Εμφανίζονται 1 - 20 Αποτελέσματα από 501 για την αναζήτηση '"КЛАССИЧЕСКОЕ"', χρόνος αναζήτησης: 0,79δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
    Conference

    Συγγραφείς: Койков, С. А.

    Περιγραφή αρχείου: application/pdf

    Relation: Валеологические проблемы здоровьеформирования подростков, молодежи, населения : сборник материалов 13-й Международной научно-практической конференции молодых ученых и студентов. — Екатеринбург, 2017

    Διαθεσιμότητα: https://elar.uspu.ru/handle/ru-uspu/46900

  6. 6
    Academic Journal

    Συνεισφορές: The authors’ research is supported by the Moscow Center of Fundamental and Applied Mathematics of Lomonosov Moscow State University under agreement No. 075-15-2025-345 and by the National Aca- demy of Sciences of Belarus in the framework of imple- menting the scientific research program “Solutions of prob- lems with non-smooth boundary conditions for hyperbolic equations” under agreement No. 2024-25-141., Исследования авторов поддержаны Московским центром фундаментальной и прикладной математики МГУ им. М. В. Ломоносова по соглашению № 075-15-2025-345 и Национальной академией наук Беларуси в рамках выполнения НИР «Решение задач с негладкими граничными условиями для гиперболических уравнений» по соглашению № 2024-25-141.

    Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 69, № 4 (2025); 271-278 ; Доклады Национальной академии наук Беларуси; Том 69, № 4 (2025); 271-278 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2025-69-4

    Περιγραφή αρχείου: application/pdf

  7. 7
    Academic Journal

    Συνεισφορές: The research was supported by the Moscow Center for Fundamental and Applied Mathematics of M. V. Lomonosov Moscow State University under agreement № 075-15-2025-345., Исследования поддержаны Московским центром фундаментальной и прикладной математики Московского государственного университета имени М. В. Ломоносова по соглашению № 075-15-2025-345.

