE Working Group on Oocyte Cryopreservation in Europe. Oocyte and ovarian tissue cryopreservation in European countries: statutory background, practice, storage and use. Hum Reprod Open. 2020;2020:hoaa016. https://doi.org/10.1093/hropen/hox003.; Calhaz-Jorge C., de Geyter C., Kupka, M.S. et al. European IVF-Monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE). Assisted reproductive technology in Europe, 2012: results generated from European registers by ESHRE. Hum Reprod. 2016;31(2):233–48. https://doi.org/10.1093/humrep/dex264.; Одинцова И.А., Русакова С.Э., Шмидт А.А., Тимошкова Ю.Л. Криоконсервация половых клеток: история и современное состояние вопроса. Гены и клетки. 2021;16(3):44–51. https://doi.org/10.23868/202110005.; Öztürk A.E., Bucak M.N., Bodu M. et al. Cryobiology and cryopreservation of sperm. In: Cryopreservation – Current Advances and Evaluations. Ed. M. Quain. IntechOpen, 2019. 1–52 https://doi.org/10.5772/intechopen.89789.; AbdelHafez F., Bedaiwy M., El-Nashar S.A. et al. Techniques for cryopreservation of individual or small numbers of human spermatozoa: a systematic review. Hum Reprod Update. 2009;15(2):153–64. https://doi.org/10.1093/humupd/dmn061.; Di Santo M., Tarozzi N., Nadalini M, Borini A. Human sperm cryopreservation: update on techniques, effect on DNA integrity, and implications for ART. Adv Urol. 2012;2012:854837. https://doi.org/10.1155/2012/854837.; Rios A.P., Botella I.M. Description and outcomes of current clinical techniques for sperm cryopreservation. EMJ Reprod Health. 2019;7(1):79–92. https://doi.org/10.33590/emjreprohealth/10310343.; Liu S., Li F. Cryopreservation of single-sperm: where are we today? Reprod Biol Endocrinol. 2020;18(1):41. https://doi.org/10.1186/s12958-020-00600-5.; Just A., Gruber I., Wöber M. et al. Novel method for the cryopreservation of testicular sperm and ejaculated spermatozoa from patients with severe oligospermia: a pilot study. Fertil Steril. 2004;82(2):445–7. https://doi.org/10.1016/j.fertnstert.2003.12.050.; Tomita K., Sakai S., Khanmohammadi M. et al. Cryopreservation of a small number of human sperm using enzymatically fabricated, hollow hyaluronan microcapsules handled by conventional ICSI procedures. J Assist Reprod Genet. 2016;33(4):501–11. https://doi.org/10.1007/s10815-016-0656-x.; Glander H.J., Schaller J. Hidden effects of cryopreservation on quality of human spermatozoa. Cell Tissue Bank. 2000;1(2):133–42. https://doi.org/10.1023/A:1010122800157.; Isachenko V., Isachenko E., Katkov I.I. et al. Cryoprotectant-free cryopreservation of human spermatozoa by vitrification and freezing in vapor: effect on motility, DNA integrity, and fertilization ability. Biol Reprod. 2004;71(4):1167–73. https://doi.org/10.1095/biolreprod.104.028811.; Maheshwari A., Bhattacharya S. Elective frozen replacement cycles for all: ready for prime time? Hum Reprod. 2013;28(1):6–9. https://doi.org/10.1093/humrep/des386.; Cohen J., Alikani M. The time has come to radically rethink assisted reproduction. Reprod Biomed Online. 2013;27(4):323–4. https://doi.org/10.1016/j.rbmo.2013.08.001.; Bosch E., De Vos M., Humaidan P. The future of cryopreservation in assisted reproductive technologies. Front Endocrinol (Lausanne). 2020;11:67. https://doi.org/10.3389/fendo.2020.00067.; McLaughlin M., Albertini D.F., Wallace W.H.B. et al. Metaphase II oocytes from human unilaminar follicles grown in a multi-step culture system. Mol Hum Reprod. 2018;24(3):135–42. https://doi.org/10.1093/molehr/gay002.; Gook D.A., Edgar D.H. Cryopreservation of female reproductive potential. Best Pract Res Clin Obstet Gynaecol. 2019;55:23–36.https://doi.org/10.18565/aig.2020.4.195-200.; Hussein R.S., Khan Z., Zhao Y. Fertility preservation in women: indications and options for therapy. Mayo Clin Proc. 2020;95(4):770–83. https://doi.org/10.1016/j.mayocp.2019.10.009.; Rivas Leonel E.C., Lucci C.M., Amorim C.A. Cryopreservation of human ovarian tissue: a review. Transfus Med Hemother. 2019;46(3):173–81. https://doi.org/10.1159/000499054.; Taylor M.J., Weegman B.P., Baicu S.C. et al. New approaches to cryopreservation of cells, tissues, and organs. Transfus Med Hemother. 2019;46(3):197–215. https://doi.org/10.1159/000499453.; Pegg D.E. The history and principles of cryopreservation. Semin Reprod Med. 2002;20(1):5–13. https://doi.org/10.1055/s-2002-23515.; Torquato P., Giusepponi D., Bartolini D. et al. Pre-analytical monitoring and protection of oxidizable lipids in human plasma (vitamin E and ω-3 and ω-6 fatty acids): an update for redox-lipidomics methods. Free Radic Biol Med. 2021;176:142–8. https://doi.org/10.1016/j.freeradbiomed.2021.09.012.; Pegg D.E. Principles of cryopreservation. Methods Mol Biol. 2007;368:39–57. https://doi.org/10.1007/978-1-59745-362-2_3.; Cobo A., García-Velasco J. A., Coello A. et al. Oocyte vitrification as an efficient option for elective fertility preservation. Fertil Steril. 2016;105(3):755–64. https://doi.org/10.1016/j.fertnstert.2015.11.027.; Ferraretti A.P., Gianaroli L., Magli C. et al. Elective cryopreservation of all pronucleate embryos in women at risk of ovarian hyperstimulation syndrome: efficiency and safety. Hum Reprod. 1999;14(6):1457–60. https://doi.org/10.1093/humrep/14.6.1457.; Shapiro B.S., Daneshmand S.T., Garner F.C. et al. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfer in normal responders. Fertil Steril. 2011;96(2):344–8. https://doi.org/10.1016/j.fertnstert.2011.05.050.; Aghahosseini M., Aleyasin A., Sarfjoo F.S. et al. In vitro fertilization outcome in frozen versus fresh embryo transfer in women with elevated progesterone level on the day of HCG injection: an RCT. Int J Reprod Biomed. 2017;15(12):757–62.; Alteri A., Pisaturo V., Somigliana E. et al. Cryopreservation in reproductive medicine during the COVID-19 pandemic: rethinking policies and European safety regulations. Hum Reprod. 2020;35(12):2650–7. https://doi.org/10.1093/humrep/deaa210.; Christianson M.S., Stern J.E., Sun F. et al. Embryo cryopreservation and utilization in the United States from 2004-2013. F S Rep. 2020;1(2):71–7. https://doi.org/10.1016/j.xfre.2020.05.010.; Ladeira C., Koppen G., Scavone F. et al. The comet assay for human biomonitoring: eEffect of cryopreservation on DNA damage in different blood cell preparations. Mutat Res Genet Toxicol Environ Mutagen. 2019;843:11–7. https://doi.org/10.1016/j.mrgentox.2019.02.002.; Guerif F., Bidault R., Cadoret V. et al. Parameters guiding selection of best embryos for transfer after cryopreservation: a reappraisal. Hum Reprod. 2002;17(5):1321–6. https://doi.org/10.1093/humrep/17.5.1321.; Якубец Ю.А., Дешко А.С., Голубец Л.В. и др. Эффективность криоконсервации эмбрионов, полученных в культуре in vitro. Международный вестник ветеринарии. 