Εμφανίζονται 1 - 20 Αποτελέσματα από 969 για την αναζήτηση '"КЛИНИЧЕСКИЕ ИССЛЕДОВАНИЯ"', χρόνος αναζήτησης: 0,89δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Πηγή: Pharmacokinetics and Pharmacodynamics; № 2 (2025); 36-50 ; Фармакокинетика и Фармакодинамика; № 2 (2025); 36-50 ; 2686-8830 ; 2587-7836

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pharmacokinetica.ru/jour/article/view/458/404; Решение № 85 «Об утверждении правил проведения исследований биоэквивалентности лекарственных препаратов в рамках Евразийского экономического союза» от 03.11.2016.; Shah VP, Yacobi A, Barr WH, et al. Evaluation of orally administered highly variable drugs and drug formulations. Pharm Res. 1996 Nov;13(11):1590-4. doi:10.1023/a:1016468018478.; Василюк В. Б., Верведа А. Б., Фарапонова М. В., Сыраева Г. И. Оценка влияния демографических и антропометрических показателей на вариабельность фармакокинетических параметров. Фармакокинетика и фармакодинамика. 2024;(1):32-44. doi:10.37489/2587-7836-2024-1-32-44. EDN: BDNQTT.; Торнуев Ю.В., Непомнящих Д.Л., Никитюк Д.Б., и др. Диагностические возможности неинвазивной биоимпедансометрии. Фундаментальные исследования. 2014;(10-4):782-788.; Forkman FJ. Coefficients of Variation – an Approximate F-Test. Licentiate thesis. 2005.; Дискриминантный анализ [интернет]. Доступ по: https://www.statmethods.ru/statisticsmetody/diskriminantnyj-analiz/ Ссылка активна на 12.05.2025.; Основы фармакокинетики / И.И. Мирошниченко. — Москва : ГЭОТАР-МЕД, 2002 (ООО Момент). — 185. ISBN 5-9231-0211-0 (в обл.).; Zhang Y, Huo M, Zhou J, Xie S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed. 2010 Sep;99(3):306-14. doi:10.1016/j.cmpb.2010.01.007.; Davit BM, Conner DP, Fabian-Fritsch B, et al. Highly variable drugs: observations from bioequivalence data submitted to the FDA for new generic drug applications. AAPS J. 2008;10(1):148-56. doi:10.1208/s12248-008-9015-x.; https://www.pharmacokinetica.ru/jour/article/view/458

  5. 5
    Academic Journal

    Θέμα γεωγραφικό: USPU

    Relation: Специальное образование. 2021. № 1 (61)

  6. 6
    Academic Journal

    Πηγή: Regulatory Research and Medicine Evaluation; Том 15, № 5 (2025); 550-564 ; Регуляторные исследования и экспертиза лекарственных средств; Том 15, № 5 (2025); 550-564 ; 3034-3453 ; 3034-3062 ; 10.30895/1991-2919-2025-15-5

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.vedomostincesmp.ru/jour/article/view/766/2062; https://www.vedomostincesmp.ru/jour/article/view/766/2071; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/766/892; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/766/893; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/766/972; Мирошниченко ИИ, Птицина СН. Биомаркеры в современной медико-биологической практике. Биомедицинская химия. 2009;5(4):425–40. EDN: KWROID; Кочетов АГ, Лянг ОВ, Жирова ИА, Ивойлов ОО. Лабораторные исследования в медицине. Терапевтический архив. 2020;92(4):4–8. https://doi.org/10.26442/00403660.2020.04.000501; Biomarkers Definitions Working Group Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95. https://doi.org/10.1067/mcp.2001.113989; Осипова ТВ, Бухман ВМ. Биомаркеры трансляционной медицины. Российский биотерапевтический журнал. 2018;17(1):6–13. https://doi.org/10.17650/1726-9784-2018-17-1-6-13; Ansari D, Aronsson L, Sasor A, et al. The role of quantitative mass-spectrometry in the discovery of pancreatic cancer biomarkers for translational science. J Transl Med. 2014;12:87. https://doi.org/10.1186/1479-5876-12-87; Насырова РФ, Сивакова НА, Липатова ЛВ и др. Биологические маркеры эффективности и безопасности противоэпилептических препаратов: фармакогенетика и фармакокинетика. Сибирское медицинское обозрение. 2017;(1):17–25. https://doi.org/10.20333/2500136-2017-1-17-25; Дон ЕС, Тарасов АВ, Эпштейн ОИ, Тарасов СА. Биомаркеры в медицине: поиск, выбор, изучение и валидация. Клиническая лабораторная диагностика. 2017;62(1):52–9. EDN: YHEYHX; Bakker E, Hendrikse NM, Ehmann F, et al. Biomarker qualification at the European Medicines Agency: a review of biomarker qualification procedures from 2008 to 2020. Clin Pharmacol Ther. 2022;112(1):69–80. https://doi.org/10.1002/cpt.2554; Метельская ВА, Жаткина МВ, Гаврилова НЕ и др. Валидация комбинированных маркеров наличия и выраженности коронарного атеросклероза. Профилактическая медицина. 2020;23(6–2):65–71. https://doi.org/10.17116/profmed20202306265; Metelskaya VA, Gavrilova NE, Zhatkina MV, et al. A novel integrated biomarker for evaluation of risk and severity of coronary atherosclerosis, and its validation. J Pers Med. 2022;12(2):206. https://doi.org/10.3390/jpm12020206; Конради АО. Биомаркеры, их типы и основы применения в персонализированной медицине. Российский журнал персонализированной медицины. 2022;2(3):6–16. https://doi.org/10.18705/2782-3806-2022-2-3-6-16; Тихонова ГА, Котов ОВ, Маркин АА. Биомаркеры как инструмент медико-биологического мониторинга и контроля (Обзор литературы. Часть 1). Технологии живых систем. 2023;20(2):18–26. https://doi.org/10.18127/j20700997-202302-02; Тихонова ГА, Котов ОВ, Маркин АА. Биомаркеры как инструменты медико-биологического мониторинга и контроля (Обзор литературы. Часть 2). Технологии живых систем. 2023;20(4):5–18. EDN: WTPEOX; Калишьян МС. Биологические маркеры в современной ветеринарной практике. Ветеринарная патология. 2022;(4):40–8. https://doi.org/10.23947/1682-5616-2022-4-40-48; Вавилова ВА, Фаустова НМ, Пелешок АА и др. Белок S100b как биологический маркер повреждения нервной ткани у лабораторных животных в доклинических исследованиях. Трансляционная медицина. 2024;11(4):342–50. https://doi.org/10.18705/2311-4495-2024-11-4-342-350; Мирошников МВ, Султанова КТ, Макарова МН и др. Комплексная оценка функционального состояния мочевыделительной системы в доклинических исследованиях. Часть 2. Маркеры нефротоксичности (обзор). Регуляторные исследования и экспертиза лекарственных средств. 2024;14(4):448–62. https://doi.org/10.30895/1991-2919-2024-631; Lee JW, Devanarayan V, Barrett YC, et al. Fit-for-purpose method development and validation for successful biomarker measurement. Pharm Res. 2006;23(2):312–28. https://doi.org/10.1007/s11095-005-9045-3; Chau CH, Rixe O, McLeod H, Figg WD. Validation of analytic methods for biomarkers used in drug development. Clin Cancer Res. 2008;14(19):5967–76. https://doi.org/10.1158/1078-0432.CCR-07-4535; Hunter DJ, Losina E, Guermazi A, et al. A pathway and approach to biomarker validation and qualification for osteoarthritis clinical trials. Curr Drug Targets. 2010;11(5):536–45. https://doi.org/10.2174/138945010791011947; Lowes S, Ackermann BL. AAPS and US FDA Crystal City VI workshop on bioanalytical method validation for biomarkers. Bioanalysis. 2016;8(3):163–7. https://doi.org/10.4155/bio.15.251; Selby PJ, Banks RE, Gregory W, et al. Methods for the evaluation of biomarkers in patients with kidney and liver diseases: Multicentre research programme including ELUCIDATE RCT. Southampton (UK): NIHR Journals Library; 2018. https://doi.org/10.3310/pgfar06030; Ohtsu Y, Tanaka S, Igarashi H, et al. Analytical method validation for biomarkers as a drug development tool: points to consider. Bioanalysis. 2021;13(18):1379–89. https://doi.org/10.4155/bio-2021-0173; Ohtsu Y, Matsumaru T, Katashima M, et al. Biomarker assay validation for clinical trials: a questionnaire survey to pharmaceutical companies in Japan. Bioanalysis. 2019;11(2):55–60. https://doi.org/10.4155/bio-2018-0257; Mathews J, Amaravadi L, Eck S, et al. Best practices for the development and fit-for-purpose validation of biomarker methods: a conference report. AAPS Open. 2022;8:2. https://doi.org/10.1186/s41120-021-00050-1; Khan MU, Bowsher RR, Cameron M, et al. Recommendations for adaptation and validation of commercial kits for biomarker quantification in drug development. Bioanalysis. 2015;7(2):229–42. https://doi.org/10.4155/bio.14.274; Проценко ВН, Ивков АГ. Валидация и верификация количественных методик клинических лабораторных исследований. Лабораторная диагностика. Восточная Европа. 2019;8(2):171–9. EDN: AIPHJT; https://www.vedomostincesmp.ru/jour/article/view/766

  7. 7
    Academic Journal

    Συγγραφείς: A. E. Karateev, А. Е. Каратеев

    Συνεισφορές: The article is sponsored by Akrikhin., Статья спонсируется компанией «Акрихин».