    Πηγή: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; Том 61, № 3 (2025); 183-194 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; Том 61, № 3 (2025); 183-194 ; 2524-2415 ; 1561-2430 ; 10.29235/1561-2430-2025-61-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestifm.belnauka.by/jour/article/view/848/639; Kil’chevskii N. A. Theory of Collisions Between Solid Bodies. Kiev, Naukova Dumka, 1969. 246 p. (in Russian).; Boussinesq J. Du choc longitudinal d’une barre prismatique, fixée à un bout et heurtée à l’autre. Comptes Rendus, 1883, vol. 97, pp. 154–157 (in French).; Koshlyakov N. S., Smirnov M. M., Gliner E. B. Differential Equations of Mathematical Physics. Amsterdam, NorthHolland Publishing Co., 1964. 120 p.; Nikolai E. L. On the theory of longitudinal impact of elastic rods. Trudy Leningradskogo industrial’nogo instituta [Proceedings of the Leningrad Industrial Institute], 1939, no. 3, pp. 85–93 (in Russian).; Manzhosov V. K. Longitudinal Impact Models. Ulyanovsk, Ulyanovsk State Technical University, 2006. 160 p. (in Russian).; Bityurin A. A., Manzhosov V. K. Longitudinal Impact of a Non-Uniform Rod on a Rigid Barrier. Ulyanovsk, Ulyanovsk State Technical University, 2009. 164 p. (in Russian).; Slepukhin V. V. Modeling of Wave Processes under Longitudinal Impact in Rod Systems of Homogeneous Structure. Ulyanovsk, 2010. 20 p. (in Russian).; Zhilin P. A. Applied Mechanics: Theory of Thin Elastic Rods. Saint Petersburg, Polytechnic University Publishing House, 2007. 101 p. (in Russian).; Gaiduk S. I. Some problems related to the theory of longitudinal impact on a rod. Differential Equations, 1976, vol. 12, pp. 607–617.; Rasulov M. L. Methods of Contour Integration. Amsterdam, North-Holland Publishing Co., 1967. 439 p.; Korzyuk V. I., Rudzko J. V. A mathematical investigation of one problem of the longitudinal impact on an elastic rod with an elastic attachment at the end. Trudy Instituta matematiki NAN Belarusi = Proceedings of the Institute of Mathematics of the National Academy of Sciences of Belarus, 2023, vol. 31, no. 1, pp. 81–87 (in Russian).; Yufeng X., Dechao Z. Analytical solutions of impact problems of rod structures with springs. Computer Methods in Applied Mechanics and Engineering, 1998, vol. 160, no. 3–4, pp. 315–323. https://doi.org/10.1016/s0045-7825(97)00296-x; Hu B., Eberhard P. Symbolic computation of longitudinal impact waves. Computer Methods in Applied Mechanics and Engineering, 2001, vol. 190, no. 37–38, pp. 4805–4815. https://doi.org/10.1016/s0045-7825(00)00348-0; Etiwa R. M., Elabsy H. M., Elkaranshawy H. A. Dynamics of longitudinal impact in uniform and composite rods with effects of various support conditions. Alexandria Engineering Journal, 2023, vol. 65, pp. 1–22. https://doi.org/10.1016/j.aej.2022.09.050; Gomez B. J., Repetto C. E., Stia C. R., Welti R. Oscillations of a string with concentrated masses. European Journal of Physics, 2007, vol. 28, pp. 961–975. https://doi.org/10.1088/0143-0807/28/5/019; Tikhonov A. N., Samarskii A. A. Equations of Mathematical Physics. New York, Dover Publ., 2011. 800 p.; Naumavets S. N. Classical solution of the first mixed problem for the one-dimensional wave equation with a differential polynomial of the second order in the boundary conditions. Zbirnyk statei. Matematyka. Informatsiini tekhnologiї. Osvita, 2018, no. 5, pp. 96–101 (in Russian).; Kapustin N. Yu. On spectral problems arising in the theory of the parabolic-hyperbolic heat equation. Doklady Mathematics, 1996, vol. 54, pp. 607–610.; Kapustin N. Yu., Moiseev E. I. Spectral problems with the spectral parameter in the boundary condition. Differential Equations, 1997, vol. 33, no. 1, pp. 116–120.; Korzyuk V. I., Kozlovskaya I. S., Naumavets S. N. Classical Solution of the First Mixed Problem for the Wave Equation in a Curvilinear Half-Strip. Differential Equations, 2020, vol. 56, pp. 98–108. https://doi.org/10.1134/s0012266120010115; Korzyuk V. I., Stolyarchuk I. I. Classical solution of the first mixed problem for second-order hyperbolic equation in curvilinear half-strip with variable coefficients. Differential Equations, 2017, vol. 53, pp. 74–85. https://doi.org/10.1134/s0012266117010074; Korzyuk V. I., Rudzko J. V. Classical Solution of the First Mixed Problem for the Telegraph Equation with a Nonlinear Potential in a Curvilinear Quadrant. Differential Equations, 2023, vol. 59, pp. 1075–1089. https://doi.org/10.1134/s0012266123080062; Ammari K., Bchatnia A., El Mufti K. Stabilization of the wave equation with moving boundary. European Journal of Control, 2018, vol. 39, pp. 35–38. https://doi.org/10.1016/j.ejcon.2017.10.004; Liu L., Gao H. The stabilization of wave equations with moving boundary. Arxiv [Preprint], 2021. Available at: https:// doi.org/10.48550/arXiv.2103.13631; De Jesus I. P., Lapa E. C., Limaco J. Controllability for the wave equation with moving boundary. Electronic Journal of Differential Equations, 2021, vol. 2021, no. 60, pp. 1–12. https://doi.org/10.58997/ejde.2021.60; Korzyuk V. I. Equations of Mathematical Physics. Moscow, URSS Publ., 2021. 480 p. (in Russian).; Korzyuk V. I., Rudzko J. V., Kolyachko V. V. Classical solution of a mixed problem for the wave equation with discontinuous initial conditions in a curvilinear half-strip. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2025, vol. 69, no. 4, pp. 271–278. https://doi.org/10.29235/1561-8323-2025-694-271-278; Korzyuk V. I., Rudzko J. V., Kolyachko V. V. Solutions of problems with discontinuous conditions for the wave equation. Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika = Journal of the Belarusian State University. Mathematics and Informatics, 2023, vol. 3, pp. 6–18 (in Russian).; Zhuravkov M., Lyu Y., Starovoitov E. Mechanics of Solid Deformable Body. Singapore, Springer, 2023. 317 p. https://doi.org/10.1007/978-981-19-8410-5; https://vestifm.belnauka.by/jour/article/view/848

  8. 8
    Academic Journal

    Πηγή: Science, education, society: trends and prospects; ; Наука, образование, общество: тенденции и перспективы развития

    Περιγραφή αρχείου: text/html

    Relation: https://interactive-plus.ru/e-articles/953/Action953-586120.pdf; Baugh, A. C., Cable, T. A. (2013). History of the English Language. Routledge.; Crystal, D. (2005). The Stories of English. Penguin Books.; Denison, D. (2002). Syntax in Middle English. Language Sciences, 24(3), 315–334.; Lass, R. (2001). The Cambridge History of the English Language. Vol. I–VI. Cambridge: Cambridge University Press.; Milroy, J. (2010). Standardization and Modern English. International Journal of Applied Linguistics, 20(1), 25–43.; McWhorter, J. H. (2008). Our Magnificent Bastard Tongue: The Untold Story of English. Gotham Books.; Algeo, J. (2009). The Origins and Development of the English Language. Wadsworth Publishing Company.; Hogg, R. M. (2003). On Early Old English. Journal of Germanic Linguistics, 11(2), 121–147.

