Εμφανίζονται 1 - 20 Αποτελέσματα από 155 για την αναζήτηση '"КОНСЕРВАТИВНАЯ ТЕРАПИЯ"', χρόνος αναζήτησης: 0,87δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Συνεισφορές: The study had no sponsorship, Исследование не имеет спонсорской поддержки

    Πηγή: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 14, № 2 (2025); 258-267 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 14, № 2 (2025); 258-267 ; 2541-8017 ; 2223-9022

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/2171/1589; https://www.jnmp.ru/jour/article/view/2171/1704; Крылов В.В., Гринь А.А., Луцик А.А., Парфенов В.Е., Дулаев А.К., Мануковский В.А. и др. Рекомендательный протокол лечения острой осложненной и неосложненной травмы позвоночника у взрослых (Ассоциация нейрохирургов РФ). Часть 3. Вопросы нейрохирургии им. Н.Н. Бурденко. 2015;79(2):97–110. https://doi.org/10.17116/neiro201579297-110; Гринь А.А., Каранадзе В.А., Кордонский А.Ю., Талыпов А.Э., Львов И. С., Абдрафиев Р.И. Эффективность и безопасность консервативной терапии у пациентов со взрывными неосложненными переломами грудного и поясничного отделов позвоночника: метаанализ. Хирургия позвоночника. 2024;21(2):27–38. https://doi.org/10.14531/ss2024.2.27-38; Grin A, Karanadze V, Lvov I, Kordonskiy A, Talypov A, Smirnov V, et al. Effective method of pedicle screw fixation in patients with neurologically intact thoracolumbar burst fractures: a systematic review of studies published over the last 20 years. Neurocirugia (Astur: Engl Ed). 2024;35(6):299–310. PMID: 39089628 https://doi.org/10.1016/j.neucie.2024.07.009; Рамих Э.А. Повреждения грудного и поясничного отделов позвоночника. Хирургия позвоночника. 2008;(1):86–106. https://doi.org/10.14531/ss2008.2.94-114; Vaccaro AR, Oner C, Kepler CK, Dvorak M, Schnake K, Bellabarba C, et al. AOSpine thoracolumbar spine injury classification system: fracture description, neurological status, and key modifiers. Spine (Phila Pa 1976). 2013;38(23):2028–2037. PMID: 23970107 https://doi.org/10.1097/BRS.0b013e3182a8a381; Landriel Ibañez FA, Hem S, Ajler P, Vecchi E, Ciraolo C, Baccanelli M, et al. A new classification of complications in neurosurgery. World Neurosurg. 2011;75(5–6):709–715; discussion 604–611. PMID: 21704941 https://doi.org/10.1016/j.wneu.2010.11.010; Grin A, Karanadze V, Lvov I, Talypov A, Kordonskiy A, Abdrafiev R. Is anterior fusion still necessary in patients with neurologically intact thoracolumbar burst fractures? A systematic review and meta-analysis. Neurocirugia (Astur: Engl Ed). 2024 Nov 19:S2529-8496(24)00072-8. PMID: 39571681 https://doi.org/10.1016/j.neucie.2024.11.006 Online ahead of print.; Wu X, Zhang B, Zhang CL, Wu XT, Zhang QH. Efficacy and safety of minimal pedicle screw fixation for thoracolumbar fractures: a meta-analysis. Eur Rev Med Pharmacol Sci. 2018;22(1 Suppl):45–52. PMID: 30004564 https://doi.org/10.26355/eurrev_201807_15362; Lan T, Chen Y, Hu SY, Li AL, Yang XJ. Is fusion superior to non-fusion for the treatment of thoracolumbar burst fracture? A systematic review and meta-analysis. J Orthop Sci. 2017;22(5):828–833. PMID: 28641907 https://doi.org/10.1016/j.jos.2017.05.014; Diniz JM, Botelho RV. Is fusion necessary for thoracolumbar burst fracture treated with spinal fixation? A systematic review and meta-analysis. J Neurosurg Spine. 2017;27(5):584–592. PMID: 28777064 https://doi.org/10.3171/2017.1.SPINE161014; Izeki M, Fujio K, Ota S, Soga S, Matsuda S. Radiological follow-up of the degenerated facet joints after lateral lumbar interbody fusion with percutaneous pedicle screw fixation: Focus on spontaneous facet joint fusion. J Orthop Sci. 2022;27(5):982–989. PMID: 34373146 https://doi.org/10.1016/j.jos.2021.06.018; Ituarte F, Wiegers NW, Ruppar T, Goldstein C, Nourbakhsh A. Posterior Thoracolumbar Instrumented Fusion for Burst Fractures: A Meta-analysis. Clin Spine Surg. 2019;32(2):57–63. PMID: 30614840 https://doi.org/10.1097/BSD.0000000000000763; Hinojosa-Gonzalez DE, Estrada-Mendizabal RJ, Bueno-Gutierrez LC, Roblesgil-Medrano A, Tellez-Garcia E, Galindo-Garza CA, et al. A Network Meta-Analysis on the Surgical Management of Thoracolumbar Burst Fractures: Anterior, Posterior, and Combined. Spine Surg Relat Res. 2023;7(3):211–218. PMID: 37309497 https://doi.org/10.22603/ssrr.2022-0196 eCollection 2023 May 27.; Гринь А.А., Талыпов А.Э., Кордонский А.Ю., Каранадзе В.А., Львов И. С., Cмирнов В.А. и др. Эффективность и безопасность короткой транспедикулярной фиксации при неосложненных взрывных переломах нижнегрудного и поясничного отделов позвоночника: метаанализ исследований, опубликованных за последние 20 лет. Хирургия позвоночника. 2024;21(3):14–24. https://doi.org/10.14531/ss2024.3.14-24; https://www.jnmp.ru/jour/article/view/2171

  5. 5
    Academic Journal

    Συνεισφορές: The work was partially carried out under state assignment FWNR-2024–0002 with the support of Heel, Работа выполнена частично по государственному заданию FWNR-2024–0002 при поддержке компании Хеель

    Πηγή: Meditsinskiy sovet = Medical Council; № 3 (2025); 36-44 ; Медицинский Совет; № 3 (2025); 36-44 ; 2658-5790 ; 2079-701X

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8994/7821; Xing Y, Si L, Zhang W, Wang Y, Li K, Yang X. Etiologic distribution of dizziness/v ertigo in a neurological outpatient clinic according to the criteria of the international classification of vestibular disorders: a singlecenter study. J Neurol. 2024;271(5):2446–2457. https://doi.org/10.1007/s00415023121663.; Stam H, van Vugt VA, Twisk JWR, Finne-Soveri H, Garms-Homolová V, Declercq A et al. The Prevalence and Persistence of Dizziness in Older European Home Care Recipients: A Prospective Cohort Study. J Am Med Dir Assoc. 2020;21(3):338–343. https://doi.org/10.1016/j.jamda.2019.09.008.; Kim EJ, Song HJ, Lee HI, Kwon E, Jeong SH. Oneyear prevalence and clinical characteristics in chronic dizziness: The 20192020 Korean National Health and Nutrition Examination Survey. Front Neurol. 2022;13:1016718. https://doi.org/10.3389/fneur.2022.1016718.; Kammerlind AS, Peolsson A, Johansson MM. Dizziness in older persons at high risk of future hospitalization: prevalence, differences between those with and without dizziness, and effect of a proactive primary care intervention. BMC Geriatr. 2022;22(1):315. https://doi.org/10.1186/s12877022029101.; Burmeister J, Bock Е, Gerwig М, Frings М, Arweiler-Harbeck D, Diener Н, Obermann M. Prevalence, demographics, and clinical characteristics of vertigo disorders in a specialized multidisciplinary outpatient clinic. (P1.322). Neurology. 2015;84(14_ Suppl). https://doi.org/10.1212/WNL.84.14_supplement.P1.322.; Wassermann A, Finn S, Axer H. AgeAssociated Characteristics of Patients With Chronic Dizziness and Vertigo. J Geriatr Psychiatry Neurol. 2022;35(4):580–585. https://doi.org/10.1177/08919887211036185.; Maarsingh OR, Dros J, Schellevis FG, van Weert HC, Bindels PJ, Horst HE. Dizziness reported by elderly patients in family practice: prevalence, incidence, and clinical characteristics. BMC Fam Pract. 2010;11:2. https://doi.org/10.1186/14712296112.; Lindell E, Kollén L, Johansson M, Karlsson T, Rydén L, Falk Erhag H et al. Benign paroxysmal positional vertigo, dizziness, and health-related quality of life among older adults in a population-b ased setting. Eur Arch Otorhinolaryngol. 2021;278(5):1637–1644. https://doi.org/10.1007/s00405020063571.; Zwergal A, Mantokoudis G, Heg D, Kerkeni H, Diener S, Kalla R et al. What is the current status of primary care in the diagnosis and treatment of patients with vertigo and dizziness in Switzerland? A national survey. Front Neurol. 2023;14:1254080. https://doi.org/10.3389/fneur.2023.1254080.; Saber Tehrani AS, Coughlan D, Hsieh YH, Mantokoudis G, Korley FK, Kerber KA et al. Rising annual costs of dizziness presentations to U.S. emergency departments. Acad Emerg Med. 2013;20(7):689–696. https://doi.org/10.1111/acem.12168.; Ruthberg JS, Rasendran C, Kocharyan A, Mowry SE, Otteson TD. The economic burden of vertigo and dizziness in the United States. J Vestib Res. 2021;31(2):81–90. https://doi.org/10.3233/VES201531.; Кулеш АА, Емелин АЮ, Боголепова АН, Доронина ОБ,Захаров ВВ, Колоколов ОВ и др. Клинические проявления и вопросы диагностики хронического цереброваскулярного заболевания (хронической ишемии головного мозга) на ранней (додементной) стадии. Неврология, нейропсихиатрия, психосоматика. 2021;13(1):4–12. https://doi.org/10.14412/2074271120211-412.; Локшина АБ, Захаров ВВ. Практические алгоритмы ведения пациентов с хронической ишемией головного мозга. Эффективная фармакотерапия. 2019;15(19):24–28. https://doi.org/10.33978/23073586201915192428.; Брандт Т, Дитерих М, Штрупп М. Головокружение. М.: Практика; 2009. 200 с.; Jiam NT, Murphy OC, Gold DR, Isanhart E, Sinn DI, Steenerson KK, Sharon JD. Nonvestibular Dizziness. Otolaryngol Clin North Am. 2021;54(5):999–1013. https://doi.org/10.1016/j.otc.2021.05.017.; Верткин АЛ. Головокружение. М.: Эксмо; 2017. 74 с. Режим доступа: http://gepatitnews.ru/wpcontent/uploads/2019/02/golovokruzenie.pdf.; Парфенов ВА, Замерград МВ, Мельников ОА. Головокружение: диагностика и лечение, распространенные ошибки. М.: МИА; 2009. 152 с.; Замерград МВ. Особенности головокружения в пожилом возрасте. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2015;115(6-2):3–8. https://doi.org/10.17116/jnevro20151156238.; Дума СН. Лечение головокружения у пожилых пациентов с хронической цереброваскулярной патологией. Неврология, нейропсихиатрия, психосоматика. 2018;10(1):55–59. https://doi.org/10.14412/2074271120181-5559.; Дума СН. Сосудистый психоорганический синдром в пожилом возрасте. Оценка способности к самообслуживанию по шкале инструментальной активности повседневной жизни. В: Воевода МИ, Абрамович СГ (ред.). Современные аспекты профилактики, реабилитации и курортной медицины: новые подходы и актуальные исследования. Новосибирск: Наука; 2020. 312 с.; Антоненко ЛМ, Застенская ЕН Персистирующее постурально-перцептивное головокружение: современные подходы к диагностике и лечению. Неврология, нейропсихиатрия, психосоматика. 2019;11(4):136–140. https://doi.org/10.14412/2074271120194-136140.; Живолупов СА, Самарцев ИН. Современный клинический анализ цереброваскулярных заболеваний: узловые вопросы дифференциальной диагностики и патогенетического лечения. Фарматека. 2012;(7):87–94. Режим доступа: https://pharmateca.ru/ru/archive/article/8428.; Чугунов АВ, Кабанов АА, Казаков АЮ. Комплексная терапия пациента с хронической ишемией головного мозга. Нервные болезни. 2021;(3):25–30. https://doi.org/10.24412/22260757202112351.; Heinle H, Tober C, Zhang D, Jäggi R, Kuebler WM. The lowdose combination preparation Vertigoheel activates cyclic nucleotide pathways and stimulates vasorelaxation. Clin Hemorheol Microcirc. 2010;46(1):23–35. https://doi.org/10.3233/CH20101330.; Schneider B, Klein P, Weiser M. Treatment of vertigo with a homeopathic complex remedy compared with usual treatments: a meta-a nalysis of clinical trials. Arzneimittelforschung. 2005;55(1):23–29. https://doi.org/10.1055/s-00311296821.; Klopp R, Niemer W, Weiser M. Microcirculatory effects of a homeopathic preparation in patients with mild vertigo: an intravital microscopic study. Microvasc Res. 2005;69(1-2):10–16. https://doi.org/10.1016/j.mvr.2004.11.005.; Issing W, Klein P, Weiser M. The homeopathic preparation Vertigoheel versus Ginkgo biloba in the treatment of vertigo in an elderly population: a doubleblinded, randomized, controlled clinical trial. J Altern Complement Med. 2005;11(1):155–160. https://doi.org/10.1089/acm.2005.11.155.; Weiser M, Strösser W, Klein P. Homeopathic vs conventional treatment of vertigo: a randomized doubleblind controlled clinical study. Arch Otolaryngol Head Neck Surg. 1998;124(8):879–885. https://doi.org/10.1001/archotol.124.8.879.

