-
1Academic Journal
Authors: Агзамова, Шоира, Бабаджанова, Фания
Source: International Journal of Scientific Pediatrics; Vol. 4 No. 5 (2025): September-October; 1067-1071 ; Международный журнал научной педиатрии; Том 4 № 5 (2025): Сентябрь-Октябрь; 1067-1071 ; Xalqaro ilmiy pediatriya jurnali; Nashr soni. 4 No. 5 (2025): Sentabr-Oktabr; 1067-1071 ; 2181-2926
Subject Terms: врожденные пороки сердца, кишечная микробиота, микробиоценоз, короткоцепочечные жирные кислоты, congenital heart defects, intestinal microbiota, microbiocenosis, short-chain fatty acids, yurak tug‘ma nuqsonlari, ichak mikrobiotasi, mikrobiotsenoz, qisqa zanjirli yog‘ kislotalari
File Description: application/pdf
Relation: https://ijsp.uz/index.php/journal/article/view/378/285; https://ijsp.uz/index.php/journal/article/view/378
-
2Academic Journal
Authors: Olga N. Kurochkina, Dmitry A. Korotkov, Andrey N. Bogomolov, Ольга Николаевна Курочкина, Дмитрий Александрович Коротков, Андрей Николаевич Богомолов
Contributors: Авторы заявляют об отсутствии финансирования исследования.
Source: Complex Issues of Cardiovascular Diseases; Том 14, № 1 (2025); 232-240 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 1 (2025); 232-240 ; 2587-9537 ; 2306-1278
Subject Terms: Короткоцепочечные жирные кислоты, Intestinal microbiome, Atherosclerotic cardiovascular diseases, Atherosclerosis, Risk factors, Hypertension, Dyslipidemia, Diabetes, Trimethylamine N-oxide, Lipopolysaccharides, Short-chain fatty acids, Кишечный микробиом, Атеросклеротические сердечно-сосудистые заболевания, Атеросклероз, Факторы риска, Гипертония, Дислипидемия, Диабет, Триметиламин N-оксид, Липополисахариды
File Description: application/pdf
Relation: https://www.nii-kpssz.com/jour/article/view/1428/1003; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1428/1561; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1428/1562; Khan MA, Hashim MJ, Mustafa H, et al. Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study. Cureus. 2020 Jul 23;12(7):e9349. doi:10.7759/cureus.9349.; WHO. Noncommunicable Diseases: Key Facts. 2023. URL: https://www.who.int/ru/news-room/fact-sheets/detail/noncommunicable-diseases; Драпкина О.М., Котова М.Б., Максимов С.А., и др. Приверженность здоровому образу жизни в России по данным исследования ЭССЕ-РФ: есть ли «ковидный след»? Кардиоваскулярная терапия и профилактика. 2023;22(8S):3788. doi:10.15829/1728-8800-2023-3788. EDN: OEMWFL.; Ghosh, S., Whitley, C. S., Haribabu, B. & Jala, V. R. Regulation of intestinal barrier function by microbial metabolites. Cell Mol. Gastroenterol. Hepatol. 2021;11:1463–1482. DOI:10.1016/j.jcmgh.2021.02.007; Vieira E.L., Leonel A.J., Sad A.P., Beltrao N.R., Costa T.F., Ferreira T.M. Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. J.Nutr.Biochem. 2012. Vol. 23, N 5. P. 430–436. DOI:10.1016/j.jnutbio.2011.01.007; Pluznick J. Microbial short-chain fatty acids and blood pressure regulation. Curr. Hypertens. Rep. 2017;19(4):25. DOI:10.1007/s1 1906-017-0722-5; Pluznick JL, Protzko RJ, Gevorgyan H, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci U S A 2013; 110(11): 4410-5.; Li M, van Esch BCAM, Henricks PAJ, Garssen J, Folkerts G. Time and Concentration Dependent Effects of Short Chain Fatty Acids on Lipopolysaccharide- or Tumor Necrosis Factor α-Induced Endothelial Activation. Front Pharmacol. 2018 Mar 19;9:233. doi:10.3389/fphar.2018.00233.; Li M, van Esch BCAM, Henricks PAJ, Folkerts G, Garssen J. The Anti-inflammatory Effects of Short Chain Fatty Acids on Lipopolysaccharide- or Tumor Necrosis Factor α-Stimulated Endothelial Cells via Activation of GPR41/43 and Inhibition of HDACs. Front Pharmacol. 2018 May 23;9:533. doi:10.3389/fphar.2018.00533; Aguilar, E.C.; Santos, L.C.; Leonel, A.J.; et al. Oral butyrate reduces oxidative stress in atherosclerotic lesion sites by a mechanism involving NADPH oxidase down-regulation in endothelial cells. J. Nutr. Biochem. 2016, 34, 99–105 DOI:10.1016/j.jnutbio.2016.05.002; Matey-Hernandez, M.L.; Williams, F.M.K.; Potter, T.; et al. Genetic and microbiome influence on lipid metabolism and dyslipidemia. Physiol. Genom. 2018;50:117–126. DOI:10.1152/physiolgenomics.00053.2017; Кардиоваскулярная профилактика 2022. Российские национальные рекомендации / под ред. С.А. Бойцова, Н.В. Погосовой. Москва, 2022. 357 с.; Tabas, I. 2016 Russell Ross Memorial Lecture in Vascular Biology: Molecular–Cellular Mechanisms in the Progression of Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2017; 37: 183–189. doi:10.1161/ATVBAHA.116.308036.; Ridker P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 2017; 377:1119–1131. doi:10.1056/NEJMoa1707914.; Nidorf S. M. et al. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 2020; 383:1838–1847. DOI:10.1056/NEJMoa2021372; Imamura F. Micha R. Khatibzadeh S. Fahimi S. Shi P. Powles J. Mozaffarian D. Global Burden of Diseases Nutrition and Chronic Diseases Expert Group (NutriCoDE). Dietary quality among men and women in 187 countries in 1990 and 2010: a systematic assessment. Lancet Glob. Health. 2015; 3: e132-e142. DOI:10.1016/S2214-109X(14)70381-X; Bhupathiraju S.N. Tobias D.K. Malik V.S. et al. Glycemic index, glycemic load, and risk of type 2 diabetes: results from 3 large US cohorts and an updated meta-analysis. Am. J. Clin. Nutr. 2014; 100: 218-232 DOI:10.3945/ajcn.113.079533; Emoto T., Yamashita T., Sasaki N. et al. Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease // J. Atheroscler. Thromb. 2016;23(8):908–921. DOI:10.5551/jat.32672; Jie Z., Xia H., Zhong S.L. et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 2017;8(1): 845. DOI: https:10.1038/s41467-017-00900-1; Фомина А.А., Коннова О.Н., Тихомирова Е.И., Коннова С.А. Влияние липополисахарида бактерий аzospirillum irakense КВС1 на индукцию синтеза цитокинов in vivo и in vitro фагоцитирующими макрофагами. Фундаментальные исследования. 2006;4: 55–56.; Драпкина О.М., Жамалов Л.М. Микробиота кишечника – новый фактор риска атеросклероза? Профилактическая медицина. 2022;25(11):92-97. DOI:10.17116/profmed20222511192; Обрезан А.А., Пономаренко Г.Н., Кантемирова Р.К., и др. Нерациональное питание и хронический стресс - ключевые причины возникновения сердечно-сосудистых заболеваний и преждевременного старения человека? Кардиология: новости, мнения, обучение. 2023;11(1): 8-18. DOI:10.33029/2309-1908-2023-11-1-8-18; Ивашкин В.Т., Кашух Е.А. Влияние потребления продуктов, содержащих L-карнитин и фосфатидилхолин, на продукцию проатерогенного метаболита триметиламин-N-оксида и кишечный микробиом у пациентов с ишемической болезнью сердца. Вопросы питания. 2019; 88(4): 25–33. DOI:10.24411/00428833-201910038; Gatarek, P.; Kaluzna-Czaplinska, J. Trimethylamine N-oxide (TMAO) in human health. EXCLI J. 2021; 20: 301–319. doi:10.17179/excli2020-3239; Zhu W., Gregory J.C., Org E. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165(1):111–124. DOI:10.1016/j.cell.2016.02.011; Seldin M.M., Meng Y, Qi H. et al. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-KB. J. Am. Heart Assoc. 2016;5(2). Article ID e002767. DOI:10.1161/JAHA.115.002767; Fu, Q.; Zhao, M.; Wang, D.; et al. Coronary Plaque Characterization Assessed by Optical Coherence Tomography and Plasma Trimethylamine-N-oxide Levels in Patients With Coronary Artery Disease. Am. J. Cardiol. 2016;118: 1311–1315. DOI:10.1016/j.amjcard.2016.07.071; Григорьева И.Н. Атеросклероз и триметиламин-N-оксид – потенциал кишечной микробиоты. Российский кардиологический журнал. 2022;27(9): 142–147. DOI:10.15829/1560-4071-2022-5038; Hiippala, K. et al. The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation. Nutrients. 2018;10,988. DOI:10.3390/nu10080988; Paradis, T., Bègue, H., Basmaciyan, L., Dalle, F. & Bon, F. Tight junctions as a key for pathogens invasion in intestinal epithelial cells. Int. J. Mol. Sci. 2021;22: 2506. DOI:10.3390/ijms22052506; Wang, W., Xia, T. & Yu, X. Wogonin suppresses inflammatory response and maintains intestinal barrier function via TLR4-MyD88-TAK1-mediated NF-κB pathway in vitro. Inflamm. Res. 2015; 64: 423–431. DOI:10.1007/s00011-015-0822-0; Han, Y. H. et al. Enterically derived high-density lipoprotein restrains liver injury through the portal vein. Science 2021;373: 6729. DOI:10.1126/science.abe6729; Carpino, G. et al. Increased liver localization of lipopolysaccharides in human and experimental NAFLD. Hepatology. 2020; 72: 470–485. DOI:10.1002/hep.31056; Carnevale, R. et al. Low-grade endotoxaemia enhances artery thrombus growth via toll-like receptor 4: implication for myocardial infarction. Eur. Heart J. 2020; 41: 3156–3165. DOI:10.1093/eurheartj/ehz893; Liu, T., Zhang, L., Joo, D. & Sun, S. C. NF-κB signaling in inflammation. Sig. Transduct. Target. Ther. 2017; 2:17023. DOI:10.1038/sigtrans.2017.23; Hersoug, L. G., Møller, P. & Loft, S. Role of microbiota-derived lipopolysaccharide in adipose tissue inflammation, adipocyte size and pyroptosis during obesity. Nutr. Res. Rev. 2018; 31: 153–163. doi:10.1017/S0954422417000269.; Rehues, P. et al. Characterization of the LPS and 3OHFA contents in the lipoprotein fractions and lipoprotein particles of healthy men. Biomolecules 2021; 12(1): 47. DOI:10.3390/biom12010047; Carnevale, R. et al. Localization of lipopolysaccharide from Escherichia coli into human atherosclerotic plaque. Sci. Rep. 2018; 8, 3598. DOI:10.1038/s41598-018-22076-4; Koupenova, M., Livada, A. C. & Morrell, C. N. Platelet and megakaryocyte roles in innate and adaptive immunity. Circ. Res. 2022; 130: 288–308. DOI:10.1161/CIRCRESAHA.121.319821; Jaw, J. E. et al. Lung exposure to lipopolysaccharide causes atherosclerotic plaque destabilisation. Eur. Respir. J. 2016; 48, 205–215. DOI:10.1183/13993003.00972-2015; Mawhin, M.-A. et al. Neutrophils recruited by leukotriene B4 induce features of plaque destabilization during endotoxaemia. Cardiovasc. Res. 2018; 114, 1656–1666. DOI:10.1093/cvr/cvy130; Schumski, A. et al. Endotoxinemia accelerates atherosclerosis through electrostatic charge-mediated monocyte adhesion. Circulation 2021; 143: 254–266. DOI:10.1161/CIRCULATIONAHA.120.046677; Violi, F., Carnevale, R., Loffredo, L., Pignatelli, P. & Gallin, J. I. NADPH oxidase-2 and atherothrombosis: insight from chronic granulomatous disease. Arterioscler. Thromb. Vasc. Biol. 2017; 37: 218–225. DOI:10.1161/ATVBAHA.116.308351; Nocella, C. et al. Lipopolysaccharide as trigger of platelet aggregation via eicosanoid over-production. Thromb. Haemost. 2017;117: 1558–1570. DOI:10.1160/TH16-11-0857; Koupenova, M., Clancy, L., Corkrey, H. A. & Freedman, J. E. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ. Res. 2018;122: 337–351. DOI:10.1161/CIRCRESAHA.117.310795; Barillà, F. et al. Toll-like receptor 4 activation in platelets from myocardial infarction patients. Thromb. Res. 2022; 209: 33–40. DOI:10.1016/j.thromres.2021.11.019; Asada, M. et al. Serum lipopolysaccharide-binding protein levels and the incidence of cardiovascular disease in a general Japanese population: the Hisayama study. J. Am. Heart Assoc. 2019; 8, e013628 DOI:10.1161/JAHA.119.013628; Leskelä, J. et al. Genetic profile of endotoxemia reveals an association with thromboembolism and stroke. J. Am. Heart Assoc. 2021; 10, e022482. doi:10.1161/JAHA.121.022482; Zhou, X. et al. Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome 2018; 6: 66. DOI:10.1186/s40168-018-0441-4; Amar, J. Microbiota-host crosstalk: a bridge between cardiovascular risk factors, diet, and cardiovascular disease. Am. J. Hypertens. 2018;31: 941–944. DOI:10.1093/ajh/hpy067; De Filippis, F. et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 2016; 65: 1812–1821. DOI:10.1136/gutjnl-2015-309957; Bartimoccia, S. et al. Extra virgin olive oil reduces gut permeability and metabolic endotoxemia in diabetic patients. Nutrients 2022; 14: 2153. DOI:10.3390/nu14102153; Guevara-Cruz, M. et al. Improvement of lipoprotein profile and metabolic endotoxemia by a lifestyle intervention that modifies the gut microbiota in subjects with metabolic syndrome. J. Am. Heart Assoc. 2019; 8, e012401. DOI:10.1161/JAHA.119.012401; Cani, P. D. et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009; 58: 1091–1103. DOI:10.1136/gut.2008.165886
-
3Academic Journal
Authors: Sh. T. Turdieva, D. K. Ganiyeva, Kh. B. Abdurashidova, Ш. Т. Турдиева, Д. К. Ганиева, Х. Б. Абдурашидова
Source: Meditsinskiy sovet = Medical Council; № 11 (2024); 285–291 ; Медицинский Совет; № 11 (2024); 285–291 ; 2658-5790 ; 2079-701X
Subject Terms: пребиотики, bacteria, intestinal microbiota, short chain fatty acids, probiotics, prebiotics, бактерии, микробиота кишечника, короткоцепочечные жирные кислоты, пробиотики
