-
1Academic Journal
Συγγραφείς: I. N. Zakharova, I. V. Berezhnaya, N. G. Sugian, Ya. V. Orobinskaya, V. V. Pupykina, V. D. Churilova, И. Н. Захарова, И. В. Бережная, Н. Г. Сугян, Я. В. Оробинская, В. В. Пупыкина, В. Д. Чурилова
Πηγή: Meditsinskiy sovet = Medical Council; № 1 (2025); 116-125 ; Медицинский Совет; № 1 (2025); 116-125 ; 2658-5790 ; 2079-701X
Θεματικοί όροι: козье молоко, Rome IV criteria, infantile regurgitation, infantile colic, constipation, formula feeding, casein, microbiota, goat’s milk, Римские критерии IV, младенческая регургитация, младенческие колики, запор, искусственное вскармливание, казеин, микробиота
Περιγραφή αρχείου: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/8973/7801; Румянцев АГ, Тимакова МВ. История и эволюция педиатрии. Вопросы практической педиатрии. 2013;8(2):59–65. Режим доступа: https://elibrary.ru/qajkgd.; Lim ML, Wallace MR. Infectious diarrhea in history. Infect Dis Clin North Am. 2004;18(2):261–274. https://doi.org/10.1016/j.idc.2004.01.006.; Ковнер С. Очерки истории медицины. Вып. третий (От Платона до Галена). Киев; 1888. 436 с. Режим доступа: https://commons.wikimedia.org/wiki/File:Ковнер_С._Г._-_Очерки_истории_медицины_%28вып_III%29_1888.pdf.; Захарова ИН, Лыкина ЕВ. Последствия неправильного вскармливания детей. Вопросы современной педиатрии. 2007;6(1):40–46. Режим доступа: https://vsp.spr-journal.ru/jour/article/view/995.; Darmon N, Drewnowski A. Does social class predict diet quality? Am J Clin Nutr. 2008;87(5):1107–1117. https://doi.org/10.1093/ajcn/87.5.1107.; Keefe DM. Agency Response Letter GRAS Notice No. GRN 000644, C.f.F.S.a.A. Nutrition, Editor; 2016. Available at: https://www.fda.gov/food/gras-notice-inventory/agency-response-letter-gras-notice-no-grn-000644.; Agostoni C, Bresson JL, Fairweather-Tait S, Flynn A, Golly I, Korhonen H et al. Scientific Opinion on the suitability of goat milk protein as a source of protein in infant formulae and in follow-on formulae. EFSA J. 2012;10(3):2603. https://doi.org/10.2903/j.efsa.2012.2603.; Maathuis A, Havenaar R, He T, Bellmann S. Protein Digestion and Quality of Goat and Cow Milk Infant Formula and Human Milk Under Simulated Infant Conditions. J Pediatr Gastroenterol Nutr. 2017;65(6):661–666. https://doi.org/10.1097/MPG.0000000000001740.; Hodgkinson AJ, Wallace OAM, Boggs I, Broadhurst M, Prosser CG. Gastric digestion of cow and goat milk: Impact of infant and young child in vitro digestion conditions. Food Chem. 2018;245:275–281. https://doi.org/10.1016/j.foodchem.2017.10.028.; Bellaiche M, Oozeer R, Gerardi-Temporel G, Faure C, Vandenplas Y. Multiple functional gastrointestinal disorders are frequent in formula-fed infants and decrease their quality of life. Acta Paediatr. 2018;107(7):1276–1282. https://doi.org/10.1111/apa.14348.; Iacono G, Merolla R, D’Amico D, Bonci E, Cavataio F, Di Prima L et al. Gastrointestinal symptoms in infancy: a population-based prospective study. Dig Liver Dis. 2005;37(6):432–438. https://doi.org/10.1016/j.dld.2005.01.009.; Steutel NF, Zeevenhooven J, Scarpato E, Vandenplas Y, Tabbers MM, Staiano A, Benninga MA. Prevalence of Functional Gastrointestinal Disorders in European Infants and Toddlers. J Pediatr. 2020;221:107–114. https://doi.org/10.1016/j.jpeds.2020.02.076.; Vernon-Roberts A, Safe M, Day AS. Editorial: Pediatric Functional Gastrointestinal Disorders: Challenges in Diagnosis and Treatment. Gastrointest Disord. 2024;6(1):308–312. https://doi.org/10.3390/gidisord6010021.; Drossman DA. The functional gastrointestinal disorders and the Rome II process. Gut. 1999;45(Suppl. 2):II1–II5. https://doi.org/10.1136/gut.45.2008.ii1.; Колесников ДБ, Рапопорт СИ, Вознесенская ЛА. Современные взгляды на психосоматические заболевания. Клиническая медицина. 2014;92(7):12–18. Режим доступа: https://elibrary.ru/smyapf.; Drossman DA. Functional Gastrointestinal Disorders: History, Pathophysiology, Clinical Features and Rome IV. Gastroenterology. 2016;150(6):1262–1279.e2. https://doi.org/10.1053/j.gastro.2016.02.032.; Zeng XL, Zhu LJ, Yang XD. Exploration of the complex origins of primary constipation. World J Clin Cases. 2024;12(24):5476–5482. https://doi.org/10.12998/wjcc.v12.i24.5476.; Симаненков ВИ, Маев ИВ, Ткачева ОН, Алексеенко СА, Андреев ДН, Бордин ДС и др. Синдром повышенной эпителиальной проницаемости в клинической практике. Мультидисциплинарный национальный консенсус. Кардиоваскулярная терапия и профилактика. 2021;20(1):2758. https://doi.org/10.15829/1728-8800-2021-2758.; Aydemir Y, Aydemir O, Dinleyici M, Saglik AC, Cam D, Kaya TB, Canpolat FE. Screening for functional gastrointestinal disorders in preterm infants up to 12 months of corrected age: a prospective cohort study. Eur J Pediatr. 2024;183(5):2091–2099. https://doi.org/10.1007/s00431-024-05451-4.; Vernon-Roberts A, Alexander I, Day AS. Systematic Review of Pediatric Functional Gastrointestinal Disorders (Rome IV Criteria). J Clin Med. 2021;10(21):5087. https://doi.org/10.3390/jcm10215087.; Indrio F, Enninger A, Aldekhail W, Al-Ghanem G, Al-Hussaini A, Al-Hussaini B et al. Management of the Most Common Functional Gastrointestinal Disorders in Infancy: The Middle East Expert Consensus. Pediatr Gastroenterol Hepatol Nutr. 2021;24(4):325–336. https://doi.org/10.5223/pghn.2021.24.4.325.; Benninga MA, Faure C, Hyman PE, St James Roberts I, Schechter NL, Nurko S. Childhood Functional Gastrointestinal Disorders: Neonate/Toddler. Gastroenterology. 2016;150(6):1443–1455.e2. https://doi.org/10.1053/j.gastro.2016.02.016.; Deeb MT, Mohsen YM, Nehal ES. Diagnostic Outcome of Rome IV Criteria in Infant Regurgitation. QJM. 2024;117(Suppl. 1):hcae070.494. https://doi.org/10.1093/qjmed/hcae070.494.; Захарова ИН, Сугян НГ, Бережная ИВ. Функциональные гастроинтестинальные расстройства у детей раннего возраста: критерии диагностики и подходы к диетотерапии. Российский вестник перинатологии и педиатрии. 2018;63(1):113–121. https://doi.org/10.21508/1027-4065-2018-63-1-113-121.; Indrio F, Dargenio VN, Francavilla R, Szajewska H, Vandenplas Y. Infantile Colic and Long-Term Outcomes in Childhood: A Narrative Synthesis of the Evidence. Nutrients. 