  9. 9
    Academic Journal

    Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 69, № 1 (2025); 7-12 ; Доклады Национальной академии наук Беларуси; Том 69, № 1 (2025); 7-12 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2025-69-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1230/1231; Nakhushev A. M. Loaded equations and their applications. Differential Equations, 1983, vol. 19, no. 1, pp. 74–81.; Sabitov K. B. Initial-boundary problem for parabolic-hyperbolic equation with loaded summands. Russian Mathematics, 2015, vol. 59, no. 6, pp. 23–33. https://doi.org/10.3103/s1066369x15060055; Sabitova Yu. K. Dirichlet problem for Lavrent’ev–Bitsadze equation with loaded summands. Russian Mathematics, 2018, vol. 62, no. 9, pp. 35–51. https://doi.org/10.3103/s1066369x18090050; Baranovskaya S. N., Yurchuk N. I. Cauchy problem for the Euler–Poisson–Darboux Equation with a Dirac potential concentrated at finitely many given points. Differential Equations, 2020, vol. 56, no. 1, pp. 93–97. https://doi.org/10.1134/s0012266120010103; Korzyuk V. I., Rudzko J. V. Classical solution of the first mixed problem for the telegraph equation with a nonlinear potential. Differential Equations, 2022, vol. 58, no. 2, pp. 175–186. https://doi.org/10.1134/s0012266122020045; Korzyuk V. I., Rudzko J. V. Classical solution of the initial-value problem for a one-dimensional quasilinear wave equation. Doklady National’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2023, vol. 67, no. 1, pp. 14–19. https://doi.org/10.29235/1561-8323-2023-67-1-14-19; Korzyuk V. I., Rudzko J. V. Classical and mild solution of the first mixed problem for the telegraph equation with a nonlinear potential. Bulletin of Irkutsk State University. Series Mathematics, 2023, vol. 43, pp. 48–63. https://doi.org/10.26516/1997-7670.2023.43.48; Moiseev E. I., Yurchuk N. I. Classical and generalized solutions of problems for the telegraph equation with a Dirac potential. Differential Equations, 2015, vol. 51, no. 10, pp. 1330–1337. https://doi.org/10.1134/s0012266115100080; Baranovskaya S. N., Novikov E. N., Yurchuk N. I. Directional derivative problem for the telegraph equation with a Dirac potential. Differential Equations, 2018, vol. 54, no. 9, pp. 1147–1155. https://doi.org/10.1134/s0012266118090033; Baranovskaya S. N., Yurchuk N. I. Cauchy problem and the second mixed problem for parabolic equations with the Dirac potential. Differential Equations, 2015, vol. 51, no. 6, pp. 819–821. https://doi.org/10.1134/s0012266115060130; Baranovskaya S. N., Yurchuk N. I. Cauchy problem and the second mixed problem for parabolic equations with a Dirac potential concentrated at finitely many given points. Differential Equations, 2019, vol. 55, no. 3, pp. 348–352. https://doi.org/10.1134/s001226611903008x; Attaev A. Kh. To the question of solvability of the Cauchy problem for one loaded hyperbolic equation of the second order. News of the Kabardino-Balkarian Scientific Center of the RAS, 2018, no. 6, pp. 5–9 (in Russian).; Attaev A. Kh. On some problems for loaded partial differential equation of the first order. Vestnik KRAUNC. FizikoMatematicheskie Nauki = Bulletin KRASEC, Physical and Mathematical Sciences, 2016, no. 4-1(16), pp. 9–14 (in Russian).; Khubiev K. U. Cauchy problem for one loaded wave equation. Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk = Adyghe International Scientific Journal, 2020, vol. 20, no. 4, pp. 9–14 (in Russian). https://doi.org/10.47928/1726-9946-2020-20-4-9-14; Korzyuk V. I. Equations of Mathematical Physics. Moscow, 2021. 480 p. (in Russian).; Courant R., Hilbert D. Methods of Mathematical Physics: Partial Differential Equations. Singapore, 1962.; Trenogin V. A. Global invertibility of nonlinear operators and the method of continuation with respect to a parameter. Doklady Mathematics, 1996, vol. 54, no. