-
1Academic Journal
Authors: V. I. Kaftan, P. A. Dokukin, A. I. Manevich, V. N. Tatarinov, R. V. Shevchuk, В. И. Кафтан, П. А. Докукин, А. И. Маневич, В. Н. Татаринов, Р. В. Шевчук
Contributors: This work was conducted as part of the state assignment of the Geophysical Center of RAS, approved by the Ministry of Science and Higher Education of the Russian Federation, Работа выполнена в рамках государственного задания Геофизического центра РАН, утвержденного Минобрнауки РФ
Source: Geodynamics & Tectonophysics; Том 15, № 1 (2024); 0735 ; Геодинамика и тектонофизика; Том 15, № 1 (2024); 0735 ; 2078-502X
Subject Terms: косейсмические смещения, total shear deformation, earthquake, superplume, GPS, synoptic animation, inner displacement deficit, aftershock, coseismic displacements, деформация полного сдвига, землетрясение, суперплюм, синоптическая анимация, дефицит внутренних смещений, афтершок
File Description: application/pdf
Relation: https://www.gt-crust.ru/jour/article/view/1787/794; https://www.gt-crust.ru/jour/article/view/1787/795; Beavan J., Motagh M., Fielding E.J., Donnelly N., Collett D., 2012. Fault Slip Models of the 2010–2011 Canterbury, New Zealand, Earthquakes from Geodetic Data and Observations of Post Seismic Ground Deformation, New Zealand. Journal of Geology and Geophysics 55 (3), 207–221. https://doi.org/10.1080/00288306.2012.697472.; Blewitt G., Hammond W.C., Kreemer C., 2018. Harnessing the GPS Data Explosion for Interdisciplinary Science. Eos, 99. https://doi.org/10.1029/2018EO104623.; Dokukin P.A., Kaftan V.I., Manevich A.I., Shevchuk R.V., 2023a. Evolution of the Seismic Process and Crustal Total Shear Strain (2008–2021) under the Influence of the Hikurangi Mantle Superplume. ESDB Repository, GCRAS, Moscow. https://doi.org/10.2205/ESDB-Hikurangi-shear.; Dokukin P.A., Kaftan V.I., Manevich A.I., Shevchuk R.V., 2023b. Evolution of the Seismic Process and Horizontal Dilatation Strain (2008–2021) under the Influence of the Hikurangi Mantle Superplume. ESDB Repository, GCRAS, Moscow. https://doi.org/10.2205/ESDB-Hikurangi-dilatation.; Dokukin P.A., Kaftan V.I., Manevich A.I., Shevchuk R.V., 2023c. Evolution of the Seismic Process and Crustal Movements (2008–2021) under the Influence of the Hikurangi Mantle Superplume. ESDB Repository, GCRAS, Moscow. https://doi.org/10.2205/ESDB-Hikurangi-movement.; GNS Science, 2019. GeoNet Aotearoa New Zealand Stations Metadata Repository [Data set]. GNS Science, GeoNet. https://doi.org/10.21420/0VY2-C144.; Guo N., Wu Y., Zhang Q., 2022. Coseismic and Pre-Seismic Deformation Characteristics of the 2022 Ms 6.9 Menyuan Earthquake, China. Pure and Applied Geophysics 179, 3177–3190. https://doi.org/10.1007/s00024-022-03128-3.; Gvishiani A.D., Tatarinov V.N., Kaftan V.I., Manevich A.I., Minaev V.A., Ustinov S.A., Shevchuk R.V., 2022. Geodynamic Model of the Northern Part of the Nizhnekansk Massif: Fault Tectonics, Deformations, and Insulation Properties of Rock Displacements. Doklady Earth Sciences 507, 909–915. https://doi.org/10.1134/S1028334X22600608.; Hamling I.J., D’Anastasio E., Wallace L.M., Ellis S., Motagh M., Samsonov S., Palmer N., Hreinsdóttir S., 2014. Crustal Deformation and Stress Transfer during a Propagating Earthquake Sequence: The 2013 Cook Strait Sequence, Central New Zealand. Journal of Geophysical Research: Solid Earth 119 (7), 6080–6092. https://doi.org/10.1002/2014JB011084.; Izosov L.A., Petrishchevsky A.M., Emel’yanova T.A., Chuprynin V.I., Lee N.S., Vasilyeva M.A., 2020. The Model of Formation of the Western Pacific Marginal Seas: Vortex Geodynamics, Seismicity, and Mantle Upwelling. Journal of Volcanology and Seismology 14, 44–57. https://doi.org/10.1134/S0742046320010029.; Jiang Z., Huang D., Yuan L., Hassan A., Zhang L., Yang Zh., 2018. Coseismic and Postseismic Deformation Associated with the 2016 Mw 7.8 Kaikoura Earthquake, New Zealand: Fault Movement Investigation and Seismic Hazard Analysis. Earth Planets Space 70, 62. https://doi.org/10.1186/s40623-018-0827-3.; Kaftan V.I., Tatarinov V.N., 2022. Registration of Slow Deformation Waves According to GNSS Observations. Doklady Earth Sciences 505, 489–495. https://doi.org/10.1134/S1028334X22070091.; Kaiser A., Holden C., Beavan J., Beetham D., Benites R., Celentano A., Collett D., Cousins J., Cubrinovski M., Dellow G., Denys P. et al., 2012. The Mw 6.2 Christchurch Earthquake of February 2011: Preliminary Report. New Zealand Journal of Geology and Geophysics, 55 (1), 67–90. https://doi.org/10.1080/00288306.2011.641182.; Langridge R.M., Ries W.F., Litchfield N.J., Villamor P., Van Dissen R.J., Barrellb D.J.A., Rattenbury M.S., Heron D.W., Haubrock S., Townsend D.B., Lee J.M. et al., 2016. The New Zealand Active Faults Database. New Zealand Journal of Geology and Geophysics 59 (1), 86–96. https://doi.org/10.1080/00288306.2015.1112818.; Rebetsky Yu.L., 2018. Regularities of Crustal Faulting and Tectonophysical Indicators of Fault Metastability. Geodynamics & Tectonophysics 9 (3), 629–652. https://doi.org/10.5800/GT-2018-9-3-0365.; Ristau J., 2010. The Canterbury, New Zealand Earthquake Sequence I: The Mw 7.1 Darfield Earthquake of 3 September 2010 and Aftershock Sequence. Summary of the Bulletin of the International Seismological Centre 47 (7–12), 48–65. https://doi.org/10.5281/zenodo.998755.; Shi X., Tapponnier P., Wang T., Wei S., Wang Y., Wang X., Jiao L., 2019. Triple Junction Kinematics Accounts for the 2016 Mw 7.8 Kaikoura Earthquake Rupture Complexity. Proceedings of the National Academy of Sciences 116 (52), 26367–2637. https://doi.org/10.1073/pnas.1916770116.; Stern T., Lamb S., Moore J.D.P., Okaya D., Hochmuth K., 2020. High Mantle Seismic P-Wave Speeds as a Signature for Gravitational Spreading of Superplumes. Science Advances 6, 22. https://doi.org/10.1126/sciadv.aba7118.; Toraldo Serra E.M., Delouis B., Emolo A., Zollo A., 2013. Combining Strong-Motion, InSAR and GPS Data to Refine the Fault Geometry and Source Kinematics of the 2011, Mw 6.2, Christchurch Earthquake (New Zealand). Geophysical Journal International 194 (3), 1760–1777. https://doi.org/10.1093/gji/ggt186.; Ulrich T., Gabriel A.-A., Ampuero J.-P., Xu W., 2019. Dynamic Viability of the 2016 Mw 7.8 Kaikōura Earthquake Cascade on Weak Crustal Faults. Nature Communications 10, 1213. https://doi.org/10.1038/s41467-019-09125-w.; Wang T., Jiao L., Tapponnier P., Shi X., Wei S., 2020. Space Imaging Geodesy Reveals near Circular, Coseismic Block Rotation during the 2016 Mw 7.8 Kaikōura Earthquake. New Zealand. Geophysical Research Letters 47 (22), e2020 GL090206. https://doi.org/10.1029/2020GL090206.; Wang T., Wei Sh., Shi X., Qiu Q., Li L., Peng D., Weldon R.J., Barbot S., 2018. The 2016 Kaikoura Earthquake: Simultaneous Rupture of the Subduction Interface and Overlying Faults. Earth and Planetary Science Letters 482, 44–51. https://doi.org/10.1016/j.epsl.2017.10.056.; Wu J.C., Tang H.W., Chen Y.Q., Li Y.X., 2006. The Current Strain Distribution in the North China Basin of Eastern China by Least-Squares Collocation. Journal of Geodynamics 41 (5), 462–470. https://doi.org/10.1016/j.jog.2006.01.003
-
2Academic Journal
Authors: A. S. Prytkov, N. F. Vasilenko, А. С. Прытков, Н. Ф. Василенко
Contributors: The research was carried out within the state assignment of IMGG FEB RAS, with the support of the Ministry of Science and Higher Education of the Russian Federation (theme 121022000085-9)., Исследование выполнено в рамках государственного задания ИМГГ ДВО РАН при поддержке Минобрнауки РФ (тема № 121022000085-9).
Source: Geodynamics & Tectonophysics; Том 14, № 4 (2023); 0712 ; Геодинамика и тектонофизика; Том 14, № 4 (2023); 0712 ; 2078-502X
Subject Terms: инверсия, coseismic displacements, slip model, inversion, косейсмические смещения, модель конечного источника
File Description: application/pdf
Relation: https://www.gt-crust.ru/jour/article/view/1720/764; Arefiev S., Rogozhin E., Tatevossian R., Rivera L., Cisternas A., 2000. The Neftegorsk (Sakhalin Island) 1995 Earthquake: a Rare Interplate Event. Geophysical Journal International 143 (3), 595–607. https://doi.org/10.1046/j.1365-246X.2000.00234.x.; DeMets C., Gordon R.G., Argus D.F., 2010. Geologically Current Plate Motions. Geophysical Journal International 181 (1), 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x.; Global CMT Catalog, 2022. Available from: https://www.globalcmt.org/CMTsearch.html (Last Accessed May 4, 2022).; GS RAS Seismic Catalogues and Bulletin, 2022. Available from: http://www.ceme.gsras.ru/new/eng/catalog/ (Last Accessed May 4, 2022).; Katsumata K., Kasahara M., Ichiyanagi M., Kikuchi M., Sen R., Kim C.U., Ivaschenko A., Tatevossian R., 2004. The 27 May 1995 Ms 7.6 Northern Sakhalin Earthquake: An Earthquake on an Uncertain Plate Boundary. Bulletin of the Seismological Society of America 94 (1), 117–130. http://doi.org/10.1785/0120020175.; Харахинов В.В. Нефтегазовая геология Сахалинского региона. М.: Научный мир, 2010. 276 с.; King G.C.P., Stein R.S., Lin J., 1994. Static Stress Changes and the Triggering of Earthquakes. Bulletin of the Seismological Society of America 84 (3), 935–953. DOI:10.1785/BSSA0840030935.; Kozhurin A.I., 2004. Active Faulting at the Eurasian, North American and Pacific Plates Junction. Tectonophysics 380 (3–4), 273–285. https://doi.org/10.1016/j.tecto.2003.09.024.; Okada Y., 1985. Surface Deformation Due to Shear and Tensile Faults in a Halfspace. Bulletin of the Seismological Society of America 75 (4), 1135–1154. https://doi.org/10.1785/BSSA0750041135.; Полец А.