Εμφανίζονται 1 - 20 Αποτελέσματα από 30 για την αναζήτηση '"КОЭФФИЦИЕНТ ЗЕЕБЕКА"', χρόνος αναζήτησης: 0,81δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Πηγή: Devices and Methods of Measurements; Том 15, № 2 (2024); 87-94 ; Приборы и методы измерений; Том 15, № 2 (2024); 87-94 ; 2414-0473 ; 2220-9506 ; 10.21122/2220-9506-2024-15-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://pimi.bntu.by/jour/article/view/868/691; Carreon H. Thermoelectric detection of spherical tin inclusions in copper by magnetic sensing. Journal of Applied Physics. 2000;88(11):6495. DOI:10.1063/1.1322591; Carreon H. Thermoelectric Nondestructive Evaluation of Residual Stress in Shot-Peened Metals. Research in Nondestructive Evaluation. 2002;14(2):59−80. DOI:10.1080/09349840209409705; Nagy PB. Non-destructive methods for materials' state awareness monitoring. Insight: Non-Destructive Testing and Condition Monitoring. 2010;52(2):61−71. DOI:10.1784/insi.2010.52.2.61; Li JF. and et all. High-performance nanostructured thermoelectric materials. Npg Asia Mater. 2010;2(4): 152−158. DOI:10.1038/asiamat.2010.138; Kikuchi M. Dental alloy sorting by the thermoelectric method. European Journal of Dentistry. 2010;4(1):66−70.; Dragunov VK, Goncharov AL. New approaches to the rational manufacturing of combined constructions by EBW. IOP Conference Series: Materials Science and Engineering. 2019;681:012010. DOI:10.1088/1757-899X/681/1/012010; Goncharov A. [et al]. Research of thermoelectric effects and their influence on electron beam in the process of welding of dissimilar steels. IOP Conference Series: Materials Science and Engineering. 2020;759(1):012008, DOI:10.1088/1757-899X/759/1/012008; Kharitonov IA, Rodyakina RV, Goncharov AL. Investigation of magnetic properties of various structural classes steels in weak magnetic fields characteristic for generation of thermoelectric currents in electron beam welding. Solid State Phenomena. 2020;299:1201–1207. DOI:10.4028/www.scientific.net/SSP.299.1201; Carreon H, Medina A. Nondestructive characterization of the level of plastic deformation by thermoelectric power measurements in cold-rolled Ti–6Al–4V samples. Nondestructive Testing and Evaluation. 2007;299311. DOI:10.1080/10589750701546960; Carreon H. Detection of fretting damage in aerospace materials by thermoelectric means. Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security. 2013;8694. DOI:10.1117/12.2009448; Lakshminarayan B, Carreon H, Nagy P, Monitoring of the Level of Residual Stress in Surface Treated Specimens by a Noncontacting Thermoelectric Technique. AIP Conference Procciding. 2003;657:1523–1530. DOI:10.1063/1.1570311; Carreon H. Evaluation of Thermoelectric Methods for the Detection of Fretting Damage in 7075‐T6 and Ti‐6A1‐4V Alloys. Characterization of Minerals, Metals, and Materials. 2015;435–442. DOI:10.1007/978-3-319-48191-3_53; Carreon M, Barriuso S, Barrera G, Gonzálezcarrasco JL, Caballero F. Assessment of blasting induced effects on medical 316 LVM stainless steel by contacting and non-contacting thermoelectric power techniques. Surface and Coatings Technology. 2012;2942–2947. DOI:10.1016/J.SURFCOAT.2011.12.026; Goncharov AL. Investigation of the thermal electromotive force of steels and alloys of different structural grades in electron beam welding. Welding International. 2011;25(9):703–709. DOI:10.1080/09507116.2011.566744; Goncharov AL. [et al]. Investigation of thermoEMF temperature dependences for construction materials of various structural classes. IOP Conf. Series: Materials Science and Engineering. 2019;681:012017. DOI:10.1088/1757-899X/681/1/012017; Li JF, Liu WS, Zhao LD, Zhou M. High-performance nanostructured thermoelectric materials. Npg Asia Mater. 2010;2(4):152–158. DOI:10.1038/asiamat.2010.138; Ciylan B, Yılmaz S. Design of a thermoelectric module test system using a novel test method. International Journal of Thermal Sciences. 2007;46(7):717–725. DOI:10.1016/j.ijthermalsci.2006.10.008; Soldatov AI. [et al]. Control system for device «thermotest». 2016 International Siberian Conference on Control and Communications (SIBCON). 2016;1-5. DOI:10.1109/SIBCON.2016.7491869; Soldatov AA, Seleznev AI, Fiks II, Soldatov AI, Kröning KhM. Nondestructive proximate testing of plastic deformations by differential thermal EMF measurements. Russian Journal of Nondestructive Testing. 2012;48(3):184–186. DOI:10.1134/S1061830912030060; Carreon H. Thermoelectric Detection of Fretting Damage in Aerospace Materials. Russian Journal of Nondestructive Testing. 2014;50(11):684−692. DOI:10.1134/S1061830914110102; Soldatov AI, Soldatov AA, Kostina MA, Kozhemyak OA. Experimental studies of thermoelectric characteristics of plastically deformed steels ST3, 08KP and 12H18N10T. Key Engineering Materials. 2016;685:310−314. DOI:10.4028/www.scientific.net/KEM.685.310; Soldatov AI, Soldatov AA, Sorokin PV, Abouellail AA, Obach II, Bortalevich VY, Shinyakov YA, Sukhorukov MP. An experimental setup for studying electric characteristics of thermocouples. SIBCON 2017 − Proceedings. 2017;79985342017. DOI:10.1109/СИБКОН.2017.7998534; Xuan XC. [et al]. A general model for studying effects of interface layers on thermoelectric devices performance. International Journal of Heat and Mass Transfer. 2002;45(26):5159−5170. DOI:10.1016/S0017-9310(02)00217-X; Burkov AT. [et al]. Methods and technique for thermopower and electrical conductivity measurements of thermoelectric materials at high temperatures. Scientific and technical bulletin of information technologies, mechanics and optics. 2015;15(2):173–195. (In Russ.) DOI:10.17586/2226-1494-2015-15-2-173-195; https://pimi.bntu.by/jour/article/view/868

  3. 3
    Academic Journal

    Πηγή: NOVYE OGNEUPORY (NEW REFRACTORIES); № 1 (2024); 59-64 ; Новые огнеупоры; № 1 (2024); 59-64 ; 1683-4518 ; 10.17073/1683-4518-2024-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/2141/1731; CRC handbook of thermoelectrics; ed. by D. M. Rowe. ― CRC press, 2018.; Mohammed, M. A. A review of thermoelectric ZnO nanostructured ceramics for energy recovery / M. A. Mohammed, I. Sudin, A. M. Noor [et al.] // International Journal of Engineering & Technology. ― 2018. ― Vol. 7, № 2.29. ― Р. 27‒30. https://www.sciencepubco.com/index.php/ijet/article/view/13120.; Duan, B. Regulation of oxygen vacancy and reduction of lattice thermal conductivity in ZnO ceramic by high temperature and high pressure method / B. Duan, Y. Li, J. Li [et al.] // Ceram. Int. ― 2020. ― Vol. 46, № 16. ― Р. 26176‒26181.; Zeng, C. Enhanced thermoelectric performance of SmBaCuFeO5+δ/Ag composite ceramics / С. Zeng, S. Butt, Y. H. Lin [et al.] // J. Am. Ceram. Soc. ― 2016. ― Vol. 99, № 4. ― Р. 1266‒1270.; Combe, E. Microwave sintering of Ge-doped In2O3 thermoelectric ceramics prepared by slip casting process / E. Combe, E. Guilmeau, E. Savary [et al.] // J. Eur. Ceram. Soc. ― 2015. ― Vol. 35, № 1. ― Р. 145‒151.; Li, W. Promoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects / W. Li, L. Zheng, B. Ge [et al.] // Adv. Mater. ― 2017. ― Vol. 29, № 17. ― Article 1605887.; Pashkevich, A. V. Structure, electric and thermoelectric properties of binary ZnO-based ceramics doped with Fe and Co / A. V. Pashkevich, A. K. Fedotov, E. N. Poddenezhny [et al.] // J. Alloys Compd. ― 2022. ― Vol. 895. ― Article 162621.; Tsubota, T. Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion / T. Tsubota, M. Ohtaki, K. Eguchi, H. Arai // J. Mater. Chem. ― 1997. ― Vol. 7, № 1. ― Р. 85‒90.; Abdel-Motaleb, I. M. Thermoelectric devices : principles and future trends / I. M. Abdel-Motaleb, S. M. Qadri // arXiv preprint arXiv. ― 2017. ― 1704. 07742. https://doi.org/10.48550/arXiv.1704.07742.; Radingoana, P. M. (2019). Université Paul SabatierToulouse III).; Lei, L. W. Synthesis and low field transport properties in a ZnO-doped La0.67Ca0.33MnO3 composite / L. W. Lei, Z. Y. Fu, J. Y. Zhang, H. Wang // Mater. Sci. Eng., B. ― 2006. ― Vol. 128, № 1‒3. ― Р. 70‒74.; Janotti, A. Fundamentals of zinc oxide as a semiconductor / A. Janotti, C. G. Van de Walle // Rep. Prog. Phys. ― 2009. ― Vol. 72, № 12. ― Article 126501.; Janotti, A. Native point defects in ZnO / A. Janotti, C. G. Van de Walle // Phys. Rev., B. ― 2007. ― Vol. 76, № 16. ― Article 165202.; Olorunyolemi, T. Thermal conductivity of zinc oxide: from green to sintered state / T. Olorunyolemi, A. Birnboim, Y. Carmel [et al.] // J. Am. Ceram. Soc. ― 2002. ― Vol. 85, № 5. ― Р. 1249‒1253.; Liang, X. Thermoelectric transport properties of naturally nanostructured Ga‒ZnO ceramics : effect of point defect and interfaces / X. Liang // J. Eur. Ceram. Soc. ― 2016. ― Vol. 36, № 7. ― Р. 1643‒1650. https://www.sciencedirect.com/science/article/pii/S095522191630067X.; Lu, L. The resistivity of zinc oxide under different annealing configurations and its impact on the leakage characteristics of zinc oxide thin-tilm / L. Lu, M. Wong // IEEE Transactions on Electron Devices. ― 2014. ― Vol. 61, № 4. ― Р. 1077‒1084.; Wagner, C. D. GE Muilenberg in Handbook of Х-ray photoelectron spectroscopy : a reference book of standard data for use in Х-ray photoelectron spectroscopy / C. D. Wagner. ― Physical Electronics Division, PerkinElmer Corp., Eden Prairie, USA, 1979.; Chen, M. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films / М. Chen, Х. Wang, Y. H. Yu [et al.] // Appl. Surf. Sci. ― 2000. ― Vol. 158, № 1/2. ― P. 134‒140.; Lin, C. C. Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates / C. C. Lin, H. P. Chen, H. C. Liao, S. Y. Chen // Appl. Phys. Lett. ― 2005. ― Vol. 86, № 18. ― Article 183103.; Lu, Y. F. The effects of thermal annealing on ZnO thin films grown by pulsed laser deposition / Y. F. Lu, H. Q. Ni, Z. H. Mai, Z. M. Ren // J. Appl. Phys. ― 2000. ― Vol. 88, № 1. ― Р. 498‒502.; Valtiner, M. Preparation and characterisation of hydroxide stabilised ZnO (0001)–Zn–OH surfaces / M. Valtiner, S. Borodin, G. Grundmeier // Physical Chemistry Chemical Physics. ― 2007. ― Vol. 9, № 19. ― P. 2406‒2412.; Ullah, M. Effects of Al and B co-doping on the thermoelectric properties of ZnO ceramics sintered in an argon atmosphere / M. Ullah, S. Ullah, A. Manan [et al.] // Appl. Phys., A. ― 2022. ― Vol. 128, № 2. ― Р. 1‒7.; Tsubota, T. Transport properties and thermoelectric performance of (Zn1–yMgy)1–xAlxO / T. Tsubota, M. Ohtaki, K. Eguchi, H. Arai // J. Mater. Chem. ― 1998. ― Vol. 8 (2). ― P. 409‒412.; https://newogneup.elpub.ru/jour/article/view/2141

