Showing 1 - 8 results of 8 for search '"КОНДИЦИОНИРОВАННАЯ СРЕДА"', query time: 0.53s Refine Results
  1. 1
    Academic Journal

    Contributors: The work contains materials from a study carried out at the expense of the Russian Science Foundation grant No. 23-25-10091 “Study of the antiangiogenic effects of paracrine factors of mesenchymal stem cells during corneal transplantation in experiment”, работа содержит материалы исследования, выполненного за счет гранта Российского научного фонда № 23-25-10091 «Изучение антиангиогенных эффектов паракринных факторов мезенхимальных стволовых клеток при трансплантации роговицы в эксперименте», https://rscf.ru/project/23-25-10091/, и за счет гранта в форме субсидии из бюджета Калужской области

    Source: Ophthalmology in Russia; Том 21, № 3 (2024); 604-611 ; Офтальмология; Том 21, № 3 (2024); 604-611 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2024-3

    File Description: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/2442/1259; Kaplan AT, Yalcin SO, Günaydın NT, Kaymak NZ, Gün RD. Ocular‑periocular burns in a tertiary hospital: Epidemiologic characteristics. J Plast Reconstr Aesthet Surg. 2023;76:208–215. doi:10.1016/j.bjps.2022.10.049.; Raman M, Ijaz S, Baljit D. The management of Eyelid Burns. Survey of ophthalmology. 2009;54(3):356–371. doi:10.1016/j.survophthal.2009.02.009.; Пятышина ОВ, Шалаева ЕЮ, Костив ВЯ. Частота и исходы ожоговой травмы органа зрения. Современные технологии в офтальмологии. 2022;2:254–259. doi:10.25276/2312‑4911‑2022‑2‑254‑259.; Inoue K, Amano S, Oshika T, Tsuru T. Risk factors for corneal graft failure and rejection in penetrating keratoplasty. Acta Ophthalmol Scand. 2001;79(3):251–255. doi:10.1034/j.1600‑0420.2001.790308.x.; Ситник ГВ. Особенности фармакотерапии после фемтокератопластики у больных с кератоконусом. Современные технологии в офтальмологии. 2014;4:65.; Niederkorn JY. Corneal transplantation and immune privilege. Int Rev Immunol. 2013;32(1):57–67. doi:10.3109/08830185.2012.737877.; Chang JH, Gabison EE, Kato T, Azar DT. Corneal neovascularization. Curr Opin Ophthalmol. 2001;12(4):242–249. doi:10.1097/00055735‑200108000‑00002.; Azar DT. Corneal angiogenic privilege: angiogenic and antiangiogenic factors in corneal avascularity, vasculogenesis, and wound healing (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc. 2006;104:264–302.; Stevenson W, Cheng SF, Dastjerdi MH, Ferrari G, Dana R. Corneal neovascularization and the utility of topical VEGF inhibition: ranibizumab (Lucentis) vs bevacizumab (Avastin). Ocul Surf. 2012;10:67–83. doi:10.1016/j.jtos.2012.01.005.; Abdelfattah NS, Amgad M, Zayed AA, Hussein H, El‑Baky NA. Molecular underpinnings of corneal angiogenesis: advances over the past decade. International Journal of Ophthalmology. 2016;9:768–779. doi:10.18240/ijo.2016.05.24.; Al‑Debasi T, Al‑Bekairy A, Al‑Katheri A, Al‑Harbi S, Mansour M. Topical versus subconjunctival anti‑vascular endothelial growth factor therapy (Bevacizumab, Ranibizumab and Aflibercept) for treatment of corneal neovascularization. Saudi Journal of Ophthalmology. 