  6. 6
  7. 7
  8. 8
    Academic Journal

    Συνεισφορές: The study had no sponsorship, Исследование не имеет спонсорской поддержки

    Πηγή: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 12, № 4 (2023); 676-682 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 12, № 4 (2023); 676-682 ; 2541-8017 ; 2223-9022

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/1732/1366; https://www.jnmp.ru/jour/article/view/1732/1426; Червяков Ю.В., Власенко О.Н., Ха Х.Н. Пятилетние результаты консервативной терапии больных с атеросклерозом артерий нижних конечностей в стадии критической ишемии. Пермский медицинский журнал. 2017;34(5):20–27. URL: https://cyberleninka.ru/article/n/pyatiletnie-rezultaty-konservativnoy-terapii-bolnyh-s-aterosklerozom-arteriy-nizhnih-konechnostey-v-stadii-kriticheskoy-ishemii?ysclid=lrq9arfc87588830317; Козловский Б.В., Михайлов И.П., Исаев Г.А., Кудряшова Н.Е., Лещинская О.В. Оценка эффективности оперативного лечения больных с хронической критической ишемией нижних конечностей в стадии трофических осложнений. Журнал им. Н.В. Склифосовского. Неотложная медицинская помощь. 2020;9(4):545–550. doi:10.23934/2223-9022-2020-9-4-545-550; Зубова Е.С., Вавилов В.Н., Артюшин Б.С., Мовчан К.Н., Крутиков А. Н., Романенков Н.С., и др. Возможности применения гемопоэтических клеток моноцитарного ряда в лечении больных критической ишемией нижних конечностей. Современные проблемы науки и образования. 2019;(3). URL: https://science-education.ru/ru/article/view?id=28990 [Дата обращения 02 ноября 2022 г.]; Reinecke H, Unrath M, Freisinger E, Bunzemeier H, Meyborg M, Lüders F, et al. Peripherial arterial desiase and critical limb ischaemia: still poor outcomes and lack of guideline adherence. Eur Heart J. 2015;36(15):932–938. PMID: 25650396 doi:10.1093/eurheartj/ehv006; Kret MR, Perrone KH, Azarbal AF, Mitchell EL, Liem TK, Landry GJ, et al. Medical comorbidities but not interventions adversely affect survival in patients with intermittent Claudication. J Vasc Surg. 2013;58(6):1540–1546. PMID: 23972525 doi:10.1016/j.jvs.2013.07.012; Conte MS, Bradbury AW, Kolh P, White JV, Dick F, Fitridge R, et al. Global vascular guidelines on the management of chronic limb-threatening ischemia. Eur J Vasc Endovasc Surg. 2019;58(1S):S1–S109. PMID: 31182334 doi:10.1016/j.ejvs.2019.05.006; Суковатых Б.С., Орлова А.Ю. Стимуляция ангиогенеза клетками костного мозга при экспериментальной ишемии конечности. Ангиология и сосудистая хирургия. 2017;23(1):43–50.; Martínez CE, Smith PC, Alvarado VAP. The influence of platelet-derived products on angiogenesis and tissue repair: a concise update. Front Physiol. 2015;6:290. PMID: 26539125 doi:10.3389/fphys.2015.00290; Суковатых Б.С., Орлова А.Ю., Артюшкова Е.Б. Влияние плазмы, обогащённой тромбоцитами, и препарата «Миелопептид» на течение острой и хронической ишемии нижних конечностей. Новости хирургии. 2012;20(2):41–48.; Драгунов А.Г., Александров Ю.В., Хрипунов С.А. Применение внутритканевого введения аутоплазмы, обогащённой тромбоцитами (АОТ), при лечении ишемии нижних конечностей. Ангиология и сосудистая хирургия. 2008;14(4):17–21.; Goshchynsky V, Migenko B, Lugoviy O, Migenko L. Perspectives on Using Platelet-Rich Plasma and Platelet-Rich Fibrin for Managing Patients with Critical Lower Limb Ischemia After Partial Foot Amputation. J Med Life. 2020;13(1):45–49. PMID: 32341700 doi:10.25122/jml-2020-0028; https://www.jnmp.ru/jour/article/view/1732