2023;15(3):615. https://doi.org/10.3390/nu15030615.; Muhardi L, Aw MM, Hasosah M, Ng RT, Chong SY, Hegar B et al. A Narrative Review on the Update in the Prevalence of Infantile Colic, Regurgitation, and Constipation in Young Children: Implications of the ROME IV Criteria. Front Pediatr. 2022;9:778747. https://doi.org/10.3389/fped.2021.778747.; Despriee ÅW, Mägi CO, Småstuen MC, Glavin K, Nordhagen L, Jonassen CM et al. Prevalence and perinatal risk factors of parent-reported colic, abdominal pain and other pain or discomforts in infants until 3 months of age – A prospective cohort study in PreventADALL. J Clin Nurs. 2022;31(19-20):2784–2796. https://doi.org/10.1111/jocn.16097.; Haiden N, Savino F, Hill S, Kivelä L, De Koning B, Kӧglmeier J et al. Infant formulas for the treatment of functional gastrointestinal disorders: A position paper of the ESPGHAN Nutrition Committee. J Pediatr Gastroenterol Nutr. 2024;79(1):168–180. https://doi.org/10.1002/jpn3.12240.; Walter AW, Hovenkamp A, Devanarayana NM, Solanga R, Rajindrajith S, Benninga MA. Functional constipation in infancy and early childhood: epidemiology, risk factors, and healthcare consultation. BMC Pediatr. 2019;19(1):285. https://doi.org/10.1186/s12887-019-1652-y.; Tran DL, Sintusek P. Functional constipation in children: What physicians should know. World J Gastroenterol. 2023;29(8):1261–1288. https://doi.org/10.3748/wjg.v29.i8.1261.; Diaz S, Bittar K, Hashmi MF, Mendez MD. Constipation. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. Available at: https://pubmed.ncbi.nlm.nih.gov/30020663/.; Захарова ИН, Бережная ИВ, Касьянова АН, Сугян НГ, Лазарева СИ, Дедикова ОВ и др. Функциональные нарушения желудочно-кишечного тракта у детей раннего возраста – современный взгляд на традиционные проблемы у младенцев. Педиатрия. Consilium Medicum. 2018;(3):24–29. Режим доступа: https://www.kabrita.ru/assets/assets_vracham/pdf/nauchnye-publikatsii/Consilium%20Medicum,%202018%20%20%E2%84%963.pdf.; Zeevenhooven J, Koppen IJ, Benninga MA. The New Rome IV Criteria for Functional Gastrointestinal Disorders in Infants and Toddlers. Pediatr Gastroenterol Hepatol Nutr. 2017;20(1):1–13. https://doi.org/10.5223/pghn.2017.20.1.1.; Switkowski KM, Oken E, Simonin EM, Nadeau KC, Rifas-Shiman SL, Lightdale JR. Early-life risk factors for both infant colic and excessive crying without colic. Pediatr Res. 2024. https://doi.org/10.1038/s41390024-03518-4.; Vandenplas Y, Bajerova K, Dupont C, Eigenmann P, Kuitunen M, Meyer R et al. The Cow’s Milk Related Symptom Score: The 2022 Update. Nutrients. 2022;14(13):2682. https://doi.org/10.3390/nu14132682.; Vandenplas Y. Algorithms for Common Gastrointestinal Disorders. J Pediatr Gastroenterol Nutr. 2016;63(Suppl. 1):S38–S40. https://doi.org/10.1097/MPG.0000000000001220.; Verruck S, Dantas A, Prudencio ES. Functionality of the components from goat’s milk, recent advances for functional dairy products development and its implications on human health. J Funct Foods. 2019;52:243–257. https://doi.org/10.1016/j.jff.2018.11.017.; Gan J, Bornhorst GM, Henrick BM, German JB. Protein Digestion of Baby Foods: Study Approaches and Implications for Infant Health. Mol Nutr Food Res. 2018;62(1):1700231. https://doi.org/10.1002/mnfr.201700231.; Muñoz-Salinas F, Andrade-Montemayor HM, De la Torre-Carbot K, Duarte-Vázquez MÁ, Silva-Jarquin JC. Comparative Analysis of the Protein Composition of Goat Milk from French Alpine, Nubian, and Creole Breeds and Holstein Friesian Cow Milk: Implications for Early Infant Nutrition. Animals. 2022;12(17):2236. https://doi.org/10.3390/ani12172236.; Hodgkinson AJ, Wallace OAM, Smolenski G, Prosser CG. Gastric digestion of cow and goat milk: Peptides derived from simulated conditions of infant digestion. Food Chem. 2019;276:619–625. https://doi.org/10.1016/j.foodchem.2018.10.065.; Lara-Villoslada F, Olivares M, Jiménez J, Boza J, Xaus J. Goat milk is less immunogenic than cow milk in a murine model of atopy. J Pediatr Gastroenterol Nutr. 2004;39(4):354–360. https://doi.org/10.1097/00005176200410000-00010.; Infante D, Prosser C, Tormo R. Constipated Patients Fed Goat Milk Protein Formula: A Case Series Study. J Nutr Health Sci. 2018;5(2):203. https://doi.org/10.15744/2393-9060.5.203.; Maximino P, van Lee L, Meijer-Krommenhoek YN, van der Zee L, da Costa Ribeiro Junior H. Common gastrointestinal symptoms in healthy infants receiving goat milk-based formula or cow’s milk-based formula: a double-blind, randomized, controlled trial. BMC Pediatr. 2024;24(1):753. https://doi.org/10.1186/s12887-024-05214-y.; Grant C, Rotherham B, Sharpe S, Scragg R, Thompson J, Andrews J et al. Randomized, double-blind comparison of growth in infants receiving goat milk formula versus cow milk infant formula. J Paediatr Child Health. 2005;41(11):564–568. https://doi.org/10.1111/j.1440-1754.2005.00722.x.; Salsberg A. Goat Milk Toddler Formula Reduces Symptoms Associated With Cow Milk Consumption. J Acad Nutr Dietetics. 2016;116(9):A100. https://doi.org/10.1016/J.JAND.2016.06.363.; Kompan D, Komprej A. The Effect of Fatty Acids in Goat Milk on Health. In: Chaiyabutr N (ed.). Milk Production – An Up-to-Date Overview of Animal Nutrition, Management and Health. InTech; 2012. https://doi.org/10.5772/50769.; Chen Q, Yin Q, Xie Q, Liu S, Guo Z, Li B. Elucidating gut microbiota and metabolite patterns shaped by goat milk-based infant formula feeding in mice colonized by healthy infant feces. Food Chem. 2023;410:135413. https://doi.org/10.1016/j.foodchem.2023.135413.; Leong A, Liu Z, Almshawit H, Zisu B, Pillidge C, Rochfort S, Gill H. Oligosaccharides in goats’ milk-based infant formula and their prebiotic and anti-infection properties. Br J Nutr. 2019;122(4):441–449. https://doi.org/10.1017/S000711451900134X.; Chen K, Zhang G, Xie H, You L, Li H, Zhang Y et al. Efficacy of Bifidobacterium animalis subsp. lactis, BB-12® on infant colic –a randomised, doubleblinded, placebo-controlled study. Benef Microbes. 2021;12(6):531–540. https://doi.org/10.3920/BM2020.0233.; van Lee L, Meijer-Krommenhoek Y, He T, van der Zee L, Verkade H. Sleep duration among breastfed, goat milk-based or cow’s milk-based infant formula-fed infants: Post hoc analyses from a double-blind RCT. J Pediatr Gastroenterol Nutr. 2025;80(3):482–489. https://doi.org/10.1002/jpn3.12436.