2020;(3):169–75.; Rienzi L.F., Iussig B., Dovere L. et al. Perspectives in gamete and embryo cryopreservation. Semin Reprod Med. 2018;36(5):253–64. https://doi.org/10.1055/s-0038-1677463.; Telfer E.E. Future developments: In vitro growth (IVG) of human ovarian follicles. Acta Obstet Gynecol Scand. 2019;98(5):653–8. https://doi.org/10.1111/aogs.13592.; Anderson R.A., Baird D.T. The development of ovarian tissue cryopreservation in Edinburgh: translation from a rodent model through validation in a large mammal and then into clinical practice. Acta Obstet Gynecol Scand. 2019;98(5):545–9. https://doi.org/10.1111/aogs.13560.; Hong B., Hao Y. The outcome of human mosaic aneuploid blastocysts after intrauterine transfer: a retrospective study. Medicine (Baltimore). 2020;99(9):e18768. https://doi.org/10.1097/MD.0000000000018768.; Gleicher N., Orvieto R.J. Is the hypothesis of preimplantation genetic screening (PGS) still supportable? A review. J Ovarian Res. 2017;10(1):21. https://doi.org/10.1186/s13048-017-0318-3.; Whaley D., Damyar K., Witek R.P. et al. Cryopreservation: an overview of principles and cell-specific considerations. Cell Transplant. 2021;30:963689721999617. https://doi.org/10.1177/09636897219996.; Raju R., Bryant S.J., Wilkinson B.L. et al. The need for novel cryoprotectants and cryopreservation protocols: Insights into the importance of biophysical investigation and cell permeability. Biochim Biophys Acta Gen Subj. 2021;1865(1):129749. https://doi.org/10.1016/j.bbagen.2020.129749.; Bojic S., Murray A., Bentley B.L. et al. Winter is coming: the future of cryopreservation. BMC Biol. 2021;19(1):56. https://doi.org/10.1186/s12915-021-00976-8.; Erol O.D., Pervin B., Seker M.E. et al. Effects of storage media, supplements and cryopreservation methods on quality of stem cells. World J Stem Cells. 2021;13(9):1197–214. https://doi.org/10.4252/wjsc.v13.i9.1197.; Crisol M., Wu K., Laouar L. et al. Antioxidant additives reduce reactive oxygen species production in articular cartilage during exposure to cryoprotective agents. Cryobiology. 2020;96:114–21. https://doi.org/10.1016/j.cryobiol.2020.07.008.; Manchester L.C., Coto-Montes A., Boga J.A. et al. Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res. 2015;59(4):403–19. https://doi.org/10.1111/jpi.12267.; Marcantonini G., Bartolini D., Zatini L. et al. Natural cryoprotective and cytoprotective agents in cryopreservation: a focus on melatonin. Molecules. 2022;27(10):3254. https://doi.org/10.3390/molecules27103254.; Len J.S., Koh W.S.D., Tan S.X. The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci Rep. 2019;39(8):BSR20191601. https://doi.org/10.1042/BSR20191601.; Trounson A., Wood C., Kausche A. In vitro maturation and the fertilization and developmental competence of oocytes recovered from untreated polycystic ovarian patients. Fertil Steril. 1994;62(2):353–62. https://doi.org/10.1016/S0015-0282(16)56891-5.; Полякова М.В. Криоконсервация сперматогониальных стволовых клеток: возможности клинического применения для сохранения фертильности у пациентов предпубертатного возраста. Журнал медико-биологических исследований. 2017;5(3):33–42. https://doi.org/10.17238/issn2542-1298.2017.5.3.33.; Белова Д.А. Актуальные проблемы криоконсервации и хранения репродуктивного биоматериала человека. Lex Genetica. 2024;3(3):26–43. https://doi.org/10.17803/lexgen-2024-3-3-26-43.; Schulz M., Risopatrón J., Uribe P. et al. Human sperm vitrification: a scientific report. Andrology. 2020;8(6):1642–50. https://doi.org/10.1111/andr.12847.; Shah D., Rasappan, Shila, Gunasekaran K. A simple method of human sperm vitrification. MethodsX. 2019;6:2198–204. https://doi.org/10.1016/j.mex.2019.09.022.; Кравчук Я.Н., Калугина А.С., Быстрова О.В. и др. Эффективность и исходы программ cкриоконсервацией эмбрионов в протоколах вспомогательных репродуктивных технологий. Журнал акушерства и женских болезней. 2014;6(4):39–46. https://doi.org/10.17816/JOWD63439-46.; Краснопольская К.В., Сесина Н.И., Бадалян Г.В. и др. Медленное замораживание и витрификация эмбрионов. Сравнение эффективности. Проблемы репродукции. 2015;21(1):48–53. https://doi.org/10.26442/2079-5696_2018.5.59-62.; Пурге А.Р. Криоконсервация эмбрионов: к вопросу о понятии. Юридические исследования. 2022;9:1–9. https://doi.org/ 10.25136/2409-7136.2022.9.38707.; https://www.gynecology.su/jour/article/view/2516
-
7Academic Journal
Authors: B O. Bembeeva, E. L. Isaeva, V. V. Muravieva, K. N. Zhigalova, O. V. Nechaeva, D. Kh. Bazukheyr, T. V. Priputnevich, Б. О. Бембеева, Е. Л. Исаева, В. В. Муравьева, К. Н. Жигалова, О. В. Нечаева, Д. Х. Базухейр, Т. В. Припутневич
Source: Epidemiology and Vaccinal Prevention; Том 23, № 6 (2024); 54-60 ; Эпидемиология и Вакцинопрофилактика; Том 23, № 6 (2024); 54-60 ; 2619-0494 ; 2073-3046
Subject Terms: пробиотики Конфликт интересов не заявлен, obligate anaerobes, lyophilisation, cryopreservation, probiotics No conflict of interest to declare, облигатные анаэробы, лиофилизация, криоконсервация
File Description: application/pdf
Relation: https://www.epidemvac.ru/jour/article/view/2120/1082; Khan M. T., Van Dijl J. M., Harmsen H. J. M. Antioxidants keep the potentially probiotic but highly oxygen-sensitive human gut bacterium Faecalibacterium prausnitzii alive at ambient air. PLoS One, vol. 9, no. 5, 2014, doi:10.1371/journal.pone.0096097.; Goldin B. R. Health benefits of probiotics. Nutr. 1998 Oct;80(4):S203-7. PMID: 9924285.; Vyas U. and Ranganathan N. Probiotics, prebiotics, and synbiotics: Gut and beyond. Gastroenterology Research and Practice. 2012. doi:10.1155/2012/872716.; Gibson G. R. and Roberfroid M. B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. Journal of Nutrition, vol. 125. no. 6. 1995. doi:10.1093/jn/125.6.1401.; Gibson G. R., Beatty E. R., Wang X., et al. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology, vol. 108, no. 4, 1995. doi:10.1016/0016-5085(95)90192-2.; Kolida S. and Gibson G. R. Synbiotics in health and disease. Annu Rev Food Sci Technol, vol. 2, 2011. doi:10.1146/annurev-food-022510-133739.; Mortensen P. B., Clausen M. R. Short-chain fatty acids in the human colon: Relation to gastrointestinal health and disease. Scandinavian Journal of Gastroenterology, Supplement, vol. 31, no. 216. 1996. doi:10.3109/00365529609094568.; Hague A., Singh B., Paraskeva C. Butyrate acts as a survival factor for colonic epithelial cells: Further fuel for the in vivo versus in vitro debate. Gastroenterology, vol. 112, no. 3, 1997, doi:10.1053/gast.1997.v112.agast971036.; Sakata T. Stimulatory effect of short-chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors. British Journal of Nutrition, vol. 58, no. 1, 1987, doi:10.1079/bjn19870073.; Shimotoyodome A., Meguro S., Hase T., et al. Decreased colonic mucus in rats with loperamide-induced constipation. Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology, vol. 126, no. 2, 2000, doi:10.1016/S1095-6433(00)00194-X.; Martín R., Miquel S., Benevides L., et al., Functional characterization of novel Faecalibacterium prausnitzii strains isolated from healthy volunteers: A step forward in the use of F. prausnitzii as a next-generation probiotic. Front Microbiol, vol. 8, no. JUN, 2017, doi:10.3389/fmicb.2017.01226.; World Gastroenterology Organisation Global Guidelines Probiotics and prebiotics, 2017.; Bircher L., Geirnaert A., Hammes F., et al. Effect of cryopreservation and lyophilization on viability and growth of strict anaerobic human gut microbes. Microb Biotechnol, vol. 11, no. 4, 2018, doi:10.1111/1751-7915.13265.; Malik K. A. Cryopreservation of bacteria with special reference to anaerobes. World J Microbiol Biotechnol, vol. 7, no. 6, 1991, doi:10.1007/BF00452850.; Meryman H. T. Cryopreservation of living cells: Principles and practice. Transfusion, vol. 47, no. 5. 2007. doi:10.1111/j.1537-2995.2007.01212.x.; Broeckx G., Vandenheuvel D., Claes I. J. J., et al. Drying techniques of probiotic bacteria as an important step towards the development of novel pharmabiotics. International Journal of Pharmaceutics, vol. 505, no. 1–2. 2016. doi:10.1016/j.ijpharm.2016.04.002.; Heylen K., Hoefman S., Vekeman B., et al. Safeguarding bacterial resources promotes biotechnological innovation. Applied Microbiology and Biotechnology, vol. 94, no. 3. 2012. doi:10.1007/s00253-011-3797-y.; Bellali S., Bou Khalil J., Fontanini A., et al. A new protectant medium preserving bacterial viability after freeze drying. Microbiol Res, vol. 236, 2020, doi:10.1016/j.micres.2020.126454.; de Valdez G. F., de Giori G. S., de Ruiz Holgado A. P., et al. Comparative study of the efficiency of some additives in protecting lactic acid bacteria against freeze-drying. Cryobiology, vol. 20, no. 5, 1983, doi:10.1016/0011-2240(83)90044-5.; Khan M. T., Duncan S. H., Stams A. J. M., et al. The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases. ISME Journal, vol. 6, no. 8, 2012, doi:10.1038/ismej.2012.5.; Neyrinck A.M., Van Hée V.F., Piront N. et al. Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice. Nutr Diabetes, vol. 2, no. JANUARY, 2012, doi:10.1038/nutd.2011.24.; Neyrinck A.M., Possemiers S., Druart C., et al. Prebiotic effects of wheat Arabinoxylan related to the increase in bifidobacteria, roseburia and bacteroides/prevotella in dietinduced obese mice. PLoS One, vol. 6, no. 6, 2011, doi:10.1371/journal.pone.0020944.; Gänzle M. G. and Follador R. Metabolism of oligosaccharides and starch in lactobacilli: A review. Frontiers in Microbiology, vol. 3, no. SEP. 2012. doi:10.3389/fmicb.2012.00340.; Baumann D. Preservation of lactic cultures., 1964.; Fowler A. and Toner M. Cryo-injury and biopreservation. Annals of the New York Academy of Sciences, vol. 1066. 2006. doi:10.1196/annals.1363.010.; Leslie S. B., Israeli E., Lighthart B., et al. Trehalose and sucrose protect both membranes and proteins in intact bacteria during. Appl Environ Microbiol, vol. 61, no. 10, 1995, doi:10.1128/aem.61.10.3592-3597.1995.; Crowe J. H., Carpenter J. F., Crowe L. M. The role of vitrification in anhydrobiosis. Annual Review of Physiology, vol. 60. 1998. doi:10.1146/annurev.physiol.60.1.73.; Бембеева Б.О., Исаева Е.Л., Муравьева В.В. и др. Изучение кишечной микробиоты методом культуромики. Бактериология. 2024; 9(1): 58–62. DOI:10.20953/2500-1027-2024-1-58-62; https://www.epidemvac.ru/jour/article/view/2120
-
8Academic Journal
Authors: Фирсова Наталья Викторовна, Научно-исследовательский центр фундаментальных и прикладных проблем биоэкологии и биотехнологии ФГБОУ ВО «Ульяновский государственный педагогический университет им. И.Н. Ульянова», Natalia V. Firsova,
Nauchno-issledovatel'skii tsentr fundamental'nykh i prikladnykh problem bioekologii i biotekhnologii FGBOU VO "Ul'ianovskii gosudarstvennyi pedagogicheskii universitet im. I.N. Ul'ianova", Казанцева Татьяна Николаевна, ФГБОУ ВО «Ульяновский государственный педагогический университет им. И.Н. Ульянова», Tatiana N. Kazantseva, Ulyanovsk State Pedagogical University named after I. N. Ulyanov, Ленгесова Наталья Анатольевна, Natal'ia A. Lengesova, Антонова Елена Ивановна, Elena I. Antonova Source: Fundamental and applied research for key propriety areas of bioecology and biotechnology; 132-135 ; Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии; 132-135
Subject Terms: клеточные технологии, фибробласты, DMSO, криоконсервация, размораживание
File Description: text/html
Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907965-64-5; https://phsreda.com/e-articles/10716/Action10716-138740.pdf; Гринчук Т.М. Влияние криоконсервации на стабильность кариотипа трансформированных фибробластов легкого китайского хомячка in vitro / Т.М. Гринчук, М.А. Шилина // Цитология. – 2021. – T. 63. №1. – С. 63–73. DOI 10.31857/S0041377121010053. EDN VYZZGU; Фибробласты дермы в фокусе современной косметологии: старение и ответ на косметологические процедуры / Л.В. Кирсанова, Е.Р. Аравийская, М.Г. Рыбакова [и др.] // Consilium Medicum. – 2024. – Т. 26. №8. – С. 541–549.; Влияние длительности хранения криоконсервированных культивированных клеток кожи человека на их жизнеспособность / Н.В. Фирсова, В.А. Савельева, Н.А. Ленгесова [и др.] // Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии: сборник материалов VI Всероссийской научно-практической конференции с международным участием / гл. ред. Е.И. Антонова. – Чебоксары: Среда, 2023. – С. 160–167. DOI 10.31483/r-106721. EDN BYMDDL; Ekpo M.D., Boafo G.F., Xie J. [et al.]. Strategies in developing dimethyl sulfoxide (DMSO)-free cryopreservation protocols for biotherapeutics // Front. Immunol. – 2022. – 13:1030965.; Gao D. [et al.]. Mitochondrial dysfunction in cryopreserved fibroblasts: Role of antioxidants // Free Radical Biology and Medicine. – 2022. – №180. – P. 1–10.; Guan H., Jia C.Y., Chen B. [et al.]. Influence of different thawing temperature on the morphology and type I collagen metabolism of the human fibroblasts processed at – 10 degrees C in vitro // Zhonghua Shao Shang Za Zhi. – 2005. – №5. – P. 370–373.; Humphrey S., Brown S.M., Cross S.J. Defining skin quality: clinical relevance, terminology, and assessment // Dermatol Surg. – 2021. – Vol. 47. №7. – P. 974–981. DOI 10.1097/dss.0000000000003079. EDN LXKGLG; Naing A.H., Kim C.K. A brief review of applications of antifreeze proteins in cryopreservation and metabolic genetic engineering // Biotech. – 2019. – №9 (9) : 329.; https://phsreda.com/article/138740/discussion_platform
-
9Academic Journal
Source: Journal of Bioinformatics and Genomics, Vol 25, Iss 3 (2024)
Subject Terms: сперма, криоконсервация, Genetics, QH426-470, drone, cryopreservation, sperm, трутень
-
10Academic Journal
Source: Horse breeding and equestrian sports. :8-12
Subject Terms: генетические маркеры, криоконсервация, белки крови, группы крови, жеребцы, качество спермы
-
11Academic Journal
Authors: Mihailov, T.
Source: Revista Naţională de Drept, Vol 251, Iss 1, Pp 107-112 (2024)
Revista Naţională de Drept 251 (1) 107-112Subject Terms: вспомогательные медицинские репродуктивные технологии, fertilizare in vitro, эмбрион, consentement, embryo, Contracting, cryopreservation, заключение контракта, tehnologii de reproducere asistate medical, technologies de procréation médicalement assistée, экстракорпоральноеоплодотворение, crioconservare, contractualizare, In vitro fertilization, криоконсервация, consimțământ, contractualisation, fécondation in vitro, согласие, embrion, cryoconservation, embryon, consent, Law, medically assisted reproductive technologies
File Description: application/pdf
-
12Book
-
13Book
-
14Academic Journal
Source: Journal of Mountain Agriculture on the Balkans
Subject Terms: Cryopreservation, вирус на шарка по сливата, Криоконсервация, efficiency, криотерапия, ефективност, автохтонни сливи, plum pox virus, cryotherapy, autochthonous plums
-
15Academic Journal
Source: Наследие академика Н.В. Цицина: Ботанические сады. Отдалённая гибридизация растений и животных.
Subject Terms: криоконсервация, селекционные сорта, коллекция in vitro, Ribes nigrum L, номенклатурные стандарты, Rubus idaeus L, гербарные образцы
-
16Academic Journal
Authors: Irina V. Karachentsova, Elena V. Sibirskaya, Adelina A. Khairullina, И. В. Караченцова, Е. В. Сибирская, А. А. Хайруллина
Contributors: Not specified., Отсутствует.
Source: Pediatric pharmacology; Том 21, № 2 (2024); 119-125 ; Педиатрическая фармакология; Том 21, № 2 (2024); 119-125 ; 2500-3089 ; 1727-5776
Subject Terms: криоконсервация ткани яичников, case report, gonadal damage, premature ovarian insufficiency, infertility, preservation of fertility, cryopreservation of ovarian tissue, клинический случай, повреждение гонад, преждевременная яичниковая недостаточность, бесплодие, сохранение фертильности
File Description: application/pdf
Relation: https://www.pedpharma.ru/jour/article/view/2438/1582; Haskovic M, Coelho AI, Bierau J, et al. Pathophysiology and targets for treatment in hereditary galactosemia: A systematic review of animal and cellular models. J Inherit Metab Dis. 2020;43(3):392– 408. doi: https://doi.org/10.1002/jimd.12202; Flechtner I, Viaud M, Kariyawasam D, et al. Puberty and fertility in classic galactosemia. Endocr Connect. 2021;10(2):240–247. doi: https://doi.org/10.1530/EC-21-0013; Colhoun HO, Rubio Gozalbo EM, Bosch AM, et al. Fertility in classical galactosaemia, a study of N-glycan, hormonal and inflammatory gene interactions. Orphanet J Rare Dis. 2018;13(1):164. doi: https://doi.org/10.1186/s13023-018-0906-3; Jumbo-Lucioni PP, Garber K, Kiel J, et al. Diversity of approaches to classic galactosemia around the world: a comparison of diagnosis, intervention, and outcomes. J Inherit Metab Dis. 2012;35(6):1037– 1049. doi: https://doi.org/10.1007/s10545-012-9477-y; Kumar S U, Kumar D T, R S, Doss C GP, Zayed H. An extensive computational approach to analyze and characterize the functional mutations in the galactose-1-phosphate uridyl transferase (GALT) protein responsible for classical galactosemia. Comput Biol Med. 2020;117:103583. doi: https://doi.org/10.1016/j.compbiomed.2019.103583; Hagen-Lillevik S, Rushing JS, Appiah L, et al. Pathophysiology and management of classic galactosemic primary ovarian insufficiency. Reprod Fertil. 2021;2(3):R67–R84. doi: https://doi.org/10.1530/RAF-21-0014; European Society for Human Reproduction and Embryology (ESHRE) Guideline Group on POI; Webber L, Davies M, Anderson R, et al. ESHRE Guideline: management of women with premature ovarian insufficiency. Hum Reprod. 2016;31(5):926–937. doi: https://doi.org/10.1093/humrep/dew027; Derks B, Rivera-Cruz G, Hagen-Lillevik S, et al. The hypergonadotropic hypogonadism conundrum of classic galactosemia. Hum Reprod Update. 2023;29(2):246–258. doi: https://doi.org/10.1093/humupd/dmac041; Hagen-Lillevik S, Johnson J, Lai K. Early postnatal alterations in follicular stress response and survival in a mouse model of Classic Galactosemia. J Ovarian Res. 2022;15(1):122. doi: https://doi.org/10.1186/s13048-022-01049-2; van Kasteren YM, Schoemaker J. Premature ovarian failure: a systematic review on therapeutic interventions to restore ovarian function and achieve pregnancy. Hum Reprod Update. 1999;5(5):483– 492. doi: https://doi.org/10.1093/humupd/5.5.483; van Erven B, Berry GT, Cassiman D, et al. Fertility in adult women with classic galactosemia and primary ovarian insufficiency. Fertil Steril. 2017;108(1):168–174. doi: https://doi.org/10.1016/j.fertnstert.2017.05.013; Welling L, Bernstein LE, Berry GT, et al. International clinical guideline for the management of classical galactosemia: diagnosis, treatment, and follow-up. J Inherit Metab Dis. 2017;40(2):171–176. doi: https://doi.org/10.1007/s10545-016-9990-5; Sanders RD, Spencer JB, Epstein MP, et al. Biomarkers of ovarian function in girls and women with classic galactosemia. Fertil Steril. 2009;92(1):344–351. doi: https://doi.org/10.1016/j.fertnstert.2008.04.060; Gubbels CS, Kuppens SM, Bakker JA, et al. Pregnancy in classic galactosemia despite undetectable anti-Müllerian hormone. Fertil Steril. 2009;91(4):1293.e13–e16. doi: https://doi.org/10.1016/j.fertnstert.2008.12.031; Mamsen LS, Kelsey TW, Ernst E, et al. Cryopreservation of ovarian tissue may be considered in young girls with galactosemia. J Assist Reprod Genet. 2018;35(7):1209–1217. doi: https://doi.org/10.1007/s10815-018-1209-2; Haskovic M, Poot WJ, van Golde RJT, et al. Intrafamilial oocyte donation in classic galactosemia: ethical and societal aspects. J Inherit Metab Dis. 2018;41(5):791–797. doi: https://doi.org/10.1007/s10545-018-0179-y; Hu X, Zhang YQ, Lee OW, et al. Discovery of novel inhibitors of human galactokinase by virtual screening. J Comput Aided Mol Des. 2019;33(4):405–417. doi: https://doi.org/10.1007/s10822-019-00190-3; Balakrishnan B, An D, Nguyen V, et al. Novel mRNA-Based Therapy Reduces Toxic Galactose Metabolites and Overcomes Galactose Sensitivity in a Mouse Model of Classic Galactosemia. Mol Ther. 2020;28(1):304–312. doi: https://doi.org/10.1016/j.ymthe.2019.09.018; Balakrishnan B, Siddiqi A, Mella J, et al. Salubrinal enhances eIF2α phosphorylation and improves fertility in a mouse model of Classic Galactosemia. Biochim Biophys Acta Mol Basis Dis. 2019;1865(11):165516. doi: https://doi.org/10.1016/j.bbadis.2019.07.010; https://www.pedpharma.ru/jour/article/view/2438
-
17Academic Journal
Authors: М. Ю. Шеремет, А. Э. Протасова
Source: Malignant tumours; Том 14, № 3s1 (2024); 49-52 ; Злокачественные опухоли; Том 14, № 3s1 (2024); 49-52 ; 2587-6813 ; 2224-5057
Subject Terms: агонисты гонадотропинрилизинг гормона (аГнРГ), химиотерапия, криоконсервация, витрификация ооцитов
File Description: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/1347/954; Состояние онкологической помощи населению России в 2021 году. Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2023.239 с.; Trias-Llimós S., Rentería E., Rutigliano R., et al. Deciphering the Sex gap in global life expectancy: the impact of female-specific cancers 1990–2019. J Natl Cancer Inst 2024;djae191. https://doi.org/10.1093/jnci/djae191; Razeti M.G., Soldato D., Arecco L., et al. Approaches to fertility preservation for young women with breast cancer. Clin Breast Cancer 2023;23(3):241–248. https://doi.org/10.1016/j.clbc.2023.01.006; Chan J.L., Letourneau J., Salem W., et al. Regret around fertility choices is decreased with pretreatment counseling in gynecologic cancer patients. J Cancer Surviv 2017;11(1):58–63. https://doi.org/10.1007/s11764-016-0563-2; Тюляндин С.А., Артамонова Е.В., Жигулев А.Н. и соавт. Практические рекомендации по лекарственному лечению рака молочной железы. Практические рекомендации RUSSCO, часть 1. Злокачественные опухоли 2023;13(3s2):157–200. https://doi.org/10.18027/2224-5057-2023-13-3s2-1-157-200; Rodgers R.J. Fertility preservation in breast cancer patients. Minerva Ginecol 2019 Jun;71(3):196–206. https://doi.org/10.23736/S0026-4784.19.04409-5; Taniskidou A.M., Voultsos P., Tarlatzis V., Timotheadou E. Perceptions and experiences of fertility preservation in female patients with cancer in Greece. BMC Womens Health 2024;24(1):108. https://doi.org/10.1186/s12905-024-02955-x; Glode L.M., Robinson J., Gould S.F. Protection from cyclophosphamide-induced testicular damage with an analogue of gonadotropin-releasing hormone. Lancet 1981;1(8230):1132–1134. https://doi.org/10.1016/s0140-6736(81)92301-1; Kumar P., Sharma A. Gonadotropin-releasing hormone analogs: Understanding advantages and limitations. J Hum Reprod Sci 2014;7(3):170–174. https://doi.org/10.4103/0974-1208.142476; Sanders J.E., Hawley J., Levy W., et al. Pregnancies following high-dose cyclophosphamide with or without high-dose busulphan or total-body irradiation and bone marrow transplantation. Blood 1996;87(7):3045–3052. https://doi.org/10.1182/blood.V87.7.3045.bloodjournal8773045; Cvetanoviс A.S., Lambertini M., Punie K., et al. Pharmacological methods for ovarian function and fertility preservation in women with cancer: A literature review. Oncol Res 2024;32(8):1309–1322. https://doi.org/10.32604/or.2024.049743; Moore H.C.F., Unger J.M., Phillips K.A., et al. Goserelin for ovarian protection during breast-cancer adjuvant chemotherapy. N Engl J Med 2015;372(10):923–932. https://doi.org/10.1056/NEJMoa1413204; Moore H.C.F., Unger J.M., Phillips, K.A., et al. Final analysis of the prevention of early menopause study (POEMS)/ SWOG intergroup S0230. J Natl Cancer Inst 2019;111(2):210–213. https://doi.org/10.1093/jnci/djy185; Zong X.Y., Yu Y., Yang H.J., et al. Effects of gonadotropin-releasing hormone analogs on ovarian function against chemotherapy-induced gonadotoxic effects in premenopausal women with breast cancer in China randomized clinical trial. JAMA Oncol 2022;28(2):252–258. https://doi.org/10.1001/jamaoncol.2021.6214; Oktay K., Harvey B., Partridge A., et al. Fertility preservation in patients with cancer: ASCO clinical practice guideline update. J Clin Oncol 2018;36(19):1994–2001. https://doi.org/10.1200/JCO.2018.78.1914; Practice Committee of the American Society for Reproductive Medicine. Fertility preservation in patients undergoing gonadotoxic therapy or gonadectomy: a committee opinion. Fertil Steril 2019;112(6):1022–1033. https://doi.org/10.1016/j.fertnstert.2019.09.013; Mercier A., Johnson J., Kallen A.N. Prospective solutions to ovarian reserve damage during the ovarian tissue cryopreservation and transplantation procedure. Fertil Steril 2024;122(4):565–573. https://doi.org/10.1016/j.fertnstert.2024.08.330; Адамян Л.В., Носов В.Б., Степанян А.А. Лечение, сохраняющее фертильность у онкологических пациентов: чем мы можем помочь в XXI веке? Проблемы репродукции 2024;30(1):26–63. https://doi.org/10.17116/repro20243001126; Khazzaka A., Rassy E., Sleiman Z., et al. Systematic review of fetal and placental metastases among pregnant patients with cancer. Cancer Treat Rev 2022;104:102356. https://doi.org/10.1016/j.ctrv.2022.102356; Bonardi B., Massarotti C., Bruzzone M., et al. Efficacy and safety of controlled ovarian stimulation with or without letrozole co-administration for fertility preservation: a systematic review and meta-analysis. Front Oncol 2020;10:574669. https://doi.org/10.3389/fonc.2020.574669; Yoshida T., Takahashi O., Suzuki Y., et al. The effectiveness of controlled ovarian stimulation with tamoxifen for patients with estrogen-sensitive breast cancer: A systematic review and meta-analysis. Reprod Med Biol 2023;22(1):e12543. https://doi.org/10.1002/rmb2.12543; Levi-Setti P.E., Borini A., Patrizio P., et al. ART results with frozen oocytes: data from the Italian ART registry (2005–2013). J Assist Reprod Genet 2016;33(1):123–128. https://doi.org/10.1007/s10815-015-0629-5; Society for Assisted Reproductive Technology. 2017 Clinic summary report. ClinicPKID. Accessed September 9, 2019; Borini A., Levi Setti P.E., Anserini P., et al. Multicenter observational study on slow-cooling oocyte cryopreservation: clinical outcome. Fertil Steril 2010;94(5):1662–8. https://doi.org/10.1016/j.fertnstert.2009.10.029; Massarotti C., Cimadomo D., Spadoniet V., et al. Female fertility preservation for family planning: a position statement of the Italian Society of Fertility and Sterility and Reproductive Medicine (SIFES-MR). J Assist Reprod Genet 2024;41(9):2521–2535. 10.1007/s10815–024–03197–4.; https://www.malignanttumors.org/jour/article/view/1347