  9. 9
    Academic Journal

    Πηγή: Ophthalmology in Russia; Том 21, № 2 (2024); 393-400 ; Офтальмология; Том 21, № 2 (2024); 393-400 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2024-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/2378/1233; Weinreb RN. Glaucoma neuroprotection: What is it? Why is it needed? Can J Ophthalmol. 2007 Jun;42(3):396–398.; Mohan N, Chakrabarti A, Nazm N, Mehta R, Edward DP. Newer advances in medical management of glaucoma. Indian J Ophthalmol. 2022 Jun;70(6):1920–1930. doi:10.4103/ijo.IJO_2239_21.; European Glaucoma Society. Terminology and Guidelines for Glaucoma. 4th ed. Savona, Italy: PubliComm; 2014. doi:10.1136/bjophthalmol‑2016‑egsguideline.001.; Van Wijk BL, Klungel OH, Heerdink ER, de Boer A. Rate and determinants of 10year persistence with antihypertensive drugs. J Hypertens. 2005 Nov;23(11):2101– 2107. doi:10.1097/01.hjh.0000187261.40190.2e.; Higginbotham E.J., Hansen J., Davis E.J., Walt JG, Guckian A. Glaucoma medication persistence with a fixed combination versus multiple bottles. Curr Med Res Opin. 2009;25(10):2543–2547. doi:10.1185/03007990903260129.; Hutzelmann J, Owens S, Shedden A, Adamsons I, Vargas E. Comparison of the safety and efficacy of the fixed combination of dorzolamide/timolol and the concomitant administration of dorzolamide and timolol: a clinical equivalence study. International Clinical Equivalence Study Group. Br J Ophthalmol. 1998 Nov;82(11):1249– 1253. doi:10.1136/bjo.82.11.1249.; Bacharach J, Delgado MF, Iwach AG. Comparison of the efficacy of the fixed-combination timolol/dorzolamide versus concomitant administration of timolol and dorzolamide. J Ocul Pharmacol Ther. 2003 Apr;19(2):93–96. doi:10.1089/108076803321637618.; Pajic B; Conductors of the Swiss COSOPT Survey (CSCS). Experience with COSOPT, the fixed combination of timolol and dorzolamide, gained in Swiss ophthalmologists’ offices. Curr Med Res Opin. 2003;19(2):95–101. doi:10.1185/030079902125001434.; He M, Wang W, Huang W. Efficacy and tolerability of the fixed combinations latanoprost/timolol versus dorzolamide/timolol in patients with elevated intraocular pressure: a meta‑analysis of randomized controlled trials. PLoS One. 2013 Dec 11;8(12):e83606. doi:10.1371/journal.pone.0083606.; Cheng JW, Cheng SW, Gao LD, Lu GC, Wei RL. Intraocular pressure‑lowering effects of commonly used fixed‑combination drugs with timolol: a systematic review and meta‑analysis. PLoS One. 2012;7(9):e45079. doi:10.1371/journal.pone.0045079.; Макогон С.И., Онищенко А.Л., Яценко Л.Л., Карманова О.А. Стартовая терапия в лечении впервые выявленной первичной глаукомы. Национальный журнал глаукома. 2018;17(2):28–37. doi:10.25700/NJG.2018.02.04.; Dunker S, Schmucker A, Maier H; Latanoprost/Timolol Fixed Combination Study Group. Tolerability, quality of life, and persistency of use in patients with glaucoma who are switched to the fixed combination of latanoprost and timolol. Adv Ther. 2007 Mar‑Apr;24(2):376–386. doi:10.1007/BF02849907.; Strahlman E, Tipping R, Vogel R. A double‑masked, randomized 1‑year study comparing dorzolamide (Trusopt), timolol, and betaxolol. International Dorzolamide Study Group. Arch Ophthalmol. 1995 Aug;113(8):1009–1016. doi:10.1001/archopht.1995.01100080061030.; Adamsons IA, Polis A, Ostrov CS, Boyle JE. Two‑year safety study of dorzolamide as monotherapy and with timolol and pilocarpine. Dorzolamide Safety Study Group. J Glaucoma. 1998 Dec;7(6):395–401.; Boyle JE, Ghosh K, Gieser DK, Adamsons IA. A randomized trial comparing the dorzolamidetimolol combination given twice daily to monotherapy with timolol and dorzolamide. Dorzolamide‑Timolol Study Group. Ophthalmology. 1998 Oct;105(10):1945–1951. doi:10.1016/s0161‑6420(98)91046‑6.; Clineschmidt CM, Williams RD, Snyder E, Adamsons IA. A randomized trial in patients inadequately controlled with timolol alone comparing the dorzolamidetimolol combination to monotherapy with timolol or dorzolamide. DorzolamideTimolol Combination Study Group. Ophthalmology. 1998 Oct;105(10):1952–1959. doi:10.1016/s0161‑6420(98)91047‑8.; Sugrue MF. Pharmacological and ocular hypotensive properties of topical carbonic anhydrase inhibitors. Prog Retin Eye Res. 2000 Jan;19(1):87–112. doi:10.1016/s1350‑9462(99)00006‑3.; Ozturk F, Ermis SS, Inan UU. Comparison of the ocular hypotensive effects of bimatoprost and timolol‑dorzolamide combination in patients with elevated intraocular pressure: a 6‑month study. Acta Ophthalmol Scand. 2007 Feb;85(1):80–83. doi:10.1111/j.1600‑0420.2006.00754.x.; Martínez A, Sanchez‑Salorio M. Predictors for visual field progression and the effects of treatment with dorzolamide 2 % or brinzolamide 1 % each added to timolol 0.5 % in primary open‑angle glaucoma. Acta Ophthalmol. 2010 Aug;88(5):541– 552. doi:10.1111/j.1755‑3768.2009.01595.x.; Toris CB, Zhan GL, Yablonski ME, Camras CB. Effects on aqueous flow of dorzolamide combined with either timolol or acetazolamide. J Glaucoma. 2004 Jun;13(3):210–215. doi:10.1097/00061198‑200406000‑00006.; Day DG, Sharpe ED, Beischel CJ, Jenkins JN, Stewart JA, Stewart WC. Safety and efficacy of bimatoprost 0.03 % versus timolol maleate 0.5 %/dorzolamide 2 % fixed combination. Eur J Ophthalmol. 2005 May‑Jun;15(3):336–342. doi:10.1177/112067210501500304.; Fechtner RD, McCarroll KA, Lines CR, Adamsons IA. Efficacy of the dorzolamide/timolol fixed combination versus latanoprost in the treatment of ocular hypertension or glaucoma: combined analysis of pooled data from two large randomized observer and patient‑masked studies. J Ocul Pharmacol Ther. 2005 Jun;21(3):242– 249. doi:10.1089/jop.2005.21.242.; Parmaksiz S, Yuksel N, Karabas VL, Ozkan B, Demirci G, Caglar Y. A comparison of travoprost, latanoprost, and the fixed combination of dorzolamide and timolol in patients with pseudoexfoliation glaucoma. Eur J Ophthalmol. 2006 JanFeb;16(1):73–80. doi:10.5301/EJO.2008.5155.; Suzuki ER Jr, Franklin LM, da Silva LJ, Figueiredo CR, Netto JA, Batista WD. Comparison of the efficacy and safety of travoprost with a fixed‑combination of dorzolamide and timolol in patients with open‑angle glaucoma or ocular hypertension. Curr Med Res Opin. 2006 Sep;22(9):1799–1805. doi:10.1185/030079906X121020.; Nixon D. Evaluation of the safety and efficacy of brimonidine tartrate‑timolol maleate ophthalmic solution (Combigan®) and dorzolamide hydrochloride‑timolol maleate ophthalmic solution (Combigan®) in patients with open‑angle glaucoma or ocular hypertension [abstract no. 453‑B188 plus poster]. In: the Annual Meeting of the Association for Research in Vision and Ophthalmology (ARVO). Investigative ophthalmology and visual science. 2006. April 30 — May 4.; Archieri E., Pereira A., Andreo E., Finotti I.G. A., Arcieri R.S., Sá Filho W.F. Fixed combination brimonidine‑timolol (Combigan®) versus fixed combination dorzolamide‑timolol (Cosopt®) each given twice daily to reduce intraocular pressure in subjects with glaucoma or ocular hypertension [abstract no. E434‑B169]. Investigative ophthalmology and visual science. 2006.; Tundisi LL, Mostaço GB, Carricondo PC, Petri DFS. Hydroxypropyl methyl‑cellulose: Physicochemical properties and ocular drug delivery formulations. Eur J Pharm Sci. 2021 Apr 1;159:105736. doi:10.1016/j.ejps.2021.105736.; Espíndola RF, Castro EF, Santhiago MR, Kara‑Junior N. A clinical comparison between DisCoVisc and 2 % hydroxypropylmethylcellulose in phacoemulsification: a fellow eye study. Clinics (Sao Paulo). 2012 Sep;67(9):1059–1062. doi:10.6061/clinics/2012(09)13.; Ray‑Chaudhuri N, Voros GM, Sutherland S, Figueiredo FC. Comparison of the effect of sodium hyaluronate (Ophthalin) and hydroxypropylmethylcellulose (HPMC‑Ophtal) on corneal endothelium, central corneal thickness, and intraocular pressure after phacoemulsification. Eur J Ophthalmol. 2006 MarApr;16(2):239–246. doi:10.1177/112067210601600208.; https://www.ophthalmojournal.com/opht/article/view/2378

  10. 10
  11. 11
  12. 12
    Academic Journal

    Πηγή: Vestnik dermatologii i venerologii; Vol 99, No 3 (2023); 33-43 ; Вестник дерматологии и венерологии; Vol 99, No 3 (2023); 33-43 ; 2313-6294 ; 0042-4609 ; 10.25208/vdv.993

    Περιγραφή αρχείου: application/pdf

  13. 13
    Academic Journal

    Πηγή: Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care; Vol 13 (2023): Supplement; 7 ; Российский вестник детской хирургии, анестезиологии и реаниматологии; Vol 13 (2023): Supplement; 7 ; 2587-6554 ; 2219-4061 ; 10.17816/psaic.2023

    Περιγραφή αρχείου: application/pdf

  14. 14
  15. 15
    Academic Journal
  16. 16
    Academic Journal

    Πηγή: Сборник статей

    Περιγραφή αρχείου: application/pdf

    Relation: Актуальные вопросы современной медицинской науки и здравоохранения: материалы VII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 17-18 мая 2022 г.; http://elib.usma.ru/handle/usma/10396

    Διαθεσιμότητα: http://elib.usma.ru/handle/usma/10396

  17. 17
    Academic Journal

    Συγγραφείς: A. E. Kostyunin, А. Е. Костюнин

    Συνεισφορές: Research Institute for Complex Issues of Cardiovascular Diseases, 650002, 6 Sosnovy Boulevard, Kemerovo, Russian Federation., Настоящая работа выполнена в рамках комплексной программы фундаментальных научных исследований по фундаментальной теме НИИ КПССЗ№ 0546-2015-0011 «Патогенетическое обоснование разработки имплантатов для сердечно-сосудистой хирургии на основе биосовместимых материалов с реализацией пациент-ориентированного подхода с использованием математического моделирования, тканевой инженерии и геномных предикторов».

    Πηγή: Russian Journal of Transplantology and Artificial Organs; Том 24, № 1 (2022); 96-106 ; Вестник трансплантологии и искусственных органов; Том 24, № 1 (2022); 96-106 ; 1995-1191

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1448/1278; https://journal.transpl.ru/vtio/article/view/1448/1357; https://journal.transpl.ru/vtio/article/downloadSuppFile/1448/990; https://journal.transpl.ru/vtio/article/downloadSuppFile/1448/991; https://journal.transpl.ru/vtio/article/downloadSuppFile/1448/992; https://journal.transpl.ru/vtio/article/downloadSuppFile/1448/993; https://journal.transpl.ru/vtio/article/downloadSuppFile/1448/994; Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2017; 38 (36): 2739–2791. doi:10.1093/eurheartj/ehx391.; Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP 3rd, Fleisher LA et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology American Heart Association task force on clinical practice guidelines. Circulation. 2017; 135 (25): e1159–e1195. doi:10.1161/CIR.0000000000000503.; Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP 3rd, Guyton RA et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014; 63 (22): 2438–2488. doi:10.1016/j.jacc.2014.02.537.; Bax JJ, Delgado V. Bioprosthetic heart valves, thrombosis, anticoagulation, and imaging surveillance. JACC Cardiovasc Interv. 2017; 10 (4): 388–390. doi:10.1016/j.jcin.2017.01.017.; Fiedler AG, Tolis GJr. Surgical treatment of valvular heart disease: overview of mechanical and tissue prostheses, advantages, disadvantages, and implications for clinical use. Curr Treat Options Cardiovasc Med. 2018; 20 (1): 7. doi:10.1007/s11936-018-0601-7.; Pibarot P, Dumesnil JG. Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation. 2009; 119 (7): 1034–1048. doi:10.1161/CIRCULATIONAHA.108.778886.; Zilla P, Brink J, Human P, Bezuidenhout D. Prosthetic heart valves: catering for the few. Biomaterials. 2008; 29 (4): 385–406. doi:10.1016/j.biomaterials.2007.09.033.; Бокерия ЛА, Милиевская ЕБ, Куздоева ЗФ, Прянишникова ВВ. Сердечно-сосудистая хирургия – 2017. Болезни и врожденные аномалии системы кровообращения. М.: НМИЦССХ им. Бакулева МЗ РФ, 2018. 252.; Manji RA, Lee W, Cooper DKC. Xenograft bioprosthetic heart valves: past, present and future. Int J Surg. 2015; 23 (PtB): 280–284. doi:10.1016/j.ijsu.2015.07.009.; Tillquist MN, Maddox TM. Cardiac crossroads: deciding between mechanical or bioprosthetic heart valve replacement. Patient Prefer Adherence. 2011; 5: 91–99. doi:10.2147/PPA.S16420.; Capodanno D, Petronio AS, Prendergast B, Eltchaninoff H, Vahanian A, Modine T et al. Standardized definitions of structural deterioration and valve failure in assessing long-term durability of transcatheter and surgical aortic bioprosthetic valves: a consensus statement from the European Association of Percutaneous Cardiovascular Interventions (EAPCI) endorsed by the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2017; 38 (45): 3382–3390. doi:10.1093/eurheartj/ehx303.; Dvir D, Bourguignon T, Otto CM, Hahn RT, Rosenhek R, Webb JG et al. Standardized definition of structural valve degeneration for surgical and transcatheter bioprosthetic aortic valves. Circulation. 2018; 137 (4): 388– 399. doi:10.1161/CIRCULATIONAHA.117.030729.; Schoen FJ, Levy RJ. Tissue heart valves: current challenges and future research perspectives. J Biomed Mater Res. 1999; 47 (4): 439–465. doi:10.1002/(SICI)1097- 4636(19991215)47:43.0.CO;2-O.; Schoen FJ, Levy RJ. Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg. 2005; 79 (3): 1072–1080. doi:10.1016/j.athoracsur.2004.06.033.; Simionescu DT. Prevention of calcification in bioprosthetic heart valves: challenges and perspectives. Expert Opin Biol Ther. 2004; 4 (12): 1971–1985. doi:10.1517/14712598.4.12.1971.; Rodriguez-Gabella T, Voisine P, Puri R, Pibarot P, Rodés-Cabau J. Aortic bioprosthetic valve durability: incidence, mechanisms, predictors, and management of surgical and transcatheter valve degeneration. J Am Coll Cardiol. 2017; 70 (8): 1013–1028. doi:10.1016/j. jacc.2017.07.715.; Manji RA, Ekser B, Menkis AH, Cooper DKC. Bioprosthetic heart valves of the future. Xenotransplantation. 2014; 21 (1): 1–10. doi:10.1111/xen.12080.; Барбараш ЛС, Рогулина НВ, Рутковская НВ, Овчаренко ЕА. Механизмы развития дисфункций биологических протезов клапанов сердца. Комплексные проблемы сердечно-сосудистых заболеваний. 2018; 7 (2): 10–24.; Cote N, Pibarot P, Clavel MA. Incidence, risk factors, clinical impact, and management of bioprosthesis structural valve degeneration. Curr Opin Cardiol. 2017; 32 (2): 123–129. doi:10.1097/HCO.0000000000000372.; Head SJ, Çelik M, Kappetein AP. Mechanical versus bioprosthetic aortic valve replacement. Eur Heart J. 2017; 38 (28): 2183–2191. doi:10.1093/eurheartj/ ehx141.; Lindman BR, Clavel MA, Mathieu P, Iung B, Lancellotti P, Otto CM et al. Calcific aortic stenosis. Nat Rev Dis Primers. 2016; 2: 16006. doi:10.1038/nrdp.2016.6.; Rajamannan NM. Mechanisms of aortic valve calcification: the LDL-density-radius theory: a translation from cell signaling to physiology. Am J Physiol Heart Circ Physiol. 2010; 298 (1): H5–15. doi:10.1152/ajpheart.00824.2009.; Briand M, Pibarot P, Després JP, Voisine P, Dumesnil JG, Dagenais F et al. Metabolic syndrome is associated with faster degeneration of bioprosthetic valves. Circulation. 2006; 114 (1 Suppl): I512–I517. doi:10.1161/CIRCULATIONAHA.105.000422.; Farivar RS, Cohn LH. Hypercholesterolemia is a risk factor for bioprosthetic valve calcification and explantation. J Thorac Cardiovasc Surg. 2003; 126 (4): 969– 975. doi:10.1016/s0022-5223(03)00708-6.; Lorusso R, Gelsomino S, Luca F, De Cicco G, Bille G, Carella R et al. Type 2 diabetes mellitus is associated with faster degeneration of bioprosthetic valve: results from a propensity score-matched Italian multicenter study. Circulation. 2012; 125 (4): 604–614. doi:10.1161/ CIRCULATIONAHA.111.025064.; Nitsche C, Kammerlander AA, Knechtelsdorfer K, Kraiger JA, Goliasch G, Dona C et al. Determinants of bioprosthetic aortic valve degeneration. JACC Cardiovasc Imaging. 2020 Feb; 13 (2 Pt 1): 345–353. doi:10.1016/j. jcmg.2019.01.027. [Epub 2019 Mar 13].; Nollert G, Miksch J, Kreuzer E, Reichart B. Risk factors for atherosclerosis and the degeneration of pericardial valves after aortic valve replacement. J Thorac Cardiovasc Surg. 2003; 126 (4): 965–968. doi:10.1016/s0022- 5223(02)73619-2.; Гуляев НИ, Варавин НА, Коровин АЕ, Кузнецов ВВ, Яковлев ВВ, Гордиенко АВ. Современные аспекты патогенеза кальциноза аортальных полулуний (обзор литературы). Вестник СПбГУ. 2016; 3: 20–34.; Kostyunin AE, Yuzhalin AE, Ovcharenko EA, Kutikhin AG. Development of calcific aortic valve disease: do we know enough for new clinical trials? J Mol Cell Cardiol. 2019; 132: 189–209. doi:10.1016/j. yjmcc.2019.05.016.; Li H, Horke S, Förstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis. 2014; 237 (1): 208–219. doi:10.1016/j.atherosclerosis.2014.09.001.; Parisi V, Leosco D, Ferro G, Bevilacqua A, Pagano G, de Lucia C et al. The lipid theory in the pathogenesis of calcific aortic stenosis. Nutr Metab Cardiovasc Dis. 2015; 25 (6): 519–525. doi:10.1016/j. numecd.2015.02.001.; Schaftenaar F, Frodermann V, Kuiper J, Lutgens E. Atherosclerosis: the interplay between lipids and immune cells. Curr Opin Lipidol. 2016; 27 (3): 209–215. doi:10.1097/MOL.0000000000000302.; Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med. 2011; 17 (11): 1410–1422. doi:10.1038/nm.2538.; Bottio T, Thiene G, Pettenazzo E, Ius P, Bortolotti U, Rizzoli G et al. Hancock II bioprosthesis: a glance at the microscope in mid-long-term explants. J Thorac Cardiovasc Surg. 2003; 126 (1): 99–105. doi:10.1016/s0022- 5223(03)00131-4.; Butany J, Zhou T, Leong SW, Cunningham KS, Thangaroopan M, Jegatheeswaran A et al. Inflammation and infection in nine surgically explanted Medtronic Freestyle stentless aortic valves. Cardiovasc Pathol. 2007; 16 (5): 258–267. doi:10.1016/j.carpath.2007.01.009.; Grabenwöger M, Fitzal F, Gross C, Hutschala D, Böck P, Brucke P et al. Different modes of degeneration in autologous and heterologous heart valve prostheses. J Heart Valve Dis. 2000; 9 (1): 104–111. PMID: 10678382.; Lepidi H, Casalta JP, Fournier PE, Habib G, Collart F, Raoult D. Quantitative histological examination of bioprosthetic heart valves. Clin Infect Dis. 2006; 42 (5): 590–596. doi:10.1086/500135.; Manji RA, Hara H, Cooper DK. Characterization of the cellular infiltrate in bioprosthetic heart valves explanted from patients with structural valve deterioration. Xenotransplantation. 2015; 22 (5): 406–407. doi:10.1111/ xen.12187.; Nair V, Law KB, Li AY, Phillips KR, David TE, Butany J. Characterizing the inflammatory reaction in explanted Medtronic Freestyle stentless porcine aortic bioprosthesis over a 6-year period. Cardiovasc Pathol. 2012; 21 (3): 158–168. doi:10.1016/j.carpath.2011.05.003.; Sakaue T, Nakaoka H, Shikata F, Aono J, Kurata M, Uetani T et al. Biochemical and histological evidence of deteriorated bioprosthetic valve leaflets: the accumulation of fibrinogen and plasminogen. Biol Open. 2018; 7 (8): bio034009. doi:10.1242/bio.034009.; Shetty R, Pibarot P, Audet A, Janvier R, Dagenais F, Perron J et al. Lipid-mediated inflammation and degeneration of bioprosthetic heart valves. Eur J Clin Invest. 2009; 39 (6): 471–480. doi:10.1111/j.1365- 2362.2009.02132.x.; Mahmut A, Mahjoub H, Boulanger MC, Fournier D, Després JP, Pibarot P, Mathieu P. Lp-PLA2 is associated with structural valve degeneration of bioprostheses. Eur J Clin Invest. 2014; 44 (2): 136–145. doi:10.1111/ eci.12199.; Abd-Elrahman I, Meir K, Kosuge H, Ben-Nun Y, Weiss Sadan T, Rubinstein C et al. Characterizing cathepsin activity and macrophage subtypes in excised human carotid plaques. Stroke. 2016; 47 (4): 1101–1108. doi:10.1161/STROKEAHA.115.011573.; Bühling F, Reisenauer A, Gerber A, Krüger S, Weber E, Brömme D et al. Cathepsin K – a marker of macrophage differentiation? J Pathol. 2001; 195 (3): 375–382. doi:10.1002/path.959.; Kessenbrock K, Brown M, Werb Z. Measuring matrix metalloproteinase activity in macrophages and polymorphonuclear leukocytes. Curr Protoc Immunol. 2011; Chapter 14: Unit 14.24. doi:10.1002/0471142735. im1424s93.; Yasuda Y, Li Z, Greenbaum D, Bogyo M, Weber E, Brömme D. Cathepsin V, a novel and potent elastolytic activity expressed in activated macrophages. J Biol Chem. 2004; 279 (35): 36761–36770. doi:10.1074/jbc. M403986200.; Johnson JL. Metalloproteinases in atherosclerosis. Eur J Pharmacol. 2017; 816: 93–106. doi:10.1016/j.ejphar.2017.09.007.; Simionescu A, Simionescu DT, Deac RF. Matrix metalloproteinases in the pathology of natural and bioprosthetic cardiac valves. Cardiovasc Pathol. 1996; 5 (6): 323–332. PMID: 25851789.; Ponath V, Kaina B. Death of monocytes through oxidative burst of macrophages and neutrophils: killing in trans. PLoS One. 2017; 12 (1): e0170347. doi:10.1371/ journal.pone.0170347.; ChristianAJ, Lin H,Alferiev IS,Connolly JM, Ferrari G, Hazen SL et al. The susceptibility of bioprosthetic heart valve leaflets to oxidation. Biomaterials. 2014; 35 (7): 2097–2102. doi:10.1016/j.biomaterials.2013.11.045.; Lee S, Levy RJ, Christian AJ, Hazen SL, Frick NE, Lai EK et al. Calcification and oxidative modifications are associated with progressive bioprosthetic heart valve dysfunction. J Am Heart Assoc. 2017; 6 (5): e005648. doi:10.1161/JAHA.117.005648.; Rittling SR. Osteopontin in macrophage function. Expert Rev Mol Med. 2011; 13: e15. doi:10.1017/ S1462399411001839.; Rosset EM, Bradshaw AD. SPARC/osteonectin in mineralized tissue. Matrix Biol. 2016; 52–54: 78–87. doi:10.1016/j.matbio.2016.02.001.; New SE, Aikawa E. Role of extracellular vesicles in de novo mineralization: an additional novel mechanism of cardiovascular calcification. Arterioscler Thromb Vasc Biol. 2013; 33 (8): 1753–1758. doi:10.1161/ ATVBAHA.112.300128.; New SE, Goettsch C, Aikawa M, Marchini JF, Shibasaki M, Yabusaki K et al. Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques. Circ Res. 2013; 113 (1): 72–77. doi:10.1161/CIRCRESAHA.113.301036.; Srivatsa SS, Harrity PJ, Maercklein PB, Kleppe L, Veinot J, Edwards WD et al. Increased cellular expression of matrix proteins that regulate mineralization is associated with calcification of native human and porcine xenograft bioprosthetic heart valves. J Clin Invest. 1997; 99 (5): 996–1009. doi:10.1172/JCI119265.; Mohler ER 3rd, Adam LP, McClelland P, Graham L, Hathaway DR. Detection of osteopontin in calcified human aortic valves. Arterioscler Thromb Vasc Biol. 1997; 17 (3): 547–552. doi:10.1161/01.atv.17.3.547.; Pohjolainen V, Taskinen P, Soini Y, Rysä J, Ilves M, Juvonen T et al. Noncollagenous bone matrix proteins as a part of calcific aortic valve disease regulation. Hum Pathol. 2008; 39 (11): 1695–1701. doi:10.1016/j.humpath.2008.04.015.; Ardans JA, Economou AP, Martinson JM Jr, Zhou M, Wahl LM. Oxidized low-density and high-density lipoproteins regulate the production of matrix metalloproteinase-1 and -9 by activated monocytes. J Leukoc Biol. 2002; 71 (6): 1012–1018. PMID: 12050187.; Huang Z, Meng S, Wang L, Wang Y, Chen T, Wang C. Suppression of oxLDL-induced MMP-9 and EMMPRIN expression by berberine via inhibition of NF-κB activation in human THP-1 macrophages. Anat Rec (Hoboken). 2012; 295 (1): 78–86. doi:10.1002/ar.21489.; Sanda GM, Deleanu M, Toma L, Stancu CS, Simionescu M, Sima AV. Oxidized LDL-exposed human macrophages display increased MMP-9 expression and secretion mediated by endoplasmic reticulum stress. J Cell Biochem. 2017; 118 (4): 661–669. doi:10.1002/ jcb.25637.; Yang K, Liu X, Liu Y, Wang X, Cao L, Zhang X et al. DCSIGN and Toll-like receptor 4 mediate oxidized lowdensity lipoprotein-induced inflammatory responses in macrophages. Sci Rep. 2017; 7 (1): 3296. doi:10.1038/ s41598-017-03740-7.; Ye J, Wang C, Wang D, Yuan H. LncRBA GSA5, up-regulated by ox-LDL, aggravates inflammatory response and MMP expression in THP-1 macrophages by acting like a sponge for miR-221. Exp Cell Res. 2018; 369 (2): 348–355. doi:10.1016/j.yexcr.2018.05.039.; Bae YS, Lee JH, Choi SH, Kim S, Almazan F, Witztum JL et al. Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2. Circ Res. 2009; 104 (2): 210–218. doi:10.1161/CIRCRESAHA.108.181040.; Nsaibia MJ, Mahmut A, Mahjoub H, Dahou A, Bouchareb R, Boulanger MC et al. Association between plasma lipoprotein levels and bioprosthetic valve structural degeneration. Heart. 2016; 102 (23): 1915–1921. doi:10.1136/heartjnl-2016-309541.; Mahjoub H, Mathieu P, Sénéchal M, Larose E, Dumesnil J, Després JP et al. ApoB/ApoA-I ratio is associated with increased risk of bioprosthetic valve degeneration. J Am Coll Cardiol. 2013; 61 (7): 752–761. doi:10.1016/j.jacc.2012.11.033.; Salaun E, Mahjoub H, Dahou A, Mathieu P, Larose É, Després JP et al. Hemodynamic deterioration of surgically implanted bioprosthetic aortic valves. J Am Coll Cardiol. 2018; 72 (3): 241–251. doi:10.1016/j. jacc.2018.04.064.; Wilensky RL, Macphee CH. Lipoprotein-associated phospholipase A(2) and atherosclerosis. Curr Opin Lipidol. 2009; 20 (5): 415–420. doi:10.1097/ MOL.0b013e3283307c16.; Akahori H, Tsujino T, Naito Y, Matsumoto M, Lee-Kawabata M, Ohyanagi M et al. Intraleaflet haemorrhage is associated with rapid progression of degenerative aortic valve stenosis. Eur Heart J. 2011; 32 (7): 888–896. doi:10.1093/eurheartj/ehq479.; Morvan M, Arangalage D, Franck G, Perez F, CattanLevy L, Codogno I et al. Relationship of iron deposition to calcium deposition in human aortic valve leaflets. J Am Coll Cardiol. 2019; 73 (9): 1043–1054. doi:10.1016/j.jacc.2018.12.042.; Stam OCG, Daemen MJAP, van Rijswijk JW, de Mol BAJM, van der Wal AC. Intraleaflet hemorrhages are a common finding in symptomatic aortic and mitral valves. Cardiovasc Pathol. 2017; 30: 12–18. doi:10.1016/j.carpath.2017.06.002.; Deutsch MA, Gummert JF. Intraleaflet hemorrhage and iron-dependent pathomechanisms in calcific aortic valve disease: epiphenomenon or major actor? J Am Coll Cardiol. 2019; 73 (9): 1055–1058. doi:10.1016/j. jacc.2018.12.041.; Lee S, Ferrari G, Levy RJ. Abstract 14677: oxidative damage in failed clinical bioprosthetic heart valve explants. Circulation. 2015; 132 (3): A14677.; Skowasch D, Schrempf S, Preusse CJ, Likungu JA, Welz A, Lüderitz B et al. Tissue resident C reactive protein in degenerative aortic valves: correlation with serum C reactive protein concentrations and modification by statins. Heart. 2006; 92 (4): 495–498. doi:10.1136/ hrt.2005.069815.; Kattoor AJ, Pothineni NVK, Palagiri D, Mehta JL. Oxidative stress in atherosclerosis. Curr Atheroscler Rep. 2017; 19 (11): 42. doi:10.1007/s11883-017-0678-6.; Костюнин АЕ, Овчаренко ЕА, Барбараш ОЛ. Ренинангиотензин-альдостероновая система как потенциальная мишень для терапии пациентов с кальцинирующим аортальным стенозом: обзор литературы. Кардиология. 2019; 59 (11S): 4–17.; Sata M, Fukuda D. Crucial role of renin-angiotensin system in the pathogenesis of atherosclerosis. The Journal of Medical Investigation. 