  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
    Academic Journal

    Περιγραφή αρχείου: application/pdf

    Relation: Механічні та термоелектричні властивості напівпровідникових твердих розчинів PbSe1−xTex (x = 0–0,045) / О. С. Водоріз, Т. В. Тавріна, Г. О. Ніколаєнко, О. І. Рогачова // Металофізика та новітні технології = Metallophysics and Advanced Technologies. – 2020. – Т. 42, № 4. – С. 487-495.; http://repository.kpi.kharkov.ua/handle/KhPI-Press/61904; orcid.org/0000-0002-2951-4887; orcid.org/0000-0002-8536-6612; orcid.org/0000-0001-7584-656X

  9. 9
    Academic Journal

    Συνεισφορές: This work was financially supported by the Ministry of Education and Science of the Russian Federation according Decree of the Government of the Russian Federation, April 9, 2010 № 218 (Agreement № 03.G25.31.0246), Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации в рамках постановления Правительства Российской Федерации от 9 апреля 2010 г. № 218 (Договор № 03.G25.31.0246)

    Πηγή: Alternative Energy and Ecology (ISJAEE); № 34-36 (2019); 41-72 ; Альтернативная энергетика и экология (ISJAEE); № 34-36 (2019); 41-72 ; 1608-8298

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/1847/1587; Snyder, G.J. Complex thermoelectric materials / G.J. Snyder, E.S. Toberer // Nature materials. – 2008. – Vol. 7. – P. 105–114.; Fitriani, F. A review on nanostructures of hightemperature thermoelectric materials for waste heat recovery / F. Fitriani [et al.] // Renewable and Sustainable Energy Reviews. – 2016. – Vol. 64. – P. 635–659.; Zebarjadi, M. Perspectives on thermoelectrics: from fundamentals to device applications / M. Zebarjadi [et al.] // Energy Environ. Sci. – 2012. – Vol. 5. – P. 5147–5162.; Martín-González, M. Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field / M. Martín-González, O. Caballero-Calero, P. Díaz-Chao // Renewable and Sustainable Energy Reviews. – 2013. – Vol. 24. – P. 288–305.; Шевельков, А.В. Химические аспекты создания термоэлектрических материалов / А.В. Шевельков // Успехи химии. – 2008. – Т. 77. – № 1. – С. 3–21.; Дмитриев, А.В. Современные тенденции развития физики термоэлектрических материалов / А.В. Дмитриев, И.П. Звягин // Успехи физических наук. – 2010. – № 8. – С. 821–837.; Riffat, S. Thermoelectrics: a review of present and potential applications / S. Riffat, X. Ma // Applied Thermal Engineering. – 2003. – Vol. 23. – Р. 913–935.; Heremans, J.P. Low-dimensional thermoelectricity / J.P. Heremans // Acta Physica Polonica A. – 2005. – Vol. 108. – No. 4. – P. 609–634.; Ezzahri, Y. Comparison of thin film microrefrigerators based on Si/SiGe superlattice and bulk SiGe / Y. Ezzahri [et al.] // J. Microelectronics. – 2008. – Vol. 39. – P. 981–991.; Venkatasubramanian, R. Thin-film thermoelectric devices with high room-temperature figures of merit / R. Venkatasubramanian [et al.] // Nature. – 2001. – Vol. 431 – P. 597–602.; Venkatasubramanian, R. MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications / R. Venkatasubramanian [et al.] // Journal of Crystal Growth. – 1997. – No. 1–4. – Vol. 170. – P. 721–817.; Funahashi, R. Thermoelectric properties of Pband Ca-doped (Bi2Sr2O4)xCoO2 whiskers / R. Funahashi, I. Matsubara // Appl. Phys. Lett. – 2001. – Vol. 79. – No. 3. – P. 362–365.; Иванова, Л.Д. Материалы на основе твердых растворов теллуридов висмута и сурьмы, полученные методами быстрой кристаллизации расплава / Л.Д. Иванова [и др.] // ФТП. – 2019. – Т. 53. – № 5. – С. 659–663.; Lin, H. Nanoscale clusters in the high performance thermoelectric AgPbmSbTem+2 / H. Lin [et al.] // Phys. Rev. B. – 2005. – Vol. 72. – No. 174113. – P. 1–7.; Harman, T. Quantum dot superlattice thermoelectric materials and devices / T. Harman [et al.] // Science. – 2002. – Vol. 297.– P. 2229–2232.; Tavkhelidze, A. Large enhancement of the thermoelectric figure of merit in a ridged quantum well / A. Tavkhelidze // Nanotechnology. – 2009. – Vol. 20. – P. 405401–405401-6.; Boukai, A. Silicon nanowires as efficient thermoelectric materials / A. Boukai [et al.] // Nature Letters. – 2008. – Vol. 451. – P. 168–171.; Hochbaum, A. Enhanced thermoelectric performance of rough silicon nanowires / A. Hochbaum [et al.] // Nature Letters. – 2008. – Vol. 451. – P. 163–167.; Keyani, J. Assembly and measurement of a hybrid nanowire-bulk thermoelectric device / J. Keyani, A.M. Stacy // Appl. Phys. Lett. – 2006. – Vol. 89. – P. 233106–233106-3.; Баранский, П.И. На пути от мифов к реалиям в освоении высокоэффективных термоэлектропреобразователей, создаваемых на основе использования достижений нанофизики и нанотехнологий / П.И. Баранский, Г.П. Гайдар // Термо-электричество. – 2007. – № 2. – С. 47–55.; Иоффе, А.Ф. Полупроводниковые термоэлементы / А.Ф. Иоффе М.: Изд-во АН СССР, 1960. – 188 с.; Гриднев, С.А. Перспективные термоэлектрические материалы / С.А. Гриднев [и др.] // Международный научный журнал «Альтернативная энергетика и экология» (ISJAEE). – 2013. – № 1. – Ч. 2 – С. 117–125.; Булат, Л.П. О термоэлектрических свойствах материалов с нанокристаллической структурой / Л.П. Булат [и др.] // Термоэлектричество. – 2008. – № 4. – С. 27–33.; Булат, Л.П. Механизмы увеличения термоэлектрической эффективности в объемных наноструктурных поликристаллах / Л.П. Булат [и др.] //Термоэлектричество. – 2011. № 1. – С. 14–19.; Булат, Л.П. Наноструктурирование как способ повышения эффективности термоэлектриков / Л.П. Булат [и др.] // Научно-технический вестник информационных технологий, механики и оптики. – 2014. – № 4. – С. 48–56.; Pichanusakorn, P. Nanostructured thermoelectric / P. Pichanusakorn, P. Bandaru // Material Science and Engineering R. – 2010. – Vol. 67. – P. 19–63.; Thermoelectrics handbook: macro to nano / edited by D.M. Rowe – NewYork: Taylor & Francis Group. LLC. 2006. – 954 p.; Koh, Y.K. Frequency dependency of the thermal conductivity of semiconductor alloys / Y.K. Koh, D.G. Gahill // Phys. Rev. – 2007. – Vol. 5. – P. 075207– 075207-5.; Minnich, A.J. Thermal conductivity spectroscopy technique to measure phonon mean free paths / A.J. Minnich [et al.] // Phys. Rev. Lett. – 2011. – Vol. 107. – P. 095901–095901-4.; Cahill, D.G. Nanoscale thermal transport / D.G. Cahill [et al.] // J. Appl. Phys. – 2003. – Vol. 93. – P. 793–818.; Nan, C.W. Determining the Kapitza resistance and the thermal conductivity of polycrystals: a simple model / C.W. Nan, R. Birringer // Phys. Rev. – 1998. – Vol. 57. – P. 8264–8268.; Ma, Yi Composite thermoelectric materials with embedded nanoparticles / Yi Ma, R. Heijl, A.E. C. Palmqvist // J Mater Sci. – 2013. – Vol. 48. – P. 2767– 2778.; Poudel, B. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys / B. Poudel [et al.] // Science. – 2008. – Vol. 320. – P. 634–638.; Ma, Y. Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks / Y. Ma [et al.] // Nano Lett. – 2008. – Vol. 8. – P. 2580–2584.; Xie, W.J. High thermoelectric performance BiSbTe alloy with unique low-dimensional structure / W.J. Xie [et al.] // J. Appl. Phys. – 2009. – Vol. 105. – P. 113713 –113713-8.; Xie, W.J. Unique nanostructures and enhanced thermoelectric performance of meltspun BiSbTe alloys / W.J. Xie [et al.] // Appl. Phys. Lett. – 2009. – Vol. 94. – P. 102111–102111-3.; Dirmyer, M.R. Thermal and electrical conductivity of size-tuned bismuth telluride nanoparticles / M.R. Dirmyer [et al.] // Small. – 2009. – Vol. 5. – P. 933–937.; Mehta, R.J. A new class of doped nanobulk high-figure-of merit thermoelectrics by scalable bottomup assembly / R.J. Mehta [et al.] // Nature Mater. – 2012. – Vol. 11. – P. 233–240.; Son, J.S. n-type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates / J.S. Son [et al.] // Nano Lett. – 2012. – Vol. 12. – P. 640–647.; Joshi, G. Enhanced thermoelectric figure-ofmerit in nanostructured p-type silicon germanium bulk alloys / G. Joshi [et al.] // Nano Lett. – 2008. – Vol. 8. – P. 4670–4674.; Wang, X.W. Enhanced thermoelectric figure of merit in nanostructured n -type silicon germanium bulk alloy / X.W. Wang [et al.] // Appl. Phys. Lett. – 2008. – Vol. 93. – P. 193121–193121-3.; He, J. On the origin of increased phonon scattering in nanostructured PbTe based thermoelectric materials / J. He [et al.] // J. Am. Chem. Soc. – 2010. – Vol. 132. – P. 8669–8675.; Girard, S.N. In situ nanostructure generation and evolution within a bulk thermoelectric material to reduce lattice thermal conductivity / S.N. Girard [et al.] // Nano Lett. – 2010. – Vol. 10. – P. 2825–2831.; Johnsen, S. Nanostructures boost the thermoelectric performance of PbS / S. Johnsen [et al.] // J. Am. Chem. Soc. – 2011. – Vol. 133. – P. 3460– 3470.; Schierning, G. Nanocrystalline silicon compacted by spark-plasma sintering: Microstructure and thermoelectric properties / G. Schierning [et al.] // Mater. Res. Soc. Symp. Proc. – 2010. – Vol. 1267. – P. 1267-DD01-09.; Saleemi, M. Spark plasma sintering and thermoelectric evaluation of nanocrystalline magnesium silicide (Mg2Si) / M. Saleemi [et al.] // J Mater Sci. – 2013. – Vol. 48. – P. 1940–1946.; Nguyen, P. K. Spark erosion: a high production rate method for producing Bi0,5Sb1,5Te3 nanoparticles with enhanced thermoelectric performance / P.K. Nguyen [et al.] // Nanotechnology. – 2012. – Vol. 23. – P. 415604–415604-7.; Горский П.