File Description: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/8454/7433; Венцловайте НД, Горячева ЛГ, Гончар НВ, Грешнякова ВА, Ефремова НА. Патогенетическая связь между состоянием микробиоты кишечника и заболеваниями печени. Инфекционные болезни: новости, мнения, обучение. 2022;11(2):97–105. https://doi.org/10.33029/2305-34962022-11-2-97-105; Paludan SR, Pradeu T, Masters SL, Mogensen TH. Constitutive immune mechanisms: mediators of host defence and immune regulation. Nat Rev Immunol. 2021;21(3):137-150. https://doi.org/10.1038/s41577-020–0391-5.; Netea MG, Balkwill F, Chonchol M, Cominelli F, Donath MY, Giamarellos-Bourboulis EJ et al. A guiding map for inflammation. Nat Immunol. 2017;18(8):826–831. https://doi.org/10.1038/ni.3790.; Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017;9(6):7204–7218. https://doi.org/10.18632/oncotarget.23208.; Hannoodee S, Nasuruddin DN. Acute Inflammatory Response. Treasure Island (FL): StatPearls Publishing; 2024. Available at: https://www.ncbi.nlm.nih.gov/books/NBK556083/.; Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822–1832. https://doi.org/10.1038/s41591-019-0675-0.; Torun A, Hupalowska A, Trzonkowski P, Kierkus J, Pyrzynska B. Intestinal Microbiota in Common Chronic Inflammatory Disorders Affecting Children. Front Immunol. 2021;12:642166. https://doi.org/10.3389/fimmu.2021.642166.; Al Nabhani Z, Dulauroy S, Marques R, Cousu C, Al Bounny S, Déjardin F et al. A Weaning Reaction to Microbiota Is Required for Resistance to Immunopathologies in the Adult. Immunity. 2019;50(5):1276–1288.e5. https://doi.org/10.1016/j.immuni.2019.02.014.; Al Nabhani Z, Eberl G. Imprinting of the immune system by the microbiota early in life. Mucosal Immunol. 2020;13(2):183–189. https://doi.org/10.1038/s41385-020-0257-y.; Armstrong H, Alipour M, Valcheva R, Bording-Jorgensen M, Jovel J, Zaidi D et al. Host immunoglobulin G selectively identifies pathobionts in pediatric inflammatory bowel diseases. Microbiome. 2019;7(1):1. https://doi.org/10.1186/s40168-018-0604-3.; Данилова НА, Абдулхаков СР, Григорьева ТВ, Маркелова МИ, Васильев ИЮ, Булыгина ЕА и др. Маркеры дисбиоза у пациентов с язвенным колитом и болезнью Крона. Терапевтический архив. 2019;91(4):13–20. https://doi.org/10.26442/00403660.2019.04.000211.; Turdieva ST, Nasirova GR. Oral Microbiota in Children with Acute Tonsillitis. Biomedical and Biotechnology Research Journal. 2021;5(3):272–275. https://doi.org/10.4103/bbrj.bbrj_84_21.; Мкртчян ЛС, Мазовка КЕ, Ткачев АВ. В лабиринтах патогенеза воспалительных заболеваний кишечника: эволюция микробиологической теории. Практическая медицина. 2022;20(1):8–13. https://doi.org/10.32000/2072-1757-2022-1-8-13.; Castro-Dopico T, Clatworthy MR. IgG and Fcγ Receptors in Intestinal Immunity and Inflammation. Front Immunol. 2019;10:805. https://doi.org/10.3389/fimmu.2019.00805.; Forster CS, Hsieh MH, Cabana MD. Perspectives from the Society for Pediatric Research: Probiotic use in urinary tract infections, atopic dermatitis, and antibiotic-associated diarrhea: an overview. Pediatr Res. 2021;90(2):315–327. https://doi.org/10.1038/s41390-020-01298-1.; Ma B, McComb E, Gajer P, Yang H, Humphrys M, Okogbule-Wonodi AC et al. Microbial Biomarkers of Intestinal Barrier Maturation in Preterm Infants. Front Microbiol. 2018;9:2755. https://doi.org/10.3389/fmicb.2018.02755.; Turdieva S, Ganieva D. Peculiarities of the physical growth of schoolchildren and teenagers with chronic diseases of the gastroduodenal area. J Exp Clin Med. 2022;39(3):681–685. https://doi.org/10.52142/omujecm.39.3.17.; Hill CJ, Lynch DB, Murphy K, Ulaszewska M, Jeffery IB, O’Shea CA et al. Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome. 2017;5(1):4. https://doi.org/10.1186/s40168-016-0213-y.; Armstrong H, Mander I, Zhang Z, Armstrong D, Wine E. Not All Fibers Are Born Equal; Variable Response to Dietary Fiber Subtypes in IBD. Front Pediatr. 2021;8:620189. https://doi.org/10.3389/fped.2020.620189.; Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P, Balamurugan R. The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients. 2020;12(5):1474. https://doi.org/10.3390/nu12051474.; Radjabzadeh D, Boer CG, Beth SA, van der Wal P, Kiefte-De Jong JC, Jansen MAE et al. Diversity, compositional and functional differences between gut microbiota of children and adults. Sci Rep. 2020;10(1):1040. https://doi.org/10.1038/s41598-020-57734-z.; Hills RD Jr, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients. 2019;11(7):1613. https://doi.org/10.3390/nu11071613.; Jin YT, Duan Y, Deng XK, Lin J. Prevention of necrotizing enterocolitis in premature infants – an updated review. World J Clin Pediatr. 2019;8(2):23–32. https://doi.org/10.5409/wjcp.v8.i2.23.; Vatanen T, Kostic AD, d’Hennezel E, Siljander H, Franzosa EA, Yassour M et al. Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans. Cell. 2016;165(4):842–853. https://doi.org/10.1016/j.cell.2016.04.007.; Basilicata M, Pieri M, Marrone G, Nicolai E, Di Lauro M, Paolino V et al. Saliva as Biomarker for Oral and Chronic Degenerative Non-Communicable Diseases. Metabolites. 2023;13(8):889. https://doi.org/10.3390/metabo13080889.; Quraishi MN, Shaheen W, Oo YH, Iqbal TH. Immunological mechanisms underpinning faecal microbiota transplantation for the treatment of inflammatory bowel disease. Clin Exp Immunol. 2020;199(1):24–38. https://doi.org/10.1111/cei.13397.; Danne C, Rolhion N, Sokol H. Recipient factors in faecal microbiota transplantation: one stool does not fit all. Nat Rev Gastroenterol Hepatol. 2021;18(7):503–513. https://doi.org/10.1038/s41575-021-00441-5.; Hvas CL, Dahl Jørgensen SM, Jørgensen SP, Storgaard M, Lemming L, Hansen MM et al. Fecal Microbiota Transplantation Is Superior to Fidaxomicin for Treatment of Recurrent Clostridium difficile Infection. Gastroenterology. 2019;156(5):1324–1332.e3. https://doi.org/10.1053/j.gastro.2018.12.019.; Moossavi S, Miliku K, Sepehri S, Khafipour E, Azad MB. The Prebiotic and Probiotic Properties of Human Milk: Implications for Infant Immune Development and Pediatric Asthma. Front Pediatr. 2018;6:197. https://doi.org/10.3389/fped.2018.00197.; Blaser MJ. Antibiotic use and its consequences for the normal microbiome. Science. 2016;352(6285):544–545. https://doi.org/10.1126/science.aad9358.; Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2017;390(10114):2769–2778. https://doi.org/10.1016/S0140-6736(17)32448-0.; Zhang N, Ju Z, ZuoT.Time for food: The impact of diet on gut microbiota and human health. Nutrition. 2018;51-52:80–85. https://doi.org/10.1016/j.nut.2017.12.005.; Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491–502. https://doi.org/10.1038/nrgastro.2017.75.; Ng LG, Ostuni R, Hidalgo A. Heterogeneity of neutrophils. Nat Rev Immunol. 2019;19(4):255–265. https://doi.org/10.1038/s41577-019-0141-8.; Валиев АА, Хаитов КН, Турдиева ШТ. Диапазон сопутствующих заболеваний у детей при псориазе. Медицинский совет. 2022;(3):56–62. https://doi.org/10.21518/2079-701X-2022-16-3-56-62.; Oliveira SB, Monteiro IM. Diagnosis and management of inflammatory bowel disease in children. BMJ. 2017;357: j2083. https://doi.org/10.1136/bmj.j2083.; Cleynen I, Boucher G, Jostins L, Schumm LP, Zeissig S, Ahmad T et al. Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet. 2016;387(10014):156–167. https://doi.org/10.1016/S0140-6736(15)00465-1.; Clooney AG, Eckenberger J, Laserna-Mendieta E, Sexton KA, Bernstein MT, Vagianos K et al. Ranking microbiome variance in inflammatory bowel disease: a large longitudinal intercontinental study. Gut. 2021;70(3):499–510. https://doi.org/10.1136/gutjnl-2020-321106.; Yilmaz B, Juillerat P, Øyås O, Ramon C, Bravo FD, Franc Y et al. Microbial network disturbances in relapsing refractory Crohn’s disease. Nat Med. 2019;25(2):323–336. https://doi.org/10.1038/s41591-018-0308-z.; Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol. 2019;4(2):293–305. https://doi.org/10.1038/s41564-018-0306-4.; Wlodarska M, Luo C, Kolde R, d’Hennezel E, Annand JW, Heim CE et al. Indoleacrylic Acid Produced by Commensal Peptostreptococcus Species Suppresses Inflammation. Cell Host Microbe. 2017;22(1):25–37.e6. https://doi.org/10.1016/j.chom.2017.06.007.; Sassone-Corsi M, Nuccio SP, Liu H, Hernandez D, Vu CT, Takahashi AA et al. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature. 2016;540(7632):280–283. https://doi.org/10.1038/
-
4Academic Journal
Authors: D. Yu. Konstantinov, L. L. Popova, S. Yu. Vasilev, M. A. Popilov, Д. Ю. Константинов, Л. Л. Попова, С. Ю. Васильев, М. А. Попилов
Source: Meditsinskiy sovet = Medical Council; № 8 (2024); 82-88 ; Медицинский Совет; № 8 (2024); 82-88 ; 2658-5790 ; 2079-701X
Subject Terms: короткоцепочечные жирные кислоты, treatment, cholestasis, dysbiosis, short-chain fatty acids, лечение, холестаз, дисбактериоз
File Description: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/8345/7364; Бакулин ИГ, Оганезова ИА, Скалинская ЕВ, Сказываева ЕВ. Цирроз печени и управление рискам и осложнений. Терапевтический архив. 2021;8(93):963–968. https://doi.org/10.26442/00403660.2021.08.200917.; Pinchera B, Moriello NS, Buonomo AR, Zappulo E, Viceconte G, Villari R, Gentile I. Microbiota and hepatitis C virus in the era of direct-acting antiviral agents. Microb Pathog. 2023;175:105968. https://doi.org/10.1016/j.micpath.2023.105968.; Ullah N, Kakakhel MA, Khan I, Gul Hilal M, Lajia Z, Bai Y et al. Structural and compositional segregation of the gut microbiota in HCV and liver cirrhotic patients: A clinical pilot study. Microb Pathog. 2022;171:105739. https://doi.org/10.1016/j.micpath.2022.105739.; Zhang L, Zi L, Kuang T, Wang K, Qiu Z, Wu Z et al. Investigating causal associations among gut microbiota, metabolites, and liver diseases: a Mendelian randomization study. Front Endocrinol (Lausanne). 2023;14:1159148. https://doi.org/10.3389/fendo.2023.1159148.; Sultan S, El-Mowafy M, Elgaml A, El-Mesery M, El Shabrawi A, Elegezy M et al. Alterations of the Treatment-Naive Gut Microbiome in Newly Diagnosed Hepatitis C Virus Infection. ACS Infect Dis. 2021;7(5):1059–1068. https://doi.org/10.1021/acsinfecdis.0c00432.; Wellhöner F, Döscher N, Woelfl F, Vital M, Plumeier I, Kahl S et al. Eradication of Chronic HCV Infection: Improvement of Dysbiosis Only in Patients Without Liver Cirrhosis. Hepatology. 2021;74(1):72–82. https://doi.org/10.1002/hep.31700.; Honda T, Ishigami M, Yamamoto K, Takeyama T, Ito T, Ishizu Y et al. Changes in the gut microbiota after hepatitis C virus eradication. Sci Rep. 2021;11(1):23568. https://doi.org/10.1038/s41598-021-03009-0.; Inoue T, Funatsu Y, Ohnishi M, Isogawa M, Kawashima K, Tanaka M et al. Bile acid dysmetabolism in the gut-microbiota-liver axis under hepatitis C virus infection. Liver Int. 2022;42(1):124–134. https://doi.org/10.1111/liv.15041.; Zhang W, Mackay CR, Gershwin ME. Immunomodulatory Effects of Microbiota-Derived Short-Chain Fatty Acids in Autoimmune Liver Diseases. J Immunol. 2023;210(11):1629–1639. https://doi.org/10.4049/jimmunol.2300016.; Ардатская МД, Гарушьян ГВ, Мойсак РП. Выявление нарушений микробиоценоза у больных неалкогольной жировой болезнью печени различных стадий и методы их коррекции. Кремлевская медицина. 2019;(2):5–12. https://doi.org/10.26269/1hdj-7113.; Ардатская МД, Гарушьян ГВ, Мойсак РП, Топчий ТБ. Роль короткоцепочечных жирных кислот в оценке состояния микробиоценоза кишечника и его коррекции у пациентов с НАЖБП различных стадий. Экспериментальная и клиническая гастроэнтерология. 2019;(1):106–116. https://doi.org/10.31146/1682-8658-ecg-161-1-106-116.; Михайлова ЕА, Локошко ДВ, Большакова ЕМ. Профилактическая и терапевтическая эффективность короткоцепочечных жирных кислот, входящих в состав метабиотиков. В: Прорывные научные исследования как двигатель науки: сборник статей международной научно-практической конференции, Магнитогорск, 27 февраля 2021 г. Уфа: ОМЕГА САЙНС; 2021. С. 165–171. Режим доступа: https://elibrary.ru/rqcbtr.; Wellhöner F, Döscher N, Tergast TL, Vital M, Plumeier I, Kahl S et al. The impact of proton pump inhibitors on the intestinal microbiota in chronic hepatitis C patients. Scand J Gastroenterol. 2019;54(8):1033–1041. https://doi.org/10.1080/00365521.2019.1647280.; Hsu YC, Chen CC, Lee WH, Chang CY, Lee FJ, Tseng CH et al. Compositions of gut microbiota before and shortly after hepatitis C viral eradication by direct antiviral agents. Sci Rep. 2022;12(1):5481. https://doi.org/10.1038/s41598-022-09534-w.; Sehgal R, Bedi O, Trehanpati N. Role of Microbiota in Pathogenesis and Management of Viral Hepatitis. Front Cell Infect Microbiol. 2020;10:341. https://doi.org/10.3389/fcimb.2020.00341.; Cheng Z, Yang L, Chu H. The Gut Microbiota: A Novel Player in Autoimmune Hepatitis. Front Cell Infect Microbiol. 2022;12:947382. https://doi.org/10.3389/fcimb.2022.947382.; Trebicka J, Macnaughtan J, Schnabl B, Shawcross DL, Bajaj JS. The microbiota in cirrhosis and its role in hepatic decompensation. J Hepatol. 2021;75(Suppl 1):S67–S81. https://doi.org/10.1016/j.jhep.2020.11.013.; Rong L, Zou J, Ran W, Qi X, Chen Y, Cui H, Guo J. Advancements in the treatment of non-alcoholic fatty liver disease (NAFLD). Front Endocrinol (Lausanne). 2023;13:1087260. https://doi.org/10.3389/fendo.2022.1087260.; Capparelli R, Cuomo P, Gentile A, Iannelli D. Microbiota-Liver Diseases Interactions. Int J Mol Sci. 2023;24(4):3883. https://doi.org/10.3390/ijms24043883.; Lilong Z, Chen C, Dongqi C, Tianrui K, Wenhong D, Weixing W. Alterations of gut mycobiota profiles in intrahepatic cholangiocarcinoma. Front Microbiol. 2023;13:1090392. https://doi.org/10.3389/fmicb.2022.1090392.; Gudan A, Jamioł-Milc D, Hawryłkowicz V, Skonieczna-Żydecka K, Stachowska E. The Prevalence of Small Intestinal Bacterial Overgrowth in Patients with Non-Alcoholic Liver Diseases: NAFLD, NASH, Fibrosis, Cirrhosis-A Systematic Review, Meta-Analysis and Meta-Regression. Nutrients. 2022;14(24):5261. https://doi.org/10.3390/nu14245261.; Collins SL, Stine JG, Bisanz JE, Okafor CD, Patterson AD. Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nat Rev Microbiol. 2023;21(4):236–247. https://doi.org/10.1038/s41579-022-00805-x.; Barber TM, Hanson P, Weickert MO. Metabolic-Associated Fatty Liver Disease and the Gut Microbiota. Endocrinol Metab Clin North Am. 2023;52(3):485–496. https://doi.org/10.1016/j.ecl.2023.01.004.; Yang X, Mai H, Zhou J, Li Z, Wang Q, Lan L et al. Alterations of the gut microbiota associated with the occurrence and progression of viral hepatitis. Front Cell Infect Microbiol. 2023;13:1119875. https://doi.org/10.3389/fcimb.2023.1119875.; Фролов ВМ, Соцкая ЯА, Пересадин НА, Круглова ОВ. Эффективность энтеросорбента Белый Уголь® в лечении больных циррозом печени. Врачебное дело. 2012;(8):108–115. Режим доступа: https://www.researchgate.net/publication/376638470_Effektivnost_enterosorbenta_Belyj_UgolR_v_lecenii_bolnyh_cirrozom_peceni.; Ивашкин ВТ, Ющук НД, Богомолов ПО, Волчкова ЕВ, Дмитриев АС, Жаркова МС и др. Хронический вирусный гепатит С: клинические рекомендации. 2021. Режим доступа: https://cr.minzdrav.gov.ru/schema/516_2; Ивашкин ВТ, Медведев ОС, Полуэктова ЕА, Кудряцева АВ, Бахтогаримов ИР, Карчевская АЕ. Прямые и косвенные методы изучения микробиоты человека. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2022;32(2):19–34. https://doi.org/10.22416/1382-4376-2022-32-2-19-34.; Осипенко ЮВ, Кузьмина ТН, Сильвестрова СЮ, Дубцова ЕА, Бордин ДС. Спектр короткоцепочечных жирных кислот при хроническом панкреатите. Эффективная фармакотерапия. 2021;39(17):54–58. https://doi.org/10.33978/2307-3586-2021-17-39-54-58.; Plaza-Díaz J, Solís-Urra P, Rodríguez-Rodríguez F, Olivares-Arancibia J, Navarro-Oliveros M, Abadía-Molina F, Álvarez-Mercado AI. The Gut Barrier, Intestinal Microbiota, and Liver Disease: Molecular Mechanisms and Strategies to Manage. Int J Mol Sci. 2020;21(21):8351. https://doi.org/10.3390/ijms21218351.; Jayachandran M, Qu S. Non-alcoholic fatty liver disease and gut microbial dysbiosis-underlying mechanisms and gut microbiota mediated treatment strategies. Rev Endocr Metab Disord. 2023;24(6):1189–1204. https://doi.org/10.1007/s11154-023-09843-z.; Luo M, Xin RJ, Hu FR, Yao L, Hu SJ, Bai FH. Role of gut microbiota in the pathogenesis and therapeutics of minimal hepatic encephalopathy via the gut-liver-brain axis. World J Gastroenterol. 2023;29(1):144–156. https://doi.org/10.3748/wjg.v29.i1.144.
-
5Academic Journal
Authors: T. S. Dushina, L. A. Suplotova, S. M. Klyashev, N. N. Fedoseeva, Т. С. Душина, Л. А. Суплотова, С. М. Кляшев, Н. Н. Федосеева
Source: Meditsinskiy sovet = Medical Council; № 6 (2024); 217-225 ; Медицинский Совет; № 6 (2024); 217-225 ; 2658-5790 ; 2079-701X
Subject Terms: масляная кислота, branched short-chain fatty acids, acetic acid (acetate), propionic acid (propionate), butyric acid (butyrate), короткоцепочечные жирные кислоты с разветвленной цепью, уксусная кислота, пропионовая кислота
File Description: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/8291/7314; Blüher M. Obesity: Global epidemiology and pathogenesis. Nature Reviews Endocrinology. 2019;15:288–298. https://doi.org/10.1038/s41574-019-0176-8.; Amiri P, Hosseini SA, Ghaffari S, Tutunchi H, Ghaffari S, Mosharkesh E et al. Role of Butyrate, a Gut Microbiota Derived Metabolite, in Cardiovascular Diseases: A comprehensive narrative review. Front Pharmacol. 2022;12:837509. https://doi.org/10.3389/fphar.2021.837509.; Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G et al. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front Immunol. 2019;10:277. https://doi.org/10.3389/fimmu.2019.00277.; Luu M, Visekruna A. Short-chain fatty acids: Bacterial messengers modulating the immunometabolism of T cells. Eur J Immunol. 2019;49(6):842–848. https://doi.org/10.1002/eji.201848009.; Deleu S, Machiels K, Raes J, Verbeke K, Vermeire S. Short chain fatty acids and its producing organisms: An overlooked therapy for IBD? EBioMedicine. 2021;66:103293. https://doi.org/10.1016/j.ebiom.2021.103293.; Miranda VPN, Dos Santos Amorim PR, Bastos RR, de Faria ER, de Castro Moreira ME, do Carmo Castro Franceschini S et al. Abundance of Gut Microbiota, Concentration of Short-Chain Fatty Acids, and Inflammatory Markers Associated with Elevated Body Fat, Overweight, and Obesity in Female Adolescents. Mediators Inflamm. 2019:7346863. https://doi.org/10.1155/2019/7346863.; Курмангулов АА, Дороднева ЕФ, Исакова ДН. Функциональная активность микробиоты кишечника при метаболическом синдроме. Ожирение и метаболизм. 2016;13(1):16–19. https://doi.org/10.14341/omet2016116-19.; Blakeney BA, Crowe MS, Mahavadi S, Murthy KS, Grider JR. Branched ShortChain Fatty Acid Isovaleric Acid Causes Colonic Smooth Muscle Relaxation via cAMP/PKA Pathway. Dig Dis Sci. 2019;64:1171–1181. https://doi.org/10.1007/s10620-018-5417-5.; Canfora EE, Meex RCR, Venema K, Blaak EE. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol. 2019;15:261–273. https://doi.org/10.1038/s41574-019-0156-z.; Diether NE, Willing BP. Microbial Fermentation of Dietary Protein: An Important Factor in Diet-Microbe-Host Interaction. Microorganisms. 2019;7(1):19. https://doi.org/10.3390/microorganisms7010019.; Kim KN, Yao Y, Ju SY. Short Chain Fatty Acids and Fecal Microbiota Abundance in Humans with Obesity: A Systematic Review and MetaAnalysis. Nutrients. 2019;11(10):2512. https://doi.org/10.3390/nu11102512.; Murugesan S, Ulloa-Martínez M, Martínez-Rojano H, Galván-Rodríguez FM, Miranda-Brito C, Romano MC et al. Study of the diversity and short-chain fatty acids production by the bacterial community in overweight and obese Mexican children. Eur J Clin Microbiol Infect Dis. 2015;34(7):1337–1346. https://doi.org/10.1007/s10096-015-2355-4.; Hosseinkhani F, Heinken A, Thiele I, Lindenburg PW, Harms AC, Hankemeier T. The contribution of gut bacterial metabolites in the human immune signaling pathway of non-communicable diseases. Gut Microbes. 2021;13(1):1–22. https://doi.org/10.1080/19490976.2021.1882927.; Mishra SP, Karunakar P, Taraphder S, Yadav H. Free Fatty Acid Receptors 2 and 3 as Microbial Metabolite Sensors to Shape Host Health: Pharmacophysiological View. Biomedicines. 2020;8(6):154. https://doi.org/10.3390/biomedicines8060154.; Wiciński M, Gębalski J, Gołębiewski J, Malinowski B. Probiotics for the treatment of overweight and obesity in humans-A review of clinical trials. Microorganisms. 2020;8(8):1148. https://doi.org/10.3390/microorganisms8081148.; He J, Zhang P, Shen L, Niu L, Tan Y, Chen L et al. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. Int J Mol Sci. 2020;21(17):6356. https://doi.org/10.3390/ijms21176356.; Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol. 2020;11:25. https://doi.org/10.3389/fendo.2020.00025.; Koliaki C, Liatis S, Dalamaga M, Kokkinos A. The Implication of Gut Hormones in the Regulation of Energy Homeostasis and Their Role in the Pathophysiology of Obesity. Curr Obes Rep. 2020;9(3):255–271. https://doi.org/10.1007/s13679-020-00396-9.; Alhabeeb H, AlFaiz A, Kutbi E, AlShahrani D, Alsuhail A, AlRajhi S et al. Gut Hormones in Health and Obesity: The Upcoming Role of Short Chain Fatty Acids. Nutrients. 2021;13(2):481. https://doi.org/10.3390/nu13020481.; Yao H, Fan C, Fan X, Lu Y, Wang Y, Wang R et al. Effects of gut microbiota on leptin expression and body weight are lessened by high-fat diet in mice. Br J Nutr. 2020;124(4):396–406. https://doi.org/10.1017/S0007114520001117.; Yao H, Fan C, Lu Y, Fan X, Xia L, Li P et al. Alteration of gut microbiota affects expression of adiponectin and resistin through modifying DNA methylation in high-fat diet-induced obese mice. Genes Nutr. 2020;15(1):12. https://doi.org/10.1186/s12263-020-00671-3.; Rekha K, Venkidasamy B, Samynathan R, Nagella P, Rebezov M, Khayrullin M et al. Short-chain fatty acid: An updated review on signaling, metabolism, and therapeutic effects. Crit Rev Food Sci Nutr. 2024;64(9):2461–2489. https://doi.org/10.1080/10408398.2022.2124231.; Martínez-Cuesta MC, Del Campo R, Garriga-García M, Peláez C, Requena T. Taxonomic Characterization and Short-Chain Fatty Acids Production of the Obese Microbiota. Front Cell Infect Microbiol. 2021;11:598093. https://doi.org/10.3389/fcimb.2021.598093.; Petraroli M, Castellone E, Patianna V, Esposito S. Gut Microbiota and Obesity in Adults and Children: The State of the Art. Front Pediatr. 2021;9:657020. https://doi.org/10.3389/fped.2021.657020.; De la Cuesta-Zuluaga J, Mueller NT, Álvarez-Quintero R, Velásquez-Mejía EP, Sierra JA, Corrales-Agudelo V et al. Higher Fecal Short-Chain Fatty Acid Levels Are Associated with Gut Microbiome Dysbiosis, Obesity, Hypertension and Cardiometabolic Disease Risk Factors. Nutrients. 2018;11(1):51. https://doi.org/10.3390/nu11010051.; Wang Y, Wang H, Howard AG, Meyer KA, Tsilimigras MCB, Avery CL et al. Circulating Short-Chain Fatty Acids Are Positively Associated with Adiposity Measures in Chinese Adults. Nutrients. 2020;12(7):2127. https://doi.org/10.3390/nu12072127.; Müller M, Hernández MAG, Goossens GH, Reijnders D, Holst JJ, Jocken JWE et al. Circulating but not faecal short-chain fatty acids are related to insulin sensitivity, lipolysis and GLP-1 concentrations in humans. Sci Rep. 2019;9(1):12515. https://doi.org/10.1038/s41598-019-48775-0.; Ferrer-Picón E, Dotti I, Corraliza AM, Mayorgas A, Esteller M, Perales JC et al. Intestinal Inflammation Modulates the Epithelial Response to Butyrate in Patients With Inflammatory Bowel Disease. Inflamm Bowel Dis. 2020;26(1):43–55. https://doi.org/10.1093/ibd/izz119.; Rahat-Rozenbloom S, Fernandes J, Gloor GB, Wolever TM. Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. Int J Obes (Lond). 2014;38(12):1525–1531. https://doi.org/10.1038/ijo.2014.46.; Lin HV, Frassetto A, Kowalik EJJr, Nawrocki AR, Lu MM, Kosinski JR et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE. 2012;7(4):e35240. https://doi.org/10.1371/journal.pone.0035240.; Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SE et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015;64(11):1744–1754. https://doi.org/10.1136/gutjnl-2014-307913.; Bonomo RR, Cook TM, Gavini CK, White CR, Jones JR, Bovo E et al. Fecal transplantation and butyrate improve neuropathic pain, modify immune cell profile, and gene expression in the PNS of obese mice. Proc Natl Acad Sci USA. 2020;117(42):26482–26493. https://doi.org/10.1073/pnas.2006065117.; Yin XQ, An YX, Yu CG, Ke J, Zhao D, Yu K. The Association Between Fecal Short-Chain Fatty Acids, Gut Microbiota, and Visceral Fat in Monozygotic Twin Pairs. Diabetes Metab Syndr Obes. 2022;15:359–368. https://doi.org/10.2147/DMSO.S338113.; Rios-Covian D, González S, Nogacka AM, Arboleya S, Salazar N, Gueimonde M, de Los Reyes-Gavilán CG. An Overview on Fecal Branched Short-Chain Fatty Acids Along Human Life and as Related With Body Mass Index: Associated Dietary and Anthropometric Factors. Front Microbiol. 2020;11:973. https://doi.org/10.3389/fmicb.2020.00973.; Fan L, Xia Y, Wang Y, Han D, Liu Y, Li J et al. Gut microbiota bridges dietary nutrients and host immunity. Sci China Life Sci. 2023;66(11):2466–2514. https://doi.org/10.1007/s11427-023-2346-1.; Gozdzik P, Magkos F, Sledzinski T, Mika A. Monomethyl branched-chain fatty acids: Health effects and biological mechanisms. Prog Lipid Res. 2023;90:101226. https://doi.org/10.1016/j.plipres.2023.101226.; Ramos Meyers G, Samouda H, Bohn T. Short Chain Fatty Acid Metabolism in Relation to Gut Microbiota and Genetic Variability. Nutrients. 2022;14(24):5361. https://doi.org/10.3390/nu14245361.; Ezzine C, Loison L, Montbrion N, Bôle-Feysot C, Déchelotte P, Coëffier M et al. Fatty acids produced by the gut microbiota dampen host inflammatory responses by modulating intestinal SUMOylation. Gut Microbes. 2022;14(1):2108280. https://doi.org/10.1080/19490976.2022.2108280.; Ran-Ressler RR, Khailova L, Arganbright KM, Adkins-Rieck CK, Jouni ZE, Koren O et al. Branched chain fatty acids reduce the incidence of necrotizing enterocolitis and alter gastrointestinal microbial ecology in a neonatal rat model. PLoS ONE. 2011;6(12):e29032. https://doi.org/10.1371/journal.pone.0029032.; Van den Abbeele P, Ghyselinck J, Marzorati M, Koch AM, Lambert W, Michiels J et al. The Effect of Amino Acids on Production of SCFA and bCFA by Members of the Porcine Colonic Microbiota. Microorganisms. 2022;10(4):762. https://doi.org/10.3390/microorganisms10040762.; Gasaly N, Hermoso MA, Gotteland M. Butyrate and the Fine-Tuning of Colonic Homeostasis: Implication for Inflammatory Bowel Diseases. Int J Mol Sci. 2021;22(6):3061. https://doi.org/10.3390/ijms22063061.; Mahawar KK, Sharples AJ. Contribution of Malabsorption to Weight Loss After Roux-en-Y Gastric Bypass: a Systematic Review. Obes Surg. 2017;27(8):2194–2206. https://doi.org/10.1007/s11695-017-2762-y.; Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Võsa U et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. 2019;51(4):600–605. https://doi.org/10.1038/s41588-019-0350-x.; Ecklu-Mensah G, Choo-Kang C, Maseng MG, Donato S, Bovet P, Viswanathan B et al. Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: the METS-microbiome study. Nat Commun. 2023;14(1):5160. https://doi.org/10.1038/s41467-023-40874-x.
-
6Academic Journal
Authors: О. V. Dedikova, I. N. Zakharova, A. E. Kuchina, I. V. Berezhnaya, N. G. Sugian, M. D. Ardatskaya, О. В. Дедикова, И. Н. Захарова, А. Е. Кучина, И. В. Бережная, Н. Г. Сугян, М. Д. Ардатская
Source: Meditsinskiy sovet = Medical Council; № 1 (2024); 176–188 ; Медицинский Совет; № 1 (2024); 176–188 ; 2658-5790 ; 2079-701X
Subject Terms: пробиотики, short-chain fatty acids, L. reuteri DSM 17938, 16S rRNA, Bifidobacterium, Bacteroides, microbial colonization, probiotics, короткоцепочечные жирные кислоты, 16S рРНК, микробная колонизация
File Description: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/8093/7153; Hwang JS, Im CR, Im SH. Immune disorders and its correlation with gut microbiome. Immune Netw. 2012;12(4):129–138. https://doi.org/10.4110/in.2012.12.4.129.; Ling Z, Xiao H, Chen W. Gut Microbiome: The Cornerstone of Life and Health. Advanced Gut & Microbiome Research. 2022:9894812. https://doi.org/10.1155/2022/9894812.; Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22(10):1187–1191. https://doi.org/10.1038/nm.4176.; Kerr CA, Grice DM, Tran CD, Bauer DC, Li D, Hendry P, Hannan GN. Early life events influence whole-of-life metabolic health via gut microflora and gut permeability. Crit Rev Microbiol. 2015;41(3):326–340. https://doi.org/10.3109/1040841X.2013.837863.; Garcia Rodenas CL, Lepage M, Ngom-Bru C, Fotiou A, Papagaroufalis K, Berger B. Effect of Formula Containing Lactobacillus reuteri DSM 17938 on Fecal Microbiota of Infants Born by Cesarean-Section. J Pediatr Gastroenterol Nutr. 2016;63(6):681–687. https://doi.org/10.1097/MPG.0000000000001198.; Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971–11975. https://doi.org/10.1073/pnas.1002601107.; Hoang DM, Levy EI, Vandenplas Y. The impact of Caesarean section on the infant gut microbiome. Acta Paediatr. 2021;110(1):60–67. https://doi.org/10.1111/apa.15501.; Ардатская МД, Анучкин АА, Буторова ЛИ, Павлов АИ, Нугаева НР, Фадина ЖВ. Патогенетические аспекты развития и лечения антибиотик-ассоциированной диареи: выбор синбиотика с позиции доказательной медицины. Медицинский совет. 2023;17(6):113–125. https://doi.org/10.21518/ms2023-026.; Готтшалк Г. Метаболизм бактерий. М.: Мир; 1982. 310 с.; Булатова ЕМ, Шабалов АМ, Богданова НМ, Шилов АИ, Курицина НС. Профиль микробного метаболизма кишечника у детей первого полугодия жизни при различных способах родоразрешения. Педиатрия. 2018;97(1):38–45. https://doi.org/10.24110/0031-403X-2018-97-1-38-45.; Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016;352(6285):539–544. https://doi.org/10.1126/science.aad9378.; Browne HP, Shao Y, Lawley TD. Motherinfant transmission of human microbiota. Curr Opin Microbiol. 2022;69:102173. https://doi.org/10.1016/j.mib.2022.102173.; Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010;107(27):12204–12209. https://doi.org/10.1073/pnas.0909122107.; Kristensen K, Henriksen L. Cesarean section and disease associated with immune function. J Allergy Clin Immunol. 2016;137(2):587–590. https://doi.org/10.1016/j.jaci.2015.07.040.; Peters LL, Thornton C, de Jonge A, Khashan A, Tracy M, Downe S et al. The effect of medical and operative birth interventions on child health outcomes in the first 28 days and up to 5 years of age: A linked data population-based cohort study. Birth. 2018;45(4):347–357. https://doi.org/10.1111/birt.12348.; Słabuszewska-Jóźwiak A, Szymański JK, Ciebiera M, Sarecka-Hujar B, Jakiel G. Pediatrics Consequences of Caesarean Section-A Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2020;17(21):8031. https://doi.org/10.3390/ijerph17218031.; Stokholm J, Thorsen J, Blaser MJ, Rasmussen MA, Hjelmsø M, Shah S et al. Delivery mode and gut microbial changes correlate with an increased risk of childhood asthma. Sci Transl Med. 2020;12(569):eaax9929. https://doi.org/10.1126/scitranslmed.aax9929.; Tang M, Marroquin E. The role of the gut microbiome in the intergenerational transmission of the obesity phenotype: A narrative review. Front Med (Lausanne). 2022;9:1057424. https://doi.org/10.3389/fmed.2022.1057424.; Ma J, Li Z, Zhang W, Zhang C, Zhang Y, Mei H et al. Comparison of the Gut Microbiota in Healthy Infants With Different Delivery Modes and Feeding Types: A Cohort Study. Front Microbiol. 2022;13:868227. https://doi.org/10.3389/fmicb.2022.868227.; Korpela K, Zijlmans MA, Kuitunen M, Kukkonen K, Savilahti E, Salonen A et al. Childhood BMI in relation to microbiota in infancy and lifetime antibiotic use. Microbiome. 2017;5(1):26. https://doi.org/10.1186/s40168-017-0245-y.; Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16(6):341–352. https://doi.org/10.1038/nri.2016.42.; González S, Selma-Royo M, Arboleya S, Martínez-Costa C, Solís G, Suárez M et al. Levels of Predominant Intestinal Microorganisms in 1 Month-O ld Full-Term Babies and Weight Gain during the First Year of Life. Nutrients. 2021;13(7):2412. https://doi.org/10.3390/nu13072412.; Dror T, Dickstein Y, Dubourg G, Paul M. Microbiota manipulation for weight change. Microb Pathog. 2017;106:146–161. https://doi.org/10.1016/j.micpath.2016.01.002.; Arboleya S, Martinez-Camblor P, Solís G, Suárez M, Fernández N, de Los Reyes-Gavilán CG, Gueimonde M. Intestinal Microbiota and Weight-Gain in Preterm Neonates. Front Microbiol. 2017;8:183. https://doi.org/10.3389/fmicb.2017.00183.
-
7Academic Journal
Authors: Didenko, V.I., Klenina, I.A., Babii, S.O., Karachynova, V.A.
Source: Gastroenterologìa, Vol 51, Iss 2, Pp 137-143 (2017)
GASTROENTEROLOGY; Том 51, № 2 (2017); 137-143
Гастроэнтерология-Gastroenterologìa; Том 51, № 2 (2017); 137-143
Гастроентерологія-Gastroenterologìa; Том 51, № 2 (2017); 137-143Subject Terms: 0301 basic medicine, 0303 health sciences, gas chromatography, free fatty acids, short chain fatty acids, polyunsaturated fatty acids, RC799-869, Diseases of the digestive system. Gastroenterology, газовая хроматография, свободные жирные кислоты, короткоцепочечные жирные кислоты, полиненасыщенные жирные кислоты, 3. Good health, 03 medical and health sciences, 0302 clinical medicine, 13. Climate action, газова хроматографія, вільні жирні кислоти, коротколанцюгові жирні кислоти, поліненасичені жирні кислоти
File Description: application/pdf
Access URL: http://gastro.zaslavsky.com.ua/article/download/101706/98141
https://doaj.org/article/afd904b1925d4370bd47b9b7e0d1d0e8
http://gastro.zaslavsky.com.ua/article/view/101706
https://core.ac.uk/display/87799493
http://gastro.zaslavsky.com.ua/article/download/101706/98141
http://gastro.zaslavsky.com.ua/article/view/101706 -
8Academic Journal
Authors: Stepanov, Yu.M., Budzak, I.Ya., Klenina, I.A.
Source: GASTROENTEROLOGY; Том 53, № 1 (2019); 49-53
Гастроэнтерология-Gastroenterologìa; Том 53, № 1 (2019); 49-53
Гастроентерологія-Gastroenterologìa; Том 53, № 1 (2019); 49-53Subject Terms: 03 medical and health sciences, 0302 clinical medicine, синдром подразненого кишечника, патогенез, мікрофлора кишечника, коротколанцюгові жирні кислоти, irritable bowel syndrome, pathogenesis, intestinal microflora, short-chain fatty acids, 3. Good health, синдром раздраженного кишечника, микрофлора кишечника, короткоцепочечные жирные кислоты
File Description: application/pdf
-
9Academic Journal
Authors: Zavhorodnia, N.Yu., Lukianenko, O.Yu., Klenina, I.A., Hrabovska, O.I., Tatarchuk, O.M., Vishnarevska, N.S.
Source: GASTROENTEROLOGY; Том 54, № 1 (2020); 56-62
Гастроэнтерология-Gastroenterologìa; Том 54, № 1 (2020); 56-62
Гастроентерологія-Gastroenterologìa; Том 54, № 1 (2020); 56-62Subject Terms: неалкогольная жировая болезнь печени, короткоцепочечные жирные кислоты, кишечная микрофлора, дети, ожирение, 0301 basic medicine, 2. Zero hunger, неалкогольна жирова хвороба печінки, коротколанцюгові жирні кислоти, кишкова мікрофлора, діти, ожиріння, 0303 health sciences, 03 medical and health sciences, non-alcoholic fatty liver disease, short-chain fatty acids, intestinal microflora, children, obesity, 3. Good health
File Description: application/pdf
Access URL: https://cyberleninka.ru/article/n/assessment-of-the-intestinal-microbiota-and-fecal-shortchain-fatty-acids-content-in-children-with-nonalcoholicfatty-liver-disease
http://gastro.zaslavsky.com.ua/article/download/199143/201380
http://gastro.zaslavsky.com.ua/article/view/199143
http://gastro.zaslavsky.com.ua/article/view/199143 -
10Academic Journal
Authors: Stepanov, Yu.M., Vlasova, O.M., Klenina, I.A.
Source: GASTROENTEROLOGY; Том 54, № 1 (2020); 51-55
Гастроэнтерология-Gastroenterologìa; Том 54, № 1 (2020); 51-55
Гастроентерологія-Gastroenterologìa; Том 54, № 1 (2020); 51-55Subject Terms: колоноцитопротекція, мікрофлора кишечника, коротколанцюгові жирні кислоти, 03 medical and health sciences, 0302 clinical medicine, 0211 other engineering and technologies, 02 engineering and technology, колоноцитопротекция, микрофлора кишечника, короткоцепочечные жирные кислоты, 3. Good health, colon cytoprotection, intestinal microflora, short-chain fatty acids
File Description: application/pdf
-
11Academic Journal
Authors: Stepanov, Yu.M., Titova, M.V., Klenina, I.A., Tatarchuk, O.M.