-
18Academic Journal
Authors: А. А. Пароконная
Source: Malignant tumours; Том 14, № 3s1 (2024); 42-48 ; Злокачественные опухоли; Том 14, № 3s1 (2024); 42-48 ; 2587-6813 ; 2224-5057
Subject Terms: фертильность, репродукция, беременность, криоконсервация
File Description: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/1346/953; Lambertini M., Peccatori F.A., Demeestere I. et.al. Fertility preservation and post-treatment pregnancies in post-pubertal cancer patients: ESMO Clinical Practice Guidelines. Ann Oncol 2020;31(12):1664-1678. https://doi.org/10.1016/j.annonc.2020.09.006; Anderson R., Amant F., Braat D. et.al. ESHRE guideline: female fertility preservation. Hum Reprod Open 2020;2020(4):hoaa052. https://doi.org/10.1093/hropen/hoaa052; Oktay K., Harvey B.E., Partridge A.H., et al. Fertility preservation in patients with cancer: ASCO clinical practice guideline update. J Clin Oncol 2018;36(19):1994-2001. https://doi.org/10.1200/JCO.2018.78.1914; Michalczyk K., Cymbaluk-Ploska A. Fertility preservation and long-term monitoring of gonadotoxicity in girls, adolescents and young adults undergoing cancer treatment. Cancers (Basel) 2021;13(2):202. https://doi.org/10.3390/cancers13020202; Higdon R.E., Marchetti F., Mailhes J.B., Phillips G.L. The effects of cisplatin on murine metaphase II oocytes. Gynecol Oncol 1992;47(3):348-352. https://doi.org/10.1016/0090-8258(92)90138-9; Del-Pozo-Lerida S., Salvador C., Martinez-Soler F., et al. Preservation of fertility in patients with cancer (Review). Oncol Rep 2019;41(5):2607-2614. https://doi.org/10.3892/or.2019.7063; Roness H., Kalich-Philosoph L., Meirow D. Prevention of chemotherapyinduced ovarian damage: Possible roles for hormonal and nonhormonal attenuating agents. Hum Reprod Update 2014;20(5):759-774. https://doi.org/10.1093/humupd/dmu019; Lee S.J., Schover L.R., Partridge A.H., et al. American society of clinical oncology recommendations on fertility preservation in cancer patients. J Clin Oncol 2006;24(18):2917-2931. https://doi.org/10.1200/JCO.2006.06.5888; Wang Y., Li Y., Liang J., et al. Chemotherapy-induced amenorrhea and its prognostic significance in premenopausal women with breast cancer: An updated meta-analysis. Front Oncol 2022;12. https://doi.org/10.3389/fonc.2022.859974; Ganz P.A., Land S.R., Geyer Jr C.E., et al. Menstrual history and qualityoflife outcomes in women with nodepositive breast cancer treated with adjuvant therapy on the NSABP B30 trial. J Clin Oncol 2011;29(9):1110—1116. https://doi.org/10.1200/JCO.2010.29.7689; Lambertini M., Ceppi M., Anderson R., et al. Impact of anti-HER2 therapy alone and with weekly paclitaxel on the ovarian reserve of young women with HER2-positive breast cancer. JNCCN 2023;21(1):33-41. https://doi.org/10.6004/jnccn.2022.7065; Winship A.L., Alesi L.R., Sant S., et al. Checkpoint inhibitor immunotherapy diminishes oocyte number and quality in mice. Nat Cancer 2022;3(8):1-13. https://doi.org/10.1038/s43018-022-00413-x; Bines J., Oleske D.M., Cobleigh M.A. Ovarian function in premenopausal women treated with adjuvant chemotherapy for breast cancer. J Clin Oncol 1996;14(5):1718-1729. https://doi.org/10.1200/JCO.1996.14.5.1718; Wallace W.H.B., Anderson R.A., Irvine D.S. Fertility preservation for young patients with cancer: who is at risk and what can be offered? Lancet Oncol 2005;6(4):209-218. https://doi.org/10.1016/S1470-2045(05)70092-9; Walshe J.M., Denduluri N., Swain S.M. Amenorrhea in premenopausal women after adjuvant chemotherapy for breast cancer. J Clin Oncol 2006;24(36):5769-5779. https://doi.org/10.1200/JCO.2006.07.2793; Goodwin P.J., Ennis M., Pritchard K.I., et al. Risk of menopause during the first year after breast cancer diagnosis. J Clin Oncol 1999;17(8):2365-2370. https://doi.org/10.1200/JCO.1999.178.2365; Petrek J.A., Naughton M.J., Case L.D., et al. Incidence, time course, and determinants of menstrual bleeding after breast cancer treatment: aprospective study. J Clin Oncol 2006;24(7):1045-1051. https://doi.org/10.1200/JCO.2005.03.3969; Lee S., Kil W.J., Chun M., et al. Chemotherapy-related amenorrhea in premenopausal women with breast cancer. Menopause 2009;16(1):98-103. https://doi.org/10.1097/gme.0b013e3181844877; Ribi K., Luo W., Bernhard J., et al. Adjuvant tamoxifen plus ovarian function suppression versus tamoxifen alone in premenopausal women with early breast cancer: patient-reported outcomes in the suppression of ovarian function trial. J Clin Oncol 2016;34(14):1601-1610. https://doi.org/10.1200/JCO.2015.64.8675; Wallace W.H.B., Thomson A.B., Saran F., Kelsey T.W. Predicting age of ovarian failure after radiation to a field that includes the ovaries. Int J Radiat Oncol Biol Phys 2005;62(3):738-744. https://doi.org/10.1016/j.ijrobp.2004.11.038; Larsen E.C., Schmiegelow K., Rechnitzer C., et al. Radiotherapy at a young age reduces uterine volume of childhood cancer survivors. Acta Obstet Gynecol Scand 2004;83(1):96-102. https://doi.org/10.1111/j.1600-0412.2004.00332.x; Wallace W.H.B., Shalet S.M., Hendry J.H. et.al. Ovarian failure following abdominal irradiation in childhood: The radiosensitivity of the human oocyte. Br J Radiol 1989;62(743):995-998. https://doi.org/10.1259/0007-1285-62-743-995; Titus S., Li F., Stobezki R., et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci Transl Med 2013;5(172):172ra21. https://doi.org/10.1126/scitranslmed.3004925; Govindaraj V., Keralapura Basavaraju R., Rao A.J. Changes in the expression of DNA double strand break repair genes in primordial follicles from immature and aged rats. Reprod Biomed Online 2015;30(3):303-310. https://doi.org/10.1016/j.rbmo.2014.11.010; Stolk L., Perry J.R.B., Chasman D.I., et al. Meta-analyses identify 13 loci associated with age at menopause and high-light DNA repair and immune pathways. Nat Genet 2012;44(3):260-268. https://doi.org/10.1038/ng.1051; Day F.R., Ruth K.S., Thompson D.J., et al. Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nat Genet 2015;47(11):1294-1303. https://doi.org/10.1038/ng.3412; Loren A.W., Mangu P.B., Beck L.N. et.al. Fertility Preservation for patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol 2013;31(19):2500-10. https://doi.org/10.1200/JCO.2013.49.2678; Peccatori F.A., Azim Jr H.A., Orecchia R. et.al. Cancer, pregnancy and fertility: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2013;24 Suppl 6:vi160-70. https://doi.org/10.1093/annonc/mdt199; Gook D.A., Edgar D.H. Human oocyte cryopreservation. Hum Reprod Update 2007;13(6):591-605. https://doi.org/10.1093/humupd/dmm028; Tian Y., Liang Y., Yang X. Successful delivery after in vitro fertilization-embryo transfer in a woman with metachro-nous primary cancer of ovary and endometrium: A case report. BMC Pregnancy Childbirth 2023;23(1):677.; Porcu E., Cipriani L., Dirodi M., et al. Successful pregnancies, births, and children development following oocyte cryostorage in female cancer patients during 25 years of fertility preservation. Cancers (Basel) 2022;14(6):1429. https://doi.org/10.3390/cancers14061429; Arecco L., Blondeaux E., Bruzzone M., et al. Safety of fertility preservation techniques before and after anticancer treatments in young women with breast cancer: a systematic review and meta-analysis. Hum Reprod. 2022 May 3;37(5):954-968. https://doi.org/10.1093/humrep/deac035; Goldrat O., Demeestere I., Azim H. A Jr. Response to ‘Is it safe to perform a controlled ovarian stimulation for assisted reproduction in young breast cancer survivors?'. Eur J Cancer 2016;54:165-166. https://doi.org/10.1016/j.ejca.2015.10.002; Arecco L., Blondeaux E., Bruzzone M. et.al. Safety of fertility preservation techniques before and after anticancer treatments in young women with breast cancer: a systematic review and meta-analysis. Hum Reprod 2022;37(5):954-968. https://doi.org/10.1093/humrep/deac035; Oktay K., Demirtas E., Son W.-Y. et.al. In vitro maturation of germinal vesicle oocytes recovered after premature lu-teinizing hormone surge: description of a novel approach to fertility preservation. Fertil Steril 2008;89(1):228.e19-22. https://doi.org/10.1016/j.fertnstert.2007.02.028; Condorelli M., Bruzzone M., Ceppi M., et al. Safety of assisted reproductive techniques in young women harboring germline pathogenic variants in BRCA1/2 with a pregnancy after prior history of breast cancer. ESMO Open 2021;6(6):100300. https://doi.org/10.1016/j.esmoop.2021.100300; Wallace W.H.B., Smith A.G., Kelsey T.W. et.al Fertility preservation for girls and young women with cancer: population-based validation of criteria for ovarian tissue cryopreservation. Lancet Oncol 2014;15(10):1129-36.; Meirow D., Ra'anani H., Biderman H. Ovarian tissue cryopreservation and transplantation: a realistic, effective technology for fertility preservation. Methods Mol Biol 2014;1154:455-73. https://doi.org/10.1007/978-1-4939-0659-8_21; Oktay K. Evidence for limiting ovarian tissue harvesting for the purpose of transplantation to women younger than 40 years of age. J Clin Endocrinol Metab 2002;87(4):1907-8. https://doi.org/10.1210/jcem.87.4.8367; Dolmans M.M., von Wolff M., Poirot C., et al. Transplantation of cryopreserved ovarian tissue in a series of 285 women: A review of five leading European centers. Fertil Steril 2021;115(5):1102-15. https://doi.org/10.1016/j.fertnstert.2021.03.008; Glode L.M., Robinson J., Gould S.F. Protection from cyclophosphamide-induced testicular damage with an analogue of gonadotropin-releasing hormone. Lancet 1981;1(8230):1132-1134. https://doi.org/10.1016/s0140-6736(81)92301-1; Lambertini M., Moore H.C.F., Leonard R.C.F., et al. Gonadotropin-releasing hormone agonists during chemotherapy for preservation of ovarian function and fertility in premenopausal patients with early breast cancer: A systematic review and meta-analysis of individual patient-level data. J Clin Oncol 2018;36(19):1981-1990. https://doi.org/10.1200/JCO.2018.78.0858.; https://www.malignanttumors.org/jour/article/view/1346
-
19Academic Journal
Authors: E. V. Saidakova, L. B. Korolevskaya, V. N. Ponomareva, V. V. Vlasova, Е. В. Сайдакова, Л. Б. Королевская, В. Н. Пономарева, В. В. Власова
Contributors: Исследование выполнено в рамках государственного задания № 124021900006-5
Source: Acta Biomedica Scientifica; Том 9, № 3 (2024); 256-265 ; 2587-9596 ; 2541-9420
Subject Terms: отдых, cryopreservation, primary cell culture, interleukin 2, rest, криоконсервация, культивирование, ИЛ-2
File Description: application/pdf
Relation: https://www.actabiomedica.ru/jour/article/view/4838/2810; Annaratone L, De Palma G, Bonizzi G, Sapino A, Botti G, Berrino E, et al. Basic principles of biobanking: From biological samples to precision medicine for patients. Virchows Arch. 2021; 479(2): 233-246. doi:10.1007/s00428-021-03151-0; Capelle CM, Ciré S, Ammerlaan W, Konstantinou M, Balling R, Betsou F, et al. Standard peripheral blood mononuclear cell cryopreservation selectively decreases detection of nine clinically relevant T cell markers. Immunohorizons. 2021; 5(8): 711-720. doi:10.4049/immunohorizons.2100049; Li B, Yang C, Jia G, Liu Y, Wang N, Yang F, et al. Comprehensive evaluation of the effects of long-term cryopreservation on peripheral blood mononuclear cells using flow cytometry. BMC Immunol. 2022; 23(1): 30. doi:10.1186/s12865-022-00505-4; Freer G, Rindi L. Intracellular cytokine detection by fluorescence- activated flow cytometry: Basic principles and recent advances. Methods. 2013; 61(1): 30-38. doi:10.1016/j.ymeth.2013.03.035; Horton H, Thomas EP, Stucky JA, Frank I, Moodie Z, Huang Y, et al. Optimization and validation of an 8-color intracellular cytokine staining (ICS) assay to quantify antigen-specific T cells induced by vaccination. J Immunol Methods. 2007; 323(1): 39-54. doi:10.1016/j.jim.2007.03.002; Santos R, Buying A, Sabri N, Yu J, Gringeri A, Bender J, et al. Improvement of IFNg ELISPOT performance following overnight resting of frozen PBMC samples confirmed through rigorous statistical analysis. Cells. 