Showing 1 - 20 results of 392 for search '"КОГНИТИВНЫЕ РАССТРОЙСТВА"', query time: 0.85s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Subject Geographic: USPU

    Relation: Специальное образование. 2021. № 4 (64)

  5. 5
    Academic Journal

    Subject Geographic: USPU

    Relation: Специальное образование. 2021. № 1 (61)

  6. 6
    Academic Journal

    Subject Geographic: USPU

    Relation: Специальное образование. 2020. № 3 (59)

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    Contributors: Работа выполнена в рамках государственного задания ФГБОУ ВО «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого» Минздрава России (2023–2025) «Разработка персонализированного алгоритма диагностики сосудистой умеренной когнитивной дисфункции на фоне перенесенного острого инфаркта миокарда на основе новых генетических и биохимических биомаркеров», № 123022800057-6.

    Source: Complex Issues of Cardiovascular Diseases; Том 13, № 4S (2024); 183-196 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 13, № 4S (2024); 183-196 ; 2587-9537 ; 2306-1278

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1430/984; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1430/1565; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1430/1566; Минздрав РФ. Клинические рекомендации. Когнитивные расстройства у лиц пожилого и старческого возраста. Режим доступа: https://cr.minzdrav.gov.ru/schema/617_1 (дата обращения 10.01.2024); Kalaria R.N. Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for alzheimer's disease. Acta Neuropathol. 2016; 131: 659–685. doi:10.1007/s00401-016-1571-z; Гаврилова Е.С., Яшина Л.М. Оценка факторов кардиоваскулярного риска и образовательные технологии их коррекции в молодежной популяции. Сибирское медицинское обозрение. 2017; (2): 48-55. doi:10.20333/2500136-2017-2-48-55; Balasubramanian P., DelFavero J., Ungvari A., Papp M., Tarantini A., Price N., de Cabo R., Tarantini S. Time-restricted feeding (TRF) for prevention of age-related vascular cognitive impairment and dementia. Ageing Res Rev. 2020; 64: 101189. doi:10.1016/j.arr.2020.101189; Wolters F.J., Ikram M.A. Epidemiology of vascular dementia. Arterioscler Thromb Vasc Biol. 2019; 39: 1542–1549. doi:10.1161/ATVBAHA.119.311908; Iadecola C., Duering M., Hachinski V., Joutel A., Pendlebury S.T., Schneider J.A., Dichgans M. Vascular Cognitive Impairment and Dementia: JACC Scientific Expert Panel. J Am Coll Cardiol. 2019; 73(25): 3326-3344. doi:10.1016/j.jacc.2019.04.034; Игнатьева В.И., Вознюк И.А., Шамалов Н.А., Резник А.В., Виницкий А.А., Деркач Е.В. Социально-экономическое бремя инсульта в Российской Федерации. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2023; 123(8‑2): 5‑15.; Zhai W., Zhao M., Zhang G., Wang Z., Wei C., Sun L. MicroRNA-Based Diagnosis and Therapeutics for Vascular Cognitive Impairment and Dementia. Front Neurol. 2022; 13: 895316. doi:10.3389/fneur.2022.895316; Rizvanov A.A. New Hope: Using Gene Therapy to Treat Rare Neurological Diseases. Personalized Psychiatry and Neurology. 2023; 3(1): 3-6. doi:10.52667/2712-9179-2023-3-1-3-6; Kotsiubinskaya J.V., Mikhailov V.A., Kazakov A.V. Clinical Features of Subjective Cognitive Decline in The Early Stages of Alzheimer’s Disease. Personalized Psychiatry and Neurology. 2023; 3(2): 3-14. doi:10.52667/2712-9179-2023-3-2-3-14.; Гомазков О.А. Нейропротеомика, или как множества белков отражают функции мозга. Успехи современной биологии. 2020; 140 (4): 347–358. doi:10.31857/S0042132420040079; Kozomara A., Birgaoanu M., Griffiths-Jones S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 2019; 47: 155–162. doi:10.1093/nar/gky1141; Deveson I.W., Hardwick S.A., Mercer T.R., Mattick J.S. The Dimensions, Dynamics, and Relevance of the Mammalian Noncoding Transcriptome. Trends Genet. 2017; 33: 464–478. doi:10.1016/j.tig.2017.04.004; Ratti M., Lampis A., Ghidini M., Salati M., Mirchev M.B., Valeri N., Hahne J.C. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: First steps from bench to bedside. Target Oncol. 2020; 15: 261–278. doi:10.1007/s11523-020-00717-x; Zhou L., Lim M.Y.T., Kaur P., Saj A., Bortolamiol-Becet D., Gopal V., Tolwinski N., Tucker-Kellogg G., Okamura K. Importance of miRNA stability and alternative primary miRNA isoforms in gene regulation during Drosophila development. Elife. 2018; 7: e38389. doi:10.7554/eLife.38389; Blount G.S., Coursey L., Kocerha J. MicroRNA Networks in Cognition and Dementia. Cells. 2022; 11(12): 1882. doi:10.3390/cells11121882; Kocerha J., Dwivedi Y., Brennand K.J. Noncoding RNAs and neurobehavioral mechanisms in psychiatric disease. Mol. Psychiatry. 2015; 20: 677–684. doi:10.1038/mp.2015.30; Islam M.R., Kaurani L., Berulava T., Heilbronner U., Budde M., Centeno T.P., Elerdashvili V., Zafieriou M.P., Benito E., Sertel S.M., Goldberg M., Senner F., Kalman J.L., Burkhardt S., Oepen A.S., Sakib M.S., Kerimoglu C., Wirths O., Bickeböller H., Bartels C., Brosseron F., Buerger K., Cosma N.C., Fliessbach K., Heneka M.T., Janowitz D., Kilimann I., Kleinedam L., Laske C., Metzger C.D., Munk M.H., Perneczky R., Peters O., Priller J., Rauchmann B.S., Roy N., Schneider A., Spottke A., Spruth E.J., Teipel S., Tscheuschler M., Wagner M., Wiltfang J., Düzel E., Jessen F., Delcode Study Group, Rizzoli S.O., Zimmermann W.H., Schulze T.G., Falkai P., Sananbenesi F., Fischer A. A microRNA signature that correlates with cognition and is a target against cognitive decline. EMBO Mol Med. 2021; 13(11): e13659. doi:10.15252/emmm.202013659; Balzano F., Deiana M., Dei Giudici S., Oggiano A., Baralla A., Pasella S., Mannu A., Pescatori M., Porcu B., Fanciulli G., Zinellu A., Carru C., Deiana L. miRNA Stability in Frozen Plasma Samples. Molecules. 2015; 20(10): 19030-19040. doi:10.3390/molecules201019030; Almutairi M.M., Gong C., Xu Y.G., Chang Y., Shi H. Factors controlling permeability of the blood-brain barrier. Cell Mol Life Sci. 2016; 73(1): 57-77. doi:10.1007/s00018-015-2050-8; Ma F., Zhang X., Yin K.J. MicroRNAs in central nervous system diseases: A prospective role in regulating blood-brain barrier integrity. Exp Neurol. 2020; 323: 113094. doi:10.1016/j.expneurol.2019.113094; Van Dyken P., Lacoste B. Impact of Metabolic Syndrome on Neuroinflammation and the Blood-Brain Barrier. Front Neurosci. 2018; 12: 930. doi:10.3389/fnins.2018.00930; Daneman R., Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol. 2015; 7(1): a020412. doi:10.1101/cshperspect.a020412; Goodall E.F., Leach V., Wang C., Cooper-Knock J., Heath P.R., Baker D., Drew D.R., Saffrey M.J., Simpson J.E., Romero I.A., Wharton S.B. Age-Associated mRNA and miRNA Expression Changes in the Blood-Brain Barrier. Int J Mol Sci. 2019; 20(12): 3097. doi:10.3390/ijms20123097; Chakraborty C., Sharma A.R., Sharma G., Bhattacharya M., Lee S.S. MicroRNAs: Possible Regulatory Molecular Switch Controlling the BBB Microenvironment. Mol Ther Nucleic Acids. 2020; 19: 933-936. doi:10.1016/j.omtn.2019.12.024; O'Carroll D., Schaefer A. General principals of miRNA biogenesis and regulation in the brain. Neuropsychopharmacology. 2013; 38(1): 39-54. doi:10.1038/npp.2012.87; Wang P., Pan R., Weaver J., Jia M., Yang X., Yang T., Liang J., Liu K.J. MicroRNA-30a regulates acute cerebral ischemia-induced blood-brain barrier damage through ZnT4/zinc pathway. J Cereb Blood Flow Metab. 2021; 41(3): 641-655. doi:10.1177/0271678X20926787; Bernstein D.L., Zuluaga-Ramirez V., Gajghate S., Reichenbach N.L., Polyak B., Persidsky Y., Rom S. miR-98 reduces endothelial dysfunction by protecting blood-brain barrier (BBB) and improves neurological outcomes in mouse ischemia/reperfusion stroke model. J Cereb Blood Flow Metab. 2020; 40(10): 1953-1965. doi:10.1177/0271678X19882264; Pan J., Qu M., Li Y., Wang L., Zhang L., Wang Y., Tang Y., Tian H.L., Zhang Z., Yang G.Y. MicroRNA-126-3p/-5p Overexpression Attenuates Blood-Brain Barrier Disruption in a Mouse Model of Middle Cerebral Artery Occlusion. Stroke. 2020; 51(2): 619-627. doi:10.1161/STROKEAHA.119.027531; Zuo X., Lu J., Manaenko A., Qi X., Tang J., Mei Q., Xia Y., Hu Q. MicroRNA-132 attenuates cerebral injury by protecting blood-brain-barrier in MCAO mice. Exp Neurol. 2019; 316: 12-19. doi:10.1016/j.expneurol.2019.03.017; Bai Y., Zhang Y., Han B., Yang L., Chen X., Huang R., Wu F., Chao J., Liu P., Hu G., Zhang J.H., Yao H. Circular RNA DLGAP4 Ameliorates Ischemic Stroke Outcomes by Targeting miR-143 to Regulate Endothelial-Mesenchymal Transition Associated with Blood-Brain Barrier Integrity. J Neurosci. 2018; 38(1): 32-50. doi:10.1523/JNEUROSCI.1348-17.2017; Zhang T., Tian C., Wu J., Zhang Y., Wang J., Kong Q., Mu L., Sun B., Ai T., Wang Y., Zhao W., Wang D., Li H., Wang G. MicroRNA-182 exacerbates blood-brain barrier (BBB) disruption by downregulating the mTOR/FOXO1 pathway in cerebral ischemia. FASEB J. 2020; 34(10): 13762-13775. doi:10.1096/fj.201903092R; Song J., Yoon S.R., Kim O.Y. miR-Let7A Controls the Cell Death and Tight Junction Density of Brain Endothelial Cells under High Glucose Condition. Oxid Med Cell Longev. 