Εμφανίζονται 1 - 19 Αποτελέσματα από 19 για την αναζήτηση '"КОЛИЧЕСТВЕННАЯ КОМПЬЮТЕРНАЯ ТОМОГРАФИЯ"', χρόνος αναζήτησης: 0,63δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Diagnostic radiology and radiotherapy; Том 14, № 4 (2023); 73-81 ; Лучевая диагностика и терапия; Том 14, № 4 (2023); 73-81 ; 2079-5343

    Περιγραφή αρχείου: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/941/624; Lee J.H., Koh J., Jeon Y.K. et al. An Integrated Radiologic-Pathologic Understanding of COVID-19 Pneumonia // Radiology. 2023. Vol. 306, No. 2. P. e222600. doi:10.1148/radiol.222600.; Kwee T.C., Kwee R.M. Chest CT in COVID-19: What the Radiologist Needs to Know // RadioGraphics. 2020. Vol. 40, No. 7. P. 1848–1865. doi:10.1148/rg.2020200159.; Rubin G.D., Ryerson C.J., Haramati L.B. et al. The Role of Chest Imaging in Patient Management during the COVID-19 Pandemic: A Multinational Consensus Statement from the Fleischner Society // Radiology. 2020. Vol. 296, No. 1. P. 172–180. doi:10.1148/radiol.2020201365.; Simpson S., Kay F.U., Abbara S. et al. Radiological Society of North America Expert Consensus Document on Reporting Chest CT Findings Related to COVID-19: Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA // Radiology: Cardiothoracic Imaging. 2020. Vol. 2, No. 2. P. e200152. doi:10.1148/ryct.2020200152.; Ai T., Yang Z., Hou H. et al. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases // Radiology. 2020. Vol. 296, No. 2. P. E32–E40. doi:10.1148/radiol.2020200642.; Suh Y.J., Hong H., Ohana M. et al. Pulmonary Embolism and Deep Vein Thrombosis in COVID-19: A Systematic Review and Meta-Analysis // Radiology. 2021. Vol. 298, No. 2. P. E70–E80. doi:10.1148/radiol.2020203557.; Yang R., Li X., Liu H. et al. Chest CT Severity Score: An Imaging Tool for Assessing Severe COVID-19 // Radiology: Cardiothoracic Imaging. 2020. Vol. 2, No. 2. P. e200047. doi:10.1148/ryct.2020200047.; Revzin M.V., Raza S, Warshawsky R. et al. Multisystem Imaging Manifestations of COVID-19, Part 1: Viral Pathogenesis and Pulmonary and Vascular System Complications // RadioGraphics. 2020. Vol. 40, No. 6. P. 1574–1599. doi:10.1148/rg.2020200149.; Carfì A., Bernabei R, Landi F. et al. Persistent Symptoms in Patients After Acute COVID-19 // JAMA. 2020. Vol. 324, No. 6. P. 603. doi:10.1001/jama.2020.12603.; Liu J., Zheng X, Tong Q. et al. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS‐CoV, MERS‐CoV, and 2019‐nCoV // J. Med. Virol. 2020. Vol. 92, No. 5. P. 491–494. doi:10.1002/jmv.25709.; John A.E., Joseph C, Jenkins G. et al. COVID‐19 and pulmonary fibrosis: A potential role for lung epithelial cells and fibroblasts // Immunological Reviews. 2021. Vol. 302, No. 1. P. 228–240. doi:10.1111/imr.12977.; Mohammadi A., Balan I, Yadav S. et al. Post-COVID-19 Pulmonary Fibrosis // Cureus. 2022. doi:10.7759/cureus.22770.; Sgalla G., Iovene B., Calvello M. et al. Idiopathic pulmonary fibrosis: pathogenesis and management // Respir. Res. 2018. Vol. 19, No. 1. P. 32. doi:10.1186/s12931-018-0730-2.; Tanni S.E., Fabro A.T., De Albuquerque A. et al. Pulmonary fibrosis secondary to COVID-19: a narrative review // Expert Review of Respiratory Medicine. 2021. Vol. 15, No. 6. P. 791–803. doi:10.1080/17476348.2021.1916472.; Groff D., Sun A., Ssentongo A.E. et al. Short-term and Long-term Rates of Postacute Sequelae of SARS-CoV-2 Infection: A Systematic Review // JAMA Netw Open. 2021. Vol. 4, No. 10. P. e2128568. doi:10.1001/jamanetworkopen.2021.28568.; Liu X., Zhou H, Zhou Y. et al. Risk factors associated with disease severity and length of hospital stay in COVID-19 patients // Journal of Infection. 