2015; 4(1): 1-18. doi:10.3390/cells4010001; Janetzki S, Panageas KS, Ben-Porat L, Boyer J, Britten CM, Clay TM, et al. Results and harmonization guidelines from two large-scale international ELISPOT proficiency panels conducted by the Cancer Vaccine Consortium (CVC/SVI). Cancer Immunol Immunother. 2008; 57(3): 303-315. doi:10.1007/s00262-007-0380-6; Britten CM, Gouttefangeas C, Welters MJ, Pawelec G, Koch S, Ottensmeier C, et al. The CIMT-monitoring panel: A twostep approach to harmonize the enumeration of antigen-specific CD8+ T lymphocytes by structural and functional assays. Cancer Immunol Immunother. 2008; 57(3): 289-302. doi:10.1007/s00262- 007-0378-0; Kutscher S, Dembek CJ, Deckert S, Russo C, Körber N, Bogner JR, et al. Overnight resting of PBMC changes functional signatures of antigen specific T cell responses: Impact for immune monitoring within clinical trials. PLoS One. 2013; 8(10): 76215. doi:10.1371/journal.pone.0076215; Boaz MJ, Hayes P, Tarragona T, Seamons L, Cooper A, Birungi J, et al. Concordant proficiency in measurement of T-cell immunity in human immunodeficiency virus vaccine clinical trials by peripheral blood mononuclear cell and enzyme-linked immunospot assays in laboratories from three continents. Clin Vaccine Immunol. 2009; 16(2): 147-155. doi:10.1128/CVI.00326-08; Wang H, Tsao ST, Gu M, Fu C, He F, Li X, et al. A simple and effective method to purify and activate T cells for successful generation of chimeric antigen receptor T (CAR-T) cells from patients with high monocyte count. J Transl Med. 2022; 20(1): 608. doi:10.1186/s12967-022-03833-6; Mora-Buch R, Tomás-Marín M, Enrich E, Antón-Iborra M, Martorell L, Valdivia E, et al. Virus-specific T cells from cryopreserved blood during an emergent virus outbreak for a potential off-theshelf therapy. Transplant Cell Ther. 2023; 29(9): 572.e1-572.e13. doi:10.1016/j.jtct.2023.06.001; Herda S, Heimann A, Obermayer B, Ciraolo E, Althoff S, Ruß J, et al. Long-term in vitro expansion ensures increased yield of central memory T cells as perspective for manufacturing challenges. Int J Cancer. 2021; 148(12): 3097-3110. doi:10.1002/ijc.33523; Clarkson BD, Johnson RK, Bingel C, Lothaller C, Howe CL. Preservation of antigen-specific responses in cryopreserved CD4(+) and CD8(+) T cells expanded with IL-2 and IL-7. J Transl Autoimmun. 2022; 5: 100173. doi:10.1016/j.jtauto.2022.100173; Sarkar S, Kalia V, Montelaro RC. Caspase-mediated apoptosis and cell death of rhesus macaque CD4+ T-cells due to cryopreservation of peripheral blood mononuclear cells can be rescued by cytokine treatment after thawing. Cryobiology. 2003; 47(1): 44-58. doi:10.1016/s0011-2240(03)00068-3; Baust JM, Buskirk RV, Baust JG. Cell viability improves following inhibition of cryopreservation-induced apoptosis. In Vitro Cell Dev Biol Anim. 2000; 36(4): 262. doi:10.1290/1071-2690(2000)0362.0.co;2; Fu Y, Dang W, He X, Xu F, Huang H. Biomolecular pathways of cryoinjuries in low-temperature storage for mammalian specimens. Bioengineering (Basel). 2022; 9(10): 545. doi:10.3390/bioengineering9100545; Benczik M, Gaffen SL. The interleukin (IL)-2 family cytokines: Survival and proliferation signaling pathways in T lymphocytes. Immunol Invest. 2004; 33(2): 109-142. doi:10.1081/imm-120030732; Abbas AK. The surprising story of IL-2: From experimental models to clinical application. Am J Pathol. 2020; 190(9): 1776-1781. doi:10.1016/j.ajpath.2020.05.007; Leonard WJ, O’Shea JJ, Jaks and STATs: Biological implications. Annu Rev Immunol. 1998; 16: 293-322. doi:10.1146/annurev. immunol.16.1.293; Friedmann MC, Migone TS, Russell SM, Leonard WJ. Different interleukin 2 receptor beta-chain tyrosines couple to at least two signaling pathways and synergistically mediate interleukin 2-induced proliferation. Proc Natl Acad Sci U S A. 1996; 93(5): 2077- 2082. doi:10.1073/pnas.93.5.2077; Lali FV, Crawley J, McCulloch DA, Foxwell BM. A late, prolonged activation of the phosphatidylinositol 3-kinase pathway is required for T cell proliferation. J Immunol. 2004; 172(6): 3527- 3534. doi:10.4049/jimmunol.172.6.3527; Mui AL, Wakao H, O’Farrell AM, Harada N, Miyajima A. Interleukin-3, granulocyte-macrophage colony-stimulating factor, and interleukin-5 transduce signals through two forms of STAT5. J Leukoc Biol. 1995; 57(5): 799-803. doi:10.1002/jlb.57.5.799; Malek TR, Castro I. Interleukin-2 receptor signaling: At the interface between tolerance and immunity. Immunity. 2010; 33(2): 153-165. doi:10.1016/j.immuni.2010.08.004; Kuerten S, Batoulis H, Recks MS, Karacsony E, Zhang W, Subbramanian RA, et al. Resting of cryopreserved PBMC does not generally benefit the performance of antigen-specific T cell ELISPOT assays. Cells. 2012; 1(3): 409-427. doi:10.3390/cells1030409; Smith JG, Joseph HR, Green T, Field JA, Wooters M, Kaufhold RM, et al. Establishing acceptance criteria for cell-mediatedimmunity assays using frozen peripheral blood mononuclear cells stored under optimal and suboptimal conditions. Clin Vaccine Immunol. 2007; 14(5): 527-537. doi:10.1128/CVI.00435-06; Lenders K, Ogunjimi B, Beutels P, Hens N, Van Damme P, Berneman ZN, et al. The effect of apoptotic cells on virusspecific immune responses detected using IFN-gamma ELISPOT. J Immunol Methods. 2010; 357(1-2): 51-54. doi:10.1016/j.jim.2010.03.00128; Zorn E, Nelson EA, Mohseni M, Porcheray F, Kim H, Litsa D, et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood. 2006; 108(5): 1571-1579. doi:10.1182/blood-2006-02- 004747; Oh S, Berzofsky JA, Burke DS, Waldmann TA, Perera LP. Coadministration of HIV vaccine vectors with vaccinia viruses expressing IL-15 but not IL-2 induces long-lasting cellular immunity. Proc Natl Acad Sci U S A. 2003; 100(6): 3392-3397. doi:10.1073/pnas.0630592100; https://www.actabiomedica.ru/jour/article/view/4838
-
20Conference
Subject Terms: криоконсервация, репродуктивные клетки, витрификация, акустическо-механическое поле, конечно-элементный анализ
Relation: https://zenodo.org/records/8268117; oai:zenodo.org:8268117; https://doi.org/10.5281/zenodo.8268117