Source: GASTROENTEROLOGY; Том 54, № 4 (2020); 221-227
Гастроэнтерология-Gastroenterologìa; Том 54, № 4 (2020); 221-227
Гастроентерологія-Gastroenterologìa; Том 54, № 4 (2020); 221-227Subject Terms: хронические воспалительные заболевания кишечника, микрофлора кишечника, синдром избыточного бактериального роста, короткоцепочечные жирные кислоты, неспецифический язвенный колит, болезнь Крона, 03 medical and health sciences, 0302 clinical medicine, inflammatory bowel disease, intestinal microflora, small intestinal bacterial overgrowth, short-chain fatty acids, ulcerative colitis, Crohn's disease, хронічні запальні захворювання кишечника, мікрофлора кишечника, синдром надлишкового бактеріального росту, коротколанцюгові жирні кислоти, неспецифічний виразковий коліт, хвороба Крона
File Description: application/pdf
-
12Academic Journal
Authors: Stepanov, Yu.M., Budzak, I.Ya., Klenina, I.A.
Source: GASTROENTEROLOGY; Том 53, № 3 (2019); 178-181
Гастроэнтерология-Gastroenterologìa; Том 53, № 3 (2019); 178-181
Гастроентерологія-Gastroenterologìa; Том 53, № 3 (2019); 178-181Subject Terms: 0301 basic medicine, 0303 health sciences, 03 medical and health sciences, синдром раздраженного кишечника, микрофлора кишечника, дисбиоз, короткоцепочечные жирные кислоты, irritable bowel syndrome, gut microbiota, dysbiosis, short-chain fatty acids, синдром подразненого кишечника, мікрофлора кишечника, дисбіоз, коротколанцюгові жирні кислоти
File Description: application/pdf
-
13Academic Journal
Authors: L. A. Brsikyan, E. A. Poluektova, M. G. Poluektov, Л. А. Брсикян, Е. А. Полуэктова, М. Г. Полуэктов
Source: Neurology, Neuropsychiatry, Psychosomatics; Vol 15, No 1 (2023); 90-96 ; Неврология, нейропсихиатрия, психосоматика; Vol 15, No 1 (2023); 90-96 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2023-1
Subject Terms: короткоцепочечные жирные кислоты, α-synuclein, gut–brain axis, intestinal microbiota, nervus vagus, inflammation, activation of microglia, enteroendocrine cells, short chain fatty acids, α-синуклеин», ось «кишечник–мозг», кишечная микробиота, блуждающий нерв, воспаление, активация микроглии, энтероэндокринные клетки
File Description: application/pdf
Relation: https://nnp.ima-press.net/nnp/article/view/1961/1501; Nair AT, Ramachandran V, Joghee NM, et al. Gut Microbiota Dysfunction as Reliable Non-invasive Early Diagnostic Biomarkers in the Pathophysiology of Parkinson's Disease: A Critical Review. J Neurogastroenterol Motil. 2018 Jan 30;24(1):30-42. doi:10.5056/jnm17105; Sulzer D. Multiple hit hypotheses for dopamine neuron loss in Parkinson's disease. Trends Neurosci. 2007 May;30(5):244-50. doi:10.1016/j.tins.2007.03.009. Epub 2007 Apr 5.; O’Callaghan C, Lewis SJG. Cognition in Parkinson's Disease. Int Rev Neurobiol. 2017;133:557-83. doi:10.1016/bs.irn.2017.05.002. Epub 2017 Jun 16.; Pont-Sunyer C, Hotter A, Gaig C, et al. The onset of nonmotor symptoms in Parkinson’s disease (the ONSET PD study). Mov Disord. 2015 Feb;30(2):229-37. doi:10.1002/mds.26077. Epub 2014 Dec 1.; Braak H, Rüb U, Gai WP, Del Tredici K. Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm (Vienna). 2003 May;110(5):517-36. doi:10.1007/s00702-002-0808-2; Гапонов ДО, Пригодина ЕВ, Грудина ТВ, Доросевич АЕ. Современный взгляд на патогенетические механизмы прогрессирования болезни Паркинсона. Русский медицинский журнал. 2018;12(1):66-72.; Hansen C, Angot E, Bergstrom AL, et al. α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest. 2011 Feb;121(2):715-25. doi:10.1172/JCI43366. Epub 2011 Jan 18.; Brundin P, Li JY, Holton JL, et al. Research in motion: the enigma of Parkinson’s disease pathology spread. Nat Rev Neurosci. 2008 Oct;9(10):741-5. doi:10.1038/nrn2477. Epub 2008 Sep 4.; Goedert M, Falcon B, Clavaguera F, Tolnay M. Prion-like mechanisms in the pathogenesis of taupathies and synucleinopathies. Curr Neurol Neurosci Rep. 2014 Nov;14(11):495. doi:10.1007/s11910-014-0495-z; Braak H, de Vos RA, Bohl J, Del Tredici K. Gastric alpha-synuclein immunoreactive inclusions in Meissner's and Auerbach's plexuses in cases staged for Parkinson's disease-related brain pathology. Neurosci Lett. 2006 Mar 20;396(1):67-72. doi:10.1016/j.neulet.2005.11.012. Epub 2005 Dec 5.; Kim S, Kwon SH, Kam TI, et al. Transneuronal Propagation of Pathologic α-Synuclein from the Gut to the Brain Models Parkinson's Disease. Neuron. 2019 Aug 21;103(4):627-41.e7. doi:10.1016/j.neuron.2019.05.035. Epub 2019 Jun 26.; Kennedy PJ, Cryan JF, Dinan TG, Clarke G. Irritable bowel syndrome: a microbiome-gut-brain axis disorder? World J Gastroenterol. 2014 Oct 21;20(39):14105-25. doi:10.3748/wjg.v20.i39.14105; Gracie DJ, Guthrie EA, Hamlin PJ, Ford AC. Bi-directionality of Brain–Gut Interactions in Patients With Inflammatory Bowel Disease. Gastroenterology. 2018 May;154(6):1635-46.e3. doi:10.1053/j.gastro.2018.01.027. Epub 2018 Jan 31.; Mulak A, Bonaz B. Brain-gut-microbiota axis in Parkinson's disease. World J Gastroenterol. 2015 Oct 7;21(37):10609-20. doi:10.3748/wjg.v21.i37.10609; Shannon KM, Keshavarzian A, Dodiya HB, et al. Is alpha-synuclein in the colon a biomarker for premotor Parkinson's disease? Evidence from 3 cases. Mov Disord. 2012 May;27(6):716-9. doi:10.1002/mds.25020. Epub 2012 May 1.; Shannon KM, Keshavarzian A, Mutlu E, et al. Alpha-synuclein in colonic submucosa in early untreated Parkinson's disease. Mov Disord. 2012 May;27(6):709-15. doi:10.1002/mds.23838. Epub 2011 Jul 15.; Ulusoy A, Phillips RJ, Helwig M, et al. Brain-to-stomach transfer of α-synuclein via vagal preganglionic projections. Acta Neuropathol. 2017 Mar;133(3):381-93. doi:10.1007/s00401-016-1661-y. Epub 2016 Dec 23.; Breen DP, Halliday GM, Lang AE. Gut–brain axis and the spread of α-synuclein pathology: vagal highway or dead end? Mov Disord. 2019 Mar;34(3):307-16. doi:10.1002/mds.27556. Epub 2019 Jan 17.; Svensson E, Horvath-Puho E, Thomsen RW, et al. Vagotomy and subsequent risk of Parkinson's disease. Ann Neurol. 2015 Oct;78(4):522-9. doi:10.1002/ana.24448. Epub 2015 Jul 17.; Liu B, Fang F, Pedersen NL, et al. Vagotomy and Parkinson disease: a Swedish register-based matched-cohort study. Neurology. 2017 May 23;88(21):1996-2002. doi:10.1212/WNL.0000000000003961. Epub 2017 Apr 26.; Tynes OB, Kenborg L, Herlofson K, et al. Does vagotomy reduce the risk of Parkinson’s disease? Ann Neurol. 2015 Dec;78(6):1011-2. doi:10.1002/ana.24531. Epub 2015 Nov 14.; Forsyth CB, Shannon KM, Kordower JH, et al. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson's disease. PLoS One. 2011;6(12):e28032. doi:10.1371/journal.pone.0028032. Epub 2011 Dec 1.; Kelly LP, Carvey PM, Keshavarzian A, et al. Progression of intestinal permeability changes and alpha-synuclein expression in a mouse model of Parkinson's disease. Mov Disord. 2014 Jul;29(8):999-1009. doi:10.1002/mds.25736. Epub 2013 Nov 4.; Kim WG, Mohney RP, Wilson B, et al. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci. 2000 Aug 15;20(16):6309-16. doi:10.1523/JNEUROSCI.20-16-06309.2000; Sampson TR, Debelius JW, Thron T, et al. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease. Cell. 2016 Dec 1;167(6):1469-80.e12. doi:10.1016/j.cell.2016.11.018; DiBaise JK, Crowell MD, Driver-Dunckley E, et al. Weight Loss in Parkinson's Disease: No Evidence for Role of Small Intestinal Bacterial Overgrowth. J Parkinsons Dis. 2018;8(4):571-81. doi:10.3233/JPD-181386; Fasano A, Bove F, Gabrielli M, et al. The role of small intestinal bacterial overgrowth in Parkinson’s disease. Mov Disord. 2013 Aug;28(9):1241-9. doi:10.1002/mds.25522. Epub 2013 May 27.; Tan AH, Mahadeva S, Thalha AM, et al. Small intestinal bacterial overgrowth in Parkinson’s disease. Parkinsonism Relat Disord. 2014 May;20(5):535-40. doi:10.1016/j.parkreldis.2014.02.019. Epub 2014 Mar 2.; Gabrielli M, Bonazzi P, Scarpellini E, et al. Prevalence of small intestinal bacterial overgrowth in Parkinson’s disease. Mov Disord. 2011 Apr;26(5):889-92. doi:10.1002/mds.23566. Epub 2011 Feb 1.; Dobbs RJ, Charlett A, Dobbs SM, et al. Leukocyte-subset counts in idiopathic parkinsonism provide clues to a pathogenic pathway involving small intestinal bacterial overgrowth: A surveillance study. Gut Pathogens. 2012 Oct 19;4(1):12. doi:10.1186/1757-4749-4-12; Niu XL, Liu L, Song ZX, et al. Prevalence of small intestinal bacterial overgrowth in Chinese patients with Parkinson’s disease. J Neural Transm (Vienna). 2016 Dec;123(12):1381-6. doi:10.1007/s00702-016-1612-8. Epub 2016 Sep 2.; Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014 Nov 19;6(263):263ra158. doi:10.1126/scitranslmed.3009759; Sui YT, Bullock KM, Erickson MA, et al. Alpha synuclein is transported into and out of the brain by the blood-brain barrier. Peptides. 2014 Dec;62:197-202. doi:10.1016/j.peptides.2014.09.018. Epub 2014 Sep 30.; Villaran RF, Espinosa-Oliva AM, Sarmiento M, et al. Ulcerative colitis exacerbates lipopolysaccharide-induced damage to the nigral dopaminergic system: potential risk factor in Parkinson`s disease. J Neurochem. 2010 Sep;114(6):1687-700. doi:10.1111/j.1471-4159.2010.06879.x. Epub 2010 Aug 19.; Dobbs RJ, Dobbs SM, Weller C, et al. Helicobacter hypothesis for idiopathic parkinsonism: before and beyond. Helicobacter. 2008 Oct;13(5):309-22. doi:10.1111/j.1523-5378.2008.00622.x; Charlett A, Dobbs RJ, Dobbs SM, et al. Blood profile holds clues to role of infection in a premonitory state for idiopathic parkinsonism and of gastrointestinal infection in established disease. Gut Pathogens. 2009 Nov 26;1(1):20. doi:10.1186/1757-4749-1-20; Bodea LG, Wang Y, Linnartz-Gerlach B, et al. Neurodegeneration by activation of the microglial complement-phagosome pathway. J Neurosci. 2014 Jun 18;34(25):8546-56. doi:10.1523/JNEUROSCI.5002-13.2014; Alvarez-Arellano L, Maldonado-Bernal C. Helicobacter pylori and neurological diseases: Married by the laws of inflammation. World J Gastrointest Pathophysiol. 2014 Nov 15;5(4):400-4. doi:10.4291/wjgp.v5.i4.400; Block ML, Zecca L, Hong JS. Microgliamediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007 Jan;8(1):57-69. doi:10.1038/nrn2038; Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience. 1990;39(1):151-70. doi:10.1016/0306-4522(90)90229-w; Pott Godoy MC, Tarelli R, Ferrari CC, et al. Central and systemic IL-1 exacerbatesneurodegeneration and motor symptoms in a model of Parkinson’s disease. Brain. 2008 Jul;131(Pt 7):1880-94. doi:10.1093/brain/awn101. Epub 2008 May 26.; Perry VH, Teeling J. Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol. 2013 Sep;35(5):601-12. doi:10.1007/s00281-013-0382-8. Epub 2013 Jun 4.; Devos D, Lebouvier T, Lardeux B, et al. Colonic inflammation in Parkinson’s disease. Neurobiol Dis. 2013 Feb;50:42-8. doi:10.1016/j.nbd.2012.09.007. Epub 2012 Sep 24.; Trudler D, Farfara D, Frenkel D. Toll-like receptors expression and signaling in glia cells in neuro-amyloidogenic diseases: towards future therapeutic application. Mediators Inflamm. 2010;2010:497987. doi:10.1155/2010/497987. Epub 2010 Jul 25.; Beeraud D, Maguire-Zeiss KA. Misfolded α-synuclein and Toll-like receptors: therapeutic targets for Parkinson’s disease. Parkinsonism Relat Disord. 2012 Jan;18 Suppl 1(0 1):S17-20. doi:10.1016/S1353-8020(11)70008-6; Friedland RP. Mechanisms of molecular mimicry involving the microbiota in neurodegeneration. J Alzheimers Dis. 2015;45(2):349-62. doi:10.3233/JAD-142841; Appelmelk BJ, Negrini R, Moran AP, Kuipers EJ. Molecular mimicry between Helicobacter pylori and the host. Trends Microbiol. 1997 Feb;5(2):70-3. doi:10.1016/S0966-842X(96)10084-6; Bohorquez DV, Shahid RA, Erdmann A, et al. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J Clin Invest. 2015 Feb;125(2):782-6. doi:10.1172/JCI78361. Epub 2015 Jan 2.; Liddle RA. Parkinson's disease from the gut. Brain Res. 2018 Aug 15;1693(Pt B):201-6. doi:10.1016/j.brainres.2018.01.010. Epub 2018 Jan 31.; Chandra R, Hiniker A, Kuo YM, et al. α-Synuclein in gut endocrine cells and its implications for Parkinson's disease. JCI Insight. 2017 Jun 15;2(12):e92295. doi:10.1172/jci.insight.92295; Caputi V, Giron MC. Microbiome-GutBrain Axis and Toll-Like Receptors in Parkinson's Disease. Int J Mol Sci. 2018;19(6):1689.; Unger MM, Spiegel J, Dillmann KU, et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord. 2016 Nov;32:66-72. doi:10.1016/j.parkreldis.2016.08.019. Epub 2016 Aug 26.; Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012 Oct;13(10):701-12. doi:10.1038/nrn3346. Epub 2012 Sep 12.; Ganapathy V, Thangaraju M, Prasad PD, et al. Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host. Curr Opin Pharmacol. 2013 Dec;13(6):869-74. doi:10.1016/j.coph.2013.08.006. Epub 2013 Aug 23.; Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014 Jan 16;40(1):128-39. doi:10.1016/j.immuni.2013.12.007. Epub 2014 Jan 9.; Hamer HM, Jonkers D, Venema K, et al. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 2008 Jan 15;27(2):104-19. doi:10.1111/j.1365-2036.2007.03562.x. Epub 2007 Oct 25.; Canani RB, Costanzo MD, Leone L, et al. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol. 2011 Mar 28;17(12):1519-28. doi:10.3748/wjg.v17.i12.1519; Lal S, Kirkup AJ, Brunsden AM, et al. Vagal afferent responses to fatty acids of different chain length in the rat. Am J Physiol Gastrointest Liver Physiol. 2001 Oct;281(4):G907-15. doi:10.1152/ajpgi.2001.281.4.G907; Alam R, Abdolmaleky HM, Zhou JR. Microbiome, inflammation, epigenetic alterations, and mental diseases. Am J Med Genet B Neuropsychiatr Genet. 2017 Sep;174(6):651-60. doi:10.1002/ajmg.b.32567. Epub 2017 Jul 10.; Kountouras J, Zavos C, Polyzos SA, et al. Helicobacter pylori infection and Parkinson's disease: apoptosis as an underlying common contributor. Eur J Neurol. 2012 Jun;19(6):e56. doi:10.1111/j.1468-1331.2012.03695.x