2020. Vol. 81, No. 1. P. e95–e97. doi:10.1016/j.jinf.2020.04.008.; Richeldi L., Collard H.R., Jones M.G. Idiopathic pulmonary fibrosis // The Lancet. 2017. Vol. 389, No. 10082. P. 1941–1952. doi:10.1016/S0140-6736(17)30866-8.; Liu F., Mih J.D., Shea B.S. et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression // Journal of Cell Biology. 2010. Vol. 190, No. 4. P. 693–706. doi:10.1083/jcb.201004082.; Martinez F.J. Pulmonary Function Testing in Idiopathic Interstitial Pneumonias // Proceedings of the American Thoracic Society. 2006. Vol. 3, No. 4. P. 315–321. doi:10.1513/pats.200602–022TK.; Huang C., Huang L., Wang Y. et al. RETRACTED: 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study // The Lancet. 2021. Vol. 397, No. 10270. P. 220–232. doi:10.1016/S0140-6736(20)32656-8.; Mylvaganam R.J., Bailey J.I., Sznajder J.I. et al. Recovering from a pandemic: pulmonary fibrosis after SARS-CoV-2 infection // Eur. Respir. Rev. 2021. Vol. 30, No. 162. P. 210194. doi:10.1183/16000617.0194-2021.; Nalbandian A., Sehgal K, Gupta A. et al. Post-acute COVID-19 syndrome // Nat Med. 2021. Vol. 27, No. 4. P. 601–615. doi:10.1038/s41591-021-01283-z.; Rai D.K., Sharma P., Kumar R. Post COVID-19 pulmonary fibrosis. Is it real threat? // Indian J Tuberc. 2021. Vol. 68, No. 3. P. 330–333. doi:10.1016/j.ijtb.2020.11.003.; Mongelli A., Barbi V., Gottardi Zamperla M. et al. Evidence for Biological Age Acceleration and Telomere Shortening in COVID-19 Survivors // Int. J. Mol. Sci. 2021. Vol. 22, No. 11. P. 6151. doi:10.3390/ijms22116151.; D’Ettorre G., Gentilini Cacciola E., Santinelli L. et al. COVID-19 sequelae in working age patients: A systematic review // J. Med. Virol. 2022. Vol. 94, No. 3. P. 858–868. doi:10.1002/jmv.27399.; Lee J.H., Yim J.-J., Park J. Pulmonary function and chest computed tomography abnormalities 6–12 months after recovery from COVID-19: a systematic review and meta-analysis // Respir Res. 2022. Vol. 23, No. 1. P. 233. doi:10.1186/s12931-022-02163-x.; Testa L.C., Jule Y, Lundh L. et al. Automated Digital Quantification of Pulmonary Fibrosis in Human Histopathology Specimens // Front. Med. 2021. Vol. 8. P. 607720. doi:10.3389/fmed.2021.607720.; Ashcroft T., Simpson J.M., Timbrell V. Simple method of estimating severity of pulmonary fibrosis on a numerical scale // Journal of Clinical Pathology. 1988. Vol. 41, No. 4. P. 467–470. doi:10.1136/jcp.41.4.467.; Cicko S., Grimm M., Ayata K. et al. Uridine supplementation exerts anti-inflammatory and anti-fibrotic effects in an animal model of pulmonary fibrosis // Respir Res. 2015. Vol. 16, No. 1. P. 105. doi:10.3390/biom10111585.; De Rudder M., Bouzin C., Nachit M. et al. Automated computerized image analysis for the user-independent evaluation of disease severity in preclinical models of NAFLD/NASH // Laboratory Investigation. 2020. Vol. 100, No. 1. P. 147–160. doi:10.1038/s41374-019-0315-9.; Barisoni L., Lafata K.J., Hewitt S.M. et al. Digital pathology and computational image analysis in nephropathology // Nat. Rev. Nephrol. 2020. Vol. 16, No. 11. P. 669–685. doi:10.1038/s41581-020-0321-6.; Courtoy G.E., Leclercq I, Froidure A. et al. Digital Image Analysis of Picrosirius Red Staining: A Robust Method for Multi-Organ Fibrosis Quantification and Characterization // Biomolecules. 2020. Vol. 10, No. 11. P. 1585. doi:10.3390/biom10111585.; Kinoshita Y., Watanabe K, Ishii H. et al. Proliferation of elastic fibres in idiopathic pulmonary fibrosis: a whole‐slide image analysis and comparison with pleuroparenchymal fibroelastosis // Histopathology. 2017. Vol. 71, No. 6. P. 934–942. doi:10.1111/his.13312.; Inui S., Fujikawa A, Jitsu M. et al. Chest CT Findings in Cases from the Cruise Ship Diamond Princess with Coronavirus Disease (COVID-19) // Radiol. Cardiothorac Imaging. 2020. Vol. 2, No. 2. P. e200110. doi:10.1148/ryct.2020200110.; Zakharova A.V. Correlation of MR pulmonary perfusion in patients with COVID-19 with quantitative assessment of acute phase CT images // Diagnostic radiology and radiotherapy. 2023. Vol. 14. No 3. P. 61-66. https://doi.org/10.22328/2079-5343-2023-14-3-61-66.; Cressoni M., Gallazzi E, Chiurazzi C. et al. Limits of normality of quantitative thoracic CT analysis // Crit Care. 2013. Vol. 17, No. 3. P. R93. doi:10.1186/cc12738.; Gattinoni L., Chiumello D., Cressoni M. et al. Pulmonary computed tomography and adult respiratory distress syndrome // Swiss Med Wkly. 2005. doi:10.4414/smw.2005.10936.; Weller H.I., Van Belleghem S.M., Hiller A.E. et al. Flexible color segmentation of biological images with the R package recolorize: preprint // Bioinformatics. 2022. doi:10.1101/2022.04.03.486906.; Wood S.N. Fast Stable Restricted Maximum Likelihood and Marginal Likelihood Estimation of Semiparametric Generalized Linear Models // Journal of the Royal Statistical Society Series B: Statistical Methodology. 2011. Vol. 73, No. 1. P. 3–36. doi:10.1111/j.1467-9868.2010.00749.x.; Toussie D., Voutsinas N., Finkelstein M. et al. Clinical and Chest Radiography Features Determine Patient Outcomes in Young and Middle-aged Adults with COVID-19 // Radiology. 2020. Vol. 297, No. 1. P. E197–E206. doi:10.1148/radiol.2020201754.; Shen C., Yu N., Cai S. et al. Quantitative computed tomography analysis for stratifying the severity of Coronavirus Disease 2019 // Journal of Pharmaceutical Analysis. 2020. Vol. 10, No. 2. P. 123–129. doi:10.1016/j.jpha.2020.03.004.; Caruso D., Zerunian M., Polici M. et al. Diagnostic performance of CT lung severity score and quantitative chest CT for stratification of COVID-19 patients // Radiol. med. 2022. Vol. 127, No. 3. P. 309–317. doi:10.1007/s11547-022-01458-9.; Shalmon T., Zerunian M., Polici M. et al. Predefined and data driven CT densitometric features predict critical illness and hospital length of stay in COVID-19 patients // Sci Rep. 2022. Vol. 12, No. 1. P. 8143. doi:10.1038/s41598-022-12311-4.; Trias-Sabrià P., Dorca Duch E., Molina-Molina M. et al. Radio-Histological Correlation of Lung Features in Severe COVID-19 Through CT-Scan and Lung Ultrasound Evaluation // Front. Med. 2022. Vol. 9. P. 820661. doi:10.3389/fmed.2022.820661.; Henkel M. et al. Lethal COVID-19: Radiologic-Pathologic Correlation of the Lungs // Radiology: Cardiothoracic Imaging. 2020. Vol. 2, № 6. P. e200406. doi:10.1148/ryct.2020200406.; Kianzad A., Meijboom L.J., Nossent E.J. et al. COVID‐19: Histopathological correlates of imaging patterns on chest computed tomography // Respirology. 2021. Vol. 26, No. 9. P. 869–877. doi:10.1111/resp.14101.; Duong-Quy S. et al. Post-COVID-19 Pulmonary Fibrosis: Facts-Challenges and Futures: A Narrative Review // Pulm Ther. 2023. P. 1–13. doi:10.1007/s41030-023-00226-y.

  2. 2
    Academic Journal

    Πηγή: Medical Visualization; Том 27, № 2 (2023); 125-137 ; Медицинская визуализация; Том 27, № 2 (2023); 125-137 ; 2408-9516 ; 1607-0763

    Περιγραφή αρχείου: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/1257/800; https://medvis.vidar.ru/jour/article/downloadSuppFile/1257/1976; https://medvis.vidar.ru/jour/article/downloadSuppFile/1257/1977; https://medvis.vidar.ru/jour/article/downloadSuppFile/1257/1978; https://medvis.vidar.ru/jour/article/downloadSuppFile/1257/1979; https://medvis.vidar.ru/jour/article/downloadSuppFile/1257/1980; https://medvis.vidar.ru/jour/article/downloadSuppFile/1257/1981; https://medvis.vidar.ru/jour/article/downloadSuppFile/1257/1982; https://medvis.vidar.ru/jour/article/downloadSuppFile/1257/1983; https://medvis.vidar.ru/jour/article/downloadSuppFile/1257/1984; https://medvis.vidar.ru/jour/article/downloadSuppFile/1257/2079; Белая Ж.Е., Белова К.Ю., Бирюкова Е.В. и др. Федеральные клинические рекомендации по диагностике, лечению и профилактике остеопороза Федеральные клинические рекомендации по диагностике, лечению и профилактике остеопороза. Остеопороз и остеопатии. 2021; 24 (2): 4-47. https://doi.org/10.14341/osteo12930; Brown J.K., Timm W., Bodeen G. et al. Asynchronously Calibrated Quantitative Bone Densitometry. J. Clin. Densitom. 2017; 20 (2): 216–225. https://doi.org/10.1016/j.jocd.2015.11.001; Петряйкин А.В., Скрипникова И.А. Количественная компьютерная томография, современные данные. Обзор. Медицинская визуализация. 2021. 25 (4): 134–146. https://doi.org/10.24835/1607-0763-1049; 2019 ISCD Official Positions – Adult – International Society for Clinical Densitometry. Available at https://iscd.org/wp-content/uploads/2021/09/2019-Official-Positions-Adult-1.pdf Accessed August 20, 2022; Alacreu E., Moratal D., Arana E. Opportunistic screening for osteoporosis by routine CT in Southern Europe. Osteoporos. Int. 2017. 28; (3): 983–990. https://doi.org/10.1007/s00198-016-3804-3; Jang S., Graffy P.M., Ziemlewicz T. J. et al. Opportunistic osteoporosis screening at routine abdominal and Thoracic CT: Normative L1 trabecular attenuation values in more than 20 000 adults. Radiology. 2019; 291 (2): 360–367. https://doi.org/10.1148/radiol.2019181648; Savage R.H. van Assen M., Martin S. S. et al. Utilizing Artificial Intelligence to Determine Bone Mineral Density Via Chest Computed Tomography. J. Thorac. Imaging. 2020; 35 (1): S35-S39. https://doi.org/10.1097/RTI.0000000000000484.; Tang C. Zhang, W., Li, H. et al. CNN-based qualitative detection of bone mineral density via diagnostic CT slices for osteoporosis screening. Osteoporos Int. 2021; 32: 971–979. https://doi.org/10.1007/s00198-020-05673-w; Pickhardt P.J., Lee S.J., Liu J. et al. Population-based opportunistic osteoporosis screening: Validation of a fully automated CT tool for assessing longitudinal BMD changes. Br J Radiol. 2019; 92 (1094): 20180726. https://doi.org/10.1259/bjr.20180726; Löffler, M.T., Jacob, A., Scharr, A. et al. Automatic opportunistic osteoporosis screening in routine CT: improved prediction of patients with prevalent vertebral fractures compared to DXA. Eur Radiol. 2021; 31: 6069–6077. https://doi.org/10.1007/s00330-020-07655-2; Valentinitsch, A., Trebeschi, S., Kaesmacher, J. et al. Opportunistic osteoporosis screening in multi-detector CT images via local classification of textures. Osteoporos Int. 2019; 30: 1275–1285. https://doi.org/10.1007/s00198-019-04910-1; Bar A., Wolf L., Amitai O. B. et al. Compression fractures detection on CT. Medical Imaging 2017: Computer-Aided Diagnosis. SPIE, 2017; 10134: 1013440. https://doi.org/10.48550/arXiv.1706.01671; Tomita N., Cheung Y.Y., Hassanpour S. Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans. Comput. Biol. Med. 2018; 98: 8–15. https://doi.org/10.1016/j.compbiomed.2018.05.011.; Zakharov А, Pisov M, Bukharaev A et al. Interpretable Vertebral Fracture Quantification via Anchor-Free Landmarks Localization. Available at https://arxiv.org/pdf/2204.06818.pdf Accessed August 20, 2022; Лесняк О.М., Норой Л. Аудит cостояния проблемы остеопороза в странах состочной Европы И центральной Азии 2010. 2011. Available at https://www.osteoporosis.foundation/sites/iofbonehealth/files/201906/2010_Eastern_European_Central_Asian_Audit_Russian.pdf Accessed August 20, 2022; Cheng X., Zhao K., Zha X. et al. Opportunistic Screening Using Low‐Dose CT and the Prevalence of Osteoporosis in China: A Nationwide, Multicenter Study. J Bone Miner Res. 2021; 36 (3): 427-435. https://doi.org/10.1002/jbmr.4187; Петряйкин А.В., Смолярчук М.Я., Петряйкин Ф.А., и др. Оценка точности денситометрических исследований. Применение фантома РСК ФК2. Травматология и ортопедия России. 2019; 25 (3): 124-134. https://doi.org/10.21823/2311-2905-2019-25-3-124-134; Морозов С. П., Владзимирский А.В., Ледихова Н.В. и т.д. Московский эксперимент по применению компьютерного зрения в лучевой диагностике: вовлеченность врачей-рентгенологов. Врач и информационные технологии. 2020; 4, 14–23. https://doi.org/10.37690/1811-0193-2020-4-14-23; Andreychenko A.E., Logunova T.A., Gombolevskiy V.A. et al. A methodology for selection and quality control of the radiological computer vision deployment at the megalopolis scale. medRxiv. 2022: 2022.02.12.22270663. https://doi.org/10.1101/2022.02.12.22270663; Genant H.K., Wu C. Y., Kuijket C.V. al. Vertebral fracture assessment using a semiquantitative technique. J. Bone Miner. 1993; 8 (9): 1137–1148. https://doi.org/10.1002/jbmr.5650080915.; The American College of Radiology. ACR–SPR–SSR Practice Parameter for the Performance of Musculoskeletal Quantitative Computed Tomography (Qct). Published 2018. https://www.acr.org/-/media/ACR/Files/Practice-Parameters/QCT.pdf Accessed August 20, 2022; Петряйкин А.В., Сморчкова А.К., Кудрявцев Н.Д. и др. Сравнение двух методик асинхронной КТ-денситометрии. Медицинская визуализация. 2020; 24 (4): 108-118. https://doi.org/10.24835/1607-0763-2020-4-108-118; Павлов Н.А., АндрейченкоА.Е., ВладзимирскийА.В. и т.д. Эталонные медицинские датасеты (MosMedData) для независимой внешней оценки алгоритмов на основе искусственного интеллекта в диагностике. Digital Diagnostics. 2021; 2 (1): 49–65. https://doi.org/10.17816/DD60635.; Петряйкин А.В., Белая Ж.Е., Киселeва А.Н. и др. Технология искусственного интеллекта для распознавания компрессионных переломов позвонков с помощью модели морфометрического анализа, основанной на сверточных нейронных сетях. Проблемы Эндокринологии. 2020; 66 (5): 48-60. https://doi.org/10.14341/probl12605; Lee, S.J., Binkley, N., Lubner, M.G. et al. Opportunistic screening for osteoporosis using the sagittal reconstruction from routine abdominal CT for combined assessment of vertebral fractures and density. Osteoporos Int. 2016; 27: 1131–1136. https://doi.org/10.1007/s00198-015-3318-4; Pickhardt P.J., Pooler B. D., Lauder T.et al. Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann. Intern. Med. 2013; 158 (8): 588–595. https://doi.org/10.7326/0003-4819-158-8-201304160-00003; Kanis J.A. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Synopsis of a WHO report. Osteoporos. Int. 1994; 6 (4): 368–381. https://doi.org/10.1007/BF01622200; https://medvis.vidar.ru/jour/article/view/1257

  3. 3
    Academic Journal

    Συνεισφορές: Работа выполнена в рамках научно-исследовательской работы № АААА-А20-120071090045-7 в соответствии с Программой Департамента здравоохранения города Москвы «Научное обеспечение столичного здравоохранения» на 2020–2022 гг.

    Πηγή: Rheumatology Science and Practice; Vol 60, No 3 (2022); 360-368 ; Научно-практическая ревматология; Vol 60, No 3 (2022); 360-368 ; 1995-4492 ; 1995-4484

    Περιγραφή αρχείου: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/3185/2199; Белая ЖЕ, Белова КЮ, Бирюкова ЕВ, Дедов ИИ, Дзеранова ЛК, Драпкина ОМ, и др. Федеральные клинические рекомендации по диагностике, лечению и профилактике остеопороза. Остеопороз и остеопатии. 2021;24(2):4-47. doi:10.14341/osteo12930; International Society for Clinical Densitometry (ISCD). 2019 ISCD Official Positions – Adult. URL: https://iscd.org/learn/officialpositions/adult-positions (Accessed: 28th February 2022).; Link TM. Osteoporosis imaging: state of the art and advanced imaging. Radiology. 2012;263(1):3-17. doi:10.1148/radiol.2631201201; Скрипникова ИА, Щеплягина ЛА, Новиков ВЕ, Косматова ОВ, Абирова АС. Возможности костной рентгеновской денситометрии в клинической практике (Методические рекомендации). Остеопороз и остеопатии. 2010;2:23-34. doi:10.14341/osteo2010223-34; Damilakis J, Adams JE, Guglielmi G, Link TM. Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol. 2010;20(11):2707-2714. doi:10.1007/s00330-010-1845-0; Cann CE, Adams JE, Brown JK, Brett AD. CTXA hip – an extension of classical DXA measurements using quantitative CT. PLoS One. 2014;9(3):e91904. doi:10.1371/journal.pone.0091904; Brown JK, Timm W, Bodeen G, Chason A, Perry M, Vernacchia F, et al. Asynchronously calibrated quantitative bone densitometry. J Clin Densitom. 2017;20(2):216-225. doi:10.1016/j.jocd.2015.11.001; Gausden EB, Nwachukwu BU, Schreiber JJ, Lorich DG, Lane JM. Opportunistic use of CT imaging for osteoporosis screening and bone density assessment: A qualitative systematic review. J Bone Joint Surg Am. 2017;99(18):1580-1590. doi:10.2106/JBJS.16.00749; Khoo BC, Brown K, Cann C, Zhu K, Henzell S, Low V, et al. Comparison of QCT-derived and DXA-derived areal bone mineral density and T scores. Osteoporos Int. 2009;20(9):1539-1545. doi:10.1007/s00198-008-0820-y; Pickhardt PJ, Bodeen G, Brett A, Brown JK, Binkley N. Comparison of femoral neck BMD evaluation obtained using Lunar DXA and QCT with asynchronous calibration from CT colonography. J Clin Densitom. 2015;18(1):5-12. doi:10.1016/j.jocd.2014.03.002; Engelke K, Lang T, Khosla S, Qin L, Zysset P, Leslie WD, et al. Clinical use of quantitative computed tomography (QCT) of the hip in the management of osteoporosis in adults: The 2015 ISCD official positions – Part I. J Clin Densitom. 2015;18(3):338-358. doi:10.1016/j.jocd.2015.06.012; Ziemlewicz TJ, Maciejewski A, Binkley N, Brett AD, Brown JK, Pickhardt PJ. Opportunistic quantitative CT bone mineral density measurement at the proximal femur using routine contrast-enhanced scans: direct comparison with DXA in 355 adults. J Bone Miner Res. 2016;31(10):1835-1840. doi:10.1002/jbmr.2856; Петряйкин АВ, Низовцова ЛА, Сергунова КА, Ахмад ЕС, Семенов ДС, Петряйкин ФА, и др. Оценка точности асинхронной компьютерной денситометрии по данным фантомного моделирования. Радиология – практика. 2019;78(6): 48-59.; Cameron JR. Determination of body composition in vivo. Wisconsin;1969.; Cheng X, Wang L, Wang Q, Ma Y, Su Y, Li K. Validation of quantitative computed tomography-derived areal bone mineral density with dual energy X-ray absorptiometry in an elderly Chinese population. Chin Med J (Engl). 2014;127(8):1445-1459.; Pickhardt PJ, Lee LJ, del Rio AM, Lauder T, Bruce RJ, Summers RM, et al. Simultaneous screening for osteoporosis at CT colonography: Bone mineral density assessment using MDCT attenuation techniques compared with the DXA reference standard. J Bone Miner Res. 2011;26(9):2194-2203. doi:10.1002/jbmr.428; Yu W, Glüer CC, Grampp S, Jergas M, Fuerst T, Wu CY, et al. Spinal bone mineral assessment in postmenopausal women: A comparison between dual X-ray absorptiometry and quantitative computed tomography. Osteoporos Int. 1995;5(6):433-439. doi:10.1007/BF01626604

  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19