2010; 57 (1–2): 12–25. doi:10.2152/jmi.57.12.; Zhao Y, Hasse S, Zhao C, Bourgoin SG. Targeting the autotaxin – lysophosphatidic acid receptor axis in cardiovascular diseases. Biochem Pharmacol. 2019; 164: 74–81. doi:10.1016/j.bcp.2019.03.035.; Armiger LC. Viability studies of human valves prepared for use as allografts. Ann Thorac Surg. 1995; 60 (2 Suppl): S118–S121. doi:10.1016/0003-4975(95)00217-9.; Oei FB, Stegmann AP, van der Ham F, Zondervan PE, Vaessen LM, Baan CC et al. The presence of immune stimulatory cells in fresh and cryopreserved donor aortic and pulmonary valve allografts. J Heart Valve Dis. 2002; 11 (3): 315–325. PMID: 12056721.; Мухамадияров РА, Рутковская НВ, Кокорин СГ, Одаренко ЮН, Мильто ИВ, Барбараш ЛС. Типирование клеток биопротезов клапанов сердца, эксплантированных вследствие развития кальций-ассоциированных дисфункций. Бюллетень сибирской медицины. 2018; 17 (4): 94–102.; Мухамадияров РА, Рутковская НВ, Сидорова ОД, Барбараш ЛС. Исследование клеточного состава кальцинированных биопротезов клапанов сердца. Вестник Российской академии медицинских наук. 2015; 70 (6): 662–668.; Костюнин АЕ, Овчаренко ЕА, Клышников КЮ. Современное понимание механизмов структурной дегенерации биопротезов клапанов сердца. Российский кардиологический журнал. 2018; 11: 145–152.; Steinmetz M, Skowasch D, Wernert N, Welsch U, Preusse CJ, Welz A et al. Differential profile of the OPG/ RANKL/RANK-system in degenerative aortic native and bioprosthetic valves. J Heart Valve Dis. 2008; 17 (2): 187–193. PMID: 18512489.; Костюнин АЕ, Резвова МА. Роль остаточных ксеноантигенов в дегенерации ксеногенных биопротезов клапанов сердца. Иммунология. 2019; 40 (4): 56–63.; Bibevski S, Ruzmetov M, Fortuna RS, Turrentine MW, Brown JW, Ohye RG. Performance of SynerGraft decellularized pulmonary allografts compared with standard cryopreserved allografts: results from multiinstitutional data. Ann Thorac Surg. 2017; 103 (3): 869–874. doi:10.1016/j.athoracsur.2016.07.068.; Hoekstra F, Knoop C, Vaessen L, Wassenaar C, Jutte N, Bos E et al. Donor-specific cellular immune response against human cardiac valve allografts. J Thorac Cardiovasc Surg. 1996; 112 (2): 281–286. doi:10.1016/ S0022-5223(96)70250-7.; Hogan P, Duplock L, Green M, Smith S, Gall KL, Frazer IH et al. Human aortic valve allografts elicit a donor-specific immune response. J Thorac Cardiovasc Surg. 1996; 112 (5): 1260–1267. doi:10.1016/S0022- 5223(96)70139-3.; Colli A, Gherli T, Mestres CA, Pomar JL. Degeneration of native and tissue prosthetic valve in aortic position: do statins play an effective role in prevention? Int J Cardiol. 2007; 116 (2): 144–152. doi:10.1016/j. ijcard.2006.03.047.; Antonini-Canterin F, Popescu BA, Zuppiroli A, Nicolosi GL. Are statins effective in preventing bioprosthetic aortic valve failure? A need for a prospective, randomized trial. Ital Heart J. 2004; 5 (2): 85–88. PMID: 15086137.; Antonini-Canterin F, Zuppiroli A, Popescu BA, Granata G, Cervesato E, Piazza R et al. Effect of statins on the progression of bioprosthetic aortic valve degeneration. Am J Cardiol. 2003; 92 (12): 1479–1482. doi:10.1016/j.amjcard.2003.08.066.; Kulik A, Masters RG, Bédard P, Hendry PJ, Lam BK, Rubens FD et al. Postoperative lipid-lowering therapy and bioprosthesis structural valve deterioration: justification for a randomised trial? Eur J Cardiothorac Surg. 2010; 37 (1): 139–144. doi:10.1016/j.ejcts.2009.06.051.; Gilmanov D, Bevilacqua S, Mazzone A, Glauber M. Do statins slow the process of calcification of aortic tissue valves? Interact Cardiovasc Thorac Surg. 2010; 11 (3): 297–301. doi:10.1510/icvts.2009.230920.; Manji RA, Zhu LF, Nijjar NK, Rayner DC, Korbutt GS, Churchill TA et al. Glutaraldehyde-fixed bioprosthetic heart valve conduits calcify and fail from xenograft rejection. Circulation. 2006; 114 (4): 318–327. doi:10.1161/CIRCULATIONAHA.105.549311.; Eishi K, Ishibashi-Ueda H, Nakano K, Kosakai Y, Sasako Y, Kobayashi J et al. Calcific degeneration of bioprosthetic aortic valves in patients receiving steroid therapy. J Heart Valve Dis. 1996; 5 (6): 668–672. PMID: 8953446.; Shimazaki Y, Kuraoka S, Takeda F, Watanabe T, Inui K. Mitral valve re-replacement for impaired bioprosthesis after 19 years in a patient undergoing steroid treatment. J Heart Valve Dis. 2003; 12 (1): 45–47. PMID: 12578334.; Zhang R, Wang Y, Chen L, Wang R, Li C, Li X et al. Reducing immunoreactivity of porcine bioprosthetic heart valves by genetically-deleting three major glycan antigens, GGTA1/β4GalNT2/CMAH. Acta Biomater. 2018; 72: 196–205. doi:10.1016/j.actbio.2018.03.055.; Perota A, Lagutina I, Duchi R, Zanfrini E, Lazzari G, Judor JP et al. Generation of cattle knockout for galactose-α1,3-galactose and N-glycolylneuraminic acid antigens. Xenotransplantation. 2019; 26 (5): e12524. doi:10.1111/xen.12524.; Rahmani B, McGregor C, Byrne G, Burriesci G. A durable porcine pericardial surgical bioprosthetic heart valve: a proof of concept. J Cardiovasc Transl Res. 2019; 12 (4): 331–337. doi:10.1007/s12265-019-09868-3.; Smood B, Hara H, Cleveland DC, Cooper DKC. In search of the ideal valve: optimizing genetic modifications to prevent bioprosthetic degeneration. Ann Thorac Surg. 2019; 108 (2): 624–635. doi:10.1016/j.athoracsur.2019.01.054.; https://journal.transpl.ru/vtio/article/view/1448

  18. 18
  19. 19
  20. 20
    Academic Journal

    Πηγή: Сборник статей

    Περιγραφή αρχείου: application/pdf

    Relation: Актуальные вопросы современной медицинской науки и здравоохранения: Материалы VI Международной научно-практической конференции молодых учёных и студентов, посвященной году науки и технологий, (Екатеринбург, 8-9 апреля 2021): в 3-х т.; http://elib.usma.ru/handle/usma/5028

    Διαθεσιμότητα: http://elib.usma.ru/handle/usma/5028