-
14Academic Journal
Authors: T. S. Sokolova, V. N. Malchuk, A. D. Zaytseva, O. S. Fedorova, M. R. Karpova, Т. С. Соколова, В. Н. Мальчук, А. Д. Зайцева, О. С. Федорова, М. Р. Карпова
Contributors: The study was supported by the Russian Science Foundation (grant “Microbiota in the host – parasite interaction and its metabolic potential as a way to achieve bronchial asthma control”, No. 22-75-00078), Исследование выполнено при поддержке Российского научного фонда (грант «Микробиота в системе “паразит–хозяин” и ее метаболический потенциал как инструмент управления бронхиальной астмой», № 22-75-00078)
Source: Bulletin of Siberian Medicine; Том 22, № 3 (2023); 150-158 ; Бюллетень сибирской медицины; Том 22, № 3 (2023); 150-158 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2023-22-3
Subject Terms: бронхиальная астма, helminth infection, short-chain fatty acids, bronchial asthma, гельминтные инвазии, короткоцепочечные жирные кислоты
File Description: application/pdf
Relation: https://bulletin.ssmu.ru/jour/article/view/5321/3448; https://bulletin.ssmu.ru/jour/article/view/5321/3467; Reddel H.K., Bacharier L.B., Bateman E.D., Brightling C.E., Brusselle G.G., Buhl R. et al. Initiative for Asthma Strategy 2021: executive summary and rationale for key changes. Eur. Respir. J. 2022;59(1):2102730. DOI:10.1183/13993003.02730-2021.; Müller-Rompa S.E.K., Markevych I., Hose A.J., Loss G., Wouters I.M., Genuneit J. et al. An approach to the asthmaprotective farm effect by geocoding: Good farms and better farms. Pediatr. Allergy Immunol. 2018;29(3):275–282. DOI:10.1111/pai.12861.; Strachan D.P. Hay fever, hygiene, and household size. BMJ. 1989;299(6710):1259–1260. DOI:10.1136/bmj.299.6710.1259.; Rook G.A.W., Lowry C.A., Raison C.L. Microbial «Old Friends», immunoregulation and stress resilience. Evol. Med. Public. Health. 2013;2013(1):46–64. DOI:10.1093/emph/eot004.; Haahtela T. A biodiversity hypothesis. Allergy. 2019;74(8):1445–1456. DOI:10.1111/all.13763.; Zheng D., Liwinski T., Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30(6):492–506. DOI:10.1038/s41422-020-0332-7.; Zaiss M.M., Rapin A., Lebon L., Dubey L.K., Mosconi I., Sarter K. et al. The intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation. Immunity. 2015;43(5):998–1010. DOI:10.1016/j.immuni.2015.09.012.; Brosschot T.P., Reynolds L.A. The impact of a helminth-modified microbiome on host immunity. Mucosal. Immunol. 2018;11(4):1039–1046. DOI:10.1038/s41385-018-0008-5.; Marsland B.J., Trompette A., Gollwitzer E.S. The gut-lung axis in respiratory disease. Ann. Am. Thorac. Soc. 2015;12(2):S150– 156. DOI:10.1513/AnnalsATS.201503-133AW.; Depner M., Taft D.H., Kirjavainen P.V., Kalanetra K.M., Karvonen A.M., Peschel S. et al. Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma. Nat. Med. 2020;26(11):1766– 1275. DOI:10.1038/s41591-020-1095-x.; Barcik W., Boutin R.C.T., Sokolowska M., Finlay B.B. The role of lung and gut microbiota in the pathology of asthma. Immunity. 2020;52(2):241–255. DOI:10.1016/j.immuni.2020.01.007.; Abrahamsson T.R., Jakobsson H.E., Andersson A.F., Björkstén B., Engstrand L., Jenmalm M.C. Low gut microbiota diversity in early infancy precedes asthma at school age. Clinical & Experimental Allergy. 2014;44(6):842–850. DOI:10.1111/cea.12253.; Stokholm J., Blaser M.J., Thorsen J., Rasmussen M.A., Waage J., Vinding R.K. et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat. Commun. 2018;9(1):141. DOI:10.1038/s41467-017-02573-2.; Arrieta M.C., Stiemsma L.T., Dimitriu P.A., Thorson L., Russell S., Yurist-Doutsch S. et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci. Transl. Med. 2015;7(307):307ra152. DOI:10.1126/scitranslmed.aab2271.; Chiu C.Y., Cheng M.L., Chiang M.H., Kuo Y.L., Tsai M.H., Chiu C.C. et al. Gut microbial-derived butyrate is inversely associated with IgE responses to allergens in childhood asthma. Pediatr. Allergy Immunol. 2019;30(7):689–697. DOI:10.1111/pai.13096.; Fujimura K.E., Sitarik A.R., Havstad S., Lin D.L., Levan S., Fadrosh D. et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat. Med. 2016;22(10):1187–1191. DOI:10.1038/nm.4176.; Zou X.L., Wu J.J., Ye H.X., Feng D.Y., Meng P., Yang H.L. et al. Associations between gut microbiota and asthma endotypes: a cross-sectional study in South China based on patients with newly diagnosed asthma. J. Asthma Allergy. 2021;14:981–992. DOI:10.2147/JAA.S320088.; Buendía E., Zakzuk J., San-Juan-Vergara H., Zurek E., Ajami N.J., Caraballo L. Gut microbiota components are associated with fixed airway obstruction in asthmatic patients living in the tropics. Sci. Rep. 2018;8(1):9582. DOI:10.1038/s41598-018-27964-3.; Chang P.V., Hao L., Offermanns S., Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. USA. 2014;111(6):2247–2252. DOI:10.1073/pnas.1322269111.; Machiels K., Joossens M., Sabino J., De Preter V., Arijs I., Eeckhaut V. et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2014;63(8):1275–1283. DOI:10.1136/gutjnl-2013-304833.; Просянников М.Ю., Маркова Ю.М., Ефимочкина Н.Р., Куваева И.Б., Шевелева С.А. Микробиом кишечника: от эталона нормы к патологии. Вопросы питания. 2020;89(4):35– 51. DOI:10.24411/0042-8833-2020-10040.; Takahashi K., Nishida A., Fujimoto T., Fujii M., Shioya M., Imaeda H. et al. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn’s disease. Digestion. 2016;93(1):59–65. DOI:10.1159/000441768.; Trompette A., Gollwitzer E.S., Yadava K., Sichelstiel A.K., Sprenger N., Ngom-Bru C. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 2014;20(2):159–166. DOI:10.1038/nm.3444.; Cait A., Hughes M.R., Antignano F., Cait J., Dimitriu P.A., Maas K.R. et al. Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal. Immunol. 2018;11(3):785–795. DOI:10.1038/mi.2017.75.; Roduit C., Frei R., Ferstl R., Loeliger S., Westermann P., Rhyner C. et al. High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy. 2019;74(4):799–809. DOI:10.1111/all.13660.; Thorburn A.N., McKenzie C.I., Shen S., Stanley D., Macia L., Mason L.J. et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 2015;6(1):7320. DOI:10.1038/ncomms8320.; Theiler A., Bärnthaler T., Platzer W., Richtig G., Peinhaupt M., Rittchen S. et al. Butyrate ameliorates allergic airway inflammation by limiting eosinophil trafficking and survival. J. Allergy Clin. Immunol. 2019 Sep;144(3):764–776. DOI:10.1016/j.jaci.2019.05.002.; Della Ragione F., Criniti V., Della Pietra V., Borriello A., Oliva A., Indaco S., Yamamoto T. et al. Genes modulated by histone acetylation as new effectors of butyrate activity. FEBS Lett. 2001;499(3):199–204. DOI:10.1016/s0014-5793(01)02539-x.; Usami M., Kishimoto K., Ohata A., Miyoshi M., Aoyama M., Fueda Y. et al. Butyrate and trichostatin A attenuate nuclear factor κB activation and tumor necrosis factor α secretion and increase prostaglandin E2 secretion in human peripheral blood mononuclear cells. Nutrition Research. 2008;28(5):321–328. DOI:10.1016/j.nutres.2008.02.012.; Kanamori M., Nakatsukasa H., Okada M., Lu Q., Yoshimura A. Induced regulatory T cells: their development, stability, and applications. Trends Immunol. 2016;37(11):803–811. DOI:10.1016/j.it.2016.08.012.; Yip W., Hughes M.R., Li Y., Cait A., Hirst M., Mohn W.W. et al. Butyrate shapes immune cell fate and function in allergic asthma. Front. Immunol. 2021;12:628453. DOI:10.3389/fimmu.2021.628453.; Зольникова О.Ю., Поцхверашвили Н.Д., Кокина Н.И., Трухманов А.С., Ивашкин В.Т. Короткоцепочечные жирные кислоты кишечника у пациентов с бронхиальной астмой. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2019;29(2):53–59. DOI:10.22416/1382-4376-2019-29-2-53-59.; McLoughlin R., Berthon B.S., Rogers G.B., Baines K.J., Leong L.E.X., Gibson P.G. et al. Soluble fibre supplementation with and without a probiotic in adults with asthma: A 7-day randomised, double blind, three way cross-over trial. EBioMedicine. 2019;46:473–485. DOI:10.1016/j.ebiom.2019.07.048.; Pugin B., Barcik W., Westermann P., Heider A., Wawrzyniak M., Hellings P. et al. A wide diversity of bacteria from the human gut produces and degrades biogenic amines. Microb. Ecol. Health Dis. 2017;28(1):1353881. DOI:10.1080/16512235.2017.1353881.; Levan S.R., Stamnes K.A., Lin D.L., Panzer A.R., Fukui E., McCauley K. et al. Elevated faecal 12,13-diHOME concentration in neonates at high risk for asthma is produced by gut bacteria and impedes immune tolerance. Nat. Microbiol. 2019;4(11):1851–1861. DOI:10.1038/s41564-019-0498-2.; Lee-Sarwar K.A., Kelly R.S., Lasky-Su J., Zeiger R.S., O’Connor G.T., Sandel M.T. et al. Integrative analysis of the intestinal metabolome of childhood asthma. J. Allergy Clin. Immunol. 2019;144(2):442–454. DOI:10.1016/j.jaci.2019.02.032.; Schjødt M.S., Gürdeniz G., Chawes B. The Metabolomics of Childhood Atopic Diseases: A Comprehensive Pathway-Specific Review. Metabolites. 2020;10(12):511. DOI:10.3390/metabo10120511.; Gonçales J.P., Nobrega C.G.O., Nascimento W.R.C., Lorena V.M.B., Peixoto D.M., Costa V.M.A. et al. Cytokine production in allergic and Trichuris trichiura-infected children from an urban region of the Brazilian northeast. Parasitol. Int. 2020;74:101918. DOI:10.1016/j.parint.2019.04.015.; Medeiros M., Figueiredo J.P., Almeida M.C., Matos M.A., Araújo M.I., Cruz A.A. et al. Schistosoma mansoni infection is associated with a reduced course of asthma. J. Allergy Clin. Immunol. 2003;111(5):947–951. DOI:10.1067/mai.2003.1381.; Leonardi-Bee J., Pritchard D., Britton J. Asthma and current intestinal parasite infection. Am. J. Respir. Crit. Care Med. 2006;174(5):514–523. DOI:10.1164/rccm.200603-331OC.; Hawlader M.D.H., Ma E., Noguchi E., Itoh M., Arifeen S.E., Persson L.Å. et al. Ascaris lumbricoids Infection as a risk factor for asthma and atopy in rural Bangladeshi children. Trop. Med. Health. 2014;42(2):77–85. DOI:10.2149/tmh.2013-19.; Hunninghake G.M., Soto-Quiros M.E., Avila L., Ly N.P., Liang C., Sylvia J.S. et al. Sensitization to Ascaris lumbricoides and severity of childhood asthma in Costa Rica. J. Allergy Clin. Immunol. 