2017; 2017: 6051874. doi:10.1155/2017/6051874; Wang X.X., Zhang B., Xia R., Jia Q.Y. Inflammation, apoptosis and autophagy as critical players in vascular dementia. Eur Rev Med Pharmacol Sci. 2020; 24(18): 9601-9614. doi:10.26355/eurrev_202009_23048; Xu C., Wang C., Meng Q., Gu Y., Wang Q., Xu W., Han Y., Qin Y., Li J., Jia S., Xu J., Zhou Y. miR‑153 promotes neural differentiation in the mouse hippocampal HT‑22 cell line and increases the expression of neuron‑specific enolase. Mol Med Rep. 2019; 20(2): 1725-1735. doi:10.3892/mmr.2019.10421; Morel L., Regan M., Higashimori H., Ng S.K., Esau C., Vidensky S., Rothstein J., Yang Y. Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1. J Biol Chem. 2013; 288(10): 7105-7116. doi:10.1074/jbc.M112.410944; Liu X., Feng Z., Du L., Huang Y., Ge J., Deng Y., Mei Z. The Potential Role of MicroRNA-124 in Cerebral Ischemia Injury. Int J Mol Sci. 2019; 21(1): 120. doi:10.3390/ijms21010120; Wei C., Xu X., Zhu H., Zhang X., Gao Z. Promotive role of microRNA‑150 in hippocampal neurons apoptosis in vascular dementia model rats. Mol Med Rep. 2021; 23(4): 257. doi:10.3892/mmr.2021.11896; Li G.F., Li Z.B., Zhuang S.J., Li G.C. Inhibition of microRNA-34a protects against propofol anesthesia-induced neurotoxicity and cognitive dysfunction via the MAPK/ERK signaling pathway. Neurosci Lett. 2018; 675: 152-159. doi:10.1016/j.neulet.2018.03.052; Yang F.W., Wang H., Wang C., Chi G.N. Upregulation of acetylcholinesterase caused by downregulation of microRNA-132 is responsible for the development of dementia after ischemic stroke. J Cell Biochem. 2020; 121(1): 135-141. doi:10.1002/jcb.28985; Liu D.Y., Zhang L. MicroRNA-132 promotes neurons cell apoptosis and activates Tau phosphorylation by targeting GTDC-1 in Alzheimer's disease. Eur Rev Med Pharmacol Sci. 2019; 23(19): 8523-8532. doi:10.26355/eurrev_201910_19166; El Fatimy R., Li S., Chen Z., Mushannen T., Gongala S., Wei Z., Balu D.T., Rabinovsky R., Cantlon A., Elkhal A., Selkoe D.J., Sonntag K.C., Walsh D.M., Krichevsky A.M. MicroRNA-132 provides neuroprotection for tauopathies via multiple signaling pathways. Acta Neuropathol. 2018; 136(4): 537-555. doi:10.1007/s00401-018-1880-5; Chen D., Hu S., Wu Z., Liu J., Li S. The Role of MiR-132 in Regulating Neural Stem Cell Proliferation, Differentiation and Neuronal Maturation. Cell Physiol Biochem. 2018; 47(6): 2319-2330. doi:10.1159/000491543; Yue J., Zhang B., Wang H., Hou X., Chen X., Cheng M., Wen S. Dysregulated plasma levels of miRNA-132 and miRNA-134 in patients with obsessive-compulsive disorder. Ann Transl Med. 2020; 8(16): 996. doi:10.21037/atm-20-5217; Бурмистрова АЛ, Алексеева АС, Казо МЕ, Филиппова ЮЮ. Лейкоцитарная сигнатура микроРНК в контексте хронического системного воспаления при сосудистой деменции. Российский иммунологический журнал. 2022;25(4):399-404. doi:10.46235/1028-7221-1187-MSO; Yakovleva K.D., Dmitrenko D.V., Panina I.S., Usoltseva A.A., Gazenkampf K.A., Konovalenko O.V., Kantimirova E.A., Novitsky M.A., Nasyrova R.F., Shnayder N.A. Expression Profile of miRs in Mesial Temporal Lobe Epilepsy: Systematic Review. Int J Mol Sci. 2022; 23(2): 951. doi:10.3390/ijms23020951; Prabhakar P., Chandra S.R., Christopher R. Circulating microRNAs as potential biomarkers for the identification of vascular dementia due to cerebral small vessel disease. Age Ageing. 2017; 46(5): 861-864. doi:10.1093/ageing/afx090; Sheinerman K.S., Tsivinsky V.G., Abdullah L., Crawford F., Umansky S.R. Plasma microRNA biomarkers for detection of mild cognitive impairment: biomarker validation study. Aging (Albany NY). 2013; 5(12): 925-938. doi:10.18632/aging.100624; Marchegiani F., Matacchione G., Ramini D., Marcheselli F., Recchioni R., Casoli T., Mercuri E., Lazzarini M., Giorgetti B., Cameriere V., Paolini S., Paciaroni L., Rossi T., Galeazzi R., Lisa R., Bonfigli A.R., Procopio A.D., De Luca M., Pelliccioni G., Olivieri F. Diagnostic performance of new and classic CSF biomarkers in age-related dementias. Aging (Albany NY). 2019; 11(8): 2420-2429. doi:10.18632/aging.101925; Yang T.T., Liu C.G., Gao S.C., Zhang Y., Wang P.C. The serum exosome derived microrna-135a,−193b, and−384 were potential alzheimer's disease biomarkers. Biomed Environ Sci. 2018; 31: 87–96. 10.3967/bes2018.011; Kumar S., Vijayan M., Reddy P.H. Microrna-455-3p as a potential peripheral biomarker for alzheimer's disease. Hum Mol Genet. 2017; 26: 3808–3822. doi:10.1093/hmg/ddx267; Ai J., Sun L.H., Che H., Zhang R., Zhang T.Z., Wu W.C., Su X.L., Chen X., Yang G., Li K., Wang N., Ban T., Bao Y.N., Guo F., Niu H.F., Zhu Y.L., Zhu X.Y., Zhao S.G., Yang B.F. MicroRNA-195 protects against dementia induced by chronic brain hypoperfusion via its anti-amyloidogenic effect in rats. J Neurosci. 2013; 33(9): 3989-4001. doi:10.1523/JNEUROSCI.1997-12.2013; Tan Z., Chen Y., Xie W., Liu X., Zhu Y., Zhu Y. Nimodipine attenuates tau phosphorylation at Ser396 via miR-132/GSK-3β pathway in chronic cerebral hypoperfusion rats. Eur J Pharmacol. 2018; 819: 1-8. doi:10.1016/j.ejphar.2017.10.027; Hu X.L., Wang X.X., Zhu Y.M., Xuan L.N., Peng L.W., Liu Y.Q., Yang H., Yang C., Jiao L., Hang P.Z., Sun L.H. MicroRNA-132 regulates total protein of Nav1.1 and Nav1.2 in the hippocampus and cortex of rat with chronic cerebral hypoperfusion. Behav Brain Res. 2019; 366: 118-125. doi:10.1016/j.bbr.2019.03.026; Swarup V., Hinz F.I., Rexach J.E., Noguchi K.I., Toyoshiba H., Oda A., Hirai K., Sarkar A., Seyfried N.T., Cheng C., Haggarty S.J., International Frontotemporal Dementia Genomics Consortium, Grossman M., Van Deerlin V.M., Trojanowski J.Q., Lah J.J., Levey A.I., Kondou S., Geschwind D.H. Identification of evolutionarily conserved gene networks mediating neurodegenerative dementia. Nat Med. 2019; 25: 152–164. doi:10.1038/s41591-018-0223-3; Qiao J., Zhao J., Chang S., Sun Q., Liu N., Dong J., Chen Y., Yang D., Ye D., Liu X., Yu Y., Chen W., Zhu S., Wang G., Jia W., Xi J., Kang J. MicroRNA-153 improves the neurogenesis of neural stem cells and enhances the cognitive ability of aged mice through the notch signaling pathway. Cell Death Differ. 2020; 27(2): 808-825. doi:10.1038/s41418-019-0388-4; Sun L.H., Yan M.L., Hu X.L., Peng L.W., Che H., Bao Y.N., Guo F., Liu T., Chen X., Zhang R., Ban T., Wang N., Liu H.L., Hou X., Ai J. MicroRNA-9 induces defective trafficking of Nav1.1 and Nav1.2 by targeting Navβ2 protein coding region in rat with chronic brain hypoperfusion. Mol Neurodegener. 2015; 10: 36. doi:10.1186/s13024-015-0032-9; Xie H., Zhao Y., Zhou Y., Liu L., Liu Y., Wang D., Zhang S., Yang M. MiR-9 Regulates the Expression of BACE1 in Dementia Induced by Chronic Brain Hypoperfusion in Rats. Cell Physiol Biochem. 2017; 42(3): 1213-1226. doi:10.1159/000478919; Che H., Yan Y., Kang X.H., Guo F., Yan M.L., Liu H.L., Hou X., Liu T., Zong D.K., Sun L.L., Bao Y.N., Sun L.H., Yang B.F., Ai J. MicroRNA-27a Promotes Inefficient Lysosomal Clearance in the Hippocampi of Rats Following Chronic Brain Hypoperfusion. Mol Neurobiol. 2017; 54(4): 2595-2610. doi:10.1007/s12035-016-9856-8; Wang P., Liang X., Lu Y., Zhao X., Liang J. MicroRNA-93 Downregulation Ameliorates Cerebral Ischemic Injury Through the Nrf2/HO-1 Defense Pathway. Neurochem Res. 2016; 41(10): 2627-2635. doi:10.1007/s11064-016-1975-0; Liu P., Liu P., Wang Z., Fang S., Liu Y., Wang J., Liu W., Wang N., Chen L., Wang J., Zhang H., Wang L. Inhibition of MicroRNA-96 Ameliorates Cognitive Impairment and Inactivation Autophagy Following Chronic Cerebral Hypoperfusion in the Rat. Cell Physiol Biochem. 2018; 49(1): 78-86. doi:10.1159/000492844; Toyama K., Spin J.M., Deng A.C., Huang T.T., Wei K., Wagenhäuser M.U., Yoshino T., Nguyen H., Mulorz J., Kundu S., Raaz U., Adam M., Schellinger I.N., Jagger A., Tsao P.S. MicroRNA-Mediated Therapy Modulating Blood-Brain Barrier Disruption Improves Vascular Cognitive Impairment. Arterioscler Thromb Vasc Biol. 2018; 38(6): 1392-1406. doi:10.1161/ATVBAHA.118.310822; Ren Z., Yu J., Wu Z., Si W., Li X., Liu Y., Zhou J., Deng R., Chen D. MicroRNA-210-5p Contributes to Cognitive Impairment in Early Vascular Dementia Rat Model Through Targeting Snap25. Front Mol Neurosci. 2018; 11: 388. doi:10.3389/fnmol.2018.00388; Liu X., Zhang R., Wu Z., Si W., Ren Z., Zhang S., Zhou J., Chen D. miR‑134‑5p/Foxp2/Syn1 is involved in cognitive impairment in an early vascular dementia rat model. Int J Mol Med. 2019; 44(5): 1729-1740. doi:10.3892/ijmm.2019.4331; Zhang S., Yan M.L., Yang L., An X.B., Zhao H.M., Xia S.N., Jin Z., Huang S.Y., Qu Y., Ai J. MicroRNA-153 impairs hippocampal synaptic vesicle trafficking via downregulation of synapsin I in rats following chronic cerebral hypoperfusion. Exp Neurol. 2020; 332: 113389. doi:10.1016/j.expneurol.2020.113389

  15. 15
    Academic Journal

    Source: Diagnostic radiology and radiotherapy; Том 14, № 2 (2023); 64-73 ; Лучевая диагностика и терапия; Том 14, № 2 (2023); 64-73 ; 2079-5343

    File Description: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/879/598; Petersen R.C., Lopez O, Armstrong M.J. et al. Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee o the American Academy of Neurology // Neurology. 2018. Vol. 90, No. 3. P. 126–135. doi:10.1212/WNL.0000000000004826.; Боголепова А.Н., Васенина Е.Е., Гомзякова Н.А. и др. Клинические рекомендации «Когнитивные расстройства у пациентов пожилого и старческого возраста» // Журнал неврологии и психиатрии им. С.С. Корсакова. 2021. Т. 121, № 10–3. С. 6–137.; Незнанов Н.Г., Ананьева Н.И., Залуцкая Н.М., Андреев Е.В., Ахмерова Л.Р., Ежова Р.В., Саломатина Т.А., Стулов И.К. Нейровизуализация гиппокампа: роль в диагностике болезни Альцгеймера на ранней стадии // Обозрение психиатрии и медицинской психологии им. В.М.Бехтерева. 2018. № 4. С. 3–11. doi:10.31363/2313-7053-20.; Стулов И.К., Ананьева Н.И., Лукина Л.В., Залуцкая Н.М. Роль МР-морфометрии субполей гиппокампа в диагностике умеренных когнитивных расстройств различного генеза // Российский нейрохирургический журнал им. профессора А.Л.Поленова. 2022. Т. 14, № 2. С. 153–159.; Firbank M.J., Barber R., Burton E.J. et al. Validation of a fully automated hippocampal segmentation method on patients with dementia // Human brain mapping. 2008. Vol. 29, No. 12. P. 1442–1449. doi:10.1002/hbm.20480.; Van Staalduinen E.K., Zeineh M.M. Medial Temporal Lobe Anatomy // Neuroimaging Clinics. 2022. Vol. 32, No. 3. P. 475–489. doi:10.1016/j.nic.2022.04.012.; Wu J., Shahid S.S., Lin Q. et al. Multimodal magnetic resonance imaging reveals distinct sensitivity of hippocampal subfields in asymptomatic stage of Alzheimer’s disease // Frontiers in aging neuroscience. 2022. Vol. 4. P. 1–15. doi:10.3389/fnagi.2022.901140.; Tran T.T., Speck C.L., Gallagher M. et al. Lateral entorhinal cortex dysfunction in amnestic mild cognitive impairment // Neurobiology of aging. 2022. Vol. 112. P. 151–160. doi:10.1016/j.neurobiolaging.2021.12.008.; Wong F.C.C., Yatawara С., Low А. et al. Cerebral small vessel disease influences hippocampal subfield atrophy in mild cognitive impairment // Translational Stroke Research. 2021. Vol. 12, No. 2. P. 284–292. doi:10.1007/s12975-020-00847-4.; He M., Li Y., Zhou L. et al. Relationships Between Memory Impairments and Hippocampal Structure in Patients With Subcortical Ischemic Vascular Disease // Frontiers in Aging Neuroscience. 2022. Vol. 14. P. 1–12. doi:10.3389/fnagi.2022.823535.; Pin G., Coupé P., Nadal L. et al. Distinct hippocampal subfields atrophy in older people with vascular brain injuries // Stroke. 2021. Vol. 52, No. 5. P. 1741–1750. doi:10.1161/STROKEAHA.120.03174.; Popuri K., Ma D., Wang L. et al. Using machine learning to quantify structural MRI neurodegeneration patterns of Alzheimer’s disease into dementia score: Independent validation on 8,834 images from ADNI, AIBL, OASIS, and MIRIAD databases // Human Brain Mapping. 2020. Vol. 41, No. 14. P. 4127–4147. doi:10.1002/hbm.25115.; Albert M.S., DeKosky S.T., Dickson D. et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging‐Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease // Alzheimer’s & dementia. 2011. Vol. 7, No. 3. P. 270–279. doi:10.1016/j.jalz.2011.03.008.; Tardif C.L., Devenyi G.A., Amaral R.S.C. et al. Regionally specific changes in the hippocampal circuitry accompany progression of cerebrospinal fluid biomarkers in preclinical Alzheimer’s disease // Human brain mapping. 2018. Vol. 39, No. 2. P. 971–984. doi:10.1002/hbm.23897.; Izzo J., Andreassen O.A., Westlye L.T. et al. The association between hippocampal subfield volumes in mild cognitive impairment and conversion to Alzheimer’s disease // Brain Research. 2020. Vol. 1728. P. 146591. doi:10.1016/j.brainres.2019.146591.; Kagerer S. M., Schroeder С., Van Bergen J.M.G. et al. Low Subicular Volume as an Indicator of Dementia-Risk Susceptibility in Old Age // Frontiers in aging neuroscience. 2022. Vol. 14. P. 811146. doi:10.3389/fnagi.2022.811146.; Enkirch S. J., Traschütz А., Müller А. et al. The ERICA score: an MR imaging–based visual scoring system for the assessment of entorhinal cortex atrophy in Alzheimer disease // Radiology. 2018. Vol. 288, No. 1. P. 226–333. doi:10.1148/radiol.2018171888.

  16. 16
    Academic Journal

    Source: Сучасна педіатрія. Україна; № 4(132) (2023): Сучасна педіатрія. Україна; 34-43
    Modern Pediatrics. Ukraine; No. 4(132) (2023): Modern pediatrics. Ukraine; 34-43
    Modern Pediatrics. Ukraine; № 4(132) (2023): Modern pediatrics. Ukraine; 34-43

    File Description: application/pdf

  17. 17
  18. 18
  19. 19
  20. 20