Showing 1 - 20 results of 1,393 for search '"КОРРОЗИОННАЯ СТОЙКОСТЬ"', query time: 0.74s Refine Results
  1. 1
  2. 2
  3. 3
    Academic Journal

    Source: Vestnik of Brest State Technical University; No. 2(137) (2025): Vestnik of Brest State Technical University; 68-72
    Вестник Брестского государственного технического университета; № 2(137) (2025): Вестник Брестского государственного технического университета; 68-72

    File Description: application/pdf

  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
    Academic Journal

    Source: Fine Chemical Technologies; Vol 20, No 5 (2025); 516-524 ; Тонкие химические технологии; Vol 20, No 5 (2025); 516-524 ; 2686-7575 ; 2410-6593

    File Description: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/2308/2171; https://www.finechem-mirea.ru/jour/article/view/2308/2175; Tsai M.H., Yeh J.W. High-Entropy Alloys: A Critical Review. Mater. Res. Lett. 2014;2(3):107–123. https://doi.org/10.1080/21663831.2014.912690; Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017:122:448–511. https://doi.org/10.1016/j.actamat.2016.08.081; Shi Y., Yang B., Liaw P. Corrosion-Resistant High-Entropy Alloys: A Review. Metals (Basel). 2017;7(2):43. https://doi.org/10.3390/met7020043; Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014;61:1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001; Chen S.T., Tang W.Y., Kuo Y.F., Chen S.Y., Tsau C.H., Shun T.T., Yeh J.W. Microstructure and properties of age-hardenable Alx CrFe1.5MnNi0.5 alloys. Mater. Sci. Eng.: A. 2010;527(21–22): 5818–5825. https://doi.org/10.1016/j.msea.2010.05.052; Tong C.J., Chen M.R., Chen S.K., Yeh J.W., Shun T.T., Lin S.J., Chang S.Y. Mechanical performance of the Alx CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A. 2005;36(5):1263–1271. https://doi.org/10.1007/s11661-005-0218-9; Vyrodova A.V. The influence of chemical composition on solid solution and strain hardening of single crystals of FCC high-entropy alloys. Frontier Materials & Technologies. 2022;1:15–23 (in Russ.). https://doi.org/10.18323/2782-4039-2022-1-15-23; Kourov N.I., Pushin V.G., Korolev A.V., Knyazev Yu.V., Kuranova N.N., Ivchenko M.V., Ustyugov Yu.M., Wanderka N. Structure and physical properties of the high-entropy AlCrFeCoNiCu alloy rapidly quenched from the melt. Phys. Solid State. 2015;57(8):1616–1626. https://doi.org/10.1134/S1063783415080144; Klimova M., Stepanov N., Shaysultanov D., Chernichenko R., Yurchenko N., Sanin V., Zherebtsov S. Microstructure and mechanical properties evolution of the Al, C-Containing CoCrFeNiMn-type high-entropy alloy during cold rolling. Materials. 2017;11(1):53. https://doi.org/10.3390/ma11010053; Gurtova D.Yu., Panchenko M.Yu., Melnikov E.V., Astapov D.O., Astafurova E.G. The influence of grain size on hydrogen embrittlement of a multicomponent (FeCrNiMnCo)99N1 alloy. Frontier Materials & Technologies. 2024;3:41–51. https://doi.org/10.18323/2782-4039-2024-3-69-4; Valiev R.Z., Zhilyaev A.P., Langdon T.J. Bulk Nanostructured Materials: Fundamentals and Applications. Wiley; 2013. 440 p. https://doi.org/10.1002/9781118742679; Kumar N.A.P.K., Li C., Leonard K.J., Bei H., Zinkle S.J. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Materialia. 2016;113(Part 2):230–244. https://doi.org/10.1016/j.actamat.2016.05.007; Hoffman A., He L., Luebbe M., Pommerenke H., Duan J., Cao P., Sridharan K., Lu Z., Wen H. Effects of Al and Ti additions on irradiation behavior of FeMnNiCr multiprincipal-element alloy. JOM. 2020;72(1):150–159. https://doi.org/10.1007/s11837-019-03871-4; Okonkwo B.O., Jeong Ch., Bae Lee H.L., Jang Ch., Rahimi E., Davoodi A. Development and optimization of trivalent chromium electrodeposit on 304L stainless steel to improve corrosion resistance in chloride-containing environment. Heliyon. 2023;9(12):e22538. https://doi.org/10.1016/j.heliyon.2023.e22538; Sun Z., Zhang M., Wang G., Yang X., Wang S. Wear and corrosion resistance analysis of FeCoNiTiAlₓ high-entropy alloy coatings prepared by laser cladding. Coatings. 2021;11(2):155. https://doi.org/10.3390/coatings11020155; Ding Z., Ding C., Yang Z., Zhang H., Wang F., Li H., Xu J., Shan D., Guo B. Ultra-high strength in FCC+BCC highentropy alloy via different gradual morphology. Materials. 2024;17(18):4535. https://doi.org/10.3390/ma17184535; Osintsev K.A., Gromov V.E., Konovalov S.V., Ivanov Yu.F., Panchenko I.A. High-entropy alloys: Structure, mechanical properties, deformation mechanisms and application. Izvestiya vysshikh uchebnykh zavedenii. Chernaya Metallurgiya = Izvestiya. Ferrous Metallurgy. 2021;64(4):249–258 (in Russ.). https://doi.org/10.17073/0368-0797-2021-4-249-258

  11. 11
    Academic Journal

    Source: Электронная обработка материалов (3) 24-37

    File Description: application/pdf

    Relation: info:eu-repo/grantAgreement/EC/FP7/17295/EU/Intensificarea proceselor de transfer și procesare în câmpuri electrice, electromagnetice, cavitaționale; aplicativitatea/20.80009.5007.06; info:eu-repo/grantAgreement/EC/FP7/17798/EU/CDAETP - Cercetarea și dezvoltarea avantajelor electroconvecției, electroactivării, fluidizării magnetice la intensificarea transferului de căldură și procesării/011203; info:eu-repo/grantAgreement/EC/FP7/17307/EU/Obținerea de noi materiale micro- și nano-structurale prin metode fizico- chimice și elaborarea tehnologiilor pe baza acestora/20.80009.5007.18; info:eu-repo/grantAgreement/EC/FP7/17799/EU/CTE - Tehnologie de modificare a suprafețelor oțelurilor de construcție și celor medicale la acțiunea complexă cu descărcări electrice în impuls, deformare plastică și tratament plasmochimic în electroliți/011204; https://ibn.idsi.md/vizualizare_articol/231791; urn:issn:00135739

  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20