2017;31:99–105. doi:10.1016/j.sjopt.2017.02.008.; Johnson KE, Wilgus TA. Vascular Endothelial Growth Factor and Angiogenesis in the Regulation of Cutaneous Wound Repair. Adv Wound Care (New Rochelle). 2014;3:647–661. doi:10.1089/wound.2013.0517.; Mizia‑Malarz A, Sobol G, Wos H. Proangiogenic factors: vascular‑endothelial growth factor (VEGF) and basic fibroblast growth factor‑‑the characteristics and function. Przegl Lek. 2008;65:353–357.; Niu G, Chen X. Vascular endothelial growth factor as an anti‑angiogenic target for cancer therapy. Curr Drug Targets. 2010;11:1000–1017. doi:10.2174/138945010791591395.; Voiculescu OB, Voinea LM, Alexandrescu C. Corneal neovascularization and biological therapy. Journal of Medicine and Life. 2015;8:444–448.; Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringdén O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003;31(10):890–896. doi:10.1016/s0301‑472x(03)00110‑3.; Ryan JM, Barry FP, Murphy JM, Mahon BP. Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond). 2005;2:8. doi:10.1186/1476‑9255‑2‑8.; Yao L, Bai H. Review: mesenchymal stem cells and corneal reconstruction. Mol Vis. 2013;19:2237–2243.; Ma Y, Xu Y, Xiao Z, Yang W, Zhang C, Song E, Du Y, Li L. Reconstruction of chemically burned rat corneal surface by bone marrow‑derived human mesenchymal stem cells. Stem Cells. 2006;24(2):315–321. doi:10.1634/stemcells.2005‑0046.; Bhujel B, Oh SH, Kim CM, Yoon YJ, Kim YJ, Chung HS, Ye EA, Lee H, Kim JY. Mesenchymal Stem Cells and Exosomes: A Novel Therapeutic Approach for Corneal Diseases. Int J Mol Sci. 2023;24(13):10917. doi:10.3390/ijms241310917.; Кодунов АМ, Темнов АА, Терещенко АВ, Трифаненкова ИГ, Склифас АН, Шацких АВ. Механизмы влияния кондиционированной среды культивированных стволовых клеток на развитие патологического ангиогенеза роговицы глаза в эксперименте. Патогенез. 2022;19(4):41–52. doi:10.25557/23100435.2021.04.41‑52.; Кодунов АМ, Терещенко АВ, Трифаненкова ИГ, Темнов АА, Склифас АН, Ерохина ЕВ, Демьянченко СК, Шацких АВ. Влияние раствора пептидов на процессы ангиогенеза роговицы крыс в эксперименте. Саратовский научномедицинский журнал. 2021;17(2):314–318.; Ботин АС, Онищенко НА, Темнов АА. Композиция для стимулирования роста и регенерации клеток, а также способы ее получения. Патент RU 2341270 10.07.2008.; Niederkorn JY. High‑risk corneal allografts and why they lose their immune privilege. Curr Opin Allergy Clin Immunol. 2010;10:493–497. doi:10.1097/ACI.0b013e32833dfa11.; Chang JH, Garg NK, Lunde E, Han KY, Jain S, Azar DT. Corneal neovascularization: an anti‑VEGF therapy review. Surv Ophthalmol. 2012;57:415–429. doi:10.1016/j.survophthal.2012.01.007.; Cursiefen C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C, D;Amore PA. Dana MR, Wiegand SJ, Streilein JW. VEGF‑A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest. 2004;113:1040–1050. doi:10.1172/JCI20465.; Cursiefen C, Chen L, Dana MR, Streilein JW. Corneal lymphangiogenesis: evidence, mechanisms, and implications for corneal transplant immunology. Cornea. 2003;22:273–281.; Wang J, Chen Z, Sun M, Xu H, Gao Y, Liu J, Li M. Characterization and therapeutic applications of mesenchymal stem cells for regenerative medicine. Tissue and Cell. 2020;64:101330. doi:10.1016/j.tice.2020.101330.; Nieto‑Nicolau N, Martín‑Antonio B, Müller‑Sánchez C, Casaroli‑Marano RP. In vitro potential of human mesenchymal stem cells for corneal epithelial regeneration. Regen Med. 2020;15(3):1409–1426. doi:10.2217/rme‑2019‑0067.; Salih M, Shaharuddin B, Abdelrazeg S. A concise review on mesenchymal stem cells for tissue engineering with a perspective on ocular surface regeneration. Curr Stem Cell Res Ther. 2020;15(3):211–218. doi:10.2174/1574888X15666200129145251.; Wang W, Li S, Xu L, Jiang M, Li X, Zhang Y, Tighe S, Zhu Y, Li G. Differential gene expression between limbal niche progenitors and bone marrow derived mesenchymal stem cells. Int J Med Sci 2020;17(4):549–557. doi:10.7150/ijms.40881.; Zhang L, Coulson‑Thomas VJ, Ferreira TG, Kao WW. Mesenchymal stem cells for treating ocular surface diseases. BMC Ophthalmol. 2015;15:155. doi:10.1186/s12886‑015‑0138‑4.; Di G, Du X, Qi X, Zhao X, Duan H, Li S, Xie L, Zhou Q. Mesenchymal Stem Cells Promote Diabetic Corneal Epithelial Wound Healing Through TSG‑6‑Dependent Stem Cell Activation and Macrophage Switch. Invest Ophthalmol Vis Sci. 2017;58(10):4344–4354. doi:10.1167/iovs.17‑21506.; Holan V, Trosan P, Cejka C, Javorkova E, Zajicova A, Hermankova B, Chudickova M, Cejkova J. A Comparative Study of the Therapeutic Potential of Mesenchymal Stem Cells and Limbal Epithelial Stem Cells for Ocular Surface Reconstruction. Stem Cells Transl Med. 2015;4(9):1052–1063. doi:10.5966/sctm.2015‑0039.; Pınarlı FA, Okten G, Beden U, Fışgın T, Kefeli M, Kara N, Duru F, Tomak L. Keratinocyte growth factor‑2 and autologous serum potentiate the regenerative effect of mesenchymal stem cells in cornea damage in rats. Int J Ophthalmol. 2014;7(2):211–219. doi:10.3980/j.issn.2222‑3959.2014.02.05.; Rohaina CM, Then KY, Ng AM, Halim WA, Zahidin AZ, Saim A, Idrus RB. Reconstruction of limbal stem cell deficient corneal surface with induced human bone marrow mesenchymal stem cells on amniotic membrane. Transl Res. 2014;163(3):200–210. doi:10.1016/j.trsl.2013.11.004.; Sánchez‑Abarca LI, Hernández‑Galilea E, Lorenzo R, Herrero C, Velasco A, Carrancio S, Caballero-Velázquez T, Rodríguez‑Barbosa JI, Parrilla M, Del Cañizo C, San Miguel J, Aijón J, Pérez‑Simón JA. Human bone marrow stromal cells differentiate into corneal tissue and prevent ocular graft‑versus‑host disease in mice. Cell Transplant. 2015;24(12):2423–2433. doi:10.3727/096368915X687480.; Trosan P, Javorkova E, Zajicova A, Hajkova M, Hermankova B, Kossl J, Krulova M, Holan V. The Supportive Role of Insulin‑Like Growth Factor‑I in the Differentiation of Murine Mesenchymal Stem Cells into Corneal‑Like Cells. Stem Cells Dev. 2016;25(11):874–881. doi:10.1089/scd.2016.0030.; Oh JY, Ko JH, Kim MK, Wee WR. Effects of mesenchymal stem/stromal cells on cultures of corneal epithelial progenitor cells with ethanol injury. Invest Ophthalmol Vis Sci. 2014;55:7628–7635. doi:10.1167/iovs.14‑15424.; https://www.ophthalmojournal.com/opht/article/view/2442

