Showing 1 - 20 results of 32 for search '"КОМПЬЮТЕРНОЕ КОНСТРУИРОВАНИЕ"', query time: 0.62s Refine Results
  1. 1
    Academic Journal

    Subject Geographic: USPU

    Relation: Специальное образование. 2022. № 4 (68)

  2. 2
    Academic Journal

    Contributors: This study was carried out within the framework of Russian Science Foundation project No. 19-15-00396, https://rscf.ru/project/19-15-00396/., Работа выполнена в рамках гранта Российского научного фонда, проект № 19-15-00396, https://rscf.ru/project/19-15-00396/

    Source: Safety and Risk of Pharmacotherapy; Том 11, № 4 (2023); 372-389 ; Безопасность и риск фармакотерапии; Том 11, № 4 (2023); 372-389 ; 2619-1164 ; 2312-7821

    File Description: application/pdf

    Relation: https://www.risksafety.ru/jour/article/view/397/949; https://www.risksafety.ru/jour/article/view/397/953; https://www.risksafety.ru/jour/article/view/397/954; https://www.risksafety.ru/jour/article/view/397/962; https://www.risksafety.ru/jour/article/view/397/965; https://www.risksafety.ru/jour/article/view/397/966; https://www.risksafety.ru/jour/article/view/397/974; https://www.risksafety.ru/jour/article/downloadSuppFile/397/410; https://www.risksafety.ru/jour/article/downloadSuppFile/397/411; https://www.risksafety.ru/jour/article/downloadSuppFile/397/433; https://www.risksafety.ru/jour/article/downloadSuppFile/397/434; https://www.risksafety.ru/jour/article/downloadSuppFile/397/435; https://www.risksafety.ru/jour/article/downloadSuppFile/397/436; https://www.risksafety.ru/jour/article/downloadSuppFile/397/440; Jorgensen WL. The many roles of computation in drug discovery. Science. 2004;303(5665):1813–8. https://doi.org/10.1126/science.1096361; Беженцев ВМ, Дружиловский ДС, Иванов СМ, Филимонов ДА, Sastry GN, Поройков ВВ. Веб-ресурсы для поиска и разработки новых лекарственных препаратов. Химико-фармацевтический журнал. 2017;51(2):3–11. https://doi.org/10.30906/0023-1134-2017-51-2-3-11; Bajorath J, Overington J, Jenkins JL, Walters P. Drug discovery and development in the era of Big Data. Future Med Chem. 2016;8(15):1807–13. https://doi.org/10.4155/fmc-2014-0081; Fourches D, Muratov E, Tropsha A. Trust, but verify II: a practical guide to chemogenomics data curation. J Chem Inf Model. 2016;56(7):1243–52. https://doi.org/10.1021/acs.jcim.6b00129; Muratov EN, Bajorath J, Sheridan RP, Tetko IV, Filimonov D, Poroikov V, et al. QSAR without borders. Chem Soc Rev. 2020;49(11):3525–64. https://doi.org/10.1039/D0CS00098A; Pun FW, Ozerov IV, Zhavoronkov A. AI-powered therapeutic target discovery. Trends Pharmacol Sci. 2023;44(9):561–72. https://doi.org/10.1016/j.tips.2023.06.010; Bender A, Cortés-Ciriano I. Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 1: Ways to make an impact, and why we are not there yet. Drug Discov Today. 2021;26(2):511–24. https://doi.org/10.1016/j.drudis.2020.12.009; Bender A, Cortes-Ciriano I. Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 2: a discussion of chemical and biological data. Drug Discov Today. 2021;26(4):1040–52. https://doi.org/10.1016/j.drudis.2020.11.037; Hasselgren C, Oprea TI. Artificial intelligence for drug discovery: are we there yet? Annu Rev Pharmacol Toxicol. 2024;64:12023. https://doi.org/10.1146/annurev-pharmtox-040 323-040828; Wadman M. FDA no longer has to require animal testing for new drugs. Science. 2023;379(6628):127–8. https://doi.org/10.1126/science.adg6276; Luo M, Wang XS, Tropsha A. Comparative analysis of QSAR-based vs. chemical similarity based predictors of GPCRs binding affinity. Mol Inform. 