-
2Academic Journal
Πηγή: Ползуновский вестник, Iss 1, Pp 51-58 (2023)
Θεματικοί όροι: Technology, молочное мороженое, сублимированное козье молоко, показатели качества мороженого
Σύνδεσμος πρόσβασης: https://doaj.org/article/cb004ba65e3749be8137a6bb20fd378f
-
3Academic Journal
Πηγή: Ползуновский вестник, Vol 1, Iss 4, Pp 149-153 (2022)
Θεματικοί όροι: технология, мягкий сыр, коровье молоко, козье молоко, смесь, активная кислотность, Technology
Σύνδεσμος πρόσβασης: https://doaj.org/article/80a5dbb9812442038ee37cc792c44f77
-
4Academic Journal
Πηγή: Ползуновский вестник, Vol 1, Iss 4, Pp 154-159 (2022)
Θεματικοί όροι: Technology, козье молоко, овечье молоко, коровье молоко, специализированные продукты, йогурт, козоводство, овцеводство, кисломолочный напиток, мелкий рогатый скот, характеристики молока
Σύνδεσμος πρόσβασης: https://doaj.org/article/4ebbb60974ee4071bc71e162875dcb0e
-
5Academic Journal
Θεματικοί όροι: ненасыщенные жирные кислоты, молочные продукты, овечье молоко, жирнокислотный состав молочного жира, молочный жир, козье молоко, коровье молоко
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/65616
-
6Academic Journal
Συγγραφείς: Anatoly I. Khavkin, Valeriya P. Novikova, Elena I. Kondratyeva, Elena V. Loshkova, Galina N. Yankina, А. И. Хавкин, В. П. Новикова, Е. И. Кондратьева, Е. В. Лошкова, Г. Н. Янкина
Συνεισφορές: Not specified., Отсутствует.
Πηγή: Pediatric pharmacology; Том 21, № 4 (2024); 375-384 ; Педиатрическая фармакология; Том 21, № 4 (2024); 375-384 ; 2500-3089 ; 1727-5776
Θεματικοί όροι: козье молоко, bone metabolism, vitamin D, gluten-free diet, nutritional support, goat’s milk, костный метаболизм, витамин D, безглютеновая диета, нутритивная поддержка
Περιγραφή αρχείου: application/pdf
Relation: https://www.pedpharma.ru/jour/article/view/2502/1624; Vernia F, Valvano M, Longo S, et al. Vitamin D in Inflammatory Bowel Diseases. Mechanisms of Action and Therapeutic Implications. Nutrients. 2022;14(2):269. doi: https://doi.org/10.3390/nu14020269; Шуматова Т.А., Коваленко Д.В., Приходченко Н.Г. Витамин D и заболевания кишечника // Международный журнал прикладных и фундаментальных исследований. — 2023. — № 8. — С. 24–28.; Габрусская Т.В., Костик М.М., Насыхова Ю.А. и др. Влияние TAQI-генетического полиморфизма гена рецептора витамина D на состояние костного метаболизма у детей с воспалительными заболеваниями кишечника // Педиатр. — 2017. — Т. 8. — № 3. — С. 111–119. — doi: https://doi.org/10.17816/PED83111-115; Tazzyman S, Richards N, Trueman AR, et al. Vitamin D associates with improved quality of life in participants with irritable bowel syndrome: outcomes from a pilot trial. BMJ Open Gastroenterol. 2015;2(1):e000052. doi: https://doi.org/10.1136/bmjgast-2015-000052; Battistini C, Ballan R, Herkenhoff ME, et al. Vitamin D Modulates Intestinal Microbiota in Inflammatory Bowel Diseases. Int J Mol Sci. 2020;22(1):362. doi: https://doi.org/10.3390/ijms22010362; I nfantino C, Francavilla R, Vella A, et al. Role of Vitamin D in Celiac Disease and Inflammatory Bowel Diseases. Nutrients. 2022;14(23):5154. doi: https://doi.org/10.3390/nu14235154; Zhu W, Yan J, Zhi C, et al. 1,25(OH)2D3 deficiency-induced gut microbial dysbiosis degrades the colonic mucus barrier in Cyp27b1 knockout mouse model. Gut Pathog. 2019;11:8. doi: https://doi.org/10.1186/s13099-019-0291-z; Kühne H, Hause G, Grundmann SM, et al. Vitamin D receptor knockout mice exhibit elongated intestinal microvilli and increased ezrin expression. Nutr Res. 2016;36(2):184–192. doi: https://doi.org/10.1016/j.nutres.2015.10.005; Schäffler H, Herlemann DP, Klinitzke P, et al. Vitamin D administration leads to a shift of the intestinal bacterial composition in Crohn’s disease patients, but not in healthy controls. J Dig Dis. 2018;19(4):225–234. doi: https://doi.org/10.1111/1751-2980.12591; Fasano A. Zonulin, regulation of tight junctions, and autoimmune diseases. Ann N Y Acad Sci. 2012;1258(1):25–33. doi: https://doi.org/10.1111/j.1749-6632.2012.06538.x; Weber G, Heilborn JD, Jimenez CIC, et al. Vitamin D induces the antimicrobial protein hCAP18 in human skin. J Investig Dermatol. 2005;124(5):1080–1082. doi: https://doi.org/10.1111/j.0022-202X.2005.23687.x; Bals R, Wang X, Zasloff M, Wilson JM. The peptide antibiotic LL37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci U S A. 1998;95(16):9541–9546. doi: https://doi.org/10.1073/pnas.95.16.9541; Gallo RL, Kim KJ, Bernfield M, et al. Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J Biol Chem. 1997;272(20):13088–13093. doi: https://doi.org/10.1074/jbc.272.20.13088; Chun RF, Liu PT, Modlin RL, et al. Impact of vitamin D on immune function: Lessons learned from genome-wide analysis. Front Physiol. 2014;5:151. doi: https://doi.org/10.3389/fphys.2014.00151; Bacchetta J, Zaritsky JJ, Sea JL, et al. Suppression of iron-regulatory hepcidin by vitamin D. J Am Soc Nephrol. 2014;25(3):564–572. doi: https://doi.org/10.1681/ASN.2013040355; Bikle DD. Vitamin D Regulation of Immune Function. Curr Osteoporos Rep. 2022;20(3):186–193. doi: https://doi.org/10.1007/s11914-022-00732-z; Massironi S, Cavalcoli F, Zilli A, et al. Relevance of vitamin D deficiency in patients with chronic autoimmune atrophic gastritis: a prospective study. BMC Gastroenterol. 2018;18(1):172. doi: https://doi.org/10.1186/s12876-018-0901-0; Husby S, Koletzko S, Korponay-Szabó IR, et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition Guidelines for the Diagnosis of Coeliac Disease. J Pediatr Gastroenterol Nutr. 2012;54(1):136–160. doi: https://doi.org/10.1097/ MPG.0b013e31821a23d0; Corazza GR, Villanacci V, Zambelli C, et al. Comparison of the interobserver reproducibility with different histologic criteria used in celiac disease. Clin Gastroenterol Hepatol. 2007;5(7):838–843. doi: https://doi.org/10.1016/j.cgh.2007.03.019; Andersen DH. Celiac syndrome: The relationship of celiac disease, starch intolerance, and steatorrhea. J Pediatr. 1947;30(5): 564–582. doi: https://doi.org/10.1016/S0022-3476(47)80050-2; Nardecchia S, Auricchio R, Discepolo V, Troncone R. Extra-Intestinal Manifestations of Coeliac Disease in Children: Clinical Features and Mechanisms. Front Pediatr. 2019;7:56. doi: https://doi.org/10.3389/fped.2019.00056; Salvensen HA, Böe J. Osteomalacia in sprue. Acta Med Scand. 1953;146(4):290–299. doi: https://doi.org/10.1111/j.0954-6820.1953.tb10243.x; Melvin KEW, Hepner GW, Bordier P, et al. Calcium metabolism and bone pathology in adult coeliac disease. Q J Med. 1970;39(153):83–113.; Vasquez H, Mazure R, Gonzalez D, et al. Risk of fractures in coeliac disease patients: a cross-sectional, case-control study. Am J Gastroenterol. 2000;95(1):183–189. doi: https://doi.org/10.1111/j.1572-0241.2000.01682.x; Bianchi ML, Bardella MT. Bone in celiac disease. Osteoporos Int. 2008;19(12):1705–1716. doi: https://doi.org/10.1007/s00198-008-0624-0; Krupa-Kozak U. Pathologic bone alterations in celiac disease: Etiology, epidemiology, and treatment. Nutrition. 2014;30(1):16–24. doi: https://doi.org/10.1016/j.nut.2013.05.027; Walters JRF, Banks LM, Butcher GP, Fowler CR. Detection of low bone mineral density by dual energy x ray absorptiometry in unsuspected suboptimally treated coeliac disease. Gut. 1995;37(2): 220–224. doi: https://doi.org/10.1136/gut.37.2.220; Corazza GR, Di Sario A, Cecchetti L, et al. Influence of pattern of clinical presentation and of gluten-free diet on bone mass and metabolism in adult coeliac disease. Bone. 1996;18(6):525–530. doi: https://doi.org/10.1016/8756-3282(96)00071-3; Mazure R, Vazquez H, Gonzalez D, et al. Bone mineral affection in asymptomatic adult patients with coeliac disease. Am J Gastroenterol. 1994;89(12):2130–2134.; Sdepanian VL, de Miranda Carvalho CN, de Morais MB, et al. Bone mineral density of the lumbar spine in children and adolescent with celiac disease on a gluten free diet in Săo Paulo, Brazil. J Pediatr Gastroenterol Nutr. 2003;37(5):571–576. doi: https://doi.org/10.1097/00005176-200311000-00013; Kavak U, Yuce A, Kocak N, et al. Bone mineral density in children with untreated and treated celiac disease. J Pediatr Gastroenterol Nutr. 2003;37(4):434–436. doi: https://doi.org/10.1097/00005176-200310000-00007; Barera G, Beccio S, Proverbio MC, Mora S. Longitudinal changes in bone metabolism and bone mineral content in children with celiac disease during consumption of a gluten-free diet. Am J Clin Nutr. 2004;79(1):148–154. doi: https://doi.org/10.1093/ajcn/79.1.148; Tau C, Mautalen C, De Rosa S, et al. Bone mineral density in children with celiac disease: effect of a gluten-free diet. Eur J Clin Nutr. 2006;60(3):358–363. doi: https://doi.org/10.1038/sj.ejcn.1602323; Хаустова Г.Г., Банина Т.В., Мухина Ю.Г., Щеплягина Л.С. Дефицит кальция и витамина Д при хронических заболеваниях желудка и тонкой кишки // Доктор.Ру. — 2008. — № 1. — С. 14–18.; Motta MEFA, De Faria MEN, Da Silva GAP. Prevalence of low bone mineral density in children and adolescents with celiac disease under treatment. Sao Paulo Med J. 2009;127(5):278–282. doi: https://doi.org/10.1590/s1516-31802009000500006; Blazina S, Bratanic N, Campa AS, et al. Bone mineral density and importance of strict gluten-free diet in children and adolescents with celiac disease. Bone. 2010;47(3):598–603. doi: https://doi.org/10.1016/j.bone.2010.06.008; Margoni D, Chouliaras G, Duscas G, et al.Bone health in children with celiac disease assessed by dual x-ray absorptiometry: effect of gluten-free diet and predictive value of serum biochemical indices. J Pediatr Gastroenterol Nutr. 2012;54(5):680–684. doi: https://doi.org/10.1097/MPG.0b013e31823f5fc5; Кондратьева Е.И., Янкина Г.Н. Целиакия у детей. Спорные вопросы диагностики и лечения // Вопросы детской диетологии. — 2010. — Т. 8. — № 2. — С. 37–42.; Янкина Г.Н., Кондратьева Е.И. Алгоритм реабилитации больных с целиакией // Вопросы детской диетологии. — 2012. — Т. 10. — № 2. — С. 15–19.; Климов Л.Я., Захарова И.Н., Абрамская Л.М. и др. Витамин D и хронические заболевания кишечника: роль в патогенезе и место в терапии // Практическая медицина. — 2017. — № 5. — С. 59–64.; Volkan B, Fettah A, İşlek A, et al. Bone mineral density and vitamin K status in children with celiac disease: Is there a relation? Turk J Gastroenterol. 2018;29(2):215–220. doi: https://doi.org/10.5152/tjg.2018.17451; Силин А.В., Сатыго Е.А., Мельникова И.Ю. Состояние костного метаболизма и его влияние на развитие кариеса полости рта у детей, страдающих целиакией // Экспериментальная и клиническая гастроэнтерология. — 2019. — № 1. — С. 103–105. — doi: https://doi.org/10.31146/1682-8658-ecg-161-1-103-105; Sun Y, Zhou Q, Tian D, et al. Relationship between vitamin D levels and pediatric celiac disease: a systematic review and meta-analysis. BMC Pediatr. 2024;24(1):185. doi: https://doi.org/10.1186/s12887-024-04688-0; Marino M, Galeazzi T, Gesuita R, et al. Differences in Plasma 25-Hydroxyvitamin D Levels at Diagnosis of Celiac Disease and Type 1 Diabetes. Nutrients. 2024;16(5):743. doi: https://doi.org/10.3390/nu16050743; Lewis NR, Scott BB. Should patients with ceoliac disease have their bone mineral density measured? Eur J Gastroenterol Hepatol. 2005;17(10):1065–1070. doi: https://doi.org/10.1097/00042737-200510000-00009; Pazianas M, Butcher GP, Subhani JM, et al. Calcium absorption and bone mineral density in celiacs after long term treatment with gluten-free diet and adequate calcium intake. Osteoporos Int. 2006;16(1):56–63. doi: https://doi.org/10.1007/s00198-004-1641-2; Deressa E, Wammer AC, Falch JA, Jahnsen J. Bone metabolism in patients with newly diagnosed celiac disease. Tidsskr Nor Laegeforen. 2006;126(9):1201–1204.; Vilppula A, Kaukinen K, Luostarinen L, et al. Clinical benefit of gluten-free diet in screen-detected older celiac disease patients. BMC Gastroenterol. 2011;11:136–143. doi: https://doi.org/10.1186/1471-230X-11-136; Larussa T, Suraci E, Nazionale I, et al. No evidence of circulating autoantibodies against osteoprotegerin in patients with celiac disease. World J Gastroenterol. 2012;18(14):1622–1627. doi: https://doi.org/10.3748/wjg.v18.i14.1622; Dong S, Singh TP, Wei X, et al. Protective effect of 1,25-Dihydroxy vitamin D3 on pepsin-trypsin-resistant Gliadin-Induced tight Junction injuries. Dig Dis Sci. 2018;63(1):92–104. doi: https://doi.org/10.1007/s10620-017-4738-0; Andrén Aronsson C, Liu X, Norris JM, et al. 25(OH)D levels in infancy is Associated with Celiac Disease Autoimmunity in At-Risk children: a case-control study. Front Nutr. 2021;8:720041. doi: https://doi.org/10.3389/fnut.2021.720041; Verma A, Lata K, Khanna A, et al. Study of effect of glutenfree diet on vitamin D levels and bone mineral density in celiac disease patients. J Family Med Prim Care. 2022;11(2):603–607. doi: https://doi.org/10.4103/jfmpc.jfmpc_1190_21; O’Malley T, Heuberger R. Vitamin D status and supplementation in pediatric gastrointestinal disease. J Spec Pediatr Nurs. 2011;16(2):140–150. doi: https://doi.org/10.1111/j.1744-6155.2011.00280.x; Shree T, Banerjee P, Senapati S. A meta-analysis suggests the association of reduced serum level of vitamin D and T-allele of Fok1 (rs2228570) polymorphism in the vitamin D receptor gene with celiac disease. Front Nutr. 2022;9:996450. doi: https://doi.org/10.3389/fnut.2022.996450; Gorini F, Tonacci A. Vitamin D: An Essential Nutrient in the Dual Relationship between Autoimmune Thyroid Diseases and Celiac Disease-A Comprehensive Review. Nutrients. 2024;16(11):1762. doi: https://doi.org/10.3390/nu16111762; Skoracka K, Hryhorowicz S, Tovoli F, et al. Genetic, Immunological, Dietary, Gut Microbiota, and Environmental Determinants of Osteoporosis in the Course of Celiac Disease: Which Factor Plays the First Violin in This Orchestra? Calcif Tissue Int. 2024;114(2): 98–109. doi: https://doi.org/10.1007/s00223-023-01155-3; Gordon CM, Bachrach LK, Carpenter TO, et al. Bone health in children and adolescents: a symposium at the annual meeting of the Pediatric Academic Societies/Lawson Wilkins Pediatric Endocrine Society, May 2003. Curr Probl Pediatr Adolesc Health Care. 2004;34(6):226–242. doi: https://doi.org/10.1016/j.cppeds.2004.03.001; Vestergaard P, Mosekilde L. Fracture risk in patients with celiac disease, Crohn’s disease, and ulcerative colitis: a nationwide follow-up study of 16,416 patients in Denmark. Am J Epidemiol. 2002;156(1):1–10. doi: https://doi.org/10.1093/aje/kwf007; Fickling WE, McFarlane XA, Bhalla AK, Robertsonet DAF. The clinical impact of metabolic bone disease in coeliac disease. Postgrad Med J. 2001;77(903):33–36. doi: https://doi.org/10.1136/pmj.77.903.33; Thomason K, West J, Logan RF, et al. Fracture experience of patients with coeliac disease: a population based survey. Gut. 2003;52(4):518–522. doi: https://doi.org/10.1136/gut.52.4.518; West J, Logan RF, Card TR, et al. Fracture risk in people with celiac disease: a population-based cohort study. Gastroenterol. 2003;125(2):429–436. doi: https://doi.org/10.1016/s0016-5085(03)00891-6; Bommu VJL, Mirza L. Osteoporosis can be the sole presentation in celiac disease. Cureus. 2021;13(12):e20602. doi: https://doi.org/10.7759/cureus.20602; Di Stefano M, Mengoli C, Bergonzi M, Corazza GR. Bone mass and mineral metabolism alterations in adult celiac disease: pathophysiology and clinical approach. Nutrients. 2013;5(11): 4786–4799. doi: https://doi.org/10.3390/nu5114786; Mosca C, Thorsteinsdottir F, Abrahamsen B, et al. Newly diagnosed celiac disease and bone health in young adults: a systematic literature review. Calcif Tissue Int. 2022;110(6):641–648. doi: https://doi.org/10.1007/s00223-021-00938-w; Fornari MC, Pedreira S, Niveloni S, et al. Pre- and post-treatment serum levels of cytokines IL-1beta, IL-6, and IL-1 receptor antagonist in celiac disease. Are they related to the associated osteopenia? Am J Gastroenterol. 1998;93(3):413–418. doi: https://doi.org/10.1111/j.1572-0241.1998.00413.x; Taranta A, Fortunati D, Longo M, et al. Imbalance of osteoclastogenesis-regulating factors in patients with celiac disease. J Bone Miner Res. 2004;19(7):1112–1121. doi: https://doi.org/10.1359/JBMR.040319; Epsley S, Tadros S, Farid A, et al. The effect of inflammation on bone. Front Physiol. 2021;11:511799. doi: https://doi.org/10.3389/fphys.2020.511799; Moreno ML, Crusius JBA, Cherñavsky A, et al. The IL-1 gene family and bone involvement in celiac disease. Immunogenetics. 2005;57(8):618–620. doi: https://doi.org/10.1007/s00251-005-0033-x; Fernández A, González L, de la Fuente J. Coeliac disease: clinical features in adult populations. Rev Esp Enferm Dig. 2010;102(8):466–471. doi: https://doi.org/10.4321/s1130-01082010000800002; Alkalay MJ. Nutrition in patients with lactose malabsorption, celiac disease, and related disorders. Nutrients. 2021;14(1):2. doi: https://doi.org/10.3390/nu14010002; Micic D, Rao VL, Semrad CE. Celiac disease and its role in the development of metabolic bone disease. J Clin Densitom. 2020;23(2): 190–199. doi: https://doi.org/10.1016/j.jocd.2019.06.005; Harrison JE, Hitchman AJW, Finlay JM, Mcneill KG. Calcium kinetic studies in patients with malabsorption syndrome. Gastroenterology. 1969;56(4):751–757. doi: https://doi.org/10.1016/S0016-5085(69)80037-5; Jameson S. Coeliac disease, insulin-like growth factor, bone mineral density, and zinc. Scand J Gastroenterol. 2000;35(8):894–896.; Cardo A, Churruca I, Lasa A, et al. Nutritional imbalances in adult celiac patients following a gluten-free diet. Nutrients. 2021;13(8):2877. doi: https://doi.org/10.3390/nu13082877; Muñoz-Garach A, García-Fontana B, Muñoz-Torres M. Nutrients and dietary patterns related to osteoporosis. Nutrients. 2020;12(7):1986. doi: https://doi.org/10.3390/nu12071986; Unalp-Arida A, Ruhl CE, Choung RS, et al. Lower Prevalence of Celiac Disease and Gluten-Related Disorders in Persons Living in Southern vs Northern Latitudes of the United States. Gastroenterol. 2017;152(8):1922–1932.e2. doi: https://doi.org/10.1053/j.gastro.2017.02.012; Ivarsson A, Hernell O, Nyström L, Persson LA. Children born in the summer have increased risk for coeliac disease. J Epidemiol Community Health. 2003;57(1):36–39. doi: https://doi.org/10.1136/jech.57.1.36; Sander GR, Cummins AG, Henshall T, Powell BC. Rapid disruption of intestinal barrier function by gliadin involves altered expression of apical junctional proteins. FEBS Lett. 2005;579(21): 4851–4855. doi: https://doi.org/10.1016/j.febslet.2005.07.066; Lionetti E, Catassi C. New clues in celiac disease epidemiology, pathogenesis, clinical manifestations, and treatment. Int Rev Immunol. 2011;30(4):219–231. doi: https://doi.org/10.3109/08830185.2011.602443; Dewar D, Pereira SP, Ciclitira PJ. The pathogenesis of coeliac disease. Int J Biochem Cell Biol. 2004;36(1):17–24. doi: https://doi.org/10.1016/S1357-2725(03)00239-5; Lu C, Zhou W, He X, et al. Vitamin D status and vitamin D receptor genotypes in celiac disease: A meta-analysis. Crit Rev Food Sci Nutr. 2021;61(12):2098–2106. doi: https://doi.org/10.1080/10408398.2020.1772716; Ferretti G, Bacchetti T, Masciangelo S, Saturni L. Celiac disease, inflammation and oxidative damage: A nutrigenetic approach. Nutrients. 2012;4(4):243–257. doi: https://doi.org/10.3390/nu4040243; Rubio-Tapias A, Hill ID, Kelly CP, et al. ACG clinical guideline: Diagnosis and management of celiac disease. Am J Gastroenterol. 