Ю., Злобин Т.К. Моделирование очага методом инверсии волновых форм на примере Нефтегорского землетрясения 1995 года // Вестник ДВО РАН. 2017. Т. 191. № 1. С. 38–42; Pritchard M.E., Fielding E.J., 2008. A Study of the 2006 and 2007 Earthquake Sequence of Pisco, Peru, with InSAR and Teleseismic Data. Geophysical Research Letters 35 (9), L09308. https://doi.org/10.1029/2008GL033374.; Прытков А.С., Василенко Н.Ф. Деформации земной поверхности острова Сахалин по данным GPS-наблюдений // Геодинамика и тектонофизика. 2018. Т. 9. № 2. С. 503–514. https://doi.org/10.5800/GT-2018-9-2-0358.; Рогожин Е.А. Нефтегорское землетрясение 27 (28) мая 1995 г.: геологические проявления и тектоническая позиция очага // Нефтегорское землетрясение 27(28).05.1995 г.: Информационно-аналитический бюллетень ФССН. Спец. выпуск. М., 1995. С. 80–94; Segall P., Harris R., 1987. Earthquake Deformation Cycle on the San Andreas Fault near Parkfield, California. Journal of Geophysical Research 92 (B10), 10511–10525. https://doi.org/10.1029/JB092iB10p10511.; Shan B., Xiong X., Zheng Y., Wei S., Wen Y., Jin B., Ge C., 2011. The Co-Seismic Coulomb Stress Change and Expected Seismicity Rate Caused by 14 April 2010 Ms=7.1 Yushu, China, Earthquake. Tectonophysics 510 (3–4), 345–353. https://doi.org/10.1016/j.tecto.2011.08.003.; Shan B., Zheng Y., Liu C.L., Xie Z.J., Kong J., 2017. Coseismic Coulomb Failure Stress Changes Caused by the 2017 M7.0 Jiuzhaigou Earthquake, and Its Relationship with the 2008 Wenchuan Earthquake. Science China Earth Sciences 60, 2181–2189. https://doi.org/10.1007/s11430-017-9125-2.; Шимамото Т., Ватанабе М., Судзуки Я. Поверхностные разрывы, связанные с Нефтегорским землетрясением 27(28) мая 1995 г. // Нефтегорское землетрясение 27(28).05.1995 г.: Информационно-аналитический бюллетень ФССН. Спец. выпуск. М., 1995. С. 101–116.; Shimamoto T., Watanabe M., Suzuki Y., Kozhurin A., Strel’tsov M., Rogozhin E., 1996. Surface Faults and Damage Associated with the 1995 Neftegorsk Earthquake. The Journal of the Geological Society of Japan 102 (10), 894–907.; Tabrez A.S., Freed A.M., Calais E., Manaker D.M., McCann W.R., 2008. Coulomb Stress Evolution in Northeastern Caribbean over the Past 250 Years due to Coseismic, Postseismic and Interseismic Deformation. Geophysical Journal International 174 (3), 904–918. https://doi.org/10.1111/j.1365-246X.2008.03634.x.; Takahashi H., Kasahara M., Vasilenko N., Kim C.U., Ivashenko A., Kimata F., Seno T., 1996. Coseismic Deformation around the Northern Part of Epicentral Area of the 1995 North Sakhalin Earthquake Deduced from Geodetic Observations. In: Report on North Sakhalin Earthquake and Its Disaster. P. 191–202.; Такахаси Х., Василенко Н., Кимата Ф., Касахара М., Сено Т., Ким Ч.У., Иващенко А. Косейсмические деформации в северной части эпицентральной зоны Нефтегорского землетрясения 1995 г. по данным геодезических наблюдений // Нефтегорское землетрясение 27(28).05.1995 г.: Информационно-аналитический бюллетень ФССН. Спец. выпуск. М., 1995. С. 123–128.; Tobita M., Fujiwara S., Ozawa S., Rosen P.A., Fielding E.J., Werner C.L., Murakami M., Nakagawa H. et al., 1998. Deformation of the 1995 North Sakhalin Earthquake Detected by JERS-1/SAR Interferometry. Earth Planets Space 50, 313–325. https://doi.org/10.1186/BF03352118.; Toda S., Stein R.S., Sevilgen V., Lin J., 2011. Coulomb 3.3. Graphic-Rich Deformation and Stress-Change Software for Earthquake, Tectonic, and Volcano Research and Teaching. User Guide. USGS Open-File Report 2011–1060, 63 p.; USGS Earthquake Hazards Program, 2022. Available from: https://earthquake.usgs.gov/earthquakes/search/ (Last Accessed May 4, 2022).; Василенко Н.Ф., Прытков А.С., Касахара М., Такахаши Х. Современная геодинамика Северного Сахалина до и после Нефтегорского землетрясения 27 (28) мая 1995 г. Mw=7.0 // Геодинамические процессы и природные катастрофы. Опыт Нефтегорска: Сборник трудов Всероссийской научной конференции с международным участием (26–30 мая 2015 г., Южно-Сахалинск). Владивосток: Дальнаука, 2015. Т. 1. С. 13–16.; Wang R., Diao F., Hoechner A., 2013. SDM – A Geodetic Inversion Code Incorporating with Layered Crust Structure and Curved Fault Geometry. General Assembly European Geosciences Union, Geophysical Research Abstracts 15, EGU2013-2411-1.
-
3Academic Journal
Authors: Диденко, А., Быков, В., Шестаков, Н., Бормотов, В., Герасименко, М., Коломиец, А., Василенко, Н., Прытков, А., Сорокин, А.
Subject Terms: ЗЕМЛЕТРЯСЕНИЕ ТОХОКУ 2011 Г, ДЕФОРМАЦИЯ ЗЕМНОЙ КОРЫ, КОСЕЙСМИЧЕСКИЕ СМЕЩЕНИЯ, ТЕКТОНИКА ПЛИТ, КОСМИЧЕСКАЯ ГЕОДЕЗИЯ
File Description: text/html
-
4Academic Journal
Source: Вестник Дальневосточного отделения Российской академии наук.
Subject Terms: ЗЕМЛЕТРЯСЕНИЕ ТОХОКУ 2011 Г, ДЕФОРМАЦИЯ ЗЕМНОЙ КОРЫ, КОСЕЙСМИЧЕСКИЕ СМЕЩЕНИЯ, ТЕКТОНИКА ПЛИТ, КОСМИЧЕСКАЯ ГЕОДЕЗИЯ
File Description: text/html
-
5
Authors: Kocharyan, G. G., Ostapchuk, A. A., Pavlov, D. V.
Source: International Workshop "Multiscale Biomechanics and Tribology of Inorganic and Organic Systems" ; Международная конференция "Перспективные материалы с иерархической структурой для новых технологий и надежных конструкций" ; VIII Всероссийская научно-практическая конференция с международным участием, посвященная 50-летию основания Института химии нефти "Добыча, подготовка, транспорт нефти и газа" : тезисы докладов. Томск, 2019. С. 16-17
Subject Terms: разломные зоны, косейсмические смещения, источники сейсмических волн, режимы скольжения
File Description: application/pdf
Relation: vtls:000667987; http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000667987
-
6Academic Journal
Authors: Кафтан В.И., Докукин П.А., Маневич А.И., Татаринов В.Н., Шевчук Р.В.
Source: Геодинамика и тектонофизика
Subject Terms: Crustal Movements, total shear deformation, earthquake, superplume, gps, synoptic animation, inner displacement deficit, aftershock, coseismic displacements, движения земной коры, деформация полного сдвига, землетрясение, суперплюм, синоптическая анимация, дефицит внутренних смещений, афтершок, косейсмические смещения
Availability: https://repository.rudn.ru/records/article/record/108974/