    Πηγή: Neurology, Neuropsychiatry, Psychosomatics; Vol 17, No 1 (2025); 102-106 ; Неврология, нейропсихиатрия, психосоматика; Vol 17, No 1 (2025); 102-106 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2025-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/2455/1781; Яхно НН, редактор. Боль. Практическое руководство. Москва: МЕДпресс-информ; 2022. ISBN 978-5-907504-41-7.; Amaechi O, Huffman MM, Featherstone K. Pharmacologic Therapy for Acute Pain. Am Fam Physician. 2021 Jul 1;104(1):63-72.; Maharty DC, Hines SC, Brown RB. Chronic Low Back Pain in Adults: Evaluation and Management. Am Fam Physician. 2024 Mar;109(3):233-44.; Каратеев АЕ. Болезни костно-мышечной системы в практике 2102 врачей разных специальностей: структура патологии и мнение специалистов об эффективности НПВП (предварительные данные эпидемиологического исследования КОРОНА-2). Consilium medicum. 2013;(9):95-100.; Yang Z, Mathieson S, Kobayashi S, et al. Prevalence of Nonsteroidal Antiinflammatory Drugs Prescribed for Osteoarthritis: A Systematic Review and Meta-Analysis of Observational Studies. Arthritis Care Res (Hoboken). 2023 Nov;75(11):2345-58. doi:10.1002/acr.25157. Epub 2023 Jun 19.; Coates G, Clewes P, Lohan C, et al. Chronic Low Back Pain with and without Concomitant Osteoarthritis: A Retrospective, Longitudinal Cohort Study of Patients in England. Int J Clin Pract. 2023 Nov 9;2023:5105810. doi:10.1155/2023/5105810; Каратеев АЕ, Насонов ЕЛ, Ивашкин ВТ и др. Рациональное использование нестероидных противовоспалительных препаратов. Клинические рекомендации. Научно-практическая ревматология. 2018;56(Прил. 1):1-29. doi:10.14412/1995-4484-2018-1-29.; Van Walsem A, Pandhi S, Nixon RM, et al. Relative benefit-risk comparing diclofenac to other traditional non-steroidal anti-inflammatory drugs and cyclooxygenase-2 inhibitors in patients with osteoarthritis or rheumatoid arthritis: a network meta-analysis. Arthritis Res Ther. 2015 Mar 19;17(1):66. doi:10.1186/s13075-015-0554-0; Coxib and traditional NSAID Trialists' (CNT) Collaboration; Bhala N, Emberson J, Merhi A, et al. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Lancet. 2013 Aug 31;382(9894):769-79. doi:10.1016/S0140-6736(13)60900-9. Epub 2013 May 30.; Krum H, Swergold G, Curtis SP, et al. Factors associated with blood pressure changes in patients receiving diclofenac or etoricoxib: results from the MEDAL study. J Hypertens. 2009 Apr;27(4):886- 93. doi:10.1097/HJH.0b013e328325d831; Каратеев АЕ. Модификация традиционных НПВП как метод повышения их безопасности и удобства применения. Русский медицинский журнал. 2015;7(23):392-6.; Bülbül B, Kücükgüzel I. Microsomal Prostaglandin E2 Synthase-1 as a New Macromolecular Drug Target in the Prevention of Inflammation and Cancer. Anticancer Agents Med Chem. 2019;19(10):1205-22. doi:10.2174/1871520619666190227174137; Rainsford KD. Ibuprofen: from invention to an OTC therapeutic mainstay. Int J Clin Pract Suppl. 2013 Jan;(178):9-20. doi:10.1111/ijcp.12055; Денисов ЛН, Сидельникова СМ, Павленко ТМ и др. Опыт клинического изучения бруфена в ревматологической практике. В сб.: Результаты клинического изучения лекарственного препарата бруфена. Москва; 1973. С. 27-3.; Moore AR, Derry S, Straube S, et al. Faster, higher, stronger? Evidence for formulation and efficacy for ibuprofen in acute pain. Pain. 2014 Jan;155(1):14-21. doi:10.1016/j.pain.2013.08.013. Epub 2013 Aug 19.; Moore RA, Derry S, Aldington D, Wiffen PJ. Single dose oral analgesics for acute postoperative pain in adults – an overview of Cochrane reviews. Cochrane Database Syst Rev. 2015 Sep 28;2015(9):CD008659. doi:10.1002/14651858.CD008659.pub3; Silverstein FE, Faich G, Goldstein JL, et al. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: A randomized controlled trial. Celecoxib Longterm Arthritis Safety Study. JAMA. 2000 Sep 13;284(10):1247-55. doi:10.1001/jama.284.10.1247; Farkouh ME, Kirshner H, Harrington RA, et al; TARGET Study Group. Comparison of lumiracoxib with naproxen and ibuprofen in the Therapeutic Arthritis Research and Gastrointestinal Event Trial (TARGET), cardiovascular outcomes: randomised controlled trial. Lancet. 2004 Aug 21-27;364(9435):675-84. doi:10.1016/S0140-6736(04)16894-3; Obeid S, Libby P, Husni E, et al. Cardiorenal risk of celecoxib compared with naproxen or ibuprofen in arthritis patients: insights from the PRECISION trial. Eur Heart J Cardiovasc Pharmacother. 2022 Sep 3;8(6):611-21. doi:10.1093/ehjcvp/pvac015; Shin JS, Baek SR, Sohn SI, et al. Anti-inflammatory effect of pelubiprofen, 2-[4-(oxocyclohexylidenemethyl)-phenyl]propionic acid, mediated by dual suppression of COX activity and LPSinduced inflammatory gene expression via NF-κB inactivation. J Cell Biochem. 2011 Dec;112(12):3594-603. doi:10.1002/jcb.23290; Pairet M, van Ryn J. Experimental models used to investigate the differential inhibition of cyclooxygenase-1 and cyclooxygenase-2 by non-steroidal anti-inflammatory drugs. Inflamm Res. 1998 Oct;47 Suppl 2:S93-101. doi:10.1007/s000110050289; Shin BJ, Kim TK, Baik JS, Shim DM. Comparison The Safety and The Efficacy between the Group of using Pelubiprofen Tab. and the Group of using Aceclofenac Tab. on Back Pain Patients – Multi Institution, Double Blind, Random Sample. J Korean Soc Spine Surg. 2012 Jun;19(2):38-46. doi:10.4184/jkss.2012.19.2.38. Epub 2012 Jun 30 (In Korean).; Shin JY, Chang MJ, Kim MK, et al. Efficacy and safety of short-term use of a pelubiprofen CR and aceclofenac in patients with symptomatic knee osteoarthritis: A double-blinded, randomized, multicenter, active drug comparative, parallel-group, phase IV, non-inferiority clinical trial. PLoS One. 2020 Sep 29;15(9):e0238024. doi:10.1371/journal.pone.0238024; Choi IA, Baek HJ, Cho CS, et al. Comparison of the efficacy and safety profiles of a pelubiprofen versus celecoxib in patients with rheumatoid arthritis: a 6-week, multicenter, randomized, doubleblind, phase III, non-inferiority clinical trial. BMC Musculoskelet Disord. 2014 Nov 18;15:375. doi:10.1186/1471-2474-15-375.

  8. 8
    Academic Journal

    Συνεισφορές: This study was conducted by the Scientific Centre for Expert Evaluation of Medicinal Products as part of the applied research funded under State Assignment No. 056-00001-25-00 (R&D Registry No. 124022200103-5), Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00001-25-00 на проведение прикладных научных исследований (номер государственного учета НИР 124022200103-5)

    Πηγή: Biological Products. Prevention, Diagnosis, Treatment; Том 25, № 1 (2025); 37-46 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 25, № 1 (2025); 37-46 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2025-25-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/668/995; Вишнeва ЕА, Костинов МП, Мазанкова ЛН, Малинникова ЕЮ, Намазова-Баранова ЛС, Плакида АВ и др. Резолюция Форума экспертов Российской Федерации «Ветряная оспа: серьезная инфекционная угроза для РФ, которая может быть предотвращена вакцинацией» 7 декабря 2019 г. Вопросы современной педиатрии. 2019;18(6):491–4. EDN: YWVNKR; Takahashi M. 25 years’ experience with the Biken Oka strain varicella vaccine: A clinical overview. Paediatr Drugs. 2001;3(4):285–92. https://doi.org/10.2165/00128072-200103040-00005; Takahashi M. Development of a live varicella vaccine past and future. Jpn J Infect Dis. 2000;53(2):47–55. PMID: 10871914; Gomi Y, Imagawa T, Takahashi M, Yamanishi K. Oka varicella vaccine is distinguishable from its parental virus in DNA sequence of open reading frame 62 and its transactivation activity. J Med Virol. 2000;61(4):497–503. https://doi.org/10.1002/1096-9071(200008)61:4%3C497::aid-jmv13%3E3.0.co;2-2; Hwang KK, Park SY, Kim SJ, Ryu YW, Kim KH. Restriction fragment length polymorphism analysis of varicella-zoster virus isolated in Korea. J Kor Soc Virol. 1991;21(2):201–10.; Wu Q, Rivailler P, Xu S, Xu W. Comparison of the wholegenome sequence of an Oka varicella vaccine from China with other Oka vaccine strains reveals sites putatively critical for vaccine efficacy. J Virol. 2019;93(9):e02281–18. https://doi.org/10.1128/jvi.02281-18; White CJ, Kuter BJ, Hildebrand CS, Isganitis KL, Matthews H, Miller WJ, et al. Varicella vaccine (VARIVAX) in healthy children and adolescents: Results from clinical trials, 1987 to 1989. Pediatrics. 1991;87(5):604–10. PMID: 1850506; Choi UY, Kim KH, Cho HK, Kim DH, Ma SH, Choi YY, et al. Immunogenicity and safety of a newly developed live attenuated varicella vaccine in healthy children: A multi-national, randomized, double-blinded, active-controlled, phase 3 study. Vaccines (Basel). 2023;11(9):1416. https://doi.org/10.3390/vaccines11091416; Choi UY, Kim KH, Lee J, Eun BW, Kim DH, Ma SH, et al. Immunogenicity and safety profiles of a new MAV/06 strain varicella vaccine in healthy children: A multinational, multicenter, randomized, double-blinded, active-controlled phase III study. Vaccine. 2021;39(12):1758–64. https://doi.org/10.1016/j.vaccine.2021.02.013; Hao B, Chen Z, Zeng G, Huang L, Luan C, Xie Z, et al. Efficacy, safety and immunogenicity of live attenuated varicella vaccine in healthy children in China: Doubleblind, randomized, placebo-controlled clinical trial. Clin Microbiol Infect. 2019;25(8):1026–31. https://doi.org/10.1016/j.cmi.2018.12.033; Lu X, Zhou W, Gu K, Zhu F. Evaluation on safety and immunogenicity of Changsheng frozen-dried live attenuated varicella vaccine. J Southeast Univ. 2008;27(3):5.; Fu C, Wang M, Liang J, Xu J, Wang C, Bialek S. The effectiveness of varicella vaccine in China. Pediatr Infect Dis J. 2010; 29(8):690–3. https://doi.org/10.1097/inf.0b013e3181d7380e; Wang Z, Yang H, Li K, Zhang A, Feng Z, Seward JF, et al. Single-dose varicella vaccine effectiveness in school settings in China. Vaccine. 2013;31(37):3834–8. https://doi.org/10.1016/j.vaccine.2013.06.075; Reuman PD, Sawyer MH, Kuter BJ, Matthews H. Safety and immunogenicity of concurrent administration of measles–mumps–rubella–varicella vaccine and PedvaxHIB vaccines in healthy children twelve to eighteen months old. The MMRV Study Group. Pediatr Infect Dis J. 1997;16(7):662–7. https://doi.org/10.1097/00006454-199707000-00008; Prymula R, Bergsaker MR, Esposito S, Gothefors L, Man S, Snegova N, et al. Protection against varicella with two doses of combined measles-mumps-rubella-varicella vaccine versus one dose of monovalent varicella vaccine: A multicentre, observer-blind, randomised, controlled trial. Lancet. 2014;383(9925):1313–24. https://doi.org/10.1016/s0140-6736(12)61461-5; Liu J, Lin J, Cai L, Sun J, Ding X, Wang C, et al. Immunogenicity of Varicella zoster virus DNA vaccines encoding glycoprotein E and immediate early protein 63 in mice. Viruses. 2022;14(6):1214. https://doi.org/10.3390/v14061214; Wang Y, Cao H, Lin K, Hu J, Luan N, Liu C. Evaluation of the immunological efficacy of an LNP-mRNA vaccine prepared from Varicella zoster virus glycoprotein gE with a doublemutated carboxyl terminus in different untranslated regions in mice. Vaccines (Basel). 2023;11(9):1475. https://doi.org/10.3390/vaccines11091475; Передельская ЕА, Сафьянова ТВ, Козлов ДЮ, Кульшин АВ, Хворова ЛА. Эпидемиологическая и социально-экономическая оценка эффективности программы однократной вакцинации против ветряной оспы детей 6 лет на примере Алтайского края. Медицина. 2021;9(4):54–67. https://doi.org/10.29234/2308-9113-2021-9-4-66-79; Ксенофонтова ОЛ, Рожкова ЛВ, Саввинова ТЛ, Харитонов АН. Опыт проведения вакцинопрофилактики ветряной оспы в г. Екатеринбурге. Педиатрическая фармакология. 2010;7(4):34–6. EDN: MWIDUJ; Бахарева НВ, Парфенова НП, Эдомская ОВ, Евреимова СВ. Опыт использования постэкспозиционной профилактики ветряной оспы с целью купирования вспышек в организованных детских коллективах г. Красноярска. Вопросы современной педиатрии. 2012;11(2):109–11. https://doi.org/10.15690/vsp.v11i2.221; Дубоделов ДВ, Рыбин ВВ, Рихтер ВВ, Ярославцев ВВ, Грицик АА, Казанова АС, Кузин СН. Эффективность превентивной вакцинопрофилактики ветряной оспы в воинских коллективах. Журнал микробиологии, эпидемиологии и иммунобиологии. 2015;(3):78–83. EDN: VOBEQN; Акимкин ВГ, Якимов ЮМ, Салмина ТА, Волгин АР, Шевцов ВА, Коротченко СИ и др. Иммунологическая и эпидемиологическая эффективность различных схем применения вакцины «Варилрикс» в организованных воинских коллективах. Эпидемиология и инфекционные болезни. Актуальные вопросы. 2012;(4):4–9. EDN: PIDQXJ; Крамарь ЛВ, Арова АА, Сейкина ЕА, Алюшин АМ. Обоснование и опыт использования вакцины для профилактики ветряной оспы в г. Волгограде. Вопросы современной педиатрии. 2012;11(3):79–82. https://doi.org/10.15690/vsp.v11i3.301; Барышев МА, Чернявская ОП, Салтыкова ТС. Оценка опыта внедрения вакцинопрофилактики ветряной оспы в региональные календари прививок субъектов Российской Федерации. Эпидемиология и вакцинопрофилактика. 2019;18(6):67–74. https://doi.org/10.31631/2073-3046-2019-18-6-67-74; Райский ДВ, Джумагазиев АА, Джальмухамедова ЭИ, Квятковский ИЕ. Фармакоэкономический анализ эффективности иммунопрофилактики ветряной оспы у детей дома ребенка. Педиатрическая фармакология. 2014;11(6):24–9. https://doi.org/10.15690/pf.v11i6.1212; Зрячкин НИ, Бучкова ТН, Елизарова ТВ, Чеботарева ГИ. Фармакоэкономическое обоснование включения вакцинации против ветряной оспы в региональный календарь профилактических прививок на примере Пензенской области. Эпидемиология и инфекционные болезни. 2017;22(6):288–94. https://doi.org/10.17816/EID40991; Рудакова АВ, Харит СМ, Бабаченко ИВ, Коновалова ЛН, Рычкова СВ, Усков АН, Лобзин ЮВ. Эффективность затрат на вакцинацию детей против ветряной оспы в Российской Федерации. Журнал инфектологии. 2021;13(3):114–9. https://doi.org/10.22625/2072-6732-2021-13-3-114-119; Афонина НМ, Михеева ИВ. Эффективность региональных программ вакцинопрофилактики ветряной оспы. Инфекционные болезни: Новости. Мнения. Обучение. 2022;3(42):95–103. https://doi.org/10.33029/2305-3496-2022-11-3-95-103; Алексеевская ТИ, Софронов ОЮ. К вопросу об экономической эффективности вакцинопрофилактики ветряной оспы. В кн.: Гайдаров ГМ, ред. Актуальные вопросы общественного здоровья и здравоохранения на уровне субъекта Российской Федерации. Материалы Всероссийской научно-практической конференции. Т. 1. Иркутск: ИНЦХТ; 2019. С. 67–74. EDN: XDSNAV; Алаторцева ГИ, Сидоров АВ, Нестеренко ЛН, Лухверчик ЛН, Амиантова ИИ, Доценко ВВ и др. Получение рекомбинантного аналога гликопротеина Е вируса Varicella zoster: клонирование, экспрессия и исследование антигенных свойств. Эпидемиология и вакцинопрофилактика. 2016;15(1):77–85. https://doi.org/10.31631/2073-3046-2016-15-1-77-85; Зверев ВВ, Нагиева ФГ, Баркова ЕП, Строева АД, Сидоров АВ. Вирусный штамм для получения аттенуированной живой культуральной вакцины для профилактики и лечения опоясывающего герпеса для взрослого населения. Патент Российской Федерации № 2750818; 2020. EDN: ACINJQ; Осокина ОВ, Баркова ЕП, Нагиева ФГ, Зверев ВВ. Штамм «vFiraVax» для получения аттенуированной живой культуральной вакцины для профилактики ветряной оспы. Патент Российской Федерации № 2693440; 2019. EDN: JWECLO; https://www.biopreparations.ru/jour/article/view/668

  9. 9
    Academic Journal

    Συνεισφορές: This study was conducted by the Scientific Centre for Expert Evaluation of Medicinal Products as part of the applied research funded under State Assignment No. 056-00001-25-00 (R&D Registry No. 124022300127-0)., Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00001-25-00 на проведение прикладных научных исследований (номер государственного учета НИР 124022300127-0).

    Πηγή: Regulatory Research and Medicine Evaluation; Том 15, № 1 (2025); 92-104 ; Регуляторные исследования и экспертиза лекарственных средств; Том 15, № 1 (2025); 92-104 ; 3034-3453 ; 3034-3062 ; 10.30895/1991-2919-2025-15-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.vedomostincesmp.ru/jour/article/view/705/1767; https://www.vedomostincesmp.ru/jour/article/view/705/1770; https://www.vedomostincesmp.ru/jour/article/view/705/1777; https://www.vedomostincesmp.ru/jour/article/view/705/1805; Шредер ОВ, Горячев ДВ, Меркулов ВА. Основные принципы расчета необходимой численности участников клинических исследований. Часть 1. Общие подходы (обзор). Регуляторные исследования и экспертиза лекарственных средств. 2024;14(3):338–50. https://doi.org/10.30895/1991-2919-2024-14-3-338-350; Thabane L. Sample size determination in clinical trials. HRM-733 Class Notes. Hamilton: St. Joseph’s Healthcare; 2004.; Matthews JN. An introduction to randomized controlled clinical trials. New York: Chapman & Hall; 2006. https://doi.org/10.1201/9781420011302; Lindley DV. A statistical paradox. Biometrika. 1957;44:187–92. https://doi.org/10.1093/biomet/44.1-2.187; Gittins J, Pezeshk H. A behavioral Bayes method for determining the size of a clinical trial. Ther Innov Regul Sci. 2000;34:355–63. https://doi.org/10.1177/009286150003400204; Gittins J, Pezeshk H. How large should a clinical trial be? J R Stat Soc Ser D Stat. 2000;49(2):177–87. https://doi.org/10.1111/1467-9884.00228; O’Hagan A, Stevens JW, Campbell MJ. Assurance in clinical trial design. Pharm Stat. 2005;4(3):187–201. https://doi.org/10.1002/pst.175; Шредер ОВ, Бунятян НД, Горячев ДВ, Сюбаев РД, Енгалычева ГН, Кузнецова АД, Косенко ВВ. Математическое прогнозирование эффективности лекарственных средств в доклинических исследованиях. Ведомости Научного центра экспертизы средств медицинского применения. Регуляторные исследования и экспертиза лекарственных средств. 2022;12(3):315–30. https://doi.org/10.30895/1991-2919-2022-12-3-315-330; Machin D, Campbell M, Fayers P, Pinol A. Sample size tables for clinical studies. Malden, MA: Blackwell Science; 2008. https://doi.org/10.1002/9781444300710.ch3; Chow SC, Shao J, Wang H, Lokhnygina Y. Sample size calculations in clinical research. New York: Marcel Dekker; 2017. https://doi.org/10.1080/24754269.2017.1398000; Gordon Lan KК, DeMets DL. Discrete sequential boundaries for clinical trials. Biometrika. 1983;70(3):659–63. https://doi.org/10.1093/biomet/70.3.659; O’Brien PC, Fleming TR. A multiple testing procedure for clinical trials. Biometrics. 1979;35(3):549–56. PMID: 497341; Pocock SJ. Group sequential methods in the design and analysis of clinical trials. Biometrika. 1977;64(2):191–9. https://doi.org/10.1093/biomet/64.2.191; Reboussin DM, DeMets DL, Kim K, Gordon Lan KK. Computations for group sequential boundaries using the Lan–DeMets spending function method. Control Clin Trials. 2000;21(3):190–207. https://doi.org/10.1016/S0197-2456(00)00057-X; Гланц С. Медико-биологическая статистика. М.: Практика; 1998.; Зулькарнаев АБ. Особенности анализа выживаемости на примере пациентов в «листе ожидания» трансплантации почки. Бюллетень сибирской медицины. 2019;18(2):215–22. https://doi.org/10.20538/1682-0363-2019-2-215-222; Мотренко АП. Оценка необходимого объема выборки пациентов при прогнозировании сердечно-сосудистых заболеваний. Машинное обучение и анализ данных. 2012;1(3):354–66. EDN: OXWKKF; Куликов СМ, Паровичникова ЕН, Савченко ВГ. Анализ выживаемости или событийный анализ: типовые ошибки ретроспективного метода. Клиническая онкогематология. Фундаментальные исследования и клиническая практика. 2010;3(2):176–83. EDN: MWJXMB; Jiang Z, Wang L, Li C, Xia J, Jia H. A practical simulation method to calculate sample size of group sequential trials for time-to-event data under exponential and Weibull distribution. PLoS One. 2012;7(9):e44013. https://doi.org/10.1371/journal.pone.0044013; Lachin JM, Foulkes MA. Evaluation of sample size and power for analyses of survival with allowance for nonuniform patient entry, losses to follow-up, noncompliance, and stratification. Biometrics. 1986;42(3):507–19. PMID: 3567285; Шулика ЮЕ. Анализ выживаемости авторитарных режимов в рентно-сырьевых экономиках: возможности и ограничения модели пропорциональных рисков. Вестник Пермского университета. Политология. 2018;12(4):122–39. https://doi.org/10.17072/2218-1067-2018-4-122-139; Hsieh FY, Lavori PW. Sample-size calculations for the Cox proportional hazards regression model with nonbinary covariates. Control Clin Trials. 2000;21(6):552–60. https://doi.org/10.1016/S0197-2456(00)00104-5; Schoenfeld DA. Sample-size formula for the proportional-hazards regression model. Biometrics. 1983;39(2):499–503. PMID: 6354290; https://www.vedomostincesmp.ru/jour/article/view/705

  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    Πηγή: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 17, No 1 (2024); 76-85 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 17, No 1 (2024); 76-85 ; 2070-4933 ; 2070-4909

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pharmacoeconomics.ru/jour/article/view/1006/528; GBD 2019 Cancer Risk Factors Collaborators. The global burden of cancer attributable to risk factors, 2010–19: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2022; 400 (10352): 563–91. https://doi.org/10.1016/S0140-6736(22)01438-6.; Berenson A. Big drug makers see sales decline with their image. The New York Times (Nov. 14, 2005). URL: https://www.nytimes.com/2005/11/14/business/big-drug-makers-see-sales-decline-withtheir-image.html (дата обращения 28.07.2023).; Hawthorne F. How big pharma blew it: bad choices and PR gaffes have finally caught up with the drug industry. The Free Library. URL: https://www.thefreelibrary.com/How+Big+Pharma+blew+it%3a+bad+choices+and+PR+gaffes+have+finally+caught.-a0126397385 (дата обращения 28.07.2023).; Kumar N., Crocker T., Smith T., et al. Challenges and potential solutions to meeting accrual goals in a phase II chemoprevention trial for prostate cancer. Contemp Clin Trials. 2012; 33 (2): 279–85. https://doi.org/10.1016/J.CCT.2011.11.004.; Nguyen T.T., Jayadeva V., Cizza G., et al. Challenging recruitment of youth with type 2 diabetes into clinical trials. J Adolesc Health. 2014: 54 (3): 247–54. https://doi.org/10.1016/j.jadohealth.2013.08.017.; Bayley P.J., Kong J.Y., Helmer D.A., et al. Challenges to be overcome using population-based sampling methods to recruit veterans for a study of post-traumatic stress disorder and traumatic brain injury. BMC Med Res Methodol. 2014; 14: 48. https://doi.org/10.1186/1471-2288-14-48.; Clinical trial site recruitment guide: a practical guidance tool for recruiting participants into clinical trials. URL: https://ctiq.com.au/wpcontent/uploads/Clinical-Trial-Recruitment-Guide-Final.pdf (дата обращения 28.07.2023).; Bull J., Uhlenbrauck G., Mahon E., et al. Barriers to trial recruitment and possible solutions. Appl Clin Trials. 2016; 25 (2).; Frye R.L. Success in recruitment to randomized clinic trials: keep it simple and close to home … or is there more to it? J Am Coll Cardiol. 2013: 61 (7): 770–1.; van den Bor R.M., Grobbee D.E., Oosterman B.J., et al. Predicting enrollment performance of investigational centers in phase III multicenter clinical trials. Contemp Clin Trials Commun. 2017; 7: 208– 16. https://doi.org/10.1016/j.conctc.2017.07.004.; Westling E.H., Hampson S.E., Strycker L.A., Toobert D.J. Use of voter registration records to recruit a representative sample. J Behav Med. 2011; 34 (5): 321–9. https://doi.org/10.1007/s10865-011-9317-9.; Chin Feman S.P., Nguyen L.T., Quilty M.T., et al. Effectiveness of recruitment in clinical trials: an analysis of methods used in a trial for irritable bowel syndrome patients. Contemp Clin Trials. 2008; 29 (2): 241–51. https://doi.org/10.1016/j.cct.2007.08.004.; Милованов С.С. Особенности набора пациентов в клинических исследованиях на примере международных мультицентровых клинических исследований (ММКИ). Разработка и регистрация лекарственных средств. 2023; 12 (3): 151–68. https://doi.org/10.33380/2305-2066-2023-12-3-151-168.; Милованов С.С. Факторы, влияющие на набор пациентов в международных мультицентровых клинических исследованиях II–III фаз. Качественная клиническая практика. 2022; 4: 13–23. https://doi.org/10.37489/2588-0519-2022-4-13-23.; Милованов С.С. Новые подходы к оценке и классификации параметров набора пациентов для проведения II–III фаз клинических исследований. Южно-Российский журнал терапевтической практики. 2023; 4 (3): 76–86. https://doi.org/10.21886/2712-8156-20234-3-76-86.; Lovato L.C., Hill K., Hertert S., et al. Recruitment for controlled clinical trials: Literature summary and annotated bibliography. Control Clin Trials. 1997; 18 (4): 328–52. https://doi.org/10.1016/s01972456(96)00236-x.; Hill N.S., Preston I.R., Roberts K.E. Patients with pulmonary arterial hypertension in clinical trials: who are they? Proc Am Thorac Soc. 2008; 5 (5): 603–9. https://doi.org/10.1513/pats.200803-032SK.; Haidich A.B. The Gini coefficient as a measure for understanding accrual inequalities in multicenter clinical studies. J Clin Epidemiol. 2004; 57 (4): 341–8. https://doi.org/10.1016/j.jclinepi.2003.09.011.; https://www.pharmacoeconomics.ru/jour/article/view/1006

  15. 15
    Academic Journal

    Πηγή: Pharmacokinetics and Pharmacodynamics; № 1 (2024); 32-44 ; Фармакокинетика и Фармакодинамика; № 1 (2024); 32-44 ; 2686-8830 ; 2587-7836

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pharmacokinetica.ru/jour/article/view/409/367; Shah VP, Yacobi A, Barr WH, et al. Evaluation of orally administered highly variable drugs and drug formulations. Pharm Res. 1996 Nov;13(11):1590-4. doi:10.1023/a:1016468018478. PMID: 8956322.; Davit BM, Conner DP, Fabian-Fritsch B, et al. Highly variable drugs: observations from bioequivalence data submitted to the FDA for new generic drug applications. AAPS J. 2008;10(1):148-56. doi:10.1208/s12248-008-9015-x.; Forkman FJ. Coefficients of Variation – an Approximate F-Test. Licentiate thesis. 2005. 63 p.; Общий дискриминантный анализ [интернет]. Интеллектуальный Портал Знаний. [доступ 19.10.2023]. Доступ по ссылке: http://statistica.ru/textbook/obshchiy-diskriminantnyy-analiz/; Мирошниченко И.И. Основы фармакокинетики. — М.: ГЭОТАР-МЕД; 2002. 192 с.; Miroshnichenko II. Osnovy farmakokinetiki. Moscow: GEHOTAR-MED; 2002. (In Russ.); Zhang Y, Huo M, Zhou J, Xie S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed. 2010 Sep;99(3):306-14. doi:10.1016/j.cmpb.2010.01.007.; https://www.pharmacokinetica.ru/jour/article/view/409

  16. 16
    Academic Journal

    Συνεισφορές: This study was funded by the Ministry of Health of Russia to support the activities of the Coordinating Centre for Research and Development in Medical Science of the Russian Research Institute of Health in coordinating the implementation of the federal project Medical Science for People, Исследование проведено при финансовой поддержке Минздрава России, направленной на обеспечение деятельности координационного центра исследований и разработок в области медицинской науки ФГБУ «ЦНИИОИЗ» Минздрава России в рамках реализации федерального проекта «Медицинская наука для человека»

    Πηγή: Biological Products. Prevention, Diagnosis, Treatment; Том 24, № 4 (2024); 428-442 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 24, № 4 (2024); 428-442 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2024-24-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/557/944; https://www.biopreparations.ru/jour/article/downloadSuppFile/557/817; https://www.biopreparations.ru/jour/article/downloadSuppFile/557/824; https://www.biopreparations.ru/jour/article/downloadSuppFile/557/939; https://www.biopreparations.ru/jour/article/downloadSuppFile/557/940; https://www.biopreparations.ru/jour/article/downloadSuppFile/557/967; El-Kadiry AE, Rafei M, Shammaa R. Cell therapy: types, regulation, and clinical benefits. Front Med (Lausanne). 2021;8:756029. https://doi.org/10.3389/fmed.2021.756029; Han F, Wang J, Ding L, Hu Y, Li W, Yuan Z, et al. Tissue engineering and regenerative medicine: achievements, future, and sustainability in Asia. Front Bioeng Biotechnol. 2020;8:83. https://doi.org/10.3389/fbioe; O’Brien FJ, Duffy GP. Form and function in regenerative medicine: introduction. J Anat. 2015;227(6):705–6. https://doi.org/10.1111/joa.12401; Shumega AR, Pavlov YI, Chirinskaite AV, Rubel AA, Inge-Vechtomov SG, Stepchenkova EI. CRISPR/Cas9 as a mutagenic factor. Int J Mol Sci. 2024;25(2):823. https://doi.org/10.3390/ijms25020823; Гринев ВВ, Посредник ДВ, Северин ИН, Потапнев МП. Генетическая модификация клеток человека с помощью лентивирусной трансдукции in vitro и ex vivo. Минск: БГУ; 2010.; Wang Y, Yi H, Song Y. The safety of MSC therapy over the past 15 years: a meta-analysis. Stem Cell Res Ther. 2021;12(1):545. https://doi.org/10.1186/s13287-021-02609-x; Li C, Zhao H, Cheng L, Wang B. Allogeneic vs. autologous mesenchymal stem/stromal cells in their medication practice. Cell Biosci. 2021;11(1):187. https://doi.org/10.1186/s13578-021-00698-y; Conwit RA. Preventing familial ALS: a clinical trial may be feasible but is an efficacy trial warranted? J Neurol Sci. 2006;251(1–2):1–2. https://doi.org/10.1016/j.jns.2006.07.009; Al-Chalabi A, Leigh PN. Recent advances in amyotrophic lateral sclerosis. Curr Opin Neurol. 2000;13(4):397–405. https://doi.org/10.1097/00019052-200008000-00006; Oh KW, Noh MY, Kwon MS, Kim HY, Oh SI, Park J, et al. Repeated intrathecal mesenchymal stem cells for amyotrophic lateral sclerosis. Ann Neurol. 2018;84(3):361–73. https://doi.org/10.1002/ana.25302; Honmou O, Yamashita T, Morita T, Oshigiri T, Hirota R, Iyama S, et al. Intravenous infusion of auto serum-­expanded autologous mesenchymal stem cells in spinal cord injury patients: 13 case series. Clin Neurol Neurosurg. 2021;203:106565. https://doi.org/10.1016/j.clineuro.2021.106565; Sakai D, Schol J, Foldager CB, Sato M, Watanabe M. Rege­nerative technologies to bed side: evolving the regulatory framework. J Orthop Translat. 2017;9:1–7. https://doi.org/10.1016/j.jot.2017.02.001; Najar M, Melki R, Khalife F, Lagneaux L, Bouhtit F, Moussa Agha D, et al. Therapeutic mesenchymal stem/stromal cells: value, challenges and optimization. Front Cell Dev Biol. 2022;9:716853. https://doi.org/10.3389/fcell.2021.716853; Brockmann I, Ehrenpfordt J, Sturmheit T, Brandenburger M, Kruse C, Zille M, et al. Skin-derived stem cells for wound treatment using cultured epidermal autografts: clinical applications and challenges. Stem Cells Int. 2018;2018:4623615. https://doi.org/10.1155/2018/4623615; Мельникова ЕВ, Меркулова ОВ, Меркулов ВА. Клинические исследования препаратов клеточной терапии: опыт рассмотрения зарубежными регуляторными органами. Вестник трансплантологии и искусственных органов. 2020;22(2):139–50. https://doi.org/10.15825/1995-1191-2020-2-139-150; Павлова ВЮ, Ливадный ЕС. Биотехнология CAR-T и новые возможности лечения опухолевых заболеваний. Клиническая онкогематология. 2021;14(1):149–56. https://doi.org/10.21320/2500-2139-2021-14-1-149-156; Grissenberger S, Salzer B, Pascoal S, Wenninger-­Weinzierl A, Lehner M, Distel M. Chapter 8 — Preclinical testing of CAR T cells in zebrafish xenografts. Method Cell Biol. 2022;167:133–47. https://doi.org/10.1016/bs.mcb.2021.07.002; Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11(4):69. https://doi.org/10.1038/s41408-021-00459-7; Гаврилина ОА, Галстян ГМ, Щекина АЕ, Котова ЕС, Масчан МА, Троицкая ВВ и др. Терапия Т-клетками с химерным антигенным рецептором взрослых больных В-клеточными лимфопролиферативными заболеваниями. Гематология и трансфузиология. 2022;67(1):8–28. https://doi.org/10.35754/0234-5730-2022-67-1-8-28; Gong Y, Klein Wolterink RGJ, Wang J, Bos GMJ, Germe­raad WTV. Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy. J Hemat Oncol. 2021;14(1):73. https://doi.org/10.1186/s13045-021-01083-5; Habib S, Tariq SM, Tariq M. Chimeric antigen receptor-natural killer cells: the future of cancer immunotherapy. Ochsner J. 2019;19(3):186–7. https://doi.org/10.31486/toj.19.0033; Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med. 2021;384(3):252–60. https://doi.org/10.1056/NEJMoa2031054; Киселева ЯЮ, Шишкин АМ, Иванов АВ, Кулинич ТМ, Боженко ВК. CAR-терапия солидных опухолей: перспективные подходы к модулированию противоопухолевой активности CAR-Т-лимфоцитов. Вестник РГМУ. 2019;(5):5–13. https://doi.org/10.24075/vrgmu.2019.066; Kwon SG, Kwon YW, Lee TW, Park GT, Kim JH. Recent advances in stem cell therapeutics and tissue engineering strategies. Biomater Res. 2018;22:36. https://doi.org/10.1186/s40824-018-0148-4; Паштаев НП, ред. Современные методы диагностики и хирургического лечения кератоконуса. Чебоксары; 2017. EDN: IXHREG; Gibson ALF, Holmes JH 4th, Shupp JW, Smith D, Joe V, Carson J, et al. A phase 3, open-label, controlled, randomized, multicenter trial evaluating the efficacy and safety of StrataGraft® construct in patients with deep partial-thickness thermal burns. Burns. 2021;47(5):1024–37. https://doi.org/10.1016/j.burns.2021.04.021; Heng CHY, Snow M, Dave LYH. Single-stage arthroscopic cartilage repair with injectable scaffold and BMAC. Arthrosc Tech. 2021;10(3):e751–6. https://doi.org/10.1016/j.eats.2020.10.065; Pathak S, Chaudhary D, Reddy KR, Acharya KKV, Desai SM. Efficacy and safety of CARTIGROW® in patients with articular cartilage defects of the knee joint: a four year prospective studys. Int Orthop. 2022;46(6):1313–21. https://doi.org/10.1007/s00264-022-0536; Hmadcha A, Martin-Montalvo A, Gauthier BR, Soria B, Capilla-Gonzalez V. Therapeutic potential of mesenchymal stem cells for cancer therapy. Front Bioeng Biotechnol. 2020;8:43. https://doi.org/10.3389/fbioe.2020.00043; Gimble JM, Katz AJ, Bunnel BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2014;100(9):1249–60. https://doi.org/10.1161/01.RES.0000265074.83288.09; Howard D, Buttery LD, Shakesheff KM, Roberts SJ. Tissue engineering: strategies, stem cells and scaffolds. J Anat. 2008;213(1):66–72. https://doi.org/10.1111/j.1469-7580.2008.00878.x; Рачинская ОА, Мельникова ЕВ, Меркулов ВА. Актуальные направления и риски применения препаратов на основе технологий редактирования генома. БИОпрепараты. Профилактика, диагностика, лечение. 2023;23(3):247–61. https://doi.org/10.30895/2221-996X-2023-23-3-247-261; https://www.biopreparations.ru/jour/article/view/557

  17. 17
    Academic Journal

    Συνεισφορές: This study was conducted by the Scientific Centre for Expert Evaluation of Medicinal Products as part of the applied research funded under State Assignment No. 056-00026-24-01 (R&D Registry No. 124022200103-5), Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00026-24-01 на проведение прикладных научных исследований (номер государственного учета НИР 124022200103-5)

    Πηγή: Biological Products. Prevention, Diagnosis, Treatment; Том 24, № 4 (2024); 377-388 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 24, № 4 (2024); 377-388 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2024-24-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/609/940; https://www.biopreparations.ru/jour/article/downloadSuppFile/609/1101; Du Y, Chen C, Zhang X, Yan D, Jiang D, Liu X, et al. Global burden and trends of rotavirus infection-associated deaths from 1990 to 2019: an observational trend study. Virol J. 2022;19(1):166. https://doi.org/10.1186/s12985-022-01898-9; Tate JE, Burton AH, Boschi-Pinto C, Parashar UD. Global, regional, and national estimates of rotavirus mortality in children; Коровкин АС, Игнатьев ГМ. Результаты и перспективы вакцинопрофилактики ротавирусной инфекции в Российской Федерации. БИОпрепараты. Профилактика, диагностика, лечение. 2023;23(4):499–512. https://doi.org/10.30895/2221-996X-2023-23-4-499-512; McGeoch LJ, Finn A, Marlow RD. Impact of rotavirus vaccination on intussusception hospital admissions in England. Vaccine. 2020;38(35):5618–26. https://doi.org/10.1016/j.vaccine.2020.06.078; Latifi T, Kachooei A, Jalilvand S, Zafarian S, Roohvand F, Shoja Z. Correlates of immune protection against human rotaviruses: natural infection and vaccination. Arch Virol. 2024;169(3):72. https://doi.org/10.1007/s00705-024-05975-y; Luan LT, Trang NV, Phuong NM, Nguyen HT, Ngo HT, Nguyen H, et al. Development and characterization of candidate rotavirus vaccine strains derived from children with diarrhoea in Vietnam. Vaccine. 2009;27:F130–8. https://doi.org/10.1016/j.vaccine.2009.08.086; Zade JK, Kulkarni PS, Desai SA, Sabale RN, Naik SP, Dhere RM. Bovine rotavirus pentavalent vaccine development in India. Vaccine. 2014;32 Suppl 1:A124–8. https://doi.org/10.1016/j.vaccine.2014.03.003; Горенков ДВ, Комаровская ЕИ, Солдатов АА, Авдеева ЖИ, Бондарев ВП. Современные нормативные требования к проведению доклинических исследований профилактических вакцин. БИОпрепараты. Профилактика, диагностика, лечение. 2023;23(1):7–25. https://doi.org/10.30895/2221-996X-2023-23-1-7-25; Skansberg A, Sauer M, Tan M, Santosham M, Jennings MC. Product review of the rotavirus vaccines ROTASIIL, ROTAVAC, and Rotavin-M1. Hum Vaccin Immunother. 2021;17(4):1223–34. https://doi.org/10.1080/21645515.2020.1804245; Burke RM, Tate JE, Kirkwood CD, Steele AD, Parashar UD. Current and new rotavirus vaccines. Curr Opin Infect Dis. 2019;32(5):435-444. https://doi.org/10.1097/QCO.0000000000000572; Li J, Zhang Y, Yang Y, Liang Z, Tian Y, Liu B, et al. Effectiveness of Lanzhou lamb rotavirus vaccine in preventing gastroenteritis among children younger than 5 years of age. Vaccine. 2019;37(27):3611–6. https://doi.org/10.1016/j.vaccine.2019.03.069; Rosillon D, Buyse H, Friedland LR, Ng SP, Velázquez FR, Breuer T. Risk of intussusception after rotavirus vaccination: meta-analysis of postlicensure studies. Pediatr Infect Dis J. 2015;34(7):763–8. https://doi.org/10.1097/inf.0000000000000715; Clark HF, Offit PA, Ellis RW, Eiden JJ, Krah D, Shaw AR, et al. The development of multivalent bovine rotavirus (strain WC3) reassortant vaccine for infants. J Infect Dis. 1996;174 Suppl 1:S73­80. https://doi.org/10.1093/infdis/174.supplement_1.s73; Ruiz-Palacios GM, Pérez-Schael I, Velázquez FR, Abate H, Breuer T, Clemens SC, et al. Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis. N Engl J Med. 2006;354(1):11–22. https://doi.org/10.1056/NEJMoa052434; Vesikari T, Matson DO, Dennehy P, Van Damme P, Santosham M, Rodriguez Z, et al. Safety and efficacy of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine. N Engl J Med. 2006;354(1):23–33. https://doi.org/10.1056/NEJMoa052664; Kulkarni PS, Desai S, Tewari T, Kawade A, Goyal N, Garg BS, et al. A randomized phase III clinical trial to assess the efficacy of a bovine-human reassortant pentavalent rotavirus vaccine in Indian infants. Vaccine. 2017;35(45):6228–37. https://doi.org/10.1016/j.vaccine.2017.09.014; Bhandari N, Rongsen-Chandola T, Bavdekar A, John J, Antony K, Taneja S, et al. Efficacy of a monovalent human-bovine (116E) rotavirus vaccine in Indian children in the second year of life. Vaccine. 2014;32 Suppl 1:A110–6. https://doi.org/10.1016/j.vaccine.2014.04.079; Thiem VD, Anh DD, Ha VH, Hien ND, Huong NT, Nga NT, et al. Safety and immunogenicity of two formulations of rotavirus vaccine in Vietnamese infants. Vaccine. 2021;39(32):4463–70. https://doi.org/10.1016/j.vaccine.2021.06.056; Dang DA, Nguyen VT, Vu DT, Nguyen TH, Nguyen DM, Yuhuan W, et al. A dose-escalation safety and immunogenicity study of a new live attenuated human rotavirus vaccine (Rotavin-M1) in Vietnamese children. Vaccine. 2012;30 Suppl 1:A114–21. https://doi.org/10.1016/j.vaccine.2011.07.118; Xia S, Du J, Su J, Liu Y, Huang L, Yu Q, et al. Efficacy, immunogenicity and safety of a trivalent live human-lamb reassortant rotavirus vaccine (LLR3) in healthy Chinese infants: a randomized, double-blind, placebo-controlled trial. Vaccine. 2020;38(46):7393–400. https://doi.org/10.1016/j.vaccine.2020.04.038; Schnadower D, Tarr PI, Gorelick MH, O’Connell K, Roskind CG, Powell EC, et al. Validation of the modified Vesikari score in children with gastroenteritis in 5 US emergency departments. J Pediatr Gastroenterol Nutr. 2013;57(4):514–9. https://doi.org/10.1097/MPG.0b013e31829ae5a3; Ермоленко КД, Гончар НВ, Бехтерева МК, Лобзин ЮВ. Сравнение информативности шкал Везикари и Кларка для определения тяжести вирусных кишечных инфекций и прогнозирования их исходов у детей. Журнал инфектологии. 2018;10(4):64–71. https://doi.org/10.22625/2072-6732-2018-10-4-64-71; Plotkin SA. Recent updates on correlates of vaccine-­induced protection. Front Immunol. 2023;13:1081107. https://doi.org/10.3389/fimmu.2022.1081107; Fix A, Kirkwood CD, Steele D, Flores J. Next-generation rotavirus vaccine developers meeting: summary of a meeting sponsored by PATH and the Bill & Melinda Gates Foundation (19–20 June 2019, Geneva). Vaccine. 2020;38(52):8247–54. https://doi.org/10.1016/j.vaccine.2020.11.034; Духовлинов ИВ, Богомолова ЕГ, Федорова ЕА, Симбирцев АС. Исследование протективной активности кандидатной вакцины против ротавирусной инфекции на основе рекомбинантного белка FliCVP6VP8. Медицинская иммунология. 2016;18(5):417–24. https://doi.org/10.15789/1563-0625-2016-5-417-424; Яговкин ЭА, Решетов АА, Колпакова ЕП, Коврижко МВ, Ванжа ВС, Троценко АА. Изучение возможности применения конъюгационных технологий при разработке ротавирусной инактивированной вакцины. В кн.: Актуальные вопросы эпидемиологического надзора за инфекционными и паразитарными заболеваниями на Юге России. Ермольевские чтения. Ростов-на-Дону: Ростовский научно-исследовательский институт микробиологии и паразитологии; 2021. С. 154–8. EDN: YNTIDR; Колпакова ЕП, Колпаков СА. Способ инактивации культурального ротавируса человека. Патент Российской Федерации № 2743300; 2021. EDN: VLTMHM; Черепушкин СА, Цибезов ВВ, Южаков АГ, Латышев ОЕ, Алексеев КП, Алтаева ЭГ и др. Синтез и характеристика вирусоподобных частиц ротавируса А (Reoviridae: Sedoreovirinae: Rotavirus: Rotavirus A) человека. Вопросы вирусологии. 2021;66(1):55–64. https://doi.org/10.36233/0507-4088-27; Groome MJ, Fairlie L, Morrison J, Fix A, Koen A, Masenya M, et al. Safety and immunogenicity of a parenteral trivalent P2-VP8 subunit rotavirus vaccine: a multisite, randomised, double-blind, placebo-controlled trial. Lancet Infect Dis. 2020;20(7):851–63. https://doi.org/10.1016/S1473-3099(20)30001-3; Malm M, Diessner A, Tamminen K, Liebscher M, Vesikari T, Blazevic V. Rotavirus VP6 as an adjuvant for bivalent norovirus vaccine produced in Nicotiana benthamiana. Pharmaceutics. 2019;11(5):229. https://doi.org/10.3390/pharmaceutics11050229; Resch TK, Wang Y, Moon S, Jiang B. Serial passaging of the human rotavirus CDC-9 strain in cell culture leads to attenuation: characterization from in vitro and in vivo studies. J Virol. 2020;94(15):e00889-20. https://doi.org/10.1128/JVI.00889-20; Roier S, Mangala Prasad V, McNeal MM, Lee KK, Petsch B, Rauch S. mRNA-based VP8* nanoparticle vaccines against rotavirus are highly immunogenic in rodents. NPJ Vaccines. 2023;8(1):190. https://doi.org/10.1038/s41541-023-00790-z; https://www.biopreparations.ru/jour/article/view/609

  18. 18
    Academic Journal

    Συνεισφορές: This study was conducted as part of clinical trials of the cell-based medicinal product Easytense® funded by GENERIUM JSC., Работа выполнена в рамках клинических исследований биомедицинского клеточного продукта Изитенс®, спонсируемых АО «ГЕНЕРИУМ».

    Πηγή: Biological Products. Prevention, Diagnosis, Treatment; Том 24, № 2 (2024); 172-187 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 24, № 2 (2024); 172-187 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2024-24-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/574/861; https://www.biopreparations.ru/jour/article/view/574/967; https://www.biopreparations.ru/jour/article/view/574/831; https://www.biopreparations.ru/jour/article/downloadSuppFile/574/868; https://www.biopreparations.ru/jour/article/downloadSuppFile/574/869; https://www.biopreparations.ru/jour/article/downloadSuppFile/574/870; https://www.biopreparations.ru/jour/article/downloadSuppFile/574/871; https://www.biopreparations.ru/jour/article/downloadSuppFile/574/872; https://www.biopreparations.ru/jour/article/downloadSuppFile/574/873; https://www.biopreparations.ru/jour/article/downloadSuppFile/574/874; https://www.biopreparations.ru/jour/article/downloadSuppFile/574/875; https://www.biopreparations.ru/jour/article/downloadSuppFile/574/923; https://www.biopreparations.ru/jour/article/downloadSuppFile/574/924; https://www.biopreparations.ru/jour/article/downloadSuppFile/574/925; https://www.biopreparations.ru/jour/article/downloadSuppFile/574/926; https://www.biopreparations.ru/jour/article/downloadSuppFile/574/927; https://www.biopreparations.ru/jour/article/downloadSuppFile/574/928; https://www.biopreparations.ru/jour/article/downloadSuppFile/574/948; Brittberg M, Recker D, Ilgenfritz J, Saris DBF, SUMMIT Extension Study Group. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: five-year follow-up of a prospective randomized trial. Am J Sports Med. 2018.46(6):1343–51. https://doi.org/10.1177/0363546518756976; Hoburg A, Niemeyer P, Laute V, Zinser W, Becher C, Kolombe T, et al. Sustained superiority in KOOS subscores after matrix-associated chondrocyte implantation using spheroids compared to microfracture. Knee Surg Sports Traumatol Arthrosc. 2023;31(6):2482–93. https://doi.org/10.1007/s00167-022-07194-x; Ibarra C, Villalobos E, Madrazo-Ibarra A, Velasquillo C, Martinez-Lopez V, Izaguirre A, et al. Arthroscopic matrix -assisted autologous chondrocyte transplantation versus microfracture: a 6-year follow-up of a prospective randomized trial. Am J Sports Med. 2021;49(8):2165–76. https://doi.org/10.1177/03635465211010487; Mistry H, Connock M, Pink J, Shyangdan D, Clar C, Royle P, at al. Autologous chondrocyte implantation in the knee: systematic review and economic evaluation. Health Technol Assess. 2017;21(6):1–294. https://doi.org/10.3310/hta21060; Kikuchi T, Shimizu T. Thickness-wise growth technique for human articular chondrocytes to fabricate three-dimensional cartilage grafts. Regen Ther. 2020;14:119–27. https://doi.org/10.1016/j.reth.2019.12.001; Mendes LF, Katagiri H, Tam WL, Chai YC, Geris L, Roberts SJ, et al. Advancing osteochondral tissue engineering: bone morphogenetic protein, transforming growth factor, and fibroblast growth factor signaling drive ordered differentiation of periosteal cells resulting in stable cartilage and bone formation in vivo. Stem Cell Res Ther. 2018;9(1):42. https://doi.org/10.1186/s13287-018-0787-3; Song H, Du H, Li J, Wang M, Wang J, Ju X, Mu W. Effect of fibroblast growth factor 2 on degenerative endplate chondrocyte: from anabolism to catabolism. Exp Mol Pathol. 2021;118:104590. https://doi.org/10.1016/j.yexmp.2020.104590; Wang X, Xue Y, Ye W, Pang J, Liu Z, Cao Y, et al. The MEK-ERK1/2 signaling pathway regulates hyaline cartilage formation and the redifferentiation of dedifferentiated chondrocytes in vitro. Am J Transl Res. 2018;10(10):3068–85. PMID: 30416651; Gurusinghe S, Bandara N, Hilbert B, Trope G, Wang L, Strappe P. Lentiviral vector expression of Klf4 enhances chondrogenesis and reduces hypertrophy in equine chondrocytes. Gene. 2019;680:9–19. https://doi.org/10.1016/j.gene.2018.09.013; Varela-Eirín M, Varela-Vázquez A, Guitián-Caamaño A, Paíno CL, Mato V, Largo R, at al. Targeting of chondrocyte plasticity via connexin43 modulation attenuates cellular senescence and fosters a pro-regenerative environment in osteoarthritis. Cell Death Dis. 2018;9(12):1166. https://doi.org/10.1038/s41419-018-1225-2; Bachmann B, Spitz S, Schädl B, Teuschl A, Redl H, Nürnberger S, at al. Stiffness matters: fine-tuned hydrogel elasticity alters chondrogenic redifferentiation. Front Bioeng Biotechnol. 2020;8:373. https://doi.org/10.3389/fbioe.2020.00373; Hu X, Zhang W, Li X, Zhong D, Li Y, Li J, Jin R. Strategies to modulate the redifferentiation of chondrocytes. Front Bioeng Biotechnol. 2021;9:764193. https://doi.org/10.3389/fbioe.2021.764193; Eschen C, Kaps C, Widuchowski W, Fickert S, Zinser W, Niemeyer P, Roël G. Clinical outcome is significantly better with spheroid-based autologous chondrocyte implantation manufactured with more stringent cell culture criteria. Osteoarthr Cartil Open. 2020;2(1):100033. https://doi.org/10.1016/j.ocarto.2020.100033; Vonk LA, Roël G, Hernigou J, Kaps C, Hernigou P. Role of matrix-associated autologous chondrocyte implantation with spheroids in the treatment of large chondral defects in the knee: a systematic review. Int J Mol Sci. 2021;22(13):7149. https://doi.org/10.3390/ijms22137149; Guillén-García P, Guillén-Vicente I, Rodríguez-Iñigo E, Guillén-Vicente M, Fernández-Jaén TF, Navarro R, at al. Cartilage defect treatment using high-density autologous chondrocyte implantation (HD-ACI). Bioengineering (Basel). 2023;10(9):1083. https://doi.org/10.3390/bioengineering10091083; Шустер АМ, Ручко СВ, Щукин МВ, Александров ВН, Говоров ИВ, Григорьева ОВ и др. Опыт создания промышленной линии для производства клеточных продуктов по изоляторной технологии. БИОпрепараты. Профилактика, диагностика, лечение. 2014;(4):37–41.; Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol. 1984;133(4):1710–5. https://doi.org/10.4049/jimmunol.133.4.1710; Ozkinay C, Mitelman F. A simple trypsin-Giemsa technique producing simultaneous G- and C-banding in human chromosomes. Hereditas. 1979;90(1):1–4. https://doi.org/10.1111/j.1601-5223.1979.tb01287.x; van den Borne MP, Raijmakers N, Vanlauwe J, Victor J, de Jong S, Bellemans J, at al. International Cartilage Repair Society. International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthritis Cartilage. 2007;15(12):1397–402. https://doi.org/10.1016/j.joca.2007.05.005; Мельникова ЕВ, Рачинская ОА, Меркулова ОВ, Семенова ИС, Кожевникова ЕО, Меркулов ВА. Методические аспекты разработки нормативной документации на биомедицинский клеточный продукт. БИОпрепараты. Профилактика, диагностика, лечение. 2021;21(2):122–35. https://doi.org/10.30895/2221-996X-2021-21-2-122-135; Darling EM, Athanasiou KA. Rapid phenotypic changes inpassaged articular chondrocyte subpopulations. J Orthop Res. 2005;23(2):425–32. https://doi.org/10.1016/j.ortres.2004.08.008; Marlovits S, Hombauer M, Truppe M, Vècsei V, Schlegel W. Changes in the ratio of type-I and type-II collagen expression during monolayer culture of human chondrocytes. J Bone Joint Surg Br. 2004;86(2):286–95. https://doi.org/10.1302/0301-620x.86b2.14918; Tew SR, Clegg PD. Analysis of post transcriptional regulation of SOX9 mRNA during in vitro chondrogenesis. Tissue Eng Part A. 2011;17(13–14):1801–7. https://doi.org/10.1089/ten.tea.2010.0579; Peterson L, Minas T, Brittberg M, Nilsson A, Sjögren-Jansson E, Lindahl A. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res. 2000;(374):212–34. https://doi.org/10.1097/00003086-200005000-00020; Roberts S, McCall IW, Darby AJ, Menage J, Evans H, Harrison P, et al. Autologous chondrocyte implantation for cartilage repair: monitoring its success by magnetic resonance imaging and histology. Arthritis Res Ther. 2003;5(1):60–73. https://doi.org/10.1186/ar613; Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982;30(1):215–24. https://doi.org/10.1016/0092-8674(82)90027-7; Bonaventure J, Kadhom N, Cohen-Solal L, Ng KH, Bourguignon J, Lasselin C, Freisinger P. Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp Cell Res. 1994;212(1):97–104. https://doi.org/10.1006/excr.1994.1123; Martinez I, Elvenes J, Olsen R, Bertheussen K, Johansen O. Redifferentiation of in vitro expanded adult articular chondrocytes by combining the hanging-drop cultivation method with hypoxic environment. Cell Transplant. 2008;17(8):987–96. https://doi.org/10.3727/096368908786576499; Рачинская ОА, Меркулов ВА. Применение методов цитогенетического анализа при оценке качества клеточных линий в составе биомедицинских клеточных продуктов. БИОпрепараты. Профилактика, диагностика, лечение. 2018;18(1):25–32. https://doi.org/10.30895/2221-996X-2018-18-1-25-32; https://www.biopreparations.ru/jour/article/view/574

  19. 19
    Academic Journal

    Συνεισφορές: This study was conducted by the Scientific Centre for Expert Evaluation of Medicinal Products as part of the applied research funded under State Assignment No. 056-00026-24-01 (R&D Registry No. 124022200103-5), Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00026-24-01 на проведение прикладных научных исследований (номер государственного учета НИР 124022200103-5)

    Πηγή: Biological Products. Prevention, Diagnosis, Treatment; Том 24, № 3 (2024); 255-269 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 24, № 3 (2024); 255-269 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2024-24-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/592/912; https://www.biopreparations.ru/jour/article/downloadSuppFile/592/1015; Falsey AR, Hennessey PA, Formica MA, Cox C, Walsh EE. Respiratory syncytial virus infection in elderly and highrisk adults. N Engl J Med. 2005;352(17):1749–59. https://doi.org/10.1056/nejmoa043951; The IMpact-RSV Study Group. Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. Pediatrics. 1998;102(3):531–7. PMID: 9738173; Reicherz F, Abu-Raya B, Akinseye O, Rassekh SR, Wiens MO, Lavoie PM. Efficacy of palivizumab immunoprophylaxis for reducing severe RSV outcomes in children with immunodeficiencies: a systematic review. J Pediatric Infect Dis Soc. 2024;13(2):136–43. https://doi.org/10.1093/jpids/piae004; Papi A, Ison MG, Langley JM, Lee DG, Leroux-Roels I, Martinon-Torres F, et al. Respiratory syncytial virus prefusion F protein vaccine in older adults. N Engl J Med. 2023;388(7):595–608. https://doi.org/10.1056/nejmoa2209604; Walsh EE, Pérez Marc G, Zareba AM, Falsey AR, Jiang Q, Patton M, et al. Efficacy and safety of a bivalent RSV prefusion F vaccine in older adults. N Engl J Med. 2023;388(16):1465–77. https://doi.org/10.1056/nejmoa2213836; Melgar M, Britton A, Roper LE, Talbot HK, Long SS, Kot ton CN, Havers FP. Use of respiratory syncytial virus vaccines in older adults: recommendations of the advisory committee on immunization practices — United States, 2023. MMWR Morb Mortal Wkly Rep. 2023;72(29):793–801. https://doi.org/10.15585/mmwr.mm7229a4; Acosta P, Caballero MT, Polack FP. Brief history and characterization of enhanced respiratory syncytial virus disease. Clin Vaccine Immunol. 2016;23(3):189–95. https://doi.org/10.1128/cvi.00609-15; Altamirano-Lagos MJ, Díaz FE, Mansilla MA, Rivera-Pérez D, Soto D, McGill JL, et al. Current animal models for understanding the pathology caused by the respiratory syncytial virus. Front Microbiol. 2019;10:873. https://doi.org/10.3389/fmicb.2019.00873; Walsh EE, Hall CB. Respiratory Syncytial Virus (RSV). Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. 2015:1948–1960.e3. https://doi.org/10.1016/B978-1-4557-4801-3.00160-0; van den Hoogen BG, de Jong JC, Groen J, Kuiken T, de Groot R, Fouchier RA, Osterhaus AD. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med. 2001;7(6):719–24. https://doi.org/10.1038/89098; Collins PL, Fearns R, Graham BS. Respiratory syncytial virus: virology, reverse genetics, and pathogenesis of disease. Curr Top Microbiol Immunol. 2013;372:3–38. https://doi.org/10.1007/978-3-642-38919-1_1; Tawar RG, Duquerroy S, Vonrhein C, Varela PF, DamierPiolle L, Castagne N, et al. Crystal structure of a nucleocapsid-like nucleoprotein-RNA complex of respiratory syncytial virus. Science. 2009;326(5957):1279–83. https://doi.org/10.1126/science.1177634; Yu JM, Fu YH, Peng XL, Zheng YP, He JS. Genetic diversity and molecular evolution of human respiratory syncytial virus A and B. Sci Rep. 2021;11(1):12941. https://doi.org/10.1038/s41598-021-92435-1; Tan L, Lemey P, Houspie L, Viveen MC, Jansen NJ, van Loon AM, et al. Genetic variability among complete human respiratory syncytial virus subgroup A genomes: bridging molecular evolutionary dynamics and epidemiology. PLoS One. 2012;7(12):e51439. https://doi.org/10.1371/journal.pone.0051439; Vos LM, Oosterheert JJ, Kuil SD, Viveen M, Bont LJ, Hoepelman AIM, Coenjaerts FEJ. High epidemic burden of RSV disease coinciding with genetic alterations causing amino acid substitutions in the RSV G-protein during the 2016/2017 season in The Netherlands. J Clin Virol. 2019;112:20–26. https://doi.org/10.1016/j.jcv.2019.01.007; König P, Giesow K, Schuldt K, Buchholz UJ, Keil GM. A novel protein expression strategy using recombinant bovine respiratory syncytial virus (BRSV): modifications of the peptide sequence between the two furin cleavage sites of the BRSV fusion protein yield secreted proteins, but affect processing and function of the BRSV fusion protein. J Gen Virol. 2004;85(Pt 7):1815–24. https://doi.org/10.1099/vir.0.80010-0; Yusuf S, Piedimonte G, Auais A, Demmler G, Krishnan S, Van Caeseele P, et al. The relationship of meteorological conditions to the epidemic activity of respiratory syncytial virus. Epidemiol Infect. 2007;135(7):1077–90. https://doi.org/10.1017/S095026880600776X; Hansen CL, Chaves SS, Demont C, Viboud C. Mortality associated with influenza and respiratory syncytial virus in the US, 1999–2018. JAMA Netw Open. 2022;5(2):e220527. https://doi.org/10.1001/jamanetworkopen.2022.0527; Johnstone J, Majumdar SR, Fox JD, Marrie TJ. Viral infection in adults hospitalized with community-acquired pneumonia: prevalence, pathogens, and presentation. Chest. 2008;134(6):1141–8. https://doi.org/10.1378/chest.08-0888; Львов ДК, Бурцева ЕИ, Колобухина ЛВ, Федякина ИТ, Бовин НВ, Игнатьева АВ и др. Особенности циркуляции вирусов гриппа и ОРВИ в эпидемическом сезоне 2019– 2020 гг. в отдельных регионах России. Вопросы вирусологии. 2020;65(6):335–49. https://doi.org/10.36233/0507-4088-2020-65-6-4; Kim HW, Ganchola JG, Brandt CD, Pyles G, Chanock RM, Jensen K, Parroth RH. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol. 1969;89(4):422–34. https://doi.org/10.1093/oxfordjournals.aje.a120955; Johnson PR, Collins PL. The fusion glycoproteins of human respiratory syncytial virus of subgroups A and B: sequence conservation provides a structural basis for antigenic relatedness. J Gen Virol. 1988;69(Pt 10):2623–8. https://doi.org/10.1099/0022-1317-69-10-2623; Calder LJ, González-Reyes L, García-Barreno B, Wharton SA, Skehel JJ, Wiley DC, Melero JA. Electron microscopy of the human respiratory syncytial virus fusion protein and complexes that it forms with monoclonal antibodies. Virology. 2000;271(1):122–31. https://doi.org/10.1006/viro.2000.0279; Smith BJ, Lawrence MC, Colman PM. Modelling the structure of the fusion protein from human respiratory syncytial virus. Protein Eng. 2002;15(5):365–71. https://doi.org/10.1093/protein/15.5.365; McLellan JS, Chen M, Leung S, Graepel KW, Du X, Yang Y, et al. Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science. 2013;340(6136):1113–7. https://doi.org/10.1126/science.1234914; McLellan JS, Chen M, Joyce MG, Sastry M, Stewart-Jones GB, Yang Y, et al. Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science. 2013;342(6158):592–8. https://doi.org/10.1126/science.1243283; Crank MC, Ruckwardt TJ, Chen M, Morabito KM, Phung E, Costner PJ, et al. A proof of concept for structure-based vaccine design targeting RSV in humans. Science. 2019;365(6452):505–9. https://doi.org/10.1126/science.aav9033; Stephens LM, Varga SM. Considerations for a respiratory syncytial virus vaccine targeting an elderly population. Vaccines (Basel). 2021;9(6):624. https://doi.org/10.3390/vaccines9060624; Walsh EE, Falsey AR, Scott DA, Gurtman A, Zareba AM, Jansen KU, et al. A randomized phase 1/2 study of a respiratory syncytial virus prefusion F vaccine. J Infect Dis. 2022;225(8):1357–66. https://doi.org/10.1093/infdis/jiab612; Leroux-Roels I, Davis MG, Steenackers K, Essink B, Vandermeulen C, Fogarty C, et al. Safety and immunogenicity of a respiratory syncytial virus prefusion F (RSVPreF3) candidate vaccine in older adults: phase 1/2 randomized clinical trial. J Infect Dis. 2023;227(6):761–72. https://doi.org/10.1093/infdis/jiac327; Ferguson M, Murray A, Pliamm L, Rombo L, Sanmartin Berglund J, David MP, et al. Lot-to-lot immunogenicity consistency of the respiratory syncytial virus prefusion F protein vaccine in older adults. Vaccine X. 2024;18:100494. https://doi.org/10.1016/j.jvacx.2024.100494; Schmoele-Thoma B, Zareba AM, Jiang Q, Maddur MS, Danaf R, Mann A, et al. Vaccine efficacy in adults in a respiratory syncytial virus challenge study. N Engl J Med. 2022;386(25):2377–86. https://doi.org/10.1056/nejmoa2116154; Athan E, Baber J, Quan K, Scott RJ, Jaques A, Jiang Q, et al. Safety and immunogenicity of bivalent RSVpreF vaccine coadministered with seasonal inactivated influenza vaccine in older adults. Clin Infect Dis. 2024;78(5):1360–8. https://doi.org/10.1093/cid/ciad707; Kampmann B, Madhi SA, Munjal I, Simões EAF, Pahud BA, Llapur C, et al. Bivalent prefusion F vaccine in pregnancy to prevent RSV illness in infants. N Engl J Med. 2023;388(16):1451–64. https://doi.org/10.1056/nejmoa2216480; Baker J, Aliabadi N, Munjal I, Jiang Q, Feng Y, Brock LG, et al. Equivalent immunogenicity across three RSVpreF vaccine lots in healthy adults 18–49 years of age: Results of a randomized phase 3 study. Vaccine. 2024;42(13):3172–9. https://doi.org/10.1016/j.vaccine.2024.03.070; Васин АВ, Егоров АЮ, Сергеева МВ, Стукова МА. Рекомбинантные векторные конструкции на основе аттенуированного вируса гриппа для разработки вакцин против респираторных инфекций. В кн.: III объединенный научный форум физиологов, биохимиков и молекулярных биологов. VII съезд биохимиков России. X Российский симпозиум «Белки и пептиды». VII съезд физиологов СНГ. Т. 2. Москва: Перо; 2021. С. 229–30. EDN: SXYWDM; Wilson E, Goswami J, Baqui AH, Doreski PA, PerezMarc G, Zaman K, et al. Efficacy and safety of an mRNA-based RSV PreF vaccine in older adults. N Engl J Med. 2023;389(24):2233–44. https://doi.org/10.1056/nejmoa2307079; Karron RA, Luongo C, Mateo JS, Wanionek K, Collins PL, Buchholz UJ. Safety and immunogenicity of the respiratory syncytial virus vaccine RSV/ΔNS2/Δ1313/ I1314L in RSV-seronegative children. J Infect Dis. 2020;222(1):82–91. https://doi.org/10.1093/infdis/jiz408; https://www.biopreparations.ru/jour/article/view/592

  20. 20
    Academic Journal

    Συνεισφορές: The study was supported by the Russian Science Foundation (Grant No. 23-45-10031)., Исследование выполнено за счет гранта Российского научного фонда № 23-45-10031.

    Πηγή: Biological Products. Prevention, Diagnosis, Treatment; Том 24, № 2 (2024); 157-171 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 24, № 2 (2024); 157-171 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2024-24-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/575/860; https://www.biopreparations.ru/jour/article/view/575/842; https://www.biopreparations.ru/jour/article/downloadSuppFile/575/866; https://www.biopreparations.ru/jour/article/downloadSuppFile/575/867; https://www.biopreparations.ru/jour/article/downloadSuppFile/575/975; Тимотиевич ЕД, Шиловский ИП, Хаитов МР. Пептидные носители как средства доставки терапевтических нуклеиновых кислот. Механизмы и потенциал применения в медицине. Биохимия. 2023;88(11):2183–205. https://doi.org/10.31857/S032097252311012X; Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK. RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev. 2003;67(4):657–85. https://doi.org/10.1128/MMBR.67.4.657-685.2003; Wilson RC, Doudna JA. Molecular mechanisms of RNA interference. Annu Rev Biophys. 2013;42:217–39. https://doi.org/10.1146/annurev-biophys-083012-130404; Gangopadhyay S, Gore KR. Advances in siRNA therapeutics and synergistic effect on siRNA activity using emerging dual ribose modifications. RNA Biol. 2022;19(1):452–67. https://doi.org/10.1080/15476286.2022.2052641; Kang H, Ga YJ, Kim SH, Cho YH, Kim JW, Kim C, et al. Small interfering RNA (siRNA)-based therapeutic applications against viruses: principles, potential, and challenges. J Biomed Sci. 2023;30(1):88. https://doi.org/10.1186/S12929-023-00981-9; Wang Y, Zhang R, Tang L, Yang L. Nonviral delivery systems of mRNA vaccines for cancer gene therapy. Pharmaceutics. 2022;14(3):512. https://doi.org/10.3390/pharmaceutics14030512; Yan Y, Liu XY, Lu A, Wang XY, Jiang LX, Wang JC. Non-viral vectors for RNA delivery. J Control Release. 2022;342:241–79. https://doi.org/10.1016/J.JCONREL.2022.01.008; Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 2020;19(10):673–94. https://doi.org/10.1038/S41573-020-0075-7; An G. Pharmacokinetics and pharmacodynamics of GalNAc-Conjugated siRNAs. J Clin Pharmacol. 2024;64(1):45–57. https://doi.org/10.1002/JCPH.2337; Khan MM, Filipczak N, Torchilin VP. Cell penetrating peptides: a versatile vector for co-delivery of drug and genes in cancer. J Control Release. 2021;330:1220–8. https://doi.org/10.1016/j.jconrel.2020.11.028; Falato L, Gestin M, Langel Ü. Cell-penetrating peptides delivering siRNAs: an overview. Methods Mol Biol. 2021;2282:329–52. https://doi.org/10.1007/978-1-0716-1298-9_18; Kozhikhova KV, Shilovskiy IP, Shatilov AA, Timofeeva AV, Turetskiy EA, Vishniakova LI, et al. Linear and dendrimeric antiviral peptides: Design, chemical synthesis and activity against human respiratory syncytial virus. J Mater Chem B. 2020;8:2607–17. https://doi.org/10.1039/c9tb02485a; Shilovskiy I, Nikonova A, Barvinskaia E, Kaganova M, Nikolskii A, Vishnyakova L, et al. Anti-inflammatory effect of siRNAs targeted IL-4 and IL-13 in a mouse model of allergic rhinitis. Allergy. 2022;77(9):2829–32. https://doi.org/10.1111/ALL.15366; Никольский АА, Шиловский ИП, Юмашев КВ, Вишнякова ЛИ, Барвинская ЕД, Ковчина ВИ и др. Влияние локального подавления экспрессии гена Stat3 на нейтрофильное воспаление легких в экспериментальной модели на мышах. Иммунология. 2021;42(6):600–14. https://doi.org/10.33029/0206-4952-2021-42-6-600-614; Khaitov M, Nikonova A, Shilovskiy I, Kozhikhova K, Kofiadi I, Vishnyakova L, et al. Silencing of SARS-CoV-2 with modified siRNA-peptide dendrimer formulation. Allergy. 2021;76(9):2840–54. https://doi.org/10.1111/ALL.14850; Friedrich M, Aigner A. Therapeutic siRNA: state-of-the-art and future perspectives. Biodrugs. 2022;36(5):549–71. https://doi.org/10.1007/S40259-022-00549-3; Badri P, Jiang X, Borodovsky A, Najafian N, Kim J, Clausen VA, et al. Pharmacokinetic and pharmacodynamic properties of cemdisiran, an RNAi therapeutic targeting complement component 5, in healthy subjects and patients with paroxysmal nocturnal hemoglobinuria. Clin Pharmacokinet. 2021;60(3):365–78. https://doi.org/10.1007/S40262-020-00940-9; Barratt J, Liew A, Yeo SC, Fernström A, Barbour SJ, Sperati CJ, et al. Phase 2 trial of cemdisiran in adult patients with IgA nephropathy: a randomized controlled trial. Clin J Am Soc Nephrol. 2024;19(4):452–62. https://doi.org/10.2215/CJN.0000000000000384; Pasi KJ, Lissitchkov T, Mamonov V, Mant T, Timofeeva M, Bagot C, et al. Targeting of antithrombin in hemophilia A or B with investigational siRNA therapeutic fitusiran: results of the phase 1 inhibitor cohort. J Thromb Haemost. 2021;19(6):1436–46. https://doi.org/10.1111/JTH.15270; Srivastava A, Rangarajan S, Kavakli K, Klamroth R, Kenet G, Khoo L, et al. Fitusiran prophylaxis in people with severe haemophilia A or haemophilia B without inhibitors (ATLAS-A/B): a multicentre, open-label, randomised, phase 3 trial. Lancet Haematol. 2023;10(5):322–32. https://doi.org/10.1016/S2352-3026(23)00037-6; Gane EJ, Kim W, Lim TH, Tangkijvanich P, Yoon JH, Sievert W, et al. First-in-human randomized study of RNAi therapeutic RG6346 for chronic hepatitis B virus infection. J Hepatol. 2023;79(5):1139–49. https://doi.org/10.1016/J.JHEP.2023.07.026; Gottlieb J, Zamora MR, Hodges T, Musk AW, Sommerwerk U, Dilling D, et al. ALN-RSV01 for prevention of bronchiolitis obliterans syndrome after respiratory syncytial virus infection in lung transplant recipients. J Heart Lung Transplant. 2016;35(2):213–21. https://doi.org/10.1016/J.HEALUN.2015.08.012; DeVincenzo J, Lambkin-Williams R, Wilkinson T, Cehelsky J, Nochur S, Walsh E, et al. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci USA. 2010;107(19):8800–5. https://doi.org/10.1073/PNAS.0912186107; Zamora MR, Budev M, Rolfe M, Gottlieb J, Humar A, DeVincenzo J, et al. RNA interference therapy in lung transplant patients infected with respiratory syncytial virus. Am J Respir Crit Care Med. 2011;183(4):531–8. https://doi.org/10.1164/RCCM.201003-0422OC; Kumthekar P, Ko CH, Paunesku T, Dixit K, Sonabend AM, Bloch O, et al. A first-in-human phase 0 clinical study of RNA interference-based spherical nucleic acids in patients with recurrent glioblastoma. Sci Transl Med. 2021;13(584):3945. https://doi.org/10.1126/SCITRANSLMED.ABB3945; Singerman L. Combination therapy using the small interfering RNA bevasiranib. Retina. 2009;29(6 Suppl):49–50. https://doi.org/10.1097/IAE.0B013E3181AD2341; Garba AO, Mousa SA. Bevasiranib for the treatment of wet, age-related macular degeneration. Ophthalmol Eye Dis. 2010;2:75–83. https://doi.org/10.4137/OED.S4878; Cho WG, Albuquerque RJC, Kleinman ME, Tarallo V, Greco A, Nozaki M, et al. Small interfering RNA-induced TLR3 activation inhibits blood and lymphatic vessel growth. Proc Natl Acad Sci USA. 2009;106(17):7137–42. https://doi.org/10.1073/PNAS.0812317106; Lu LJ, Tsai JC, Liu J. Novel pharmacologic candidates for treatment of primary open-angle glaucoma. Yale J Biol Med. 2017;90(1):111–18. PMCID: PMC5369028; Moreno-Montañés J, Bleau AM, Jimenez AI. Tivanisiran, a novel siRNA for the treatment of dry eye disease. Expert Opin Investig Drugs. 2018;27(4):421–6. https://doi.org/10.1080/13543784.2018.1457647; Ahn I, Kang CS, Han J. Where should siRNAs go: applicable organs for siRNA drugs. Exp Mol Med. 2023;55(7):1283–92. https://doi.org/10.1038/s12276-023-00998-y; Thielmann M, Corteville D, Szabo G, Swaminathan M, Lamy A, Lehner LJ, et al. Teprasiran, a small interfering RNA, for the prevention of acute kidney injury in high-risk patients undergoing cardiac surgery: a randomized clinical study. Circulation. 2021;144(14):1133–44. https://doi.org/10.1161/CIRCULATIONAHA.120.053029; Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet. 2022;23(5):265–80. https://doi.org/10.1038/s41576-021-00439-4; Zhang X, Goel V, Robbie GJ. Pharmacokinetics of patisiran, the first approved RNA interference therapy in patients with hereditary transthyretin-mediated amyloidosis. J Clin Pharmacol. 2019;60(5):573–85. https://doi.org/10.1002/jcph.1553; Suhr OB, Coelho T, Buades J, Pouget J, Conceicao I, Berk J, et al. Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: a phase II multi-dose study. Orphanet J Rare Dis. 2015;10:109. https://doi.org/10.1186/s13023-015-0326-6; Taylor L, Gidal B, Blakey G, Tayo B, Morrison G. A phase I, randomized, double-blind, placebo-controlled, single ascending dose, multiple dose, and food effect trial of the safety, tolerability and pharmacokinetics of highly purified cannabidiol in healthy subjects. CNS Drugs. 2018;32(11):1053–67. https://doi.org/10.1007/s40263-018-0578-5; Kristen AV, Ajroud-Driss S, Conceição I, Gorevic P, Kyriakides T, Obici L. Patisiran, an RNAi therapeutic for the treatment of hereditary transthyretin-mediated amyloidosis. Neurodegener Dis Manag. 2019;9(1):5–23. https://doi.org/10.2217/nmt-2018-0033; Solomon SD, Adams D, Kristen A, Grogan M, González-Duarte A, Maurer MS, et al. Effects of patisiran, an RNA interference therapeutic, on cardiac parameters in patients with hereditary transthyretin-mediated amyloidosis. Circulation. 2019;139(4):431–43. https://doi.org/10.1161/CIRCULATIONAHA.118.035831; Sardh E, Harper P. RNAi therapy with givosiran significantly reduces attack rates in acute intermittent porphyria. J Intern Med. 2022;291(5):593–610. https://doi.org/10.1111/joim.13443; Sardh E, Harper P, Balwani M, Stein P, Rees D, Bissell DM, et al. Phase 1 trial of an RNA interference therapy for acute intermittent porphyria. N Engl J Med. 2019;380(6):549–58. https://doi.org/10.1056/NEJMOA1807838; Balwani M, Sardh E, Ventura P, Peiró PA, Rees DC, Stölzel U, et al. Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N Engl J Med. 2020;382(24):2289–301. https://doi.org/10.1056/nejmoa1913147; Garrelfs SF, Frishberg Y, Hulton SA, Koren MJ, O’Riordan WD, Cochat P, et al. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N Engl J Med. 2021;384(13):1216–26. https://doi.org/10.1056/nejmoa2021712; Frishberg Y, Deschenes G, Groothoff JW, Hulton SA, Magen D, Harambat J, et al. Phase 1/2 study of lumasiran for treatment of primary hyperoxaluria type 1: a placebocontrolled randomized clinical trial. Clin J Am Soc Nephrol. 2021;16(7):1025–36. https://doi.org/10.2215/CJN.14730920; Sas DJ, Magen D, Hayes W, Shasha-Lavsky H, Michael M, Schulte I, et al. Phase 3 trial of lumasiran for primary hyperoxaluria type 1: a new RNAi therapeutic in infants and young children. Genet Med. 2022;24(3):654–62. https://doi.org/10.1016/j.gim.2021.10.024; Scott LJ, Keam SJ. Lumasiran: first approval. Drugs. 2021;81(2):277–82. https://doi.org/10.1007/s40265-020-01463-0; Bardolia C, Amin NS, Turgeon J. Emerging non-statin treatment options for lowering low-density lipoprotein cholesterol. Front Cardiovasc Med. 2021;8:789931. https://doi.org/10.3389/fcvm.2021.789931; Abifadel M, Varret M, Rabès JP, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154–6. https://doi.org/10.1038/ng1161; Nair JK, Willoughby JLS, Chan A, Charisse K, Alam MR, Wang Q, et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc. 2014;136(49):16958–61. https://doi.org/10.1021/ja505986a; Lamb YN. Inclisiran: first approval. Drugs. 2021;81(3):389–95. https://doi.org/10.1007/s40265-021-01473-6; Fitzgerald K, White S, Borodovsky A, Bettencourt BR, Strahs A, Clausen V, et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med. 2017;376(1):41–51. https://doi.org/10.1056/nejmoa1609243; Ray KK, Wright RS, Kallend D, Koenig W, Leiter LA, Raal FJ, et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N Engl J Med. 2020;382(16):1507–19. https://doi.org/10.1056/nejmoa1912387; Reijman MD, Schweizer A, Peterson ALH, Bruckert E, Stratz C, Defesche JC, et al. Rationale and design of two trials assessing the efficacy, safety, and tolerability of inclisiran in adolescents with homozygous and heterozygous familial hypercholesterolaemia. Eur J Prev Cardiol. 2022;29(9):1361–8. https://doi.org/10.1093/eurjpc/zwac025; Syed YY. Nedosiran: first approval. Drugs. 2023;83(18):1729–33. https://doi.org/10.1007/s40265-023-01976-4; Lai C, Pursell N, Gierut J, Saxena U, Zhou W, Dills M, et al. Specific inhibition of hepatic lactate dehydrogenase reduces oxalate production in mouse models of primary hyperoxaluria. Mol Ther. 2018;26(8):1983–95. https://doi.org/10.1016/J.YMTHE.2018.05.016; Hoppe B, Koch A, Cochat P, Garrelfs SF, Baum MA, Groothoff JW, et al. Safety, pharmacodynamics, and exposure-response modeling results from a first-in-human phase 1 study of nedosiran (PHYOX1) in primary hyperoxaluria. Kidney Int. 2022;101(3):626–34. https://doi.org/10.1016/J.KINT.2021.08.015; Habtemariam BA, Karsten V, Attarwala H, Goel V, Melch M, Clausen VA, et al. Single-dose pharmacokinetics and pharmacodynamics of transthyretin targeting N-acetylgalactosamine-small interfering ribonucleic acid conjugate, vutrisiran, in healthy subjects. Clin Pharmacol Ther. 2021;109(2):372–82. https://doi.org/10.1002/CPT.1974; Mullard A. FDA approves fifth RNAi drug—Alnylam’s next-gen hATTR treatment. Nat Rev Drug Discov. 2022;21(8):548–9. https://doi.org/10.1038/D41573-022-00118-X; Хаитов МР, Никонова АА, Кофиади ИА, Шиловский ИП, Смирнов ВВ, Елисютина ОГ и др. Результаты I и II фазы клинических исследований препарата МИР 19®. Иммунология. 2023;44(3):291–316. https://doi.org/10.33029/1816-2134-2023-44-3-291-316; Khaitov M, Nikonova A, Kofiadi I, Shilovskiy I, Smirnov V, Elisytina O, et al. Treatment of COVID-19 patients with a SARS-CoV-2-specific siRNA-peptide dendrimer formulation. Allergy. 2023;78(6):1639–53. https://doi.org/10.1111/ALL.15663; https://www.biopreparations.ru/jour/article/view/575