-
1Academic Journal
Authors: M. S. Kozin, A. R. Kabaeva, M. A. Omarova, A. N. Boyko, O. O. Favorova, O. G. Kulakova, М. С. Козин, А. Р. Кабаева, М. А. Омарова, А. Н. Бойко, О. О. Фаворова, О. Г. Кулакова
Contributors: The study was supported by Russian Science Foundation grant No. 23-75-01109 (https://rscf.ru/project/23-75-01109/). The investigation has not been sponsored, Исследование выполнено за счет гранта Российского научного фонда № 23-75-01109 (https://rscf.ru/project/23-75-01109/). Исследование не имело спонсорской поддержки
Source: Neurology, Neuropsychiatry, Psychosomatics; Vol 16 (2024): (Suppl. 2); 31-37 ; Неврология, нейропсихиатрия, психосоматика; Vol 16 (2024): (Suppl. 2); 31-37 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2024-0
Subject Terms: анализ путей, multiple sclerosis, RNA sequencing, transcriptome, peripheral blood mononuclear cells, pathway analysis, рассеянный склероз, секвенирование РНК, транскриптом, мононуклеарные клетки периферической крови
File Description: application/pdf
Relation: https://nnp.ima-press.net/nnp/article/view/2313/1687; Okuda DT, Mowry EM, Beheshtian A, et al. Incidental MRI anomalies suggestive of multiple sclerosis: the radiologically isolated syndrome. Neurology. 2009 Mar 3;72(9):800-5. doi:10.1212/01.wnl.0000335764.14513.1a. Epub 2008 Dec 10. Erratum in: Neurology. 2009 Apr 7;72(14):1284.; Lebrun-Frenay C, Kantarci O, Siva A, et al; 10-year RISC study group on behalf of SFSEP, OFSEP. Radiologically Isolated Syndrome: 10-Year Risk Estimate of a Clinical Event. Ann Neurol. 2020 Aug;88(2):407-17. doi:10.1002/ana.25799. Epub 2020 Jun 29.; Lebrun-Frenay C, Siva A, Sormani MP, et al; TERIS Study Group. Teriflunomide and Time to Clinical Multiple Sclerosis in Patients With Radiologically Isolated Syndrome: The TERIS Randomized Clinical Trial. JAMA Neurol. 2023 Oct 1;80(10):1080-8. doi:10.1001/jamaneurol.2023.2815; Okuda DT, Kantarci O, Lebrun-Frenay C, et al. Dimethyl Fumarate Delays Multiple Sclerosis in Radiologically Isolated Syndrome. Ann Neurol. 2023 Mar;93(3):604-14. doi:10.1002/ana.26555. Epub 2022 Dec 10.; Preziosa P, Rocca MA, Filippi M. Radiologically isolated syndromes: to treat or not to treat? J Neurol. 2024 May;271(5):2370-8. doi:10.1007/s00415-024-12294-4. Epub 2024 Mar 19.; Okuda DT, Siva A, Kantarci O, et al; Radiologically Isolated Syndrome Consortium (RISC); Club Francophone de la SclОrose en Plaques (CFSEP). Radiologically isolated syndrome: 5-year risk for an initial clinical event. PLoS One. 2014 Mar 5;9(3):e90509. doi:10.1371/journal.pone.0090509; Okuda DT, Lebrun-Frenay C. Radiologically isolated syndrome in the spectrum of multiple sclerosis. Mult Scler. 2024 May;30(6):630-6. doi:10.1177/13524585241245306. Epub 2024 Apr 15.; Кабаева АР, Бойко АН, Кулакова ОГ, Фаворова ОО. Радиологически изолированный синдром: прогноз и предикторы 2020;120(7-2):7-12. doi:10.17116/jnevro20201200727; Kozin M, Kiselev I, Baulina N, et al. Global transcriptome profiling in peripheral blood mononuclear cells identifies dysregulation of immune processes in individuals with radiologically isolated syndrome. Mult Scler Relat Disord. 2022 Feb;58:103469. doi:10.1016/j.msard.2021.103469. Epub 2021 Dec 20.; Munoz-San Martin M, Torras S, Robles-Cedeno R, et al. Radiologically isolated syndrome: targeting miRNAs as prognostic biomarkers. Epigenomics. 2020 Dec;12(23):2065-76. doi:10.2217/epi-2020-0172. Epub 2020 Dec 8.; Freedman MS, Thompson EJ, Deisenhammer F, et al. Recommended standard of cerebrospinal fluid analysis in the diagnosis of multiple sclerosis: a consensus statement. Arch Neurol. 2005 Jun;62(6):865-70. doi:10.1001/arch-neur.62.6.865; Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021 Jan 8;49(D1):D605-D612. doi:10.1093/nar/gkaa1074. Erratum in: Nucleic Acids Res. 2021 Oct 11;49(18):10800. doi:10.1093/nar/gkab835; MacQueen J. Some methods for classification and analysis of multivariate observations. Berkeley Symp Math Stat Prob. 1967;1967:281-97.; Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic; Sameer AS, Nissar S. Toll-Like Receptors (TLRs): Structure, Functions, Signaling, and Role of Their Polymorphisms in Colorectal Cancer Susceptibility. Biomed Res Int. 2021 Sep 12;2021:1157023. doi:10.1155/2021/1157023; Jafarzadeh A, Nemati M, Khorramdelazad H, Mirshafiey A. The Toll-like Receptor 2 (TLR2)-related Immunopathological Responses in the Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Iran J Allergy Asthma Immunol. 2019 Jun 8;18(3):230-50. doi:10.18502/ijaai.v18i3.1117; Podda G, Nyirenda M, Crooks J, Gran B. Innate immune responses in the CNS: role of toll-like receptors, mechanisms, and therapeutic opportunities in multiple sclerosis. J Neuroimmune Pharmacol. 2013 Sep;8(4):791-806. doi:10.1007/s11481-013-9483-3. Epub 2013 Jun 28.; Vastrad B, Vastrad C. Identification of candidate biomarkers and pathways associated with multiple sclerosis using bioinformatics and next generation sequencing data analysis. bioRxiv. 2023. doi:10.1101/2023.12.05.570305; Yang RY, Rabinovich GA, Liu FT. Galectins: structure, function and therapeutic potential. Expert Rev Mol Med. 2008 Jun 13;10:e17. doi:10.1017/S1462399408000719; Sato M, Nishi N, Shoji H, et al. Functional analysis of the carbohydrate recognition domains and a linker peptide of galectin-9 as to eosinophil chemoattractant activity. Glycobiology. 2002 Mar;12(3):191-7. doi:10.1093/glycob/12.3.191; Troncoso MF, Elola MT, Blidner AG, et al. The universe of galectin-binding partners and their functions in health and disease. J Biol Chem. 2023 Dec;299(12):105400. doi:10.1016/j.jbc.2023.105400. Epub 2023 Oct 26.; Nio-Kobayashi J, Itabashi T. Galectins and Their Ligand Glycoconjugates in the Central Nervous System Under Physiological and Pathological Conditions. конверсии в рассеянный склероз. Журнал неврологии и психиатрии им. С.С. Корсакова. Acids Res. 2000 Jan 1;28(1):27-30. doi:10.1093/nar/28.1.27 Front Neuroanat. 2021 Oct 15;15:767330. doi:10.3389/fnana.2021.767330; Ramos-Martinez E, Ramos-Martinez I, Sanchez-Betancourt I, et al. Association between Galectin Levels and Neurodegenerative Diseases: Systematic Review and MetaAnalysis. Biomolecules. 2022 Jul 31;12(8):1062 doi:10.3390/biom12081062; Kandel S, Adhikary P, Li G, Cheng K. The TIM3/Gal9 signaling pathway: An emerging target for cancer immunotherapy. Cancer Lett. 2021 Jul 10;510:67-78. doi:10.1016/j.canlet.2021.04.011. Epub 2021 Apr 22.; Anderson AC, Anderson DE. TIM-3 in autoimmunity. Curr Opin Immunol. 2006 Dec;18(6):665-9. doi:10.1016/j.coi.2006.09.009. Epub 2006 Oct 2.; Anderson DE. TIM-3 as a therapeutic target in human inflammatory diseases. Expert Opin Ther Targets. 2007 Aug;11(8):1005-9. doi:10.1517/14728222.11.8.1005; Feng X, Feng J. Clinical significance of Tim3-positive T cell subsets in patients with multiple sclerosis. J Clin Neurosci. 2016 Dec;34:193-7. doi:10.1016/j.jocn.2016.07.007. Epub 2016 Aug 17.; Saresella M, Piancone F, Marventano I, et al. A role for the TIM-3/GAL-9/BAT3 pathway in determining the clinical phenotype of multiple sclerosis. FASEB J. 2014 Nov;28(11):5000-9. doi:10.1096/fj.14-258194. Epub 2014 Aug 4.
-
2Academic Journal
Authors: O. L. Gorbunova, S. V. Shirshev, О. Л. Горбунова, С. В. Ширшев
Contributors: This work was carried out within the framework of the state task, the state topic registration number: АААА-А19-119112290007-7, Данная работа была выполнена в рамках государственного задания, государственный регистрационный номер темы: АААА-А19-119112290007-7.
Source: Medical Immunology (Russia); Том 25, № 3 (2023); 501-506 ; Медицинская иммунология; Том 25, № 3 (2023); 501-506 ; 2313-741X ; 1563-0625
Subject Terms: лимфоциты, pregnancy, apoptosis, indolamine-2,3-dioxygenase, peripheral blood mononuclear cells, lymphocytes, беременность, апоптоз, индоламин-2,3-диоксигеназа, мононуклеарные клетки периферической крови
File Description: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/2751/1671; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2751/11391; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2751/11392; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2751/11393; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2751/11394; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2751/11395; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2751/11396; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2751/11397; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2751/11398; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2751/11740; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2751/11754; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2751/11755; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2751/11756; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2751/11757; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2751/11758; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2751/11759; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2751/12077; Braun D., Longman R.S., Albert M.L. A two-step induction of indoleamine 2,3 dioxygenase (IDO) activity during dendritic-cell maturation. Blood, 2005, Vol. 106, pp. 2375-2381.; Dhillo W.S., Murphy K.G., Bloom S.R. The neuroendocrine physiology of kisspeptin in the human. Rev. Endocrinol. Metab. Disord., 2007, Vol. 8, pp. 41-46.; Gorbunova O.L., Shirshev S.V. Molecular mechanisms of the regulation by kisspeptin of the formation and functional activity of TREG and TH17. Biochem. (Moscow) Suppl. Ser. A, 2016, Vol. 10, pp. 180-187.; Harms J.F., Welch D.R., Miele M.E. KISS1 metastasis suppression and emergent pathways. Clin. Exp. Metastasis., 2003, Vol. 1, pp. 11-15.; Horikoshi Y., Matsumoto H., Takatsu Y., Ohtaki T., Kitada C., Usuki S., Fujino M. Dramatic elevation of plasma metastin concentrations in human pregnancy: metastin as a novel placenta derived hormone in humans. J. Clin. Endocrinol. Metab., 2003, Vol. 2, pp. 914-919.; Liu Y.S., Wu L., Tong X.H., Wu L.M., He G.P., Zhou G.X., Luo L.H., Luan H.B. Study on the relationship between Th17 cells and unexplained recurrent spontaneous abortion. Am. J. Reprod. Immunol., 2011, Vol. 65, pp. 503-511.; Lopez D.A., Mathers C.D., Ezzati M., Jamison D.T., Murray C.J.L. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet, 2006, Vol. 367, pp. 1747-1757.; Miller A.L., Mann D.H. IDO expression by dendritic cells: tolerance and tryptophan metabolism. Nat. Rev. Immunol., 2004, Vol. 4, no. 10, pp. 762-774.; Muir A.I., Chamberlain L., Elshourbagy N.A., Michalovich D., Moore D.J., Calamari A., Szekeres P.G., Sarau H.M., Chambers J.K., Murdock P., Steplewski K., Shabon U., Miller J.E., Middleton S.E., Darker J.G., Larminie C.G., Wilson S., Bergsma D.J., Emson P., Faull R., Philpott K.L., Harrison D.C. AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J. Biol. Chem., 2001, Vol. 276, pp. 28969-28975.; Napso T., Yong H.E.J., Lopez-Tello J., Sferruzzi-Perri A.N. The role of placental hormones in mediating maternal adaptations to support pregnancy and lactation. Front Physiol., 2018, Vol. 9, 1091. doi:10.3389/fphys.2018.01091.; Peterson L.S., Stelzer I.A., Tsai A.S., Ghaemi M.S. Han X., Ando K., Winn V.D., Martinez N.R., Contrepois K., Moufarrej M.N., Quake S., Relman D.A., Snyder M.P., Shaw G.M., Stevenson D.K., Wong R.J., Arck P., Angst M.S., Aghaeepour N., Gaudilliere B. Multiomic immune clockworks of pregnancy. Semin. Immunopathol., 2020, Vol. 42, no. 4, pp. 397-412.; Rendell V., Bath N.M., Brennan T.V. Medawar’s paradox and immune mechanisms of fetomaternal tolerance. OBM Transplant., 2020, Vol. 4, no. 1 26. doi:10.21926/obm.transplant.2001104.; Sibiryak S.V. Assessment of apoptosis in immunological studies. Yekaterinburg: Ural Branch of the Russian Academy of Sciences, 2008. 59 p.; Stathaki M., Armakolas A., Dimakakos A., Kaklamanis L., Vlachos I. Kisspeptin effect on endothelial monocyte activating polypeptide II (EMAP-II)-associated lymphocyte cell death and metastases in colorectal cancer patients. Mol. Med., 2014, Vol. 20, no. 1, pp. 80-92.; Walsh C.M., Edinger A.L. The complex interplay between autophagy, apoptosis, and necrotic signals promotes T-cell homeostasis. Immunol. Rev., 2010, Vol. 236, pp. 95-109.; https://www.mimmun.ru/mimmun/article/view/2751
-
3Academic Journal
Authors: E. V. Tsyrlina, T. E. Poroshina, D. A. Vasiliev, G. V. Zinoviev, G. I. Gafton, L. M. Berstein, Е. В. Цырлина, Т. Е. Порошина, Д. А. Васильев, Г. В. Зиновьев, Г. И. Гафтон, Л. М. Берштейн
Source: Siberian journal of oncology; Том 21, № 3 (2022); 33-41 ; Сибирский онкологический журнал; Том 21, № 3 (2022); 33-41 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2022-21-3
Subject Terms: метод «комет», DNA damage, mononuclear cells, comet method, повреждение ДНк, мононуклеарные клетки периферической крови
File Description: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/2161/986; Leiter U., Keim U., Garbe C. Epidemiology of Skin Cancer: Update 2019. Adv Exp Med Biol. 2020; 1268: 123–39. doi:10.1007/978-3-030- 46227-7_6.; Pilié P.G., Tang C., Mills G.B., Yap T.A. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol. 2019; 16(2): 81–104. doi:10.1038/s41571-018-0114-z.; Kuchařová M., Hronek M., Rybáková K., Zadák Z., Štětina R., Josková V., Patková A. Comet assay and its use for evaluating oxidative DNA damage in some pathological states. Physiol Res. 2019; 68(1): 1–15. doi:10.33549/physiolres.933901.; Burrell R.A., McClelland S.E., Endesfelder D., Groth P., Weller M.C., Shaikh N., Domingo E., Kanu N., Dewhurst S.M., Gronroos E., Chew S.K., Rowan A.J., Schenk A., Sheffer M., Howell M., Kschischo M., Behrens A., Helleday T., Bartek J., Tomlinson I.P., Swanton C. Replication stress links structural and numerical cancer chromosomal instability. Nature. 2013; 494 (7438): 492–6.; Wilhelm T., Olziersky A.M., Harry D., De Sousa F., Vassal H., Eskat A., Meraldi P. Mild replication stress causes chromosome missegregation via premature centriole disengagement. Nat Commun. 2019; 10(1): 3585. doi:10.1038/s41467-019-11584-0.; Lugović L., Situm M., Kos L. Malignant melanoma--future prospects. Acta Dermatovenerol Croat. 2005; 13(1): 36–43.; Valavanidis A., Vlachogianni T., Fiotakis C. 8-hydroxy-2’ -deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2009; 27(2): 120–39. doi:10.1080/10590500902885684.; Khosla L., Gong S., Weiss J.P., Birder L.A. Oxidative Stress Biomarkers in Age-Related Lower Urinary Tract Disorders: A Systematic Review. Int Neurourol J. 2022; 26(1): 3–19. doi:10.5213/inj.2142188.094.; Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell. 2011; 144(5): 646–74. doi:10.1016/j.cell.2011.02.013.; Pearl L.H., Schierz A.C., Ward S.E., Al-Lazikani B., Pearl F.M. Therapeutic opportunities within the DNA damage response. Nat Rev Cancer. 2015; 15(3): 166–80. doi:10.1038/nrc3891.; Milic M., Frustaci A., Del Bufalo A., Sánchez-Alarcón J., ValenciaQuintana R., Russo P., Bonassi S. DNA damage in non-communicable diseases: A clinical and epidemiological perspective. Mutat Res. 2015; 776: 118–27. doi:10.1016/j.mrfmmm.2014.11.009.; Møller P., Stopper H., Collins A.R. Measurement of DNA damage with the comet assay in high-prevalence diseases: current status and future directions. Mutagenesis. 2020; 35(1): 5–18. doi:10.1093/mutage/ gez018.; Azqueta A., Ladeira C., Giovannelli L., Boutet-Robinet E., Bonassi S., Neri M., Gajski G., Duthie S., Del Bo’ C., Riso P., Koppen G., Basaran N., Collins A., Møller P. Application of the comet assay in human biomonitoring: An hCOMET perspective. Mutat Res Rev Mutat Res. 2020; 783. doi:10.1016/j.mrrev.2019.108288.; Sykora P., Witt K.L., Revanna P., Smith-Roe S.L., Dismukes J., Lloyd D.G., Engelward B.P., Sobol R.W. Next generation high throughput DNA damage detection platform for genotoxic compound screening. Sci Rep. 2018; 8(1): 2771. doi:10.1038/s41598-018-20995-w.; Lawrence M.S., Stojanov P., Mermel C.H., Robinson J.T., Garraway L.A., Golub T.R., Meyerson M., Gabriel S.B., Lander E.S., Getz G. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014; 505(7484): 495–501.; Mouw K.W., Goldberg M.S., Konstantinopoulos P.A., D’Andrea A.D. DNA Damage and Repair Biomarkers of Immunotherapy Response. Cancer Discov. 2017; 7(7): 675–93. doi:10.1158/2159-8290.CD-17-0226.; Perkhofer L., Gout J., Roger E., Kude de Almeida F., Baptista Simões C., Wiesmüller L., Seufferlein T., Kleger A. DNA damage repair as a target in pancreatic cancer: state-of-the-art and future perspectives. Gut. 2021; 70(3): 606–17. doi:10.1136/gutjnl-2019-319984.; Duijf P.H.G., Nanayakkara D., Nones K., Srihari S., Kalimutho M., Khanna K.K. Mechanisms of Genomic Instability in Breast Cancer. Trends Mol Med. 2019; 25(7): 595–611. doi:10.1016/j.molmed.2019.04.004.; Galardi F., Oakman C., Truglia M.C., Cappadona S., Biggeri A., Grisotto L., Giovannelli L., Bessi S., Giannini A., Biganzoli L., Santarpia L., Di Leo A. Inter- and intra-tumoral heterogeneity in DNA damage evaluated by comet assay in early breast cancer patients. Breast. 2012; 21(3): 336–42. doi:10.1016/j.breast.2012.02.007.; Cortés-Gutiérrez E.I., Hernández-Garza F., García-Pérez J.O., Dávila-Rodríguez M.I., Aguado-Barrera M.E., Cerda-Flores R.M. Evaluation of DNA single and double strand breaks in women with cervical neoplasia based on alkaline and neutral comet assay techniques. J Biomed Biotechnol. 2012. doi:10.1155/2012/385245.; Burrell R.A., McClelland S.E., Endesfelder D., Groth P., Weller M.C., Shaikh N., Domingo E., Kanu N., Dewhurst S.M., Gronroos E., Chew S.K., Rowan A.J., Schenk A., Sheffer M., Howell M., Kschischo M., Behrens A., Helleday T., Bartek J., Tomlinson I.P., Swanton C. Replication stress links structural and numerical cancer chromosomal instability. Nature. 2013; 494(7438): 492–6.; Wilhelm T., Said M., Naim V. DNA Replication Stress and Chromosomal Instability: Dangerous Liaisons. Genes (Basel). 2020; 11(6): 642. doi:10.3390/genes11060642.; Fikrova P., Stetina R., Hrnciarik M., Hrnciarikova D., Hronek M., Zadak Z. DNA crosslinks, DNA damage and repair in peripheral blood lymphocytes of non-small cell lung cancer patients treated with platinum derivatives. Oncol Rep. 2014; 31(1): 391–6. doi:10.3892/or.2013.2805.; Allione A., Pardini B., Viberti C., Oderda M., Allasia M., Gontero P., Vineis P., Sacerdote C., Matullo G. The prognostic value of basal DNA damage level in peripheral blood lymphocytes of patients afected by bladder cancer. Urol Oncol. 2018; 36(5). doi:10.1016/j. urolonc.2018.01.006.; Sestakova Z., Kalavska K., Smolkova B., Miskovska V., Rejlekova K., Sycova-Mila Z., Palacka P., Obertova J., Holickova A., Hurbanova L., Jurkovicova D., Roska J., Goffa E., Svetlovska D., Chovanec M., Mardiak J., Mego M., Chovanec M. DNA damage measured in blood cells predicts overall and progression-free survival in germ cell tumour patients. Mutat Res Genet Toxicol Environ Mutagen. 2020. doi:10.1016/j. mrgentox.2020.503200.; Bonassi S., Ceppi M., Møller P., Azqueta A., Milić M., Neri M., Brunborg G., Godschalk R., Koppen G., Langie S.A.S., Teixeira J.P., Bruzzone M., Da Silva J., Benedetti D., Cavallo D., Ursini C.L., Giovannelli L., Moretti S., Riso P., Del Bo’ C., Russo P., Dobrzyńska M., Goroshinskaya I.A., Surikova E.I., Staruchova M., Barančokova M., Volkovova K., Kažimirova A., Smolkova B., Laffon B., Valdiglesias V., Pastor S., Marcos R., Hernández A., Gajski G., Spremo-Potparević B., Živković L., BoutetRobinet E., Perdry H., Lebailly P., Perez C.L., Basaran N., Nemeth Z., Safar A., Dusinska M., Collins A.; hCOMET project. DNA damage in circulating leukocytes measured with the comet assay may predict the risk of death. Sci Rep. 2021; 11(1): 16793. doi:10.1038/s41598-021-95976-7.; Loumaye A., Thissen J.P. Biomarkers of cancer cachexia. Clin Biochem. 2017; 50(18): 1281–8. doi:10.1016/j.clinbiochem.2017.07.011.; Chesnokova V., Melmed S. Peptide Hormone Regulation of DNA Damage Responses Endocr Rev. 2020; 41(4): 519–37. doi:10.1210/ endrev/bnaa009.; Argilés J.M., Busquets S., Stemmler B., López-Soriano F.J. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer. 2014; 14(11): 754–62. doi:10.1038/nrc3829.; Wan G., Mathur R., Hu X., Zhang X., Lu X. miRNA response to DNA damage. Trends Biochem Sci. 2011; 36(9): 478–84. doi:10.1016/j. tibs.2011.06.002.; Visser H., Thomas A.D. MicroRNAs, damage levels, and DNA damage response control. Trends Genet. 2021; 37(11): 963–5. doi:10.1016/j.tig.2021.06.018.; Yang C., Xia Z., Zhu L., Li Y., Zheng Z., Liang J., Wu L. MicroRNA139-5p modulates the growth and metastasis of malignant melanoma cells via the PI3K/AKT signaling pathway by binding to IGF1R. Cell Cycle. 2019; 18(24): 3513–24. doi:10.1080/15384101.2019.1690881.; Chung I.M., Rajakumar G., Venkidasamy B., Subramanian U., Thiruvengadam M. Exosomes: Current use and future applications. Clin Chim Acta. 2020; 500: 226–32. doi:10.1016/j.cca.2019.10.022.; Gowda R., Robertson B.M., Iyer S., Barry J., Dinavahi S.S., Robertson G.P. The role of exosomes in metastasis and progression of melanoma. Cancer Treat Rev. 2020; 85. doi:10.1016/j.ctrv.2020.101975.; Khan A.Q., Akhtar S., Prabhu K.S., Zarif L., Khan R., Alam M., Buddenkotte J., Ahmad A., Steinhoff M., Uddin S. Exosomes: Emerging Diagnostic and Therapeutic Targets in Cutaneous Diseases. Int J Mol Sci. 2020; 21(23): 9264. doi:10.3390/ijms21239264.; Цырлина Е.В., Порошина Т.Е., Оганесян А.П., Проценко С.А., Берштейн Л.М. Повреждение ДНК мононуклеарных клеток периферической крови, выявленное методом «комет», как возможный показатель чувствительности меланомы к иммунотерапии ниволумабом. Сибирский онкологический журнал. 2021; 20(2): 37–45. [Tsyrlina E.V., Poroshina T.E., Oganesyan A.P., Protsenko S.A., Bershtein L.M. Peripheral blood mononuclear dna damage identifed by the «сomet» method, as a possible indicator of sensitivity of melanoma to immunotherapy with nivolumab. Siberian Journal of Oncology. 2021; 20(2): 37–45. (in Russian)]. doi:10.21294/1814-4861-2021-20-2-37-45.; McKelvey-Martin V.J., Green M.H., Schmezer P., Pool-Zobel B.L., De Méo M.P., Collins A. The single cell gel electrophoresis assay (comet assay): a European review. Mutat Res. 1993; 288(1): 47–63. doi:10.1016/0027-5107(93)90207-v.; Møller P. Measurement of oxidatively damaged DNA in mammalian cells using the comet assay: Refections on validity, reliability and variability. Mutat Res Genet Toxicol Environ Mutagen. 2022; 873. doi:10.1016/j.mrgentox.2021.503423.; Voinea S., Blidaru A., Panaitescu E., Sandru A. Impact of gender and primary tumor location on outcome of patients with cutaneous melanoma. J Med Life. 2016; 9(4): 444–8.; Shimizu I., Yoshida Y., Suda M., Minamino T. DNA damage response and metabolic disease. Cell Metab. 2014; 20(6): 967–77. doi:10.1016/j.cmet.2014.10.008.; Vodicka P., Vodenkova S., Opattova A., Vodickova L. DNA damage and repair measured by comet assay in cancer patients. Mutat Res Genet Toxicol Environ Mutagen. 2019; 843: 95–110. doi:10.1016/j. mrgentox.2019.05.009.; Snyder A., Makarov V., Merghoub T., Yuan J., Zaretsky J.M., Desrichard A., Walsh L.A., Postow M.A., Wong P., Ho T.S., Hollmann T.J., Bruggeman C., Kannan K., Li Y., Elipenahli C., Liu C., Harbison C.T., Wang L., Ribas A., Wolchok J.D., Chan T.A. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014; 371(23): 2189–99. doi:10.1056/NEJMoa1406498.; https://www.siboncoj.ru/jour/article/view/2161
-
4Academic Journal
Authors: G. A. Markova, E. V. Chetina, A. M. Satybaldyev, Г. А. Маркова, Е. В. Четина, А. М. Сатыбалдыев
Contributors: The work was carried out with the financial support of the Ministry of Science and Higher Education of Russia (Project № 1021062512064-0), Работа осуществлена при финансовой поддержке Министерства науки и высшего образования Российской Федерации (Проект № 1021062512064-0)
Source: Modern Rheumatology Journal; Том 16, № 5 (2022); 22-27 ; Современная ревматология; Том 16, № 5 (2022); 22-27 ; 2310-158X ; 1996-7012
Subject Terms: фактор некроза опухоли α, tofacitinib, gene expression, cultured peripheral blood mononuclear cells, predictive biomarkers, tumor necrosis factor-α, тофацитиниб, экспрессия генов, культивированные мононуклеарные клетки периферической крови, прогностические биомаркеры
File Description: application/pdf
Relation: https://mrj.ima-press.net/mrj/article/view/1341/1282; https://mrj.ima-press.net/mrj/article/view/1341/1299; McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011 Dec 8;365(23):2205-19. doi:10.1056/NEJMra1004965.; Komatsu N, Takayanagi H. Inflammation and bone destruction in arthritis: synergistic activity of immune and mesenchymal cells in joints. Front Immunol. 2012 Apr 13;3:77. doi:10.3389/fimmu.2012.00077. eCollection 2012.; Bartok B, Firestein GS. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev. 2010 Jan;233(1): 233-55. doi:10.1111/j.0105-2896.2009.00859.x.; Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016 Oct 22;388(10055):2023-38. doi:10.1016/S0140-6736(16)30173-8. Epub 2016 May 3.; Atzeni F, Sarzi-Puttini P, Gorla R, et al. Switching rheumatoid arthritis treatments: an update. Autoimmun Rev. 2011 May;10(7): 397-403. doi:10.1016/j.autrev.2011.01.001. Epub 2011 Jan 22.; Winthrop KL. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat Rev Rheumatol. 2017 May;13(5):320. doi:10.1038/nrrheum.2017.51. Epub 2017 Mar 31.; Strand V, Kremer JM, Gruben D, et al. Tofacitinib in combination with conventional disease-modifying antirheumatic drugs in patients with active rheumatoid arthritis: Patient-reported outcomes from a phase III randomized controlled trial. Arthritis Care Res (Hoboken). 2017 Apr;69(4):592-8. doi:10.1002/acr.23004.; Gadina M, Le MT, Schwartz DM, et al. Janus kinases to Jakinibs: from basic insights to clinical practice. Rheumatology (Oxford). 2019 Feb 1;58(Suppl 1):i4-i16. doi:10.1093/rheumatology/key432.; Tsuchiya H, Fujio K. The current status of the search for biomarkers for optimal therapeutic drug selection for patients with rheumatoid arthritis. Int J Mol Sci. 2021 Sep 2; 22(17):9534. doi:10.3390/ijms22179534.; Tchetina EV, Satybaldyev AM, Markova GA, et al. Putative association between low baseline gene expression in the peripheral blood and clinical remission in rheumatoid arthritis patients treated with tofacitinib. Life (Basel). 2021 Dec 11;11(12):1385. doi:10.3390/life11121385.; Furst DE, Emery P. Rheumatoid arthritis pathophysiology: update on emerging cytokine and cytokine-associated cell targets. Rheumatology (Oxford). 2014 Sep;53(9):1560-9. doi:10.1093/rheumatology/ket414. Epub 2014 Jan 8.; Tchetina EV, Poole AR, Zaitseva EM, et al. Differences in mammalian target of rapamycin gene expression in the peripheral blood and articular cartilages of osteoarthritic patients and disease activity. Arthritis. 2013; 2013:461486. doi:10.1155/2013/461486. Epub 2013 Jun 25.; Scherer HU, Dorner T, Burmester GR. Patient-tailored therapy in rheumatoid arthritis: an editorial review. Curr Opin Rheumatol. 2010 May;22(3):237-45. doi:10.1097/BOR.0b013e328337b832.; Verweij CL. Transcript profiling towards personalised medicine in rheumatoid arthritis. Neth J Med. 2009 Dec;67(11):364-71.; Kothari P, Pestana R, Mesraoua R, et al. IL-6-mediated induction of matrix metalloproteinase-9 is modulated by JAK-dependent IL-10 expression in macrophages. J Immunol. 2014 Jan 1;192(1):349-57. doi:10.4049/jimmunol.1301906. Epub 2013 Nov 27.; Ghoreschi K, Jessson MI, Li X, et al. Modulation of innate and adaptive immune response by tofacitinib (CP-690,550). J Immunol. 2011 Apr 1;186(7):4234-43. doi:10.4049/jimmunol.1003668. Epub 2011 Mar 7.; Isailovic N, Ceribelli A, Cincinelli G, et al. Lymphocyte modulation by tofacitinib in patients with rheumatoid arthritis. Clin Exp Immunol. 2021 Aug;205(2):142-9. doi:10.1111/cei.13609. Epub 2021 May 28.; Meyer DM, Jesson MI, Li X, et al. Antiinflammatory activity and neutrophil reductions mediated by the JAK1/JAK3 inhibitor, CP-690,550, in rat adjuvant-induced arthritis. J Inflamm (Lond). 2010 Aug 11;7:41. doi:10.1186/1476-9255-7-41.; Yarilina A, Xu K, Chan C, Ivashkiv LB. Regulation of inflammatory responses in tumor necrosis factor-activated and rheumatoid arthritis synovial macrophages by JAK inhibitors. Arthritis Rheum. 2012 Dec;64(12): 3856-66. doi:10.1002/art.37691.
-
5Academic Journal
Authors: I. A. Orlovskaya, L. B. Toporkova, M. A. Knyazheva, I. V. Savkin, E. V. Serenko, E. V. Goiman, Yu. A. Shevchenko, E. V. Markova, И. А. Орловская, Л. Б. Топоркова, М. А. Княжева, И. В. Савкин, Е. В. Серенко, Е. В. Гойман, Ю. А. Шевченко, Е. В. Маркова
Source: Medical Immunology (Russia); Том 24, № 5 (2022); 1057-1064 ; Медицинская иммунология; Том 24, № 5 (2022); 1057-1064 ; 2313-741X ; 1563-0625
Subject Terms: клетки периферической крови, mice, M2 macrophages, hematopoiesis, bone marrow, peripheral blood cells, мыши, М2-макрофаги, гемопоэз, костный мозг
File Description: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/2516/1588; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2516/9487; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2516/9488; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2516/9489; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2516/9490; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2516/9491; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2516/9492; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2516/9493; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2516/9494; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2516/9495; Маркова Е.В. Иммунокомпетентные клетки и регуляция поведенческих реакций в норме и патологии. Красноярск: Научно-инновационный центр, 2021. 184 с.; Маркова Е.В., Шевела Е.Я., Княжева М.А., Савкин И.В., Серенко Е.В., Ращупкин И.М., Амстиславская Т.Г., Останин А.А., Черных Е.Р. Влияние растворимых факторов макрофагов М2-фенотипа на поведенческий паттерн и продукцию цитокинов в головном мозге депрессивноподобных мышей // Бюллетень экспериментальной биологии и медицины, 2021. Т. 172, № 9. С. 334-338.; Derecki N.C., Quinnies K.M., Kipnis J. Alternatively activated myeloid (M2) cells enhance cognitive function in immune compromised mice. Brain. Behav. Immun., 2011, Vol. 25, no. 3, pp. 379-385.; Idova G.V., Markova E.V., Gevorgyan M.M., Alperina E.L., Zhanaeva S.Y., Cytokine production by splenic cells in C57Bl/6J mice with depression-like behaviour depends on the duration of social stress. Bull. Exp. Biol. Med., 2018, Vol. 164, no. 5, pp. 645-649.; Kudryavtseva N.N., Smagin D.A., Kovalenko I.L., Vishnivetskaya G.B. Repeated positive fighting experience in male inbred mice. Nat. Protoc., 2014, Vol. 9, no. 11, pp. 2705-2717.; Markova E., Shevela K., Knyazheva M., Savkin I., Amstislavskaya T., Ostanin А., Chernykh E. Human type 2 macrophages biologically active soluble products in the editing of stress-induced depressive-like behavior. Eur. Psych., 2021, Vol. 64, no. S 1, 764. doi:10.1192/j.eurpsy.2021.2023.; Markova E.V., Knyazheva M.A. Immune cells as a potential therapeutic agent in the treatment of depression. Medical Immunology (Russia), 2021, Vol. 23, no. 4, pp. 699-704. doi:10.15789/1563-0625-ica-2277.; McKim D.B., Yin W., Wang Y., Cole S.W., Godbout J.P., Sheridan J.F. Social stress mobilizes hematopoietic stem cells to establish persistent splenic myelopoiesis. Cell Rep., 2018, Vol. 25, no. 9, pp. 2552-2562. doi:10.1016/j.celrep.2018.10.102; Orlovskaya I.A., Toporkova L.B., Lvova M.N., Sorokina I.V., Katokhin A.V., Vishnivetskaya G.B., Goiman E.V., Kashina E.V., Tolstikova T.G., Mordvinov V.A., Avgustinovich D.F. Social defeat stress exacerbates the blood abnormalities in Opisthorchis felineus-infected mice. Exp. Parasitol., 2018, Vol. 193, pp. 33-44.; Quinn M.E., Stanton C.H., Slavich G.M., Joormann J. Executive control, cytokine reactivity to social stress, and depressive symptoms: testing the social signal transduction theory of depression. Stress, 2020, Vol. 23, no. 1, pp. 60-68.; Reader B.F., Jarrett B.L., McKim D.B., Wohleb E.S., Godbout J.P., Sheridan J.F. Peripheral and central effects of repeated social defeat stress: monocyte trafficking, microglial activation, and anxiety. Neuroscience, 2015, Vol. 289, pp. 429-442.; Sakhno L.V., Shevela E.Y., Tikhonova M.A., Ostanin A.A., Chernykh E.R. The phenotypic and functional features of human M2 macrophages generated under low serum conditions. Scand. J. Immunol., 2016, Vol. 83, no. 2, pp. 151-159.; Torres-Platas S.G., Cruceanu C., Chen G.G., Turecki G., Mechawar N. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav. Immun., 2014, Vol. 42, pp. 50-59.; Winkler I.G., Sims N.A., Pettit A.R., Barbier V., Nowlan B., Helwani F., Poulton I.J., van Rooijen N., Alexander K.A., Raggatt L.J., Lévesque J.P. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood, 2010, Vol. 116, no. 23, pp. 4815-4828.; Wohleb E.S., McKim D.B., Sheridan J.F., Godbout J.P. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior. Front. Neurosci., 2015, Vol. 8, 447. doi:10.3389/fnins.2014.00447.; https://www.mimmun.ru/mimmun/article/view/2516
-
6Academic Journal
Authors: K. V. Zornikova, A. N. Gornostaeva, E. R. Andreeva, К. В. Зорникова, А. Н. Горностаева, Е. Р. Андреева
Source: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 73, № 1 (2018); 16-21 ; Вестник Московского университета. Серия 16. Биология; Том 73, № 1 (2018); 16-21 ; 0137-0952
Subject Terms: межклеточные контакты, peripheral blood mononuclear cells, hypoxia, immunosuppression, proliferative activity, intercellular interactions, мононуклеарные клетки периферической крови, гипоксия, иммуносупрессия, пролиферативная активность
File Description: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/521/415; Murphy M.B., Moncivais K., Caplan A.I. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine // Exp. Mol. Med. 2013. Vol. 45. e54.; Murray I.R., West C.C., Hardy W.R., James A.W., Park T.S., Nguyen A., Tawonsawatruk T., Lazzari L., Soo C., P ault B. Natural history of mesenchymal stem cells, from vessel walls to culture vessels // Cell. Mol. Life Sci. 2014. Vol. 71. N 8. P. 1353–1374.; Jones B.J., McTaggart S.J. Immunosuppression by mesenchymal stromal cells: from culture to clinic // Exp. Hematol. 2008. Vol. 36. N 6. P. 733–741.; Benvenuto F., Ferrari S., Gerdoni E., Gualandi F., Frassoni F., Pistoia V., Mancardi G., Uccelli A. Human mesenchymal stem cells promote survival of T cells in a quiescent state // Stem Cells. 2007. Vol. 25. N 7. P. 1753–1760.; Di Nicola M., Carlo-Stella C., Magni M., Milanesi M., Longoni P.D., Matteucci P., Grisanti S., Gianni A.M. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli // Blood. 2002. Vol. 99. N 10. P. 3838–3843.; Kronsteiner B., Wolbank S., Peterbauer A., Hackl C., Redl H., van Griensven M., Gabriel C. Human mesenchymal stem cells from adipose tissue and amnion influence T-cells depending on stimulation method and presence of other immune cells // Stem Cells Dev. 2011. Vol. 20. N 12. Р. 2115–2126.; Engela A.U., Baan C.C., Dor F.J., Weimar W., Hoogduijn M.J. On the interactions between mesenchymal stem cells and regulatory T cells for immunomodulation in transplantation // Front. Immunol. 2012. Vol. 3. 126.; Gornostaeva A.N., Andreeva E.R., Buravkova L.B. Human MMSC immunosuppressive activity at low oxygen tension: direct cell-to-cell contacts and paracrine regulation // Human Physiology. 2013. Vol. 39. N 2. P. 136–146.; Corcione A., Benvenuto F., Ferreti E., Giunti D., Cappiello V., Cazzanti F., Risso M., Gualandi F., Mancardi G.L., Pistoia V., Uccelli A. Human mesenchymal stem cells modulate B-cell functions // Blood. 2006. Vol. 107. N 1. P. 367–372.; Krampera M., Cosmi L., Angeli R., Pasini A., Liotta F., Andreini A., Santarlasci V., Mazzinghi B., Pizzolo G., Vinante F., Romagnani P., Maggi E., Romagnani S., Annunziato F. Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells // Stem Cells. 2006. Vol. 24. N 2. P. 386–398.; Kim J., Hematti P. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages // Exp. Hematol. 2009. Vol. 37. N 12. P. 1445–1453.; Melief S.M., Geutskens S.B., Fibbe W.E., Roelofs H. Multipotent stromal cells skew monocytes towards an antiinflammatory interleukin-10-producing phenotype by production of interleukin-6 // Haematologica. 2013. Vol. 98. N 6. P. 888–895.; Ivanovic Z. Hypoxia or in situ normoxia: The stem cell paradigm // J. Cell Physiol. 2009. Vol. 219. N 2. P. 271–275.; Buravkova L.B., Grinakovskaya O.S., Andreeva E.R., Zhambalova A.P., Kozionova M.P. Characteristics of human lipoaspirate-isolated mesenchymal stromal cells cultivated under lower oxygen tension // Cell Tiss. Biol. 2009. Vol. 3. N 1. P. 23–28.; Fotia C., Massa A., Boriani F., Baldini N., Granchi D. Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells // Cytotechnology. 2015. Vol. 67. N 6. P. 1073–1084.; Zuk P.A., Zhu M., Ashjian P., De Ugarte D.A., Huang J.I., Mizuno H., Alfonso Z.C., Fraser J.K., Benhaim P., Hedrick M.H. Human adipose tissue is a source of multipotent stem cells // Mol. Biol. Cell. 2002. Vol. 13. N 12. P. 4279–4295.; Parish C.R. Fluorescent dyes for lymphocyte migration and proliferation studies // Immunol. Cell Biol. 1999. Vol. 77. N 6. P. 499–508.; Glennie S., Soeiro I., Dyson P.J., Lam E.W., Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells // Blood. 2005. Vol. 105. N 7. P. 2821–2827.; Gornostaeva A., Andreeva E., Buravkova L. Factors governing the immunosuppressive effects of multipotent mesenchymal stromal cells in vitro // Cytotechnology. 2016. Vol. 68. N 4. P. 565–577.; Ren G., Zhao X., Zhang L., Zhang J., L’Huillier A., Ling W., Roberts A.I., Le A.D., Shi S., Shao C., Shi Y. Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression // J. Immunol. 2010. Vol. 184. N 5. P. 2321–2328.; Hofmeyer K.A., Ray A., Zang X. The contrasting role of B7-H3 // Proc. Nat. Acad. Sci. U.S.A. 2008. Vol. 105. N 30. P. 10277–10278.; Espagnolle N., Balguerie A., Arnaud E., Sensebé L., Varin A. CD54-mediated interaction with pro-inflammatory macrophages increases the immunosuppressive function of human mesenchymal stromal cells // Stem Cell Reports. 2017. Vol. 8. N 4. P. 961–976; Andreeva E.R., Lobanova M.V., Udartseva O.O., Buravkova L.B. Response of adipose tissue-derived stromal cells in tissue-related О2 microenvironment to short-term hypoxic stress // Cells Tissues Organs. 2015. Vol. 200. N 5. P. 307–315.
Availability: https://vestnik-bio-msu.elpub.ru/jour/article/view/521
-
7Academic Journal
Authors: V. S. Evstratova, N. A. Riger, D. B. Nikityuk, R. A. Khanferyan, В. С. Евстратова, Н. А. Ригер, Д. Б. Никитюк, Р. А. Ханферьян
Source: Medical Immunology (Russia); Том 18, № 5 (2016); 437-442 ; Медицинская иммунология; Том 18, № 5 (2016); 437-442 ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-2016-5
Subject Terms: мононуклеарные клетки периферической крови, cytokines, histamine receptors, immunity, dendritic cells, peripheral blood mononuclear cells, цитокины, гистаминовые рецепторы, иммунитет, дендритные клетки
File Description: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/1067/878; Ханферьян Р.А., Мильченко Н.О., Солнцева Т.Н., Габуева Ж.В., Раджабкадиев Р.М. Роль гистаминергической системы в регуляции питания // Вопросы питания, 2013. Т. 82, № 3. С. 4-10. [Khanferyan R.A., Milchenko N.O., Solntseva T.N., Gabueva Zh.V., Radzhabkadiev P.M. Role of histaminergic system in the regulation of nutrition. Voprosy pitaniya = Problems of Nutrition, 2013, Vol. 82, no. 3, pp. 4-10. (In Russ.)]; Akdis C.A., Blaser K. Mechanisms of specific immunotherapy: current knowledge. Arb Paul Ehrlich Inst Bundesamt Sera Impfstoffe Frankf A M, 2003, Vol. 94, pp. 219-227, discussion 227-228.; Akdis C.A., Simons F.E. Histamine receptors are hot in immunopharmacology. Eur. J. Pharmacol., 2006, Vol. 533, pp. 69-76.; Akdis C.A. Immune Regulation by Histamine H4 Receptors in Skin. Journal of Investigative Dermatology, 2008, Vol. 128, pp. 1615-1616.; Byron J.W. Mechanism for histamine H2-receptor induced cell-cycle changes in the bone marrow stem cell. Agents Actions, 1977, Vol. 7, no. 2, pp. 209-213.; Caron G., Delneste Y., Roelandts E., Duez C., Herbault N., Magistrelli G., Bonnefoy J.Y., Pestel J., Jeannin P. Histamine induces CD86 expression and chemokine production by human immature dendritic cells. J. Immunol., 2001, Vol. 166, no. 10, pp. 6000-6006.; Caron G., Delneste Y., Roelandts E., Duez C., Bonnefoy J.Y., Pestel J., Jeannin P. Histamine polarizes human dendritic cells into Th2 cell-promoting effector dendritic cells. J. Immunol., 2001, Vol. 167, no. 7, pp. 3682-3686.; Gbahou F., Vincent L., Humbert-Claude M., Tardivel-Lacombe J., Chabret C., Arrang J.M. Compared pharmacology of human histamine H3 and H4 receptors: structure-activity relationships of histamine derivatives. Br. J. Pharmacol., 2006, Vol. 147, no. 7, pp. 744-754.; Gutzmer R., Langer K., Lisewski M., Mommert S., Rieckborn D., Kapp A., Werfel T. Expression and function of histamine receptors 1 and 2 on human monocyte-derived dendritic cells. J. Allergy Clin. Immunol., 2002, Vol. 109, no. 3, pp. 524-531.; Huang J.F., Thurmond R.L. The new biology of histamine receptors. Curr. Allergy Asthma Rep., 2008, Vol. 8, no. 1, pp. 21-27.; Idzko M., la Sala A., Ferrari D., Panther E., Herouy Y., Dichmann S., Mockenhaupt M., Di Virgilio F., Girolomoni G., Norgauer J. Expression and function of histamine receptors in human monocyte-derived dendritic cells. J. Allergy Clin. Immunol., 2002, Vol. 109, no. 5, pp. 839-846.; Jutel M., Watanabe T., Akdis M., Blaser K., Akdis C.A. Immune regulation by histamine. Curr. Opin. Immunol., 2002, Vol. 14, no. 6, pp. 735-740.; Mazzoni A., Young H.A., Spitzer J.H., Visintin A., Segal D.M. Histamine regulates cytokine production in maturing dendritic cells, resulting in altered T cell polarization. J. Clin. Invest., 2001, Vol. 108, no. 12, pp. 1865-1873.; Merad M., Manz M.G. Dendritic cell homeostasis. Blood, 2009, Vol. 113, no. 15, pp. 3418-3427.; Merad M., Sathe P., Helft J., Miller J., Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev. Immunol., 2013, Vol. 31, pp. 563-604.; Parmentier R., Anaclet C., Guhennec C., Brousseau E., Bricout D., Giboulot T., Bozyczko-Coyne D., Spiegel K., Ohtsu H., Williams M., Lin J.S. . The brain H3-receptor as a novel therapeutic target for vigilance and sleep-wake disorders. Biochem. Pharmacol. (April 2007), Vol. 73, no. 8, pp. 1157-1171.; Satish L. Deshmane, Sergey Kremlev, Shohreh Amini, and Bassel E. Monocyte Chemoattractant Protein-1 (MCP-1): An Overview. J. Interferon Cytokine Res., 2009, Vol. 29, no. 6, pp. 313-326.; Schneider E., Bertron A.F., Dy M. Modulation of hematopoiesis through histamine receptor signaling. Front Biosci (Schol Ed), 2011, Vol. 3, pp. 467-473.; Sasano M., Goto M., Nishioka K. Production of prostaglandin E2 induced by histamine by cloned rheumatoid synovial cells. Ann Rheum Dis., 1990, Vol. 49, no. 7, pp. 504-506.; Seifert R., Schneider E.H., Dove S., Brunskole I., Neumann D., Strasser A., Buschauer A. Paradoxical stimulatory effects of the “standard” histamine H4-receptor antagonist JNJ7777120: the H4 receptor joins the club of 7 transmembrane domain receptors exhibiting functional selectivity. Mol. Pharmacol., 2011, Vol. 79, no. 4, pp. 631-638.; Szeberényi J.B., Pállinger E., Zsinkó M., Pós Z., Rothe G., Orsó E., Szeberényi S., Schmitz G., Falus A., László V. Inhibition of effects of endogenously synthesized histamine disturbs in vitro human dendriticcell differentiation. Immunol. Lett., 2001, Vol. 76, no. 3, pp. 175-182.; Thurmond R.L., Gelfand E.W., Dunford P.J. The role of histamine H1 and H4 receptors in allergic inflammation: the search for new antihistamines. Nat. Rev. Drug Discov., 2008, Vol. 7, pp. 41-53.; Zhang M., Venable J.D., Thurmond R.L. The histamine H4 receptor in autoimmune disease. Expert Opin. Investig. Drugs, 2006, Vol. 15, no. 11, pp. 1443-1452.; https://www.mimmun.ru/mimmun/article/view/1067
-
8Academic Journal
Authors: ЕВСТРАТОВА В.С., РИГЕР Н.А., НИКИТЮК Д.Б., ХАНФЕРЬЯН Р.А.
File Description: text/html
-
9Academic Journal
Authors: T. V. Vishnevskaya, O. V. Massalova, S. V. Alkhovsky, A. V. Pichyugin, T. V. Shkurko, E. P. Kelly, R. I. Ataullakhanov, N. P. Blokhina, A. A. Kushch, Т. В. Вишневская, О. В. Масалова, С. В. Альховский, А. В. Пичугин, Т. В. Шкурко, Е. И. Келли, Р. И. Атауллаханов, Н. П. Блохина, А. А. Кущ
Contributors: Роснаука, проект № 02.512.11.2179
Source: Medical Immunology (Russia); Том 10, № 4-5 (2008); 397-404 ; Медицинская иммунология; Том 10, № 4-5 (2008); 397-404 ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-2008-4-5
Subject Terms: моноклональные антитела, chronic hepatitis C, peripheral blood mononuclear cell, monoclonal antibodies, РНК ВГС, мононуклеарные клетки периферической крови
File Description: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/198/200; Масалова О.В., Абдулмеджидова А.Г., Атанадзе С.Н., Уланова Т.И., Бурков А.Н., Худяков Ю.Е., Fields H., Кущ А.А. Характеристика панели моноклональных антител и эпитопное картирование белков вируса гепатита С // Доклады Академии Наук. – 2002. – Т. 383 (4). – С. 545-550.; Масалова О.В., Абдулмеджидова А.Г., Шкурко Т.В., Келли Е.И., Атанадзе С.Н., Завалишина Л.Э., Франк Г.А., Кузина О.В., Львов Д.К., Кущ А.А. Анализ белков вируса гепатита С в клетках печени больных хроническим гепатитом С // Вопр. вирусологии. – 2003. – Т. 48, № 1. – С. 9-14.; Масалова О.В., Кущ А.А. Моноклональные антитела к белкам вируса гепатита С – инструмент для картирования антигенных детерминант, диагностики гепатита С и изучения вирусного патогенеза // Рос. биотерапевтический журн. – 2003. – № 3. – С. 7-23.; Лакина Е.И., Самохвалов Е.И., Левченко О.Г., Масалова О.В., Климова Е.А., Знойко О.О., Ющук Н.Д., Львов Д.К., Кущ А.А. Выявление положительных (геномных) и отрицательных (репликативных) цепей РНК вируса гепатита С в сыворотке крови, лимфоцитах и ткани печени больных хроническим гепатитом С с помощью полимеразной цепной реакции // Вопр. вирусологии. – 2000. – Т. 45, № 4. – С. 37-42.; Речкина Е.А., Денисова Г.Ф., Масалова О.В., Лидеман Л.Ф., Денисов Д.А., Леснова Е.И., Атауллаханов Р.И., Гурьянова С.В., Кущ А.А. Картирование антигенных детерминант белков вируса гепатита С при помощи технологии фагового дисплея // Молекуляр. биология. – 2006. – Т. 40, № 2. – С. 357-368.; Agnello V., Abel G., Elfahal M., Knight G.B., Zhang Q.X. Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor // Proc. Natl. Acad. Sci. USA – 1999. – Vol. 96. – P. 12766-12771.; Appel N., Schaller T., Penin F., Bartenschlager R. From structure to function: new insights into hepatitis C virus RNA replication // J. Biol. Chem. – 2006. – Vol. 281. – P. 9833-9836.; Baré P., Massud I., Parodi C., Belmonte L., García G., Nebel M.C., Corti M., Pinto M.T., Bianco R.P., Bracco M.M., Campos R., Ares B.R. Continuous release of of hepatitis C virus (HCV) by peripheral blood mononuclear cells and B-lymphoblastoid cell-line cultures derived from HCV-infected patients // J. Gen. Virol. – 2005. – Vol. 86. – P. 1717-1727.; Cavalheiro N. de P., Filgueiras T.C., Melo C.E., Morimitsu S.R., Araújo E.S., Tengan F.M., Barone A.A. Detection of HCV by PCR in serum and PBMC of patients with hepatitis C after treatment // Braz. J. Infect. Dis. – 2007. – Vol. 11. – P. 471-474.; Crovatto M., Pozzato G., Zorat F., Pussini E., Nascimben F., Baracetti S., Grando M.G., Mazzaro C., Reitano M., Modolo M.L., Martelli P., Spada A., Santini G. Peripheral blood neutrophils from hepatitis C virus-infected patients are replication sites of the virus // Haematologica. – 2000. – Vol. 85, N 4. – P. 356-361.; El-Awady M.K., Tabll A.A., Redwan el-R.M., Youssef S., Omran M.H., Thakeb F., el-Demellawy M. Flow cytometric detection of hepatitis C virus antigens in infected peripheral blood leukocytes: binding and entry // World J. Gastroenterol. – 2005. – Vol. 11. – P. 5203-5208.; Gong G.Z., Lai L.Y., Jiang Y.F., He Y., Su X.S. HCV replication in PBMC and its influence on interferon therapy // World J. Gastroenterol. – 2003. – Vol. 9. – P. 291-294.; Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. The French METAVIR Cooperative Study Group // Hepatology. – 1994. – Vol. 20. – P. 15-20.; Lanford R.E., Chavez D., Chisari F.V., Sureau C. Lack of detection of negative-strand hepatitis C virus RNA in peripheral blood mononuclear cells and other extrahepatic tissues by the highly strand-specific rTth reverse transcriptase PCR // J. Virol. – 1995. – Vol. 69. – P. 8079-8083.; Meier V., Mihm S., Braun Wietzke P., Ramadori G. HCV-RNA positivity in peripheral blood mononuclear cells of patients with chronic HCV infection: does it really mean viral replication? // World J. Gastroenterol. – 2001. – Vol. 7. – P. 228-234.; Navas S., Castillo I., Bartolome J., Marriott E., Herrero M., Carreno V. Positive and negative hepatitis C virus RNA strands in serum, liver and peripheral blood mononuclear cells in anti-HCV patients: relation with the liver lesion // Hepatology. – 1994. – Vol. 21. – P. 182-186.; Ohno O., Mizokami M., Wu R.R., Saleh M.G., Ohba K., Orito E., Mukaide M., Williams R., Lau J.Y. New hepatitis C virus (HCV) genotyping system that allows for identification of HCV genotypes 1a, 1b, 2a, 2b, 3a, 3b, 4, 5a, and 6a // J. Clin. Microbiol. – 1997. – Vol. 35, N 1. – P. 201-207.; Okamoto H., Okada S., Sugiyama Y., Tanaka T., Sugai Y., Akahane Y., Machida A., Mishiro S., Yoshizawa H., Miyakawa Y. Detection of hepatitis C virus RNA by a two-stage polymerase chain reaction with two pairs of primers deduced from the 5'-noncoding region // Jpn. J. Exp. Med. – 1990. – Vol. 60. – P. 215-222.; Pugnale P., Latorre P., Rossi C., Crovatto K., Pazienza V., Gottardi A.D., Negro F. Real-time multiplex PCR assay to quantify hepatitis C virus RNA in peripheral blood mononuclear cells // J. Virol. Methods. – 2006. – Vol. 133. – P. 195-204.; Sansonno D., Iacobelli A.R., Cornacchiulo V., Iodice G., Dammacco F. Detection of hepatitis C virus (HCV) proteins by immunofluorescence and HCV RNA genomic sequences by non-isotopic in situ hybridization in bone marrow and peripheral blood mononuclear cells of chronically HCV-infected patients // Clin. Exp. Immunol. – 1996. – Vol. 103. – P. 414-421.; Taya N., Torimoto Y., Shindo M., Hirai K., Hasebe C., Kohgo Y. Fas-mediated apoptosis of peripheral blood mononuclear cells in patients with hepatitis C // Br. J. Haematol. – 2000. – Vol. 110. – P. 89-97.; Tian D., Yang D., Wang W., Xia Q., Shi S., Song P., Theilmann L. Extrahepatic and intrahepatic replication and expression of hepatitis C virus // J. Tongji Med. Univ. – 1998. – Vol. 18. – P. 149-152.; Willems M., Peerlinck K., Moshage H., Deleu I., Van den Eynde C., Vermylen J., Yap S.H. Hepatitis C virus-RNAs in plasma and in peripheral blood mononuclear cells of hemophiliacs with chronic hepatitis C: evidence for viral replication in peripheral blood mononuclear cells // J. Med. Virol. – 1994. – Vol. 42. – P. 272-278.; https://www.mimmun.ru/mimmun/article/view/198
-
10Academic Journal
Authors: Руденко, Ксения, Тугуз, А., Анохина, Е., Муженя, Д.
Subject Terms: ПРОВОСПАЛИТЕЛЬНЫЕ ЦИТОКИНЫ, SNP-ГЕНОВ, IL-17A (G197/197A), TNFα (G308/308A), IL-6 (C174/174G), БРОНХИАЛЬНАЯ АСТМА, МОНОНУКЛЕАРНЫЕ КЛЕТКИ ПЕРИФЕРИЧЕСКОЙ КРОВИ, MONONUCLEAR CELLS OF PERIPHERAL BLOOD (MNCS), ПРОДУКЦИЯ СПОНТАННАЯ И СТИМУЛИРОВАННАЯ IN VITRO ФГА, TNF-ALPHA (G308/308A), IL-6 (C/174G)
File Description: text/html
-
11Academic Journal
Source: Медицинская иммунология.
File Description: text/html
-
12Academic Journal
Authors: Плотников, М., Максимов, А., Мавликеев, М., Газизов, И., Тамакова, В., Черепнев, Г., Шамсутдинова, И., Гумерова, А., Киясов, А.
Subject Terms: ЗАБОЛЕВАНИЯ ПЕРИФЕРИЧЕСКИХ АРТЕРИЙ, ГЕМОПОЭТИЧЕСКИЕ СТВОЛОВЫЕ КЛЕТКИ ПЕРИФЕРИЧЕСКОЙ КРОВИ, ГРАНУЛОЦИТАРНЫЙ КОЛОНИЕСТИМУЛИРУЮЩИЙ ФАКТОР, МЫШЕЧНЫЕ БИОПСИИ, ИММУНОГИСТОХИМИЯ
File Description: text/html
-
13Academic Journal
Subject Terms: ОЗОНОТЕРАПИЯ, МОНОНУКЛЕАРНЫЕ КЛЕТКИ ПЕРИФЕРИЧЕСКОЙ КРОВИ, РАСТВОРИМЫЕ ДИФФЕРЕНЦИРОВОЧНЫЕ АНТИГЕНЫ, МИОМА МАТКИ
File Description: text/html
-
14Academic Journal
Authors: Анфиногенова, О., Трунова, А.
Subject Terms: КРИТИЧЕСКИЕ ПЕРИОДЫ ОНТОГЕНЕЗА, ПОСТНАТАЛЬНОЕ РАЗВИТИЕ, КЛЕТКИ ПЕРИФЕРИЧЕСКОЙ КРОВИ, МОРФОМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ
File Description: text/html
-
15Academic Journal
Authors: Руденко, Ксения, Нихай, Мира, Тугуз, Аминат, Анохина, Елена, Муженя, Дмитрий
File Description: text/html
-
16Academic Journal
Authors: Плотников, М., Киясов, А., Маянская, С., Мавликеев, М., Газизов, И., Гумерова, А., Тамакова, В., Черепнев, Г., Шамсутдинова, И.
Subject Terms: ЗАБОЛЕВАНИЯ ПЕРИФЕРИЧЕСКИХ АРТЕРИЙ, АНГИОГЕНЕЗ, НЕОМИОГЕНЕЗ, ГЕМОПОЭТИЧЕСКИЕ СТВОЛОВЫЕ КЛЕТКИ ПЕРИФЕРИЧЕСКОЙ КРОВИ, СD34+, ГРАНУЛОЦИТАРНЫЙ КОЛОНИЕСТИМУЛИРУЮЩИЙ ФАКТОР, ИММУНОГИСТОХИМИЯ, CD34+
File Description: text/html
-
17Academic Journal
-
18Academic Journal
Authors: Мавликеев, М., Андреева, Д., Газизов, И., Гумерова, А., Йылмаз, Т., Калигин, М., Кундакчян, Г., Максимов, А., Певнев, Г., Плотников, М., Табанакова, А., Трондин, А., Киясов, А.
Subject Terms: ХРОНИЧЕСКАЯ ИШЕМИЯ НИЖНИХ КОНЕЧНОСТЕЙ, НЕОМИОГЕНЕЗ, МИОГЕНИН, СТВОЛОВЫЕ КЛЕТКИ ПЕРИФЕРИЧЕСКОЙ КРОВИ, МЫШЕЧНЫЕ БИОПСИИ, ИММУНОГИСТОХИМИЯ
File Description: text/html
-
19Academic Journal
Authors: Дудаева, Н., Гречушников, В., Бугаева, И., Тарасова, Г., Головачева, Т.
Subject Terms: мононуклеарные клетки периферической крови, патология жкт
File Description: text/html
-
20Academic Journal
Subject Terms: ЛИМФОКИН-АКТИВИРОВАННЫЕ КИЛЛЕРЫ, МОНОНУКЛЕАРНЫЕ КЛЕТКИ ПЕРИФЕРИЧЕСКОЙ КРОВИ, КЛЕТКИ ОПУХОЛЕВЫХ ЛИНИЙ, ЦИТОТОКСИЧЕСКАЯ АКТИВНОСТЬ
File Description: text/html