2007;119(3):654–661. DOI:10.1016/j.jaci.2006.12.609.; Buendía E., Zakzuk J., Mercado D., Alvarez A., Caraballo L. The IgE response to Ascaris molecular components is associated with clinical indicators of asthma severity. World Allergy Organ. J. 2015;8(1):8. DOI:10.1186/s40413-015-0058-z.; Ferreira M.U., Rubinsky-Elefant G., de Castro T.G., Hoffmann E.H.E., da Silva-Nunes M., Cardoso M.A. et al. Bottle feeding and exposure to Toxocara as risk factors for wheezing illness among under-five Amazonian children: a population-based cross-sectional study. J. Trop. Pediatr. 2007;53(2):119–124. DOI:10.1093/tropej/fml083.; Bohnacker S., Troisi F., de Los Reyes Jiménez M., Esser-von Bieren J. What can parasites tell us about the pathogenesis and treatment of asthma and allergic diseases. Front. Immunol. 2020;11:2106. DOI:10.3389/fimmu.2020.02106.; Feary J., Britton J., Leonardi-Bee J. Atopy and current intestinal parasite infection: a systematic review and meta-analysis. Allergy. 2011;66(4):569–578. DOI:10.1111/j.1398-9995.2010.02512.x.; Fedorova O.S., Janse J.J., Ogorodova L.M., Fedotova M.M., Achterberg R.A., Verweij J.J. et al. Opisthorchis felineus negatively associates with skin test reactivity in Russia-EuroPrevall-International Cooperation study. Allergy. 2017;72(7):1096–1104. DOI:10.1111/all.13120.; Van den Biggelaar A.H., van Ree R., Rodrigues L.C., Lell B., Deelder A.M., Kremsner P.G. et al. Decreased atopy in children infected with Schistosoma haematobium: a role for parasite-induced interleukin-10. Lancet. 2000;356(9243):1723– 1727. DOI:10.1016/S0140-6736(00)03206-2.; Araujo M.I., Lopes A.A., Medeiros M., Cruz A.A., Sousa-Atta L., Solé D. et al. Inverse association between skin response to aeroallergens and Schistosoma mansoni infection. Int. Arch. Allergy Immunol. 2000;123(2):145–148. DOI:10.1159/000024433.; Feary J.R., Venn A.J., Mortimer K., Brown A.P., Hooi D., Falcone F.H. et al. Experimental hookworm infection: a randomized placebo-controlled trial in asthma. Clin. Exp. Allergy. 2010;40(2):299–306. DOI:10.1111/j.1365-2222.2009.03433.x.; Ponte E.V., Rasella D., Souza-Machado C., Stelmach R., Barreto M.L., Cruz A.A. Reduced asthma morbidity in endemic areas for helminth infections: a longitudinal ecological study in Brazil. J. Asthma. 2014;51(10):1022–1027. DOI:10.3109/02770903.2014.936454; Araujo M.I.A.S, Hoppe B., Medeiros M. Jr., Alcântara L., Almeida M.C., Schriefer A. et al. Impaired T helper 2 response to aeroallergen in helminth-infected patients with asthma. The Journal of Infectious Diseases. 2004;190(10):1797–1803. DOI:10.1086/425017.; Огородова Л.М., Фрейдин М.Б., Сазонов А.Э., Фёдорова О.С., Деев И.А., Кремер Е.Э. Влияние инвазии Opistorchis felineus на иммунный ответ при бронхиальной астме. Бюллетень сибирской медицины. 2010;9(3):85–90. DOI:10.20538/1682-0363-2010-3-85-90.; Wammes L.J., Hamid F., Wiria A.E., May L., Kaisar M.M.M., Prasetyani-Gieseler M.A. et al. Community deworming alleviates geohelminth-induced immune hyporesponsiveness. Proc. Natl. Acad. Sci. USA. 2016;113(44):12526–12531. DOI:10.1073/pnas.1604570113.; Cooper P.J., Moncayo A.L., Guadalupe I., Benitez S., Vaca M., Chico M. et al. Repeated treatments with albendazole enhance Th2 responses to Ascaris Lumbricoides, but not to aeroallergens, in children from rural communities in the Tropics. J. Infect. Dis. 2008;198(8):1237–1242. DOI:10.1086/591945.; Kreisinger J., Bastien G., Hauffe H.C., Marchesi J., Perkins S.E. Interactions between multiple helminths and the gut microbiota in wild rodents. Philos. Trans. R Soc. Lond. B Biol. Sci. 2015;370(1675):20140295. DOI:10.1098/rstb.2014.0295.; Kupritz J., Angelova A., Nutman T.B., Gazzinelli-Guimaraes P.H. Helminth-Induced Human Gastrointestinal Dysbiosis: a Systematic Review and Meta-Analysis Reveals Insights into Altered Taxon Diversity and Microbial Gradient Collapse. mBio. 2021;12(6):e02890–21. DOI:10.1128/mBio.02890-21.; Su C.W., Chen C.Y., Jiao L., Long S.R., Mao T., Ji Q. et al. Helminth-induced and Th2-dependent alterations of the gut microbiota attenuate obesity caused by high-fat diet. Cell Mol. Gastroenterol. Hepatol. 2020;10(4):763–778. DOI:10.1016/j.jcmgh.2020.06.010.; Shute A., Callejas B.E., Li S., Wang A., Jayme T.S., Ohland C. et al. Cooperation between host immunity and the gut bacteria is essential for helminth-evoked suppression of colitis. Microbiome. 2021;9(1):186. DOI:10.1186/s40168-021-01146-2.; Jenkins T.P., Formenti F., Castro C., Piubelli C., Perandin F., Buonfrate D. et al. A comprehensive analysis of the faecal microbiome and metabolome of Strongyloides stercoralis infected volunteers from a non-endemic area. Sci. Rep. 2018;8(1):15651. DOI:10.1038/s41598-018-33937-3.; Nguyen H.T., Hongsrichan N., Intuyod K., Pinlaor P., Yingklang M., Chaidee A. et al. Investigation of gut microbiota and short-chain fatty acids in Strongyloides stercoralis-infected patients in a rural community. Biosci. Microbiota Food Health. 2022;41(3):121–129. DOI:10.12938/bmfh.2021-054.; Sokolova T.S., Petrov V.A., Saltykova I.V., Dorofeeva Y.B., Tyakht A.V., Ogorodova L.M. et al. The impact of Opisthorchis felineus infection and praziquantel treatment on the intestinal microbiota in children. Acta Tropica. 2021;217:105835. DOI:10.1016/j.actatropica.2021.105835.; Kokova D., Verhoeven A., Perina E.A., Ivanov V.V., Heijink M., Yazdanbakhsh M. et al. Metabolic homeostasis in chronic helminth infection is sustained by organ-specific metabolic rewiring. ACS Infect. Dis. 2021;7(4):906–916. DOI:10.1021/acsinfecdis.1c00026.; Haonon O., Liu Z., Dangtakot R., Intuyod K., Pinlaor P., Puapairoj A. et al. Opisthorchis viverrini infection induces metabolic and fecal microbial disturbances in association with liver and kidney pathologies in hamsters. J. Proteome Res. 2021;20(8):3940–3951. DOI:10.1021/acs.jproteome.1c00246.; https://bulletin.ssmu.ru/jour/article/view/5321
-
15Academic Journal
Authors: Vakhlova, I. V., Fedotova, G. V., Boronina, L. G., Ibragimova, Y. N., Вахлова, И. В., Федотова, Г. В., Боронина, Л. Г., Ибрагимова, Ю. Н.
Subject Terms: YOUNG CHILDREN, PHYSICAL DEVELOPMENT, METABOLIC ACTIVITY OF THE INTESTINE, SHORT CHAIN FATTY ACID, ДЕТИ РАННЕГО ВОЗРАСТА, ФИЗИЧЕСКОЕ РАЗВИТИЕ, МЕТАБОЛИЧЕСКАЯ АКТИВНОСТЬ КИШЕЧНИКА, КОРОТКОЦЕПОЧЕЧНЫЕ ЖИРНЫЕ КИСЛОТЫ
File Description: application/pdf
Relation: Уральский медицинский журнал. 2021. т. 20. №5; http://elib.usma.ru/handle/usma/6327
Availability: http://elib.usma.ru/handle/usma/6327
-
16Academic Journal
Authors: Воробйова, Н. В., Усачова, О. В., Каплаушенко, А. Г.
Source: Zaporozhye мedical journal; Vol. 23 No. 5 (2021); 683 - 690 ; Запорожский медицинский журнал; Том 23 № 5 (2021); 683 - 690 ; Запорізький медичний журнал; Том 23 № 5 (2021); 683 - 690 ; 2310-1210 ; 2306-4145
Subject Terms: ротавирусная инфекция, дети раннего возраста, синдром мальабсорбции углеводов, микрофлора, короткоцепочечные жирные кислоты, ротавірусна інфекція, діти раннього віку, синдром мальабсорбції вуглеводів, мікрофлора кишечника, коротколанцюгові жирні кислоти, rotavirus infection, early age children, carbohydrate malabsorption syndrome, gut microbiota, short-chain fatty acids
File Description: application/pdf
Relation: http://zmj.zsmu.edu.ua/article/view/231265/239314; http://zmj.zsmu.edu.ua/article/view/231265
Availability: http://zmj.zsmu.edu.ua/article/view/231265
-
17Academic Journal
Authors: L. Vasilyeva E., O. Drapkina M., Л. Васильева Э., О. Драпкина М.
Source: Rational Pharmacotherapy in Cardiology; Vol 17, No 5 (2021); 743-751 ; Рациональная Фармакотерапия в Кардиологии; Vol 17, No 5 (2021); 743-751 ; 2225-3653 ; 1819-6446
Subject Terms: gut microbiota, cardiovascular diseases, obesity, trimethylamine-N-oxide, short-chain fatty acids, кишечная микробиота, сердечно-сосудистые заболевания, ожирение, триметиламин-N-оксид, короткоцепочечные жирные кислоты
File Description: application/pdf
Relation: https://www.rpcardio.com/jour/article/view/2587/2232; Go AS, Mozaffarian D, Roger VL, et al. American Heart Association Statistics Committee and Stroke Sta tistics Subcommittee. Executive summary: heart disease and stroke statistics—2014 update: a report from the American heart association. Circulation. 2014;129(3):399-410. DOI:10.1161/01.cir.0000442015.53336.12.; Seganfredo FB, Blume CA, Moehlecke M, et al. Weight-loss interventions and gut microbiota changes in overweight and obese patients: a systematic review. Obes Rev. 2017;18(8):832-51. DOI:10.1111/obr.12541.; Boulangé CL, Neves AL, Chilloux J, et al. Impact of the gut microbiota on inflammation, obe-sity, and metabolic disease. Genome Med. 2016;8(2):42. DOI:10.1186/s13073-016-0303-2.; Stamler J, Rose G, Stamler R, et al. INTERSALT study findings. Public health and medical care implications. Hypertension. 1989;14(5):570-7. DOI:10.1161/01.hyp.14.5.570.; Муромцева Г.А, Концевая А.В, Константинов В.В., и др. Распространенность факторов риска неинфекционных заболеваний в российской популяции в 2012-2013гг. Результаты исследования ЭССЕ-РФ. Кардиоваскулярная Терапия и Профилактика. 2014;13(6):4-11. DOI:10.15829/1728-8800-2014-6-4-11.; Драпкина О.М, Корнеева О.Н. Кишечная микробиота и ожирение. Патогенетические взаимосвязи и пути нормализации кишечной микрофлоры. Терапевтический Архив. 2016;88(9):135-42. DOI:10.17116/terarkh2016889135-142.; Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384(9945):766-81. DOI:10.1016/S0140-6736(14)60460-8.; Tappy L. Metabolic consequences of overfeeding in humans. Curr Opin Clin Nutr Metab Care. 2004;7(6):623-8. DOI:10.1097/00075197-200411000-00006.; Cani PD, Osto M, Geurts L, Everard A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes. 2012;3(4):279-88. DOI:10.4161/gmic.19625.; Zhi C, Huang J, Wang J, et al. Connection between gut microbiome and the development of obesity. Eur J Clin Microbiol Infect Dis. 2019;36(11):1987-98. DOI:10.1007/s10096-019-03623-x.; Диагностика, лечение, профилактика ожирения и ассоциированных с ним заболеваний. Национальные кли-нические рекомендации (2017). [цитировано 10.11.2019]. Доступно на: https://scardio.ru/content/Guidelines/project/Ozhirenie_klin_rek_proekt.pdf.; Cardiovascular prevention 2017. National guidelines. Russian Journal of Cardiology. 2018;(6):7- 122 (In Russ.) [Кардиоваскулярная профилактика 2017. Российские национальные рекомендации. Российский Кардиологический Журнал. 2018;(6):7-122] DOI:10.15829/1560-4071-2018-6-7-122.; Aprahamian TR, Sam F. Adiponectin in cardiovascular inflammation and obesity. Int J Inflam. 2011;376909. DOI:10.4061/2011/376909.; Achari AE, Jain SK. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci. 2017;18(6):1321. DOI:10.3390/ijms18061321.; Farr OM, Gavrieli A, Mantzoros CS. Leptin applications in 2015: what have we learned about leptin and obesity? CurrOpin Endocrinol Diabetes Obes. 2015;22(5):353-9. DOI:10.1097/MED.0000000000000184.; Bell BB, Rahmouni K. Leptin as a Mediator of Obesity-Induced Hypertension. Curr Obes Rep. 2016;5(4):397-404. DOI:10.1007/s13679-016-0231-x.; Joao AL, Reis F, Fernandes R. The incretin system ABCs in obesity and diabetes—novel therapeutic strategies for weight loss and beyond. Obes Rev. 2016;17(7):553-72. DOI:10.1111/obr.12421.; Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57-63. DOI:10.1038/nature09922.; Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regu-lates fat storage. Proc Natl Acad Sci USA. 2004;101(44):15718-23. DOI:10.1073/pnas.0407076101.; Kindleysides S, Kruger R, Douwes J, et al. Predictors Linking Obesity and the Gut Microbi-ome (the PROMISE Study): Protocol and Recruitment Strategy for a Cross-Sectional Study on Path-ways That Affect the Gut Microbiome and Its Impact on Obesity. JMIR Res Protoc. 2019; 8(8):e14529. DOI:10.2196/14529.; Miele L, Giorgio V, Alberelli MA, et al. Impact of Gut Microbiota on Obesity, Diabetes, and Cardiovascular Disease Risk. Curr Cardiol Rep. 2015;17(12):120. DOI:10.1007/s11886-015-0671-z.; Cavalcante-Silva LHA, Galvão JGFM, Silva JSF, et al. Obesity-Driven Gut Microbiota In-flammatory Pathways to Metabolic Syndrome. Front. Physiol. 2015;6:341. DOI:10.3389/fphys.2015.00341.; Al-Assal K, Martinez AC, Torrinhas RS, et al. Gut microbiota and obesity. Clinical Nutrition Experimental. 2018;20:60-4. DOI:10.1016/j.yclnex.2018.03.001.; Olsen GJ, Lane DJ, Giovannoni SJ, et al. Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol. 1986;40:337-65. DOI:10.1146/annurev.mi.40.100186.002005.; Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174-80. DOI:10.1038/nature09944.; Hsiao WW, Fraser-Liggett CM. Human Microbiome Project-paving the way to a better under-standing of ourselves and our microbes. Drug Discov Today. 2009;14(7-8):331-3. DOI:10.1016/j.drudis.2009.03.001.; Wu GD, Chen J, Hoffmann C, Bittinger K. Linking long-term dietary patterns with gut micro-bial enterotypes. Science. 2011;334(6052):105-8. DOI:10. 1126/science.1208344.; Mitev K, Taleski V. Association between the Gut Microbiota and Obesity. Open Access Maced J Med Sci. 2019;7(12):2050-6. DOI:10.3889/oamjms.2019.586.; Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480-4. DOI:10.1038/nature07540.; Ley RE, Backhed F, Turnbaugh PJ, et. al. Obesity alters gut microbial ecology. Proc Nat Acad Sci. USA. 2005;102(31):11070-5. DOI:10.1073/pnas.0504978102.; Ding S, Chi M. M, Scull BP, et al. High-fat diet: bacteria interactions promote intestinal in-flammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One. 2010;5(8):e12191. DOI:10.1371/journal.pone.0012191.; Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with in-creased capacity for energy harvest. Nature. 2006;444(7122):1027-31. DOI:10.1038/nature05414.; Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associat-ed with obesity. Nature. 2006; 444(7122):1022-3. DOI:10.1038/4441022a.; Angelakis E, Armougom F, Million M, Raoult D. The relationship between gut microbiota and weight gain in humans. Future Microbiol. 2012;7(1):91-109. DOI:10.2217/fmb.11.142.; Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with met-abolic markers. Nature. 2013;500(7464):541-6. DOI:10.1038/nature12506.; Karlsson F, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013;498(7452):99-103. DOI:10.1038/nature12198.; Schwiertz A, Taras D, Schafer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18(1):190-5. DOI:10.1038/oby.2009.167.; Gérard P. Gut microbiota and obesity. Cell Mol Life Sci. 2016;73(1):147-62. DOI:10.1007/s00018-015-2061-5.; Gérard P, Bernalier-Donadille A. Les fonctions majeures du microbiote intestinal. Cahiers de Nutrition et de Diététique. 2007;42:S28-36. DOI:10.1016/S0007-9960(07)91318-8.; Nazli A, Yang PC, Jury J, et al. Epithelia under metabolic stress perceive commensal bacteria as a threat. Am J Pathol. 2004;164(3):947-57. DOI:10.1016/S0002-9440(10)63182-3.; Khan MJ, Gerasimidis K, Edwards CA, Shaikh MG. Role of gut microbiota in aetiology of obesity: proposed mechanisms and review of literature. J Obes. 2016;2016:7353642. DOI:10.1155/2016/7353642.; Kim MH, Kang SG, Park JH, et al. Short-chain fatty acids activate GPR41 and GPR43 on in-testinal epithelial cells to promote inflammatory responses in mice. Gastroenterology. 2013;145(2):396-406.e1-10. DOI:10.1053/j.gastro.2013.04.056.; Yang BG, Hur KY, Lee MS. Alterations in Gut Microbiota and Immunity by Dietary Fat. Yonsei Med J. 2017;58(6):1083. DOI:10.3349/ymj.2017.58.6.1083.; De Vadder F, Kovatcheva-Datchary P, Goncalves D, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014;156(1-2):84-96. DOI:10.1016/j.cell.2013.12.016.; López M. EJE PRIZE 2017: hypothalamic AMPK: a golden target against obesity? Eur J En-docrinol. 2017;176(5):R235-46. DOI:10.1530/EJE-16-0927.; Hardie DG. AMPK: a key regulator of energy balance in the single cell and the whole organ-ism. Int J Obes (Lond). 2008;32 suppl 4:S7-S12. DOI:10.1038/ijo.2008.116.; Pindjakova J, Sartini C, Lo Re O, et al. Gut Dysbiosis and Adaptive Immune Response in Diet-induced Obesity vs. Systemic Inflammation. Front Microbiol. 2017;8:1157. DOI:10.3389/fmicb.2017.01157.; Berg RD. The indigenous gastrointestinal microflora. Trends Microbiol. 1996;4(11):430-5. DOI:10.1016/0966-842x(96)10057-3.; Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin re-sistance. Diabetes. 2007;56(7):1761-72. DOI:10.2337/db06-1491.; Kashtanova DA, Popenko AS, Tkacheva ON, et.al. Association between the gut microbiota and diet: Fetal life, early childhood, and further life. Nutrition. 2016;32(6):620-7. DOI:10.1016/j.nut.2015.12.037.; Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut micro-biota in mice lacking Toll-like receptor 5. Science. 2010;328(5975):228-31. DOI:10.1126/science.1179721.; Hotamisligil GS, Erbay E. Nutrient sensing and inflammation in metabolic diseases. Nat Rev Immunol.2008;8(12):923-34. DOI:10.1038/nri2449.; Yang T, Santisteban M.M, Rodriguez V, et. al. Gut dysbiosis is linked to hypertension. Hy-pertension.2015;65(6):1331-40. DOI:10.1161/HYPERTENSIONAHA.115.05315.; Qi Y, Aranda JM, Rodriguez V, et al. Impact of antibiotics on arterial blood pressure in a pa-tient withresistant hypertension - A case report. Int J Cardiol. 2015;201:157-8. DOI:10.1016/j.ijcard.2015.07.078.; Pluznick JL, Protzko RJ, Gevorgyan H, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci USA. 2013;110(11):4410-15. DOI:10.1073/pnas.1215927110.; Pluznick JL. Renal and cardiovascular sensory receptors and blood pressure regulation. Am J Physiol Renal Physiol. 2013;305(4):F439-44. DOI:10.1152/ajprenal.00252.2013.; Gomez-Guzman M, Toral M, Romero M, et al. Antihypertensive effects of probiotics lactoba-cillus strains in spontaneously hypertensive rats. Mol Nutr Food Res. 2015;59(11):2326-36. DOI:10.1002/mnfr.201500290.; Khalesi S, Sun J, Buys N, Jayasinghe R. Effect of probiotics on blood pressure: A systematic review and meta-analysis of randomized, controlled trials. Hypertension. 2014;64(4):897-903. DOI:10.1161/HYPERTENSIONAHA.114.03469.; Caesar R, Fak F, Backhed F. Effects of gut microbiota on obesity and atherosclerosis via modulation of inflammation and lipid metabolism. J Intern Med. 2010;268(4):320-8. DOI:10.1111/j.1365-2796.2010.02270.x.; Karlsson FH, Fak F, Nookaew I, et al. Symptomatic atherosclerosis is associated with an al-tered gut metagenome. Nat Commun. 2012;3:1245. DOI:10.1038/ncomms2266.; Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutri-ent in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576-85. DOI:10.1038/nm.3145.; Tang WH, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575-84. DOI:10.1056/NEJMoa1109400.; Lam V, Su J, Koprowski S, et al. Intestinal microbiota determine severity of myocardial infarc-tion in rats. FASEB J. 2012;26(4):1727-35. DOI:10.1096/fj.11-197921.; Gan XT, Ettinger G, Huang CX, et al. Probiotic administration attenuates myocardial hyper-trophy and heart failure after myocardial infarction in the rat. Circ Heart Fail. 2014;7(3):491- 9. DOI:10.1161/CIRCHEARTFAILURE.113.000978.; Sandek A, Bauditz J, Swidsinski A, et al. Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol. 2007;50(16):1561-9. DOI:10.1016/j.jacc.2007.07.016.; Niebauer J, Volk HD, Kemp M, et al. Endotoxin and immune activation in chronic heart fail-ure: A prospective cohort study. Lancet. 1999;353(9167):1838-42. DOI:10.1016/S0140-6736(98)09286-1.; Sandek A, Swidsinski A, Schroedl W, et al. Intestinal blood flow in patients with chronic heart failure: A link with bacterial growth, gastrointestinal symptoms, and cachexia. J Am Coll Cardi-ol. 2014;64(11):1092-102. DOI:10.1016/j.jacc.2014.06.1179.; Pasini E, Aquilani R, Testa C, et al. Pathogenic gut flora in patients with chronic heart failure. JACC Heart Fail. 2016;4(3):220-7. DOI:10.1016/j.jchf.2015.10.009.; Organ CL, Otsuka H, Bhushan S, et al. Choline diet and its gut microbe-derived metabolite, trimethylamine N-oxide, exacerbate pressure overload-induced heart failure. Circ Heart Fail. 2016;9(1):e002314. DOI:10.1161/CIRCHEARTFAILURE.115.002314.; Estruch R, Ros E, Salas-Salvado J, et al. Primary prevention of cardiovascular disease with a mediterranean diet. N Engl J Med. 2013;368(14):1279-90. DOI:10.1056/NEJMoa1200303.; David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559-63. DOI:10.1038/nature12820.; Marques FZ, Nelson E, Chu PY, et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation. 2017;135(10):964-77. DOI:10.1161/CIRCULATIONAHA.116.024545.; Resta SC. Effects of probiotics and commensals on intestinal epithelial physiology: implications for nutrient handling. J Physiol. 2009;587(pt 17):4169-74. DOI:10.1113/jphysiol.2009.176370.; Simon MC, Strassburger K, Nowotny B, et al. Intake of lactobacillus reuteri improves incretin and insulin secretion in glucose-tolerant humans: A proof of concept. Diabetes Care. 2015;38(10):1827-34. DOI:10.2337/dc14-2690.; Karlsson C, Ahrne S, Molin G, et al. Probiotic therapy to men with incipient arteriosclerosis initiates increased bacterial diversity in colon: A randomized controlled trial. Atherosclerosis. 2010;208(1):228-33. DOI:10.1016/j.atherosclerosis.2009.06.019.; Cani PD, Neyrinck AM, Fava F, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007;50(11):2374-83. DOI:10.1007/s00125-007-0791-0.; Parnell JA, Reimer RA. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr. 2009;89(6):1751-9. DOI:10.3945/ajcn.2009.27465.; Everard A, Lazarevic V, Derrien M, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes. 2011;60(11):2775-86. DOI:10.2337/db11-0227.; Colman RJ, Rubin DT. Fecal microbiota transplantation as therapy for inflammatory bowel disease: A systematic review and meta-analysis. J Crohns Colitis. 2014;8(12):1569-81. DOI:10.1016/j.crohns.2014.08.006.; Gregory JC, Buffa JA, Org E, et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem. 2015;290(9):5647-60. DOI:10.1074/jbc.M114.618249.; De Leon LM, Watson JB, Kelly CR. Transient flare of ulcerative colitis after fecal microbiota transplantation for recurrent clostridium difficile infection. Clin Gastroenterol Hepatol. 2013;11(8):1036-8. DOI:10.1016/j.cgh.2013.04.045. Rational Pharmacotherapy in Cardiology 2021;17(5) / Рациональная Фармакотерапия в Кардиологии 2021;17(5) 751; https://www.rpcardio.com/jour/article/view/2587
-
18Academic Journal
Source: Biomedical Chemistry: Research and Methods; Vol. 4 No. 2 (2021); e00151 ; Biomedical Chemistry: Research and Methods; Том 4 № 2 (2021); e00151 ; 2618-7531
Subject Terms: fecal microbiota transplantation, lyophilized oral capsules, lyoprotectants, short-chain fatty acids, трансплантация фекальной микробиоты, лиофилизированные пероральные капсулы, лиопротекторы, короткоцепочечные жирные кислоты
File Description: application/pdf; text/html
Relation: http://www.bmc-rm.org/index.php/BMCRM/article/view/151/360; http://www.bmc-rm.org/index.php/BMCRM/article/view/151/361; http://www.bmc-rm.org/index.php/BMCRM/article/view/151/362; http://www.bmc-rm.org/index.php/BMCRM/article/view/151/363
Availability: http://www.bmc-rm.org/index.php/BMCRM/article/view/151
-
19Academic Journal
Source: Zaporozhye мedical journal; Vol. 23 No. 5 (2021); 683-690
Запорожский медицинский журнал; Том 23 № 5 (2021); 683-690
Запорізький медичний журнал; Том 23 № 5 (2021); 683-690Subject Terms: rotavirus infection, early age children, микрофлора, gut microbiota, дети раннего возраста, short-chain fatty acids, синдром мальабсорбции углеводов, ротавірусна інфекція, carbohydrate malabsorption syndrome, короткоцепочечные жирные кислоты, синдром мальабсорбції вуглеводів, коротколанцюгові жирні кислоти, діти раннього віку, 3. Good health, ротавирусная инфекция, мікрофлора кишечника
File Description: application/pdf
Access URL: http://zmj.zsmu.edu.ua/article/view/231265
-
20Academic Journal
Source: Modern Gastroenterology; No. 2 (2021); 55—78
Современная гастроэнтерология; № 2 (2021); 55—78
Сучасна гастроентерологія; № 2 (2021); 55—78Subject Terms: 2. Zero hunger, obesity, сахарный диабет, запалення, короткоцепочечные жирные кислоты, ожиріння, коротколанцюгові жирні кислоти, 3. Good health, неалкогольная жировая болезнь печени, цукровий діабет, неалкогольна жирова хвороба печінки, non‑alcoholic fatty liver disease, ожирение, inflammation, diabetes mellitus, short‑chain fatty acids, воспаление
File Description: application/pdf
Access URL: http://sgastro.com.ua/article/view/230795