  2. 2
    Academic Journal

    Contributors: Исследование выполнено за счет гранта Российского научного фонда № 21-15-00251, https://rscf.ru/project/21-15-00251/.

    Source: Russian Journal of Transplantology and Artificial Organs; Том 25, № 4 (2023); 121-129 ; Вестник трансплантологии и искусственных органов; Том 25, № 4 (2023); 121-129 ; 1995-1191

    File Description: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1693/1547; https://journal.transpl.ru/vtio/article/view/1693/1593; https://journal.transpl.ru/vtio/article/downloadSuppFile/1693/1444; https://journal.transpl.ru/vtio/article/downloadSuppFile/1693/1445; https://journal.transpl.ru/vtio/article/downloadSuppFile/1693/1446; https://journal.transpl.ru/vtio/article/downloadSuppFile/1693/1447; https://journal.transpl.ru/vtio/article/downloadSuppFile/1693/1448; Каратеев АЕ, Лила АМ. Остеоартрит: современная клиническая концепция и некоторые перспективные терапевтические подходы. Научно-практическая ревматология. 2018; 56 (1): 70–81. doi:10.14412/1995-4484-2018-70-81.; Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. The Lancet. 2019; 393 (10182): 1745–1759. doi:10.1016/s01406736(19)30417-9. PMID: 31034380.; Giorgino R, Albano D, Fusco S, Peretti GM, Mangiavini L, Messina C. Knee osteoarthritis: epidemiology, pathogenesis, and mesenchymal stem cells: what else is new? An Update. Int J Mol Sci. 2023; 24 (7): 6405. doi:10.3390/ijms24076405. PMID: 37047377.; Hsueh MF, Önnerfjord P, Kraus VB. Biomarkers and proteomic analysis of osteoarthritis. Matrix Biol. 2014; 39: 56–66. doi:10.1016/j.matbio.2014.08.012. PMID: 25179675.; Chow YY, Chin KY. The role of inflammation in the pathogenesis of osteoarthritis. Mediators Inflamm. 2020; 2020: 8293921. doi:10.1155/2020/8293921. PMID: 32189997.; Aaron RK, Racine J, Dyke JP. Contribution of circulatory disturbances in subchondral bone to the pathophysiology of osteoarthritis. Curr Rheumatol Rep. 2017; 19 (8): 49. doi:10.1007/s11926-017-0660-x. PMID: 28718064.; Sanchez C, Bay-Jensen AC, Pap T, Dvir-Ginzberg M, Quasnichka H, Barrett-Jolley R et al. Chondrocyte secretome: a source of novel insights and exploratory biomarkers of osteoarthritis. Osteoarthritis Cartilage. 2017; 25 (8): 1199–1209. doi:10.1016/j.joca.2017.02.797. PMID: 28232143.; Севастьянов ВИ, Духина ГА, Григорьев АМ, Перова НВ, Кирсанова ЛА, Скалецкий НН и др. Функциональная эффективность биомедицинского клеточного продукта для регенерации суставного хряща (экспериментальная модель остеоартроза). Вестник трансплантологии и искусственных органов. 2015; 17 (1): 86–96. doi:10.15825/1995-1191-2015-1-86-96.; Shariatzadeh M, Song J, Wilson S. The efficacy of different sources of mesenchymal stem cells for the treatment of knee osteoarthritis. Cell Tissue Res. 2019; 378 (3): 399–410. doi:10.1007/s00441-019-03069-9. PMID: 31309317.; Roos EM, Arden NK. Strategies for the prevention of knee osteoarthritis. Nature Reviews Rheumatology. 2015; 12 (2): 92–101. doi:10.1038/nrrheum.2015.135. PMID: 26439406.; Урясьев ОМ, Заигрова НК. Остеоартрит: патогенез, диагностика, лечение. Земский врач. 2016; 1–2 (29– 30): 27–35.; Loo SJQ, Wong NK. Advantages and challenges of stem cell therapy for osteoarthritis (review). Biomed Rep. 2021; 15 (2): 67. doi:10.3892/br.2021.1443. PMID: 34155451.; Murphy JM, Fink DJ, Hunziker EB, Barry FP. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 2003; 48 (12): 3464–3474. doi:10.1002/art.11365. PMID: 14673997.; Garay-Mendoza D, Villarreal-Martínez L, Garza-Bedolla A, Pérez-Garza DM, Acosta-Olivo C, Vilchez-Cava zos F et al. The effect of intra-articular injection of autologous bone marrow stem cells on pain and knee function in patients with osteoarthritis. Int J Rheum Dis. 2018; 21 (1): 140–147. doi:10.1111/1756-185X.13139. PMID: 28752679.; Desancé M, Contentin R, Bertoni L, Gomez-Leduc T, Branly T, Jacquet S et al. chondrogenic differentiation of defined equine mesenchymal stem cells derived from umbilical cord blood for use in cartilage repair therapy. Int J Mol Sci. 2018; 19 (2): 537. doi:10.3390/ijms19020537. PMID: 29439436.; Галушко ЕА, Большакова ТЮ, Виноградова ИБ, Иванова ОН, Лесняк ОМ, Меньшикова ЛВ и др. Структура ревматических заболеваний среди взрослого населения России по данным эпидемиологического исследования (предварительные результаты). Научно-практическая ревматология. 2009; 47 (1): 11–17. doi:10.14412/1995-4484-2009136.; De Bari C, Roelofs AJ. Stem cell-based therapeutic strategies for cartilage defects and osteoarthritis. Curr Opin Pharmacol. 2018; 40: 74–80. doi:10.1016/j.coph.2018.03.009. PMID: 29625333.; Басок ЮБ, Григорьев АМ, Кирсанова ЛА, Кириллова АД, Суббот АМ, Цветкова АВ и др. Сравнительное исследование хондрогенеза мезенхимальных стромальных клеток жировой ткани человека при культивировании на коллагенсодержащих носителях в условиях in vitro. Вестник трансплантологии и искусственных органов. 2021; 23 (3): 90–100. doi:10.15825/1995-1191-2021-3-90-100.; Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA. 2000; 97 (25): 13625–13630. doi:10.1073/pnas.240309797. PMID: 11087820.; Zhou C, Yang B, Tian Y, Jiao H, Zheng W, Wang J et al. Immunomodulatory effect of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells on lymphocytes. Cell Immunol. 2011; 272 (1): 33–38. doi:10.1016/j.cellimm.2011.09.010. PMID: 22004796.; Marmotti A, Mattia S, Castoldi F, Barbero A, Mangiavini L, Bonasia DE et al. Allogeneic umbilical cord-derived mesenchymal stem cells as a potential source for cartilage and bone regeneration: an in vitro study. Stem Cells Int. 2017; 2017: 1732094. doi:10.1155/2017/1732094. PMID: 29358953.; Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: toward cellfree therapeutic strategies in regenerative medicine. Int J Mol Sci. 2017; 18 (9): 1852. doi:10.3390/ijms18091852. PMID: 28841158.; Parekkadan B, Milwid JM. Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng. 2010; 12: 87–117. doi:10.1146/annurev-bioeng-070909-105309. PMID: 20415588.; Maguire G. Stem cell therapy without the cells. Commun Integr Biol. 2013; 6 (6): e26631. doi:10.4161/cib.26631. PMID: 24567776.; Mancuso P, Raman S, Glynn A, Barry F, Murphy JM. Mesenchymal stem cell therapy for osteoarthritis: the critical role of the cell secretome. Front Bioeng Biotechnol. 2019; 7: 9. doi:10.3389/fbioe.2019.00009. PMID: 30761298.; Gunawardena TNA, Rahman MT, Abdullah BJJ, Kasim NHA. Conditioned media derived from mesenchymal stem cell cultures: The next generation for regenerative medicine. J Tissue Eng Regen Med. 2019; 13 (4): 569–586. doi:10.1002/term.2806. PMID: 30644175.; Tsvetkova AV, Vakhrushev IV, Basok YuB, Grigor’ev AM, Kirsanova LA, Lupatov AYu et al. Chondrogeneic potential of MSC from different sources in spheroid culture. Bull Exp Biol Med. 2021; 170 (4): 528–536. doi:10.1007/s10517-021-05101-x. PMID: 33725253.; Sevastianov VI, Basok YuB, Grigoriev AM, Nemets EA, Kirillova AD, Kirsanova LA et al. Decellularization of cartilage microparticles: Effects of temperature, supercritical carbon dioxide and ultrasound on biochemical, mechanical, and biological properties. J Biomed Mater Res A. 2023; 111 (4): 543–555. doi:10.1002/jbm.a.37474. PMID: 36478378.; Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8 (4): 315–317. doi:10.1080/14653240600855905. PMID: 16923606.; Rosochowicz MA, Lach MS, Richter M, Suchorska WM, Trzeciak T. Conditioned medium – is it an undervalued lab waste with the potential for osteoarthritis management? Stem Cell Rev Rep. 2023; 19 (5): 1185–1213. doi:10.1007/s12015-023-10517-1. PMID: 36790694.; Gangadaran P, Oh EJ, Rajendran RL, Oh JM, Kim HM, Kwak S et al. Three-dimensional culture conditioned bone marrow MSC secretome accelerates wound healing in a burn injury mouse model. Biochem Biophys Res Commun. 2023; 673: 87–95. doi:10.1016/j.bbrc.2023.05.088. PMID: 37364390.; Fan Y, Ye J, Shen F, Zhu Y, Yeghiazarians Y, Zhu W et al. Interleukin-6 stimulates circulating blood-derived endothelial progenitor cell angiogenesis in vitro. J Cereb Blood Flow Metab. 2008; 28 (1): 90–98. doi:10.1038/sj.jcbfm.9600509. PMID: 17519976.; Wu KC, Chang YH, Liu HW, Ding DC. Transplanting human umbilical cord mesenchymal stem cells and hyaluronate hydrogel repairs cartilage of osteoarthritis in the minipig model. Tzu Chi Med J. 2019; 31 (1): 11–19. doi:10.4103/tcmj.tcmj_87_18. PMID: 30692826.; Nowzari F, Zare M, Tanideh N, Meimandi-Parizi A, Kavousi S, Saneian SM et al. Comparing the healing properties of intra-articular injection of human dental pulp stem cells and cell-free-secretome on induced knee osteoarthritis in male rats. Tissue Cell. 2023; 82: 102055. doi:10.1016/j.tice.2023.102055. PMID: 36948080.; https://journal.transpl.ru/vtio/article/view/1693

  3. 3
    Academic Journal

    Source: Problems of Environmental Biotechnology; No. 1 (2021) ; Проблемы экологической биотехнологии; № 1 (2021) ; Проблеми екологічної біотехнології; № 1 (2021) ; 2306-6407

    File Description: application/pdf

  4. 4
  5. 5
  6. 6
  7. 7
  8. 8