В. К вопросу о механизме увеличения термоэлектрической добротности объемных наноструктурированных материалов / П.В. Горский, В.П. Михальченко // Термоэлектричество. – 2013. – № 5. – С. 5–10.; Costescu, R.M. Ultra-low thermal conductivity in W/Al2O3 nanolaminates / R.M. Costescu [et al.] // Science. – 2004. – Vol. 303. – P. 989–990.; Sootsman, J.R. Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring / J.R. Sootsman [et al.] // Angew. Chem. – 2008. – Vol. 120. – P. 8746–8750.; Hsu, K.F. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit / K.F. Hsu [et al.]// Science. – 2004. – Vol. 303. – P. 818–821.; Zhao, L.D. High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructure / L.D. Zhao [et al.] // J. Am. Chem. Soc. – 2011. – Vol. 133. – P. 20476– 20487.; Zhang, Q. High figure ofmerit and natural nanostructure in Mg2Si0.4Sn0.6 based thermoelectric materials / Q. Zhang [et al.] // Appl. Phys. Lett. – 2008. – Vol. 93. – P. 102109–102109-3.; Su, X.L. Structure and transport properties of double-doped CoSb2.75Ge0.25−xTex (x = 0.125–0.20) with in situ nanostructure / X.L. Su [et al.] // Chem. Mater. – 2011. – Vol. 23. – P. 2948–2955.; Han, M.K. Formation of Cu nanoparticles in layered Bi2Te3 and their effect on ZT enhancement / M.K. Han [et al.] // J. Mater. Chem. – 2011. – Vol. 21. – P. 11365–11370.; Иванова, Л.Д. Спиннингование расплава – перспективный метод получения материалов твердого раствора теллуридов висмута и сурьмы / Л.Д. Иванова // Термоэлектричество. – 2013. – № 1. – С. 34–45.; Wang, H.Z. Transmission electron microscopy study of Pb-depleted disks in PbTe-based alloys / H.Z.Wang [et al.] // J. Mater. Res. – 2011. – Vol. 26. – P. 912–916.; Liu, W.S. Recent advances in thermoelectric nano composites / W.S. Liu [et al.] // Nano Energy. – 2012. – Vol. 1. – P. 42–56.; He, J.Q. On the orignin of increased Phonon scattering in nanostructured PbTe based thermoelectric materials / J.Q. He [et al.] // J. Am. Chem. Soc. – 2010. – Vol. 132. – P. 8669 –8675.; Biswas, K. Strained endotaxial nanostructures with high thermoelectric figure of merit / K. Biswas [et al.] // Nature Chem. – 2011. – Vol. 3. – P. 160–166.; Poudeu, P.F.P. High thermoelectric figure ofmerit and nanostructuring in bulk p-type Na1−xPbmSbyTem+2 / P.F.P. Poudeu [et al.] // Angew. Chem. – 2006. – Vol. 118. – P. 3919–3923.; Pei, Y.Z. High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping / Y.Z. Pei [et al.] // Adv. Funct. Mater. – 2011. – Vol. 21. – P. 241–249.; Liu, W.S. Improvement of thermoelectric performance of CoSb3−xTex skutterudite compounds by additional substitution of IV-group elements for Sb / W.S. Liu [et al.] // Chem. Mater. – 2008. – Vol. 20. – P. 7526–7531.; Wang, H. High performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering / H.Wang [et al.] // Appl. Phys. Lett. 88. – 2006. – Vol. 88. – P. 092104– 092104-3.; Zhou, M. Nanostructured AgPbmSbTem+2 system bulk materials with enhanced thermoelectric performance / M. Zhou, J.F. Li, T. Kita // J. Am. Chem. Soc. – 2008. – Vol. 130. – P. 4527–4532.; He, Q.Y. The great improvement effect of pores on ZT in Co1−xNixSb3 system / Q.Y. He[et al.] // Appl. Phys. Lett. – 2008. – Vol. 93. – P. 042108–042108-3.; Mingo, N. ‘Nanoparticles-in-alloy’ approach to efficient thermoelectrics: silicides in SiGe / N. Mingo [et al.] // Nano Lett. – 2009. – Vol. 9. – P. 711–715.; Kim, W. Phonon scattering cross section of polydispersed spherical nanoparticles / W. Kim, A. Majumdar // J. Appl. Phys. – 2006. – Vol. 99. – P. 084306–084306-7.; Pei, Y.Z. Combination of large nanostructure and complex band structure for high performance lead telluride / Y.Z. Pei [et al.] // Energy Environ. Sci. – 2011. – Vol. 4. – P. 3640–3645.; Girard, S.N. High performance Na-doped PbTePbS thermoelectric materials: electronic density of states modification and shape-controlled nano structures / S.N. Girard [et al.] // J. Am. Chem. Soc. – 2011. – Vol. 133. – P. 16588–16597.; Ito, M. Thermoelectric properties of Fe0.98Co0.02Si2 with ZrO2 and rare-earth oxide dispersion by mechanical alloying / M. Ito, T. Tada, S. Katsuyama // J. Alloys Compounds. – 2003. – Vol. 350. – P. 296–302.; Ito, M. Thermoelectric properties of β-FeSi2 with electrically insulating SiO2 and conductive TiO dispersion by mechanical alloying / M. Ito, T. Tanaka, S. Hara // J. Appl. Phys. – 2004. – Vol. 11. – P. 6215– 6209.; Huang, X.Y. Thermoelectric performance of ZrNiSn/ZrO2 composite / X.Y. Huang, Z. Xu, L.D. Chen // Solid State Commun. – 2004. – Vol. 130. – P. 181– 185.; He, Z.M. Nano ZrO2/CoSb3 composites with improved thermoelectric figure of merit / Z.M. He [et al.] // Nanotechnology. – 2007. – Vol. 18. – P. 235602– 235602-5.; Li, J.F. Effect of nano-SiC dispersion on thermoelectric properties of Bi2Te3 polycrystals / J.F. Li, J. Liu // Phys. Status Solidi. – 2006. – Vol. 203. – P. 3768–3773.; Park, D. Thermoelectric energy-conversion characteristics of n-type Bi2(Te,Se)3 nanocomposites processed with carbon nanotube dispersion / D. Park, M. Kim, T. Oh // Curr. Appl. Phys. – 2011. – Vol. 11. – P. S41–S45.; Li, F. Thermoelectric properties of n-type Bi2Te3-based nanocomposite fabricated by spark plasma sintering / F. Li [et al.] // J. Alloys Compd. – 2011. – Vol. 509. – P. 4769–4773.; Popov, M. C60-doping of nanostructured Bi–Sb– Te thermoelectric / M. Popov [et al.] // Phys. Status Solidi. – 2011. – Vol. 208. – P. 2783–2789.; Kulbachinskii, V.A. Composites of Bi2–xSbxTe3 nanocrystals and fullerene molecules for thermoelectricity / V.A. Kul bachinskii [et al.] // J. Solid State Chem. – 2012. – Vol. 193. – P. 64–70.; Zhao, X.Y. Synthesis of YbyCo4Sb12/Yb2O3 composites and their thermoelectric properties / X.Y. Zhao [et al.] // Appl. Phys. Lett. – 2006. – Vol. 89. – P. 092121–092121-3.; Панин, Ю.В. Влияние наноразмерного оксидного наполнителя на свойства халькогенидов висмута p-типа проводимости / Ю.В. Панин [и др.] // Вестник ВГТУ. – 2017. – № 5. – С. 151 – 156.; Li, H. Preparation and thermoelectric properties of highperformance Sb additional Yb0.2Co4Sb12+y bulk materials with nano structure / H. Li [et al.] // Appl. Phys. Lett. – 2008. – Vol. 92. – P. 202114 202114-3.; Liu, W. Thermoelectric property studies on Cudoped n-type CuxBi2Te2.7Se0.3 nanocomposites / W. Liu [et al.] // Adv. Energy Mater. – 2011. – Vol. 1. – P. 577– 587.; Ji, X.H. Improved thermoelectric performance in polycrystalline p-type Bi2Te3 via alkalimetal salt hydrothermal nanocoating treatment approach / X.H. Ji [et al.] // J. Appl. Phys. – 2008. – Vol. 104. – P. 034907– 034907-6.; Hicks, L.D. Effect of quantum-well structures on the thermoelectric figure of merit / L.D. Hicks, M.S. Dresselhaus // Phys. Rev. – 1993. – Vol. 47. – P. 12727– 12731.; Heremans, J.P. Thermopower enhancement in PbTe with Pb precipitates / J.P. Heremans, C.M. Thrush, D.T. Morelli // J. Appl. Phys. – 2005. – Vol. 98. – P. 063703–063703-6.; Paul, B. Embedded Ag-rich nanodots in PbTe: enhancement of thermoelectric properties through energy filtering of the carriers / B. Paul, A. Kumar V, P. Banerji // J. Appl. Phys. – 2010. – Vol. 108. – P. 064322–064322-5.; Zide, J.M. Thermoelectric power factor in semiconductors with buried epitaxial semimetallic nanoparticles / J.M. Zide [et al.] // Appl. Phys. Lett. – 2005. – Vol. 87. – P. 112102–112102-3.; Xiong, Z. Effects of nano-TiO2 dispersion on the thermoelectric properties of filled-skutterudite Ba0,22Co4Sb12 / Z. Xiong [et al.] // Solid State Sci. – 2009. – Vol. 11. – P. 1612 –1616.; Xiong, Z. High thermoelectric performance of Yb0,26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy / Z. Xiong [et al.] // Acta Mater. – 2010. – Vol. 58. – P. 3995–4002.; Xie, W.J. Simultaneously optimizing the independent thermoelectric properties in (Ti, Zr, Hf) (Co, Ni) Sb alloy by in situ forming InSb nanoinclusions / W.J. Xie // Acta Mater. – 2010. – Vol. 58. – P. 4705– 4713.; Ko, D.K. Enhanced thermopower via carrier energy filtering in solution-processable Pt-Sb2Te3 nanocomposites / Dong-Kyun Ko, Yijin Kang, Christopher B. Murray // Nano Lett. – 2011. – Vol. 11. – P. 2841–2844.; Zhang, Y. Silver-based intermetallic heterostructures in Sb2Te3 thick films with enhanced thermoelectric power factors / Y. Zhang [et al.] // Nano Lett. – 2012. – Vol. 12. – P. 1075–1080.; Kim, S.I. Enhancement of Seebeck coefficient in Bi0,5Sb1,5Te3 with high-density tellurium nanoinclusions / S.I. Kim [et al.] // Appl. Phys. Express. – 2011. – Vol. 4. – No. 9. – P. 091801 091801-3.; Lee, K. H. Enhancement of thermoelectric figure of merit for Bi0,5Sb1,5Te3 by metal nanoparticle decoration / K.H. Lee [et al.] // J. Electo. Mater. – 2012. – Vol. 41. – P. 1165–1169.; Ohta, H. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3 / H. Ohta [et al.] // Nature Mater. – 2007. – Vol. 6. – P. 129–134.; Hicks, L.D. Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit / L.D. Hicks [et al.] // Phys. Rev. – 1996. – Vol. 53. – P. R10493–R10496.; Harman, T.C. Nanostructured thermoelectric materials / T.C. Harman [et al.] // J. Electron. Mater. – 2005. – Vol. 34. – P. L19 – L22.; Heremans, J. P. Thermopower enhancement in lead telluride nanostructures / J. P. Heremans, C. M. Thrush, and D. T. Morelli // Phys. Rev. – 2004. – Vol. 70. – P. 115334–115334-5.; Dresselhaus, M.S. New directions for nanoscale thermoelectric materials research / M. S. Dresselhaus [et al.] // Mater. Res. Soc. Symp. Proc. – 2006. – Vol. 886. – P. 3–12.; Ravich, Y.I. Selective carrier scattering in thermoelectric materials // Y.I. Ravich. CRC Handbook of Thermoelectrics / D.M. Rowe [et al.]; ed. by D.M. Rowe. – CRC Press, Boca Raton, 1995. – P. 407–440.; Zide, J.M.O. Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As/ In0.53Ga0.28Al0.19As superlattices / J.M.O. Zide [et al.] // Phys. Rev. – 2006. – Vol. 74. – P. 205335–205335-5.; Kishimoto, K. Influences of potential barrier scattering on the thermoelectric properties of sintered ntype PbTe with a small grain size / K. Kishimoto, K. Yamamoto, T. Koyanagi // Jpn. J. Appl. Phys. – 2003. – Vol. 42. – P. 501–508.; Homm, G. Thermoelectric measurements on sputtered ZnO/ZnS multilayers / G. Homm [et al.] // J. Electron. Mater. – 2010. – Vol. 39. – P. 1504 –1509.; Mahan, G.D. Theory of conduction in ZnO varistors / G.D. Mahan, L.M. Levinson, H.R. Philipp // J. Appl. Phys. – 1979. – Vol. 50. – P. 2799–2812.; Popescu, A. Model of transport properties of thermoelectric nanocomposite materials / A. Popescu [et al.] // Phys. Rev. – 2009. – Vol. 79. – P. 205302 – 205302-7.; Jones, R. E. Electrical, thermoelectric, and optical properties of strongly degenerate polycrystalline silicon films / R. E. Jones, S. P. Wesolovski // J. Appl. Phys. – 1984. – Vol. 56. – P. 1701 – 1706.; Seto, J.Y.W. The electrical properties of polycrystalline silicon films / J.Y.W. Seto // J. Appl. Phys. – 1975. – Vol. 46. – P. 5247–5254.; Kishimoto, K. Temperature dependence of the Seebeck coefficient and the potential barrier scattering of n-type PbTe films prepared on heated glass substrates by rf sputtering / K. Kishimoto, M. Tsukamoto, T. Koyanagi // Journal of Applied Physics. – 2002. – Vol. 92. – P. 5331–5339.; Faleev, S.V. Theory of enhancement of thermoelectric properties of materials with nanoinclusions / S.V. Faleev, F. Léonard // Phys. Rev. – 2008. – Vol. 77. – P. 214304–214304-9.; Li, H. High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase / H. Li [et al.] // Appl. Phys. Lett. – 2009. – Vol. 94. – P. 102114–102114-3.; Liu, D.W. Effect of SiC nanodispersion on the thermoelectric properties of p-type and n-type Bi2Te3based alloys / D.W. Liu [et al.]// J. Electron. Mater. – 2011. – Vol. 40. – P. 992–998.; Dresselhaus, M.S. New Directions for LowDimensional Thermoelectric Materials / M.S. Dresselhaus [et al.] // Adv. Mater. – 2007. – Vol. 19. – P. 1043–1053.; Vedernikov, M.V. Experimental thermopower of quantum wires / M.V. Vedernikov [et al.] // in: Proceedings of the International Conference on Thermoelectric. – 2001. – Vol. 19. – P. 361 – 363.; Lin, Y.M. Transport properties of Bi1ÀxSbx alloy nanowires synthesized by pressure injection / Y.M. Lin [et al.] // Appl. Phys. Lett. – 2001. – Vol. 79. – P. 2403–2405.; Dresselhaus, M.S. Nanowires / M.S. Dresselhaus [et al.] // Springer Handbook of Nanotechnology Ed. Bharat Bhushan – Berlin Heidelberg:Springer-Verlag, 2010. – P. 113–160.; Bandaru, P.R. Electrical properties and applications of carbon nanotube structures / P.R. Bandaru // Journal of Nanoscience and Nanotechnology. – 2007. – Vol. 7. – P. 1239–1267.; Jain, A.L. Temperature Dependence of the Electrical Properties of Bismuth-Antimony / A.L. Jain // Alloys Phys. Rev. – 1959. – Vol. 114. – P. 1518–1528.; Марков, О.И. Градиентно-варизонные сплавы висмут-сурьма / О. И. Марков // Успехи прикладной физики. – 2014. – T. 2. – № 5. – C. 447–452.; Rabin, O. Anomalously high thermoelectric figure of merit in Bi1−xSbx nanowires by carrier pocket alignment / O. Rabin, Y.-M. Lin, M.S. Dresselhaus // Appl. Phys. Lett. – 2001. – Vol. 79. – P. 81–83.; Ketterer, B. Mobility and carrier density in ptype GaAs nanowires measured by transmission Raman spectroscopy / B. Ketterer, E. Uccelli, A.F. Morral // Nanoscale. – 2012. – Vol. 4. – P. 1789–1793.; Ponseca, C.S. Bulk-like transverse electron mobility in an array of heavily n-doped InP nanowires probed by terahertz spectroscopy / C.S. Ponseca [et al.] // Phys. Rev. B – 2014. – Vol. 90. – P. 85405–85405-7.; Störmer, H.L. Electronic properties of modulation-doped GaAs-AlxGa1-xAs superlattices / H.L. Störmer [et al.] // Physics of Semiconductors ed. by B. L. H. Wilson Inst. Phys., Bristol. – 1979. – P. 557–560.; Наноэлектроника: теория и практика: учебник / В.Е. Борисенко [и др.]. – М: БИНОМ. Лаборатория знаний, 2013 – 366 с.; Pfeiffer, L. Electron mobilities exceeding 107 cm2/V s in modulation doped GaAs / L. Pfeiffer [et al.] // Appl. Phys. Lett. – 1989. – Vol. 55. – P. 1888–1890.; Yu, P. Cardona, M. Fundamentals of Semiconductors: Physics and Materials Properties / P. Yu, M. Cardona. – Berlin, Heidelberg: Springer-Verlag, 2010. – 793p.; Walukiewicz, W. Electron mobility in modulation-doped heterostructures / W. Walukiewicz [et al.] // Phys. Rev. – 1984. – Vol. 30. – P. 4571–4582.; Kato, H. Thermoelectric quantum-dot superlattices with high ZT / H. Kato [et al.] // Proceedings of the 17th International Conference on Thermoelectrics. – 1998. – P. 253–256.; Sun, X. Experimental Study of the effect of the quantum well structures on the thermoelectric figure of merit in Si/Si1-xGex system / X. Sun [et al.] // Proceedings of the 18th International Conference on Thermoelectrics. – 1999. – P. 369–374.; Zebarjadi, M. Power factor enhancement by modulation doping in bulk nanocomposites / M. Zebarjadi [et al.] // Nano Lett. – 2011. – Vol. 11. – P. 2225–2230.; Yu, B. Enhancement of thermoelectric properties by modulation doping in silicon germanium alloy nanocomposites / B. Yu [et al.] // Nano Lett. – 2012. – Vol. 12. – P. 2077–2082.; Lan, Y.C. Enhancement of thermoelectric figure of merit by a bulk nanostructuring approach / Y.C. Lan [et al.] // Adv. Funct. Mater. – 2010. – Vol. 20. – P. 357–376.; Narayan, V. Unconventional metallicity and giant thermopower in a strongly interacting twodimensional electron system / V. Narayan [et al.] // Phys. Rev. B. – 2012. Vol. 86. – P. 125406–125406-7.; Machida, Y. Colossal Seebeck coefficient of hopping electrons in (TMTSF)2PF6 / Y. Machida [et al.] // Phys. Rev. Lett. – 2016. – Vol. 116. – P. 087003– 087003-5.; Литвинова, К.И. Термоэлектрические свойства скуттерудитов CexNdyCo4Sb12 / К.И. Литвинова [и др.] // ФТП. – 2017. – Т. 51. – Вып. 7. – С. 966–969.; Khovaylo, V.V. Rapid preparation of InxCo4Sb12 with a record-breaking ZT = 1.5: the role of the In overfilling fraction limit and Sb overstoichiometry / V.V. Khovaylo [et al.] // J. Mater. Chem. A – 2017. – Vol. 5 – P. 3541–3546.; Suekuni, K. Cu–S based synthetic minerals as efficient thermoelectric materials at medium temperatures / K. Suekuni, T. Takabatake // APL Materials. – 2016. – Vol. 4. – P. 104503–104503-11.; Kurochka, K.V. Investigation of electrical properties of glassy AgGe1+xAs1−x(S+CNT)3 (x = 0.4; 0.5; 0.6) at temperature range from 10 to 300K / K.V. Kurochka, N.V. Melnikova // Solid State Ionics. – 2017. – Vol. 300. – P. 53–59.; Аплеснин, С.С. Исследование электрических и термоэлектрических свойств сульфидов TmxMn1-xS / С.С. Аплеснин [и др.] // ФТТ. – 2016. – Т. 58. – № 1. – С. 21–26.; Liu, Z. Enhanced thermoelectric performance of Bi2S3 by synergistical action of bromine substitution and copper nanoparticles / Z. Liu [et al.] // Nano Energy. – 2015. – Vol. 13. – P. 554–562.; Du, X. Enhanced thermoelectric performance of chloride doped bismuth sulfide prepared by mechanical alloying and spark plasma sintering / X. Du, F. Cai, X. Wang // Journal of Alloys and Compounds. – 2014. – Vol. 587. – P. 6–9.; Иванов, Ю.В. Термоэдс латтинжеровской жидкости / Ю.В. Иванов, О.Н. Урюпин // Физика и техника полупроводников. – 2019. – Т. 53. – № 5. – С. 648–653.; https://www.isjaee.com/jour/article/view/1847

  10. 10
  11. 11
    Conference
  12. 12
  13. 13
  14. 14
    Academic Journal

    Περιγραφή αρχείου: application/pdf

    Relation: Рогачева Е. И. Особенности концентрационных зависимостей структурных и термоэлектрических свойств в твердых растворах PbTe–PbSe / Е. И. Рогачева, О. С. Водорез // Термоэлектричество. – 2013. – № 2. – С. 66-79.; http://repository.kpi.kharkov.ua/handle/KhPI-Press/52175

  15. 15
  16. 16
  17. 17
    Academic Journal

    Περιγραφή αρχείου: application/pdf

    Relation: Водорез О. С. Влияние прессования на сыойства твердых растворов PbTe–PbSe / О. С. Водорез, Е. И. Рогачева // Науковий вісник Ужгородського університету. Сер. : Фізика = Uzhhorod University Scientific Herald. Ser. : Physics. – 2009. – Вип. 24. – С. 217-222.; http://repository.kpi.kharkov.ua/handle/KhPI-Press/52166

  18. 18
  19. 19
  20. 20