2016;35(1):36–41. https://doi.org/10.1002/minf.201500038; Murtazalieva KA, Druzhilovskiy DS, Goel RK, Sastry GN, Poroikov VV. How good are publicly available web services that predict bioactivity profiles for drug repurposing? SAR QSAR Environ Res. 2017;28(10):843–62. https://doi.org/10.1080/1062936X.2017.1399448; Forouzesh A, Samadi Foroushani S, Forouzesh F, Zand E. Reliable target prediction of bioactive molecules based on chemical similarity without employing statistical methods. Front Pharmacol. 2019;10:835. https://doi.org/10.3389/fphar.2019.00835; Ji KY, Liu C, Liu ZQ, Deng YF, Hou TJ, Cao DS. Comprehensive assessment of nine target prediction web services: which should we choose for target fishing? Brief Bioinform. 2023;24(2):bbad014. https://doi.org/10.1093/bib/bbad014; Буров ЮВ, Корольченко ЛВ, Поройков ВВ. Государственная система регистрации и биологических испытаний химических соединений: возможности для изыскания новых лекарственных препаратов. Бюллетень Всесоюзного научного центра по безопасности биологически активных веществ. 1990;(1):4–25.; Lagunin A, Stepanchikova A, Filimonov D, Poroikov V. PASS: prediction of activity spectra for biologically active substances. Bioinformatics. 2000;16(8):747–8. https://doi.org/10.1093/bioinformatics/16.8.747; Филимонов ДА, Дружиловский ДС, Лагунин АА, Глориозова ТА, Рудик АВ, Дмитриев АВ и др. Компьютерное прогнозирование спектров биологической активности химических соединений: возможности и ограничения. Biomedical Chemistry: Research and Methods. 2018;1(1):e00004. https://doi.org/10.18097/bmcrm00004; Filimonov DA, Zakharov AV, Lagunin AA, Poroikov VV. QNA based “Star Track” QSAR approach. SAR QSAR Environ Res. 2009;20(7–8):679–709. https://doi.org/10.1080/10629360903438370; Lagunin A, Zakharov A, Filimonov D, Poroikov V. QSAR modelling of rat acute toxicity on the basis of PASS prediction. Mol Inform. 2011;30 (2–3);241–50. https://doi.org/10.1002/minf.201000151; Stolbov LA, Filimonov DA, Poroikov VV. SAR based on self-consistent classifier. SAR QSAR Environ Res. 2022;33(10):793–804. https://doi.org/10.1080/1062936X.2022.2139751; Sakamuru S, Huang R, Xia M. Use of Tox21 screening data to evaluate the COVID-19 drug candidates for their potential toxic effects and related pathways. Front Pharmacol. 2022;13:935399. https://doi.org/10.3389/fphar.2022.935399; Pogodin PV, Lagunin AA, Filimonov DA, Poroikov VV. PASS Targets: ligand-based multi-target computational system based on public data and Naïve Bayes approach. SAR QSAR Environ Res. 2015;26(10):783–93. https://doi.org/10.1080/1062936X.2015.1078407; Lagunin AA, Rudik AV, Pogodin PV, Savosina PI, Tarasova OA, Dmitriev AV, et al. CLC-Pred 2.0: a freely available web application for in silico prediction of human cell line cytotoxicity and molecular mechanisms of action for druglike compounds. Int J Mol Sci. 2023;24(2):1689. https://doi.org/10.3390/ijms24021689; Lagunin A, Ivanov S, Rudik A, Filimonov D, Poroikov V. DIGEP-Pred: web-service for in silico prediction of drug-induced expression profiles based on structural formula. Bioinformatics. 2013;29(16):2062–63. https://doi.org/10.1093/bioinformatics/btt322; Ivanov SM, Lagunin AA, Rudik AV, Filimonov DA, Poroikov VV. ADVERPred — web service for prediction of adverse effects of drugs. J Chem Inf Model. 2018;58(1):8–11. https://doi.org/10.1021/acs.jcim.7b00568; Lagunin A, Rudik A, Filimonov D, Druzhilovskiy D, Poroikov V. ROSC-Pred: web-service for rodent organ-specific carcinogenicity prediction. Bioinformatics. 