2013;108(5):656–676; quiz 677. doi: https://doi.org/10.1038/ajg.2013.79; Ludvigsson JF, Bai JC, Biagi F, et al. Diagnosis and management of adult coeliac disease: Guidelines from the British Society of Gastroenterology. Gut. 2014;63(8):1210–1228. doi: https://doi.org/10.1136/gutjnl-2013-306578; Hill ID, Fasano A, Guandalini S, et al. NASPGHAN clinical report on the diagnosis and treatment of gluten-related disorders. J Pediatr Gastroenterol Nutr. 2016;63(1):156–165. doi: https://doi.org/10.1097/MPG.0000000000001216; Saggese G, Vierucci F, Prodam F, et al. Vitamin D in pediatric age: Consensus of the Italian Pediatric Society and the Italian Society of Preventive and Social Pediatrics, jointly with the Italian Federation of Pediatricians. Ital J Pediatr. 2018;44(1):51. doi: https://doi.org/10.1186/s13052-018-0488-7; Kotze LMS, Skare T, Vinholi A, et al. Impact of a glutenfree diet on bone mineral density in celiac patients. Rev Esp Enferm Dig. 2016;108(2):84–88. doi: https://doi.org/10.17235/reed.2015.3953/2015; Pantaleoni S, Luchino M, Adriani A, et al. Bone mineral density at diagnosis of celiac disease and after 1 year of gluten-free diet. Sci World J. 2014;2014:173082. doi: https://doi.org/10.1155/2014/173082; Corazza GR, Di Sario A, Cecchetti L, et al. Bone mass and metabolism in patients with celiac disease. Gastroenterology. 1995;109(1):122–128. doi: https://doi.org/10.1016/0016-5085(95)90276-7; Duerksen DR, Leslie WD. Positive celiac disease serology and reduced bone mineral density in adult women. Can J Gastroenterol. 2010;24(2):103–107. doi: https://doi.org/10.1155/2010/285036; Valdimarsson T, Löfman O, Toss G, Ström M. Reversal of osteopenia with diet in adult coeliac disease. Gut. 1996;38(3):322–327. doi: https://doi.org/10.1136/gut.38.3.322; Хавкин А.И., Быстрова В.И., Шрайнер Е.В. и др. Целиакия и витаминно-минеральная недостаточность // Вопросы диетологии. — 2024. — Т. 14. — № 1. — С. 54–60. — doi: https://doi.org/10.20953/2224-5448-2024-1-54-60; Хавкин А.И., Новикова В.П., Вашура А.Ю., Ковтун Т.А. Ось микробиота-кость: современные представления о механизмах взаимодействия // Вопросы практической педиатрии. — 2022. — Т. 17. — № 5. — С. 66-74. — doi: https://doi.org/10.20953/1817-7646-2022-5-66-74; Wang J, Wang Y, Gao W, et al. Diversity analysis of gut microbiota in osteoporosis and osteopenia patients. PeerJ. 2017;5:e3450. doi: https://doi.org/10.7717/peerj.3450; Хавкин А.И., Яблокова Е.А., Шаповалова Н.С., Ерохина М.И. Микробиота кишечника и перспективы применения пробиотиков при целиакии у детей // Архив педиатрии и детской хирургии. — 2024. — Т. 2. — № 1. — С. 121–132. — doi: https://doi.org/10.31146/2949-4664-apps-2-1-121-132; Al-Toma A, Herman A, Lems WF, Mulder CJJ. The Dietary and Non-Dietary Management of Osteoporosis in Adult-Onset Celiac Disease: Current Status and Practical Guidance. Nutrients. 2022;14(21):4554. doi: https://doi.org/10.3390/nu14214554; https://www.pedpharma.ru/jour/article/view/2502
-
7Academic Journal
-
8Academic Journal
Συγγραφείς: O.Yu. Belousova, O.B. Hanzii
Πηγή: Zdorovʹe Rebenka, Vol 13, Iss 0, Pp 7-15 (2018)
CHILD`S HEALTH; Том 13 (2018): Supplement 1 Pediatric Gastroenterology and Nutritiology; 7-15
Здоровье ребенка-Zdorovʹe rebenka; Том 13 (2018): Приложение 1 Детская гастроэнтерология и нутрициология; 7-15
Здоров'я дитини-Zdorovʹe rebenka; Том 13 (2018): Додаток 1 Дитяча гастроентерологія і нутриціологія; 7-15Θεματικοί όροι: 2. Zero hunger, грудные дети, козье молоко, заменители грудного молока, функциональные запоры, 03 medical and health sciences, 0302 clinical medicine, немовлята, козяче молоко, замінники грудного молока, функціональні запори, breast milk substitutes, infants, goat milk, functional constipation, Pediatrics, RJ1-570, 3. Good health
Περιγραφή αρχείου: application/pdf
-
9Academic Journal
Συγγραφείς: Цодикова, O.A., Варакина-Митрай, K. A.
Πηγή: Педиатрия. Восточная Европа. :589-603
Θεματικοί όροι: 0301 basic medicine, 2. Zero hunger, 0303 health sciences, lutein, лютеин, macronutrients, козье молоко, infant formula, brain development, питательные микроэлементы, essential fatty acids, infant, детские смеси, 3. Good health, 03 medical and health sciences, goat milk, micronutrients, незаменимые жирные кислоты, макронутриенты, развитие мозга, младенцы
-
10Academic Journal
Development of Production Technology of Goat's Sour Cream Butter Enriched With Whey Herbal Infusions
Συγγραφείς: Danylenko, Svitlana, Ryzhkova, Taisiya, Diukareva, Galyna, Kopylova, Kateryna, Kozlovska, Ganna
Πηγή: Innovative Biosystems and Bioengineering, Vol 4, Iss 4 (2020)
Innovative Biosystems and Bioengineering; Том 4, № 4 (2020); 179-188Θεματικοί όροι: 0106 biological sciences, 0301 basic medicine, Бактеріальний препарат, 2. Zero hunger, Кислосливочное масло, Козье молоко, Бактериальный препарат, Сывороточный отвар, Лекарственные травы, Жирные кислоты, QH301-705.5, 04 agricultural and veterinary sciences, 01 natural sciences, Сироватковий відвар, 3. Good health, Sour cream butter, Goat's milk, Bacterial preparation, Whey infusion, Medicinal herbs, Fatty acids, 03 medical and health sciences, Козине молоко, 0404 agricultural biotechnology, Кисловершкове масло, Жирні кислоти, Biology (General), Лікарські трави, 0405 other agricultural sciences, Біотехнології
Περιγραφή αρχείου: application/pdf
-
11Academic Journal
Πηγή: Экономика и предпринимательство. :649-653
Θεματικοί όροι: Пермский край, промышленная основа, goat milk, industrial base, goat products, козье молоко, козоводческая ферма, Perm region, козоводческая продукция, goat farm
-
12Academic Journal
Πηγή: Экономика и предпринимательство. :360-365
Θεματικοί όροι: Пермский край, goat milk, goat meat, goat products, козье молоко, Perm region, межотраслевые связи, козоводческая продукция, intersectoral relations, козлятина
-
13Academic Journal
Συγγραφείς: Асан Бекешович Оспанов, Елена Михайловна Щетинина, Ботагоз Ондасынкызы Кулжанова, Раушан Кыдырхановна Макеева
Πηγή: Ползуновский вестник, Iss 4, Pp 41-46 (2021)
Θεματικοί όροι: козье молоко, овечье молоко, коровье молоко, функциональные продукты, йогурт, сыр, Technology
Περιγραφή αρχείου: electronic resource
Σύνδεσμος πρόσβασης: https://doaj.org/article/98f0f6de27c845b0a5b936a8bf04aaca
-
14Academic Journal
Συγγραφείς: M. V. Temerbayeva, M. S. Bestiyeva, T. I. Uryumtceva, M. B. Rebezov
Πηγή: Алматы технологиялық университетінің хабаршысы, Vol 0, Iss 4, Pp 16-19 (2021)
Θεματικοί όροι: десертные изделия, козье молоко, фруктовый джем, экспериментальные исследования, технология, десертті өнімдер, ешкі сүті, жеміс джемі, эксперименттік зерттеулер, dessert products, goat milk, fruit jam, experimental studies, technology, Technology (General), T1-995
Περιγραφή αρχείου: electronic resource
Relation: https://www.vestnik-atu.kz/jour/article/view/222; https://doaj.org/toc/2304-568X; https://doaj.org/toc/2710-0839
Σύνδεσμος πρόσβασης: https://doaj.org/article/85d155a4915149819679e5935deef80c
-
15Academic Journal
Πηγή: Алматы технологиялық университетінің хабаршысы, Vol 0, Iss 2, Pp 54-58 (2021)
Θεματικοί όροι: козье молоко, кисломолочный продукт, закваска, молочнокислые микроорганизмы, органолептические показатели, растительная добавка, функциональный продукт, Technology (General), T1-995
Περιγραφή αρχείου: electronic resource
Relation: https://www.vestnik-atu.kz/jour/article/view/64; https://doaj.org/toc/2304-568X; https://doaj.org/toc/2710-0839
Σύνδεσμος πρόσβασης: https://doaj.org/article/e99f997402d54200bd5e196f17fd7dca
-
16Academic Journal
Συγγραφείς: M. V. Temerbayeva, M. S. Bestiyeva, T. I. Uryumtseva, M. B. Rebezov
Πηγή: Алматы технологиялық университетінің хабаршысы, Vol 0, Iss 3, Pp 56-59 (2021)
Θεματικοί όροι: десертные изделия, фруктовый джем, козье молоко, технология, экспериментальные исследования, десертті өнімдер, жеміс джемі, ешкі сүті, эксперименттік зерттеулер, dessert products, fruit jam, goat milk, technology, experimental studies, Technology (General), T1-995
Περιγραφή αρχείου: electronic resource
Relation: https://www.vestnik-atu.kz/jour/article/view/207; https://doaj.org/toc/2304-568X; https://doaj.org/toc/2710-0839
Σύνδεσμος πρόσβασης: https://doaj.org/article/f1c0b1557131400b8c7753888d701f19
-
17Academic Journal
Συγγραφείς: Zh. K. Shadyarova, D. B. Kurmangaliyeva, N. . Lantseva, G. T. Yusupova
Πηγή: Алматы технологиялық университетінің хабаршысы, Vol 0, Iss 1, Pp 18-23 (2021)
Θεματικοί όροι: ешкі сүті, сақтау, микробиологиялық көрсеткіш, бактерия, технология, козье молоко, хранение, микробиологический показатель, goat milk, storage, microbiological index, bacteria, technology, Technology (General), T1-995
Περιγραφή αρχείου: electronic resource
Relation: https://www.vestnik-atu.kz/jour/article/view/247; https://doaj.org/toc/2304-568X; https://doaj.org/toc/2710-0839
Σύνδεσμος πρόσβασης: https://doaj.org/article/af93082cad10473390a0977cdbf1bdeb
-
18Academic Journal
Θεματικοί όροι: растительное сырье, молочные продукты, козье молоко, переработка молочного сырья, творожные десерты
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://rep.bsatu.by/handle/doc/18965
-
19Academic Journal
Συγγραφείς: Donskova, L.A., Leiberova, N.V., Lukinykh, M.I.
Θεματικοί όροι: biological value, goat's milk, characteristics, amino acid score, козье молоко, биологическая ценность, мягкие сыры, УДК 637.045, количество, quantity, белок, скор, аминокислотный профиль, amino acid profile, soft cheeses, характеристика, protein
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://dspace.susu.ru/xmlui/handle/00001.74/56171
-
20Academic Journal
Συγγραφείς: A. N. Pampura, E. F. Zhukalina, M. A. Morenko, O. P. Usenova, А. Н. Пампура, Е. Ф. Жукалина, М. А. Моренко, О. П. Усенова
Πηγή: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 68, № 2 (2023); 39-46 ; Российский вестник перинатологии и педиатрии; Том 68, № 2 (2023); 39-46 ; 2500-2228 ; 1027-4065
Θεματικοί όροι: ImmunoCAP, food allergy, cow’s milk protein allergy, goat’s milk, mare’s milk, camel’s milk, sIgE, пищевая аллергия, аллергия к белкам коровьего молока, козье молоко, кобылье молоко, верблюжье молоко
Περιγραφή αρχείου: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/1799/1359; Nuzzi G., Trambusti I., DI Cicco M.E., Peroni D.G. Breast milk: more than just nutrition! Minerva Pediatr (Torino) 2021; 73(2): 111–114. DOI:10.23736/S2724–5276.21.06223-X; Järvinen K.M., Martin H., Oyoshi M.K. Immunomodulatory effects of breast milk on food allergy. Ann Allergy Asthma Immunol 2019; 123(2): 133–143. DOI:10.1016/j.anai.2019.04.022; Urashima M., Mezawa H., Okuyama M., Urashima T., Hirano D., Gocho N. et al. Primary Prevention of Cow’s Milk Sensitization and Food Allergy by Avoiding Supplementation With Cow’s Milk Formula at Birth: A Randomized Clinical Trial. JAMA Pediatr 2019; 173(12): 1137–1145. DOI:10.1001/jamapediatrics.2019.3544; Fiocchi A., Bognanni A., Brożek J., Ebisawa M., Schünemann H. WAO DRACMA guideline group. World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow’s Milk Allergy (DRACMA) Guidelines update — I — Plan and definitions. World Allergy Organ J 2022; 15(1): 100609. DOI:10.1016/j.waojou.2021.100609; Schoemaker A.A., Sprikkelman A.B., Grimshaw K.E., Roberts G., Grabenhenrich L., Rosenfeld L. et al. Incidence and natural history of challenge-proven cow›s milk allergy in European children — EuroPrevall birth cohort. Allergy 2015; 70(8): 963–972. DOI:10.1111/all.12630; Fedenko E., Elisyutina O., Shtyrbul O., Khaitov M., Pampura A., Valenta R. et al. Microarray-based IgE serology improves management of severe atopic dermatitis in two children. Pediatr Allergy Immunol 2016; 27: 645–649. DOI:10.1111/pai.12572; Çelik M.N., Köksal E. Nutritional Targets in Cow’s Milk Protein Allergy: A Comprehensive Review. Curr Nutr Rep 2022; 11(2): 329–336. DOI:10.1007/s13668–022–00408–1; Jensen S.A., Fiocchi A., Baars T., Jordakieva G., Nowak-Wegrzyn A., Pali-Schöll I. et al. WAO DRACMA guideline group. Diagnosis and Rationale for Action against Cow’s Milk Allergy (DRACMA) Guidelines update — III — Cow’s milk allergens and mechanisms triggering immune activation. World Allergy Organ J 2022; 15(9): 100668. DOI:10.1016/j.waojou.2022.100668; Markoska T., Vasiljevic T., Huppertz T. Unravelling Conformational Aspects of Milk Protein Structure-Contributions from Nuclear Magnetic Resonance Studies. Foods 2020; 9(8): 1128. DOI:10.3390/foods9081128; Bloom K.A., Huang F.R., Bencharitiwong R., Bardina L., Ross A., Sampson H.A. et al. Effect of heat treatment on milk and egg proteins allergenicity. Pediatr Allergy Immunol 2014; 25: 740–746. DOI:10.1111/pai.12283; Villa C., Costa J., Oliveira M.B.P.P., Mafra I. Bovine Milk Allergens: A Comprehensive Review. Compr Rev Food Sci Food Saf 2018; 17(1): 137–164. DOI:10.1111/1541–4337.12318; Eigenmann P.A., Ebisawa M., Greenhawt M., Hourihane J.O., Perry T.T., Remington B.C. et al. Addressing risk management difficulties in children with food allergies. Pediatr Allergy Immunol 2021; 32(4): 658–666. DOI:10.1111/pai.13455; Pettersson M.E., Koppelman G.H., Flokstra-de Blok B.M.J, Kollen B.J., Dubois A.E.J. Prediction of the severity of allergic reactions to foods. Allergy 2018; 73(7): 1532–1540. DOI:10.1111/all.13423; Foong R.X., Dantzer J.A., Wood R.A., Santos A.F. Improving Diagnostic Accuracy in Food Allergy. J Allergy Clin Immunol Pract 2021; 9(1): 71–80. DOI:10.1016/j.jaip.2020.09.037; Dantzer J.A., Dunlop J.H., Wood R.A. Standard testing fails to identify patients who tolerate baked milk. J Allergy Clin Immunol 2020; 146(6) :1434–1437.e2. DOI:10.1016/j.jaci.2020.03.030; Caubet J.C., Nowak-Węgrzyn A., Moshier E., Godbold J., Wang J., Sampson H.A. Utility of casein-specific IgE levels in predicting reactivity to baked milk. J Allergy Clin Immunol 2013; 131(1): 222–4.e1–4. DOI:10.1016/j.jaci.2012.06.049; Niggemann B., Beyer K. Time for a new grading system for allergic reactions? Allergy 2016; 71(2): 135–6. DOI:10.1111/all.12765; Matricardi P.M., Kleine-Tebbe J., Hoffmann H.J., Valenta R., Hilger C., Hofmaier S. et al. EAACI Molecular Allergology User’s Guide. Pediatr Allergy Immunol 2016; 27 Suppl 23: 1–250. DOI:10.1111/pai.12563; D’auria E., Mameli C., Piras C., Cococcioni L., Urbani A., Zuccotti G.V. et al. Precision medicine in cow’s milk allergy: proteomics perspectives from allergens to patients. J Proteomics 2018; 188: 173–180. DOI:10.1016/j.jprot.2018.01.018; García-Ara M.C., Boyano-Martínez M.T., Díaz-Pena J.M., Martín-Muñoz M.F., Martín-Esteban M. Cow’s milk-specific immunoglobulin E levels as predictors of clinical reactivity in the follow-up of the cow’s milk allergy infants. Clin Exp Allergy 2004; 34(6): 866–70. DOI:10.1111/j.1365–2222.2004.01976.x; Пампура А.Н., Варламов Е.В. Оптимизация диагностики аллергии к белкам коровьего молока у детей раннего возраста, страдающих атопическим дерматитом. Российский аллергологический журнал 2011; 1: 65–70.; Celik-Bilgili S., Mehl A., Verstege A., Staden U., Nocon M., Beyer K. et al. The predictive value of specific immunoglobulin E levels in serum for the outcome of oral food challenges. Clin Exp Allergy 2005; 35(3): 268–273. DOI:10.1111/j.1365–2222.2005.02150.x; Pampura A.N. Food anaphylaxis: Reported cases in Russian Federation Children. Am J Public Health Res 2015; 5: 187–191; Esakova N., Pampura A., Dustbabaeva N., Baybekova V. (2022). Anaphylaxis in Infants. In (Ed.), Allergic Disease — New Developments in Diagnosis and Therapy [Working Title]. Intech Open DOI:10.5772/intechopen.108738/ Ссылка активна на 7.02.2023; Boyano-Martínez T., García-Ara C., Pedrosa M., Díaz-Pena J.M., Quirce S. Accidental allergic reactions in children allergic to cow’s milk proteins. J Allergy Clin Immunol 2009; 123(4): 883–888. DOI:10.1016/j.jaci.2008.12.1125; Bavaro S.L., De Angelis E., Barni S., Pilolli R., Mori F., Novembre E.M. et al. Modulation of Milk Allergenicity by Baking Milk in Foods: A Proteomic Investigation. Nutrients 2019; 11(7): 1536. DOI:10.3390/nu11071536; Kim M., Lee J.Y., Yang H.K., Won H.J., Kim K., Kim J. et al. The Natural Course of Immediate-Type Cow’s Milk and Egg Allergies in Children. Int Arch Allergy Immunol 2020; 181(2): 103–110. DOI:10.1159/000503749; Варламов Е.Е., Пампура А.Н., Окунева Т.С. Прогностические критерии развития толерантности к продуктам питания у детей с пищевой аллергией. Российский вестник перинатологии и педиатрии 2008; 53(6): 88–93.; Shek L.P., Soderstrom L., Ahlstedt S., Beyer K., Sampson H.A. Determination of food specific IgE levels over time can predict the development of tolerance in cow’s milk and hen’s egg allergy. J Allergy Clin Immunol 2004; 114(2): 387–391. DOI:10.1016/j.jaci.2004.04.032; Petersen T.H., Mortz C.G., Bindslev-Jensen C., Eller E. Cow’s milk allergic children: can component-resolved diagnostics predict duration and severity? Pediatr Allergy Immunol 2018; 29:194–199. DOI:10.1111/pai.12854; Guo H.Y., Pang K., Zhang X.Y., Zhao L., Chen S.W., Dong M.L. et al. Composition, physiochemical properties, nitrogen fraction distribution, and amino acid profile of donkey milk. J Dairy Sci 2007; 90(4): 1635–1643. DOI:10.3168/jds.2006–600; Варламов Е.Е., Пампура А.Н., Окунева Т.С. Взаимосвязь сенсибилизации к пищевым аллергенам и тяжести атопического дерматита у детей раннего возраста. Российский аллергологический журнал 2008; 5: 19–24.; Bellioni-Businco B., Paganelli R., Lucenti P., Giampietro P.G., Perborn H., Businco L. Allergenicity of goat’s milk in children with cow’s milk allergy. J Allergy Clin Immunol 1999; 103: 1191–1194. DOI:10.1016/s0091–6749(99)70198–3; Gunaydin N.C., Severcan E.U., Akarcan S.E., Bal C.M., Gulen F., Tanac R. et al. Effects of Cow’s Milk Components, Goat’s Milk and Sheep’s Milk Sensitivities on Clinical Findings, and Tolerance Development in Cow’s Milk Allergy. Sisli Etfal Hastan Tip Bul 2021; 55(3): 391–397. DOI:10.14744/SEMB.2020.90688; Wuthrich B., Johansson S.G.O. Allergy to cheese produced from sheep’s and goat’s milk but not to cheese produced from cow’s milk. J Allergy Clin Immunol 1995; 96: 270–273; Ehlayel M., Bener A. Camel’s milk allergy. Allergy Asthma Proc 2018; 39(5): 384–388. DOI:10.2500/aap.2018.39.4150; Ehlayel M.S., Abu Hazeima K., Al-Mesaifri F., Bener A. Camel milk: An alternative for cow’s milk allergy in children. Allergy Asthma Proc 2011; 32: 255–258. DOI:10.2500/aap.2011.32.3429; Talarico V., Mazza G., Rubino M., Monti G., Giancotti L., Bua A. et al. Camel milk: a possible alternative for children with cow’s milk allergy? Minerva Pediatr (Torino) 2021; 73(4): 289–293. DOI:10.23736/S2724–5276.19.05632–9; Robles S., Je Torres M., Mayorga C., Rodrigues-Bada J.L., Fernandez T.D., Blanca M. et al. Anaphylaxis to mare’s milk. Ann Allergy, Asthma Immunol 2007; 98: 660–661. DOI:10.1016/S1081–1206(10)60747–8; Musaev A., Sadykova S., Anambayeva A., Saizhanova M., Balkanay G., Kolbaev M. Mare’s Milk: Composition, Properties, and Application in Medicine. Arch Razi Institute 2021; 76(3): 1125–1135. DOI:10.22092/ari.2021.355834.1725; Businco L., Giampietro P.G., Lucenti P., Lucaroni F., Pini C., Di Felice G. et al. Allergenicity of mare’s milk in children with cow’s milk allergy. J Allergy Clin Immunol 2000; 105(5): 1031–1034. DOI:10.1067/mai.2000.106377