2018;34(4):710–12. https://doi.org/10.1093/bioinformatics/btx678; Lagunin A, Zakharov A, Filimonov D, Poroikov V. QSAR modelling of rat acute toxicity on the basis of PASS prediction. Mol Inform. 2011;30 (2–3):241–50. https://doi.org/10.1002/minf.201000151; Zakharov AV, Lagunin AA, Filimonov DA, Poroikov VV. Quantitative prediction of antitarget interaction profiles for chemical compounds. Chem Res Toxicol. 2012;25(11):2378–85. https://doi.org/10.1021/tx300247r; Dmitriev AV, Filimonov DA, Rudik AV, Pogodin PV, Karasev DA, Lagunin AA, Poroikov VV. Drug-drug interaction prediction using PASS. SAR QSAR Environ Res. 2019;30(9):655–64. https://doi.org/10.1080/1062936X.2019.1653966; Короткевич ЕИ, Рудик АВ, Дмитриев АВ, Лагунин АА, Филимонов ДА. Прогноз метаболической стабильности ксенобиотиков программами PASS и GUSAR. Биомедицинская химия. 2021;67(3):295–9. https://doi.org/10.18097/PBMC20216703295; Rudik A, Dmitriev A, Lagunin A, Filimonov D, Poroikov V. SOMP: web-service for in silico prediction of sites of metabolism for drug-like compounds. Bioinformatics. 2015;31(12):2046–8. https://doi.org/10.1093/bioinformatics/btv087; Rudik AV, Dmitriev AV, Lagunin AA, Filimonov DA, Poroikov VV. Prediction of reacting atoms for the major biotransformation reactions of organic xenobiotics. J Cheminform. 2016;8:68. https://doi.org/10.1186/s13321-016-0183-x; Rudik AV, Dmitriev AV, Lagunin AA, Filimonov DA, Poroikov VV. Metabolism sites prediction based on xenobiotics structural formulae and PASS prediction algorithm. J Chem Inf Model. 2014;54(2):498–507. https://doi.org/10.1021/ci400472j; Rudik AV, Bezhentsev VM, Dmitriev AV, Druzhilovskiy DS, Lagunin AA, Filimonov DA, Poroikov VV. MetaTox: web application for predicting structure and toxicity of xenobiotics’ metabolites. J Chem Inf Model. 2017;57(4):638–42. https://doi.org/10.1021/acs.jcim.6b00662; Rudik A, Bezhentsev V, Dmitriev A, Lagunin A, Filimonov D, Poroikov V. MetaTox — web application for generation of metabolic pathways and toxicity estimation. J Bioinform Comput Biol. 2019;17(1):1940001. https://doi.org/10.1142/S0219720019400018; Rudik A, Dmitriev A, Lagunin A, Filimonov D, Poroikov V. MetaPASS: a web application for analyzing the biological activity spectrum of organic compounds taking into account their biotransformation. Mol Inform. 2021;40(4):2000231. https://doi.org/10.1002/minf.202000231; Раевский ОА, Солодова СЛ, Лагунин АА, Поройков ВВ. Компьютерное моделирование проницаемости физиологически активных веществ через гематоэнцефалический барьер. Биомедицинская химия. 2014;60(2):161–81. https://doi.org/10.18097/PBMC20146002161; Ivanov SM, Lagunin AA, Poroikov VV. In silico assessment of adverse drug reactions and associated mechanisms. Drug Discov Today. 2016;21(1):58–71. https://doi.org/10.1016/j.drudis.2015.07.018; Ivanov SM, Lagunin AA, Pogodin PV, Filimonov DA, Poroikov VV. Identification of drug targets related to the induction of ventricular tachyarrhythmia through systems chemical biology approach. Toxicol Sci. 2015;145(2):321–36. https://doi.org/10.1093/toxsci/kfv054; Koborova ON, Filimonov DA, Zakharov AV, Lagunin AA, Ivanov SM, Kel A, Poroikov VV. In silico method for identification of promising anticancer drug targets. SAR QSAR Environ Res. 2009;20 (7–8):755–66. https://doi.org/10.1080/10629360903438628; Ivanov SM, Lagunin AA, Pogodin PV, Filimonov DA, Poroikov VV. Identification of drug-induced myocardial infarction-related protein targets through the prediction of drug–target interactions and analysis of biological processes. Chem Res Toxicol. 2014;27(7):1263–81. https://doi.org/10.1021/tx500147d; Поройков ВВ, Филимонов ДА, Глориозова ТА, Лагунин АА, Дружиловский ДС, Рудик АВ и др. Компьютерный прогноз спектров биологической активности органических соединений: возможности и ограничения. Известия Академии наук. Серия химическая. 2019;(12):2143–54. EDN: YQLMTT https://doi.org/10.1007/s11172-019-2683-0; Ivanov S, Lagunin A, Filimonov D, Poroikov V. Assessment of the cardiovascular adverse effects of drug–drug interactions through a combined analysis of spontaneous reports and predicted drug–target interactions. PLoS Comput Biol. 2019;15(7):e1006851. https://doi.org/10.1371/journal.pcbi.1006851; Ivanov S, Lagunin A, Filimonov D, Poroikov V. Relationships between the structure and severe drug-induced liver injury for low, medium and high doses of drugs. Chem Res Toxicol. 2022;35(3):402–11. https://doi.org/0.1021/acs.chemrestox.1c00307; Сухачёв ВС, Иванов СМ, Дмитриев АВ, Прогнозирование неблагоприятных эффектов межлекарственных взаимодействий на сердечно-сосудистую систему на основе анализа связей «структура–активность». Биохимия. 2023;88(5):773–84. https://doi.org/10.31857/S0320972523050068; Irurzun-Arana I, Rackauckas C, McDonald TO, Trocóniz IF. Beyond deterministic models in drug discovery and development. Trends Pharmacol Sci. 2020;41(11):882–95. https://doi.org/10.1016/j.tips.2020.09.005; Blanco MJ, Gardinier KM, Namchuk MN. Advancing new chemical modalities into clinical studies. ACS Med Chem Lett. 2022;13(11):1691–8. https://doi.org/10.1021/acsmedchemlett.2c00375; Bonner S, Barrett IP, Ye C, Swiers R, Engkvist O, Bender A, Hoyt CT, Hamilton WL. A review of bio medical datasets relating to drug discovery: a knowledge graph perspective. Brief Bioinform. 2022;23(6):bbac404. https://doi.org/10.1093/bib/bbac404; Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4(11): 682–90. https://doi.org/10.1038/nchembio.118; Loscalzo J, Kohane I, Barabasi AL. Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Mol Syst Biol. 2007;3:124. https://doi.org/10.1038/msb4100163; Tarasova OA, Urusova AF, Filimonov DA, Nicklaus MC, Zakharov AV, Poroikov VV. QSAR modeling using large-scale databases: case study for HIV-1 reverse transcriptase inhibitors. J Chem Inf Model. 2015;55(7):1388–99. https://doi.org/10.1021/acs.jcim.5b00019; Alharbi E, Gadiya Y, Henderson D, Zaliani A, Delfin-Rossaro A, Cambon-Thomsen A, et al. Selection of data sets for FAIRification in drug discovery and development: which, why, and how? Drug Discov Today. 2022;27(8):2080–5. https://doi.org/10.1016/j.drudis.2022.05.010; Перфилова ВН. Возможности и перспективы доклинической оценки лекарственной безопасности с использованием альтернативных методов: опыт реализации программы «Токсикология в XXI веке» в США. Безопасность и риск фармакотерапии. 2023. https://doi.org/10.30895/2312-7821-2023-379; Tarasova OA, Biziukova NYu, Filimonov DA, Poroikov VV, Nicklaus MC. Data mining approach for extraction of useful information about biologically active compounds from publications. Journal of Chemical Information and Modeling. 2019;59(9):3635–44. https://doi.org/10.1021/acs.jcim.9b00164; Tarasova OA, Biziukova NYu, Rudik AV, Dmitriev AV, Filimonov DA, Poroikov VV. Extraction of data on parent compounds and their metabolites from texts of scientific abstracts. J Chem Inf Model. 2021;61(4):1683–90. https://doi.org/10.1021/acs.jcim.0c01054; Tarasova OA, Rudik AV, Biziukova NYu, Filimonov DA, Poroikov VV. Cheminform. 2022;14:55. https://doi.org/10.1186/s13321-022-00633-4; https://www.risksafety.ru/jour/article/view/397

  3. 3
    Academic Journal

    Source: Doklady of the National Academy of Sciences of Belarus; Том 62, № 3 (2018); 281-292 ; Доклады Национальной академии наук Беларуси; Том 62, № 3 (2018); 281-292 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2018-62-3

    File Description: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/519/522; Macedo, L. F. Aromatase inhibitors and breast cancer / L. F. Macedo, G. Sabnis, A. Brodie // Ann. N. Y. Acad. Sci. − 2009. − Vol. 1155, N 1. − P. 162–173. https://doi.org/10.1111/j.1749-6632.2008.03689.x; Structural basis for androgen specifity and oestrogen synthesis in human aromatase / D. Ghosh [et al.] // Nature. − 2009. − Vol. 457, N 7226. − P. 219−223. https://doi.org/10.1038/nature07614; Hong, Y. Aromatase inhibitors: structural features and biochemical characterization / Y. Hong, S. Chen // Ann. N. Y. Acad. Sci. − 2006. − Vol. 1089, N 1. − P. 237–251. https://doi.org/10.1196/annals.1386.022; Dutta, U. Aromatase inhibitors: past, present and future in breast cancer therapy / U. Dutta, K. Pant // Med. Oncol. − 2008. − Vol. 25, N 2. − P. 113–124. https://doi.org/10.1007/s12032-007-9019-x; Ghosh, D. Recent Progress in the Discovery of Next Generation Inhibitors of Aromatase from the Structure–Function Perspective / D. Ghosh, J. Lo, C. Egbuta // J. Med. Chem. − 2016. − Vol. 59, N 11. − P. 5131–5148. https://doi.org/10.1021/acs.jmedchem.5b01281; Pharmacophore modeling and in silico screening for new P450 19 (aromatase) inhibitors / D. Schuster [et al.] // J. Chem. Inf. Model. − 2006. − Vol. 46, N 3. − P. 1301–1311. https://doi.org/10.1021/ci050237k; Fast three dimensional pharmacophore virtual screening of new potent non-steroid aromatase inhibitors / M. A. Neves [et al.] // J. Med. Chem. – 2009. – Vol. 52, N 1. – P. 143–150. https://doi.org/10.1021/jm800945c; An efficient steroid pharmacophore-based strategy to identify new aromatase inhibitors / M. A. Neves [et al.] // Eur. J. Med. Chem. – 2009. – Vol. 44, N 10. – P. 4121–4127. https://doi.org/10.1016/j.ejmech.2009.05.003; X-ray structure of human aromatase reveals an androgen-specific active site / D. Ghosh [et al.] // J. Steroid Biochem. Mol. Biol. – 2010. – Vol. 118, N 4–5. – P. 197–202. https://doi.org/10.1016/j.jsbmb.2009.09.012; Structure-activity relationships and docking studies of synthetic 2-arylindole derivatives determined with aromatase and quinone reductase 1 / A. M. Prior [et al.] // Bioorganic Med. Chem. Letters. – 2017. – Vol. 27, N 24. – P. 5393–5399. https://doi.org/10.1016/j.bmcl.2017.11.010; Binding mode of triazole derivatives as aromatase inhibitors based on docking, protein ligand interaction fingerprinting, and molecular dynamics simulation studies / A. Mojaddami [et al.] // Res. Pharm. Sci. – 2017. – Vol. 12, N 1. – P. 21–30. https://doi.org/10.4103/1735-5362.199043; Pharmacophore Modeling and in Silico/in Vitro Screening for Human Cytochrome P450 11B1 and Cytochrome P450 11B2 Inhibitors / M. Akram [et al.] // Front. Chem. – 2017. – Vol. 5. – P. 104. https://doi.org/10.3389/fchem.2017.00104; Kolb, H. C. Click chemistry: Diverse chemical function from a few good reactions / H. C. Kolb, M. G. Finn, K. B. Sharpless // Angew. Chem. Int. Ed. – 2001. – Vol. 40, N 11. – P. 2004–2021. https://doi.org/10.1002/1521-3773(20010601)40:11%3C2004::aidanie2004%3E3.0.co;2-5; Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings / C. A. Lipinski [et al.] // Adv. Drug Deliv. Rev. − 2001. − Vol. 46, N 1–3. − P. 3–26. https://doi.org/10.1016/s0169409x(00)00129-0; Evaluation of the mechanism of aromatase cytochrome P450 / Y. C. Kao [et al.] // Eur. J. Biochem. − 2001. − Vol. 268, N 2. − P. 243–251. https://doi.org/10.1046/j.1432-1033.2001.01886.x; https://doklady.belnauka.by/jour/article/view/519

  4. 4
    Academic Journal

    Source: Doklady of the National Academy of Sciences of Belarus; Том 61, № 3 (2017); 47-57 ; Доклады Национальной академии наук Беларуси; Том 61, № 3 (2017); 47-57 ; 2524-2431 ; 1561-8323 ; undefined

    File Description: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/421/422; Андрианов, А. М. Конформационный анализ белков. Теория и приложения / А. М. Андрианов. – Минск: Белорусская наука, 2013. – 518 с.; Kolb, H. C. Click chemistry: Diverse chemical function from a few good reactions / H. C. Kolb, M. G. Finn, K. B. Sharpless // Angew. Chem. Int. Ed. – 2001. – Vol. 40, N 11. – P. 2004–2021. doi.org/10.1002/1521-3773(20010601)40:11%3C2004::aid-anie2004%3E3.3.co;2-x; Arts, E. J. HIV-1 antiretroviral drug therapy / E. J. Arts, D. J. Hazuda // Cold Spring Harb. Perspect. Med. – 2012. – Vol. 2, N 4. – a007161. doi:10.1101/cshperspect.a007161; Tilton, J. C. Entry inhibitors in the treatment of HIV-1 infection / J. C. Tilton, R. W. Doms // Antiviral Res. – 2010. – Vol. 85, N 1. – P. 91–100. doi.org/10.1016/j.antiviral.2009.07.022; Andrianov, A. M. HIV-1 gp120 V3 loop for anti-AIDS drug discovery: computer-aided approaches to the problem solving / A. M. Andrianov // Expert Opin. Drug Discov. – 2011. – Vol. 6, N 4. – P. 419–435. doi:10.1517/17460441.2011.560603; Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody / P. D. Kwong [et al.] // Nature. – 1998. – Vol. 393. – P. 648–659. doi:10.1038/31405; Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings / C. A. Lipinski [et al.] // Adv. Drug Deliv. Rev. – 2001. – Vol. 46, N 1–3. – P. 3–26. dx.doi.org/10.1016/S0169-409X(00)00129-0; Structure-based design, synthesis and validation of CD4-mimetic small molecule inhibitors of HIV-1 entry: Conversion of a viral entry agonist to an antagonist / J. R. Courter [et al.] // Acc. Chem. Res. – 2014. – Vol. 47, N 4. – P. 1228–1237. doi. org/10.1021/ar4002735; Structure-based design of a small molecule CD4-antagonist with broad spectrum anti-HIV-1 activity / F. Curreli [et al.] // J. Med. Chem. – 2015. – Vol. 58, N 17. – P. 6909–6927. doi.org/10.1021/acs.jmedchem.5b00709; Liu, Y. Optimization of CD4/gp120 inhibitors by thermodynamic-guided alanine-scanning mutagenesis / Y. Liu, A. Schön, E. Freire // Chem. Biol. Drug Des. – 2013. – Vol. 81, N 1. – P. 72–78. doi.org/10.1111/cbdd.12075; The human immunodeficiency virus-gp120 binding-site on CD4 − Delineation by quantitative equilibrium and kinetic binding studies of mutants in conjunction with a high-resolution CD4 atomic-structure / U. Moebius [et al.] // J. Exp. Med. – 1992. – Vol. 176, N 2. – P. 507–517. doi.org/10.1084/jem.176.2.507; Identification of individual human-immunodeficiency-virus type-1 gp120 amino-acids important for CD4 receptor-binding / U. Olshevsky [et al.] // J. Virol. – 1990. – Vol. 64, N 12. – P. 5701–5707.; Identification of N-phenyl-N′-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4 / Q. Zhao [et al.] // Virology. – 2005. – Vol. 339, N 2. – P. 213–225. doi.org/10.1016/j. virol.2005.06.008; Unliganded HIV-1 gp120 core structures assume the CD4-bound conformation with regulation by quaternary interactions and variable loops / Y. D. Kwon [et al.] // Proc. Natl. Acad. Sci. USA. – 2012. – Vol. 109, N 15. – P. 5663–5668. doi.org/10.1073/pnas.1112391109; Durrant, J. D. AutoGrow: a novel algorithm for protein inhibitor design / J. D. Durrant, R. E. Amaro, J. A. McCammon // Chem. Biol. Drug Des. – 2009. – Vol. 73, N 2. – P. 168–178. doi.org/10.1111/j.1747-0285.2008.00761.x; https://doklady.belnauka.by/jour/article/view/421; undefined

  5. 5
    Academic Journal

    Source: Fine Chemical Technologies; Vol 9, No 1 (2014); 73-75 ; Тонкие химические технологии; Vol 9, No 1 (2014); 73-75 ; 2686-7575 ; 2410-6593

    File Description: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/498/544; Литтл Р.Дж.А., Рубин Д.Б. Статистический анализ данных с пропусками: пер. с англ. М.: Финансы и статистика, 1990. 336 с.; Zloba E., Yatskiv I. Statistical methods of reproducing of missed data // Computer Modelling & New Technologies. 2002. V. 6. № 1. P. 51-61.; Линник Ю. В. Метод наименьших квадратов и основы математико-статистической теории обработки наблюдений. 2-е изд. М.: Физматгиз, 1962. 337 с.; Столяренко А.В. Интегрированная информационно-аналитическая система для прогнозирования свойств неорганических соединений : автореф. дис. … канд. техн. наук. М.: Моск. гос. ин-т электроники и математики, 2008. 24 с.

  6. 6
  7. 7
  8. 8
  9. 9
    Academic Journal

    Source: Системи обробки інформації. — 2010. — № 5(86). 136-139 ; Системы обработки информации. — 2010. — № 5(86). 136-139 ; Information Processing Systems. — 2010. — № 5(86). 136-139 ; 1681-7710

    Time: 021

    File Description: application/pdf

  10. 10
    Academic Journal

    Contributors: Томский государственный университет Сибирский физико-технический институт Научные подразделения СФТИ, Томский государственный университет Научное управление Лаборатории НУ

    Source: Вопросы материаловедения. 2015. № 1. С. 245-250

    File Description: application/pdf

  11. 11
  12. 12

    Contributors: Томский государственный университет, Институт физики прочности и материаловедения (Томск)

    File Description: application/pdf

  13. 13
  14. 14
    Academic Journal

    Contributors: Томский государственный университет Сибирский физико-технический институт Научные подразделения СФТИ, Томский государственный университет Научное управление Лаборатории НУ

    Source: Вопросы материаловедения. 2015. № 1. С. 245-250

    File Description: application/pdf

  15. 15

    Source: International Workshop "Multiscale Biomechanics and Tribology of Inorganic and Organic Systems" ; Международная конференция "Перспективные материалы с иерархической структурой для новых технологий и надежных конструкций" ; VIII Всероссийская научно-практическая конференция с международным участием, посвященная 50-летию основания Института химии нефти "Добыча, подготовка, транспорт нефти и газа" : тезисы докладов. Томск, 2019. С. 114

    File Description: application/pdf

  16. 16

    File Description: application/pdf

    Relation: vtls:000646825; URN:ISBN:9785946217408; http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000646825

  17. 17
  18. 18
  19. 19

    Contributors: Томский государственный университет Факультет инновационных технологий Кафедра управления качеством

    File Description: application/pdf

  20. 20

    Contributors: Томский государственный университет Физико-технический факультет Кафедра теории прочности и проектирования

    Source: Международная конференция по физической мезомеханике, компьютерному конструированию и разработке новых материалов, 5-9 сентября 2011 г., Томск, Россия : тезисы докладов. Томск, 2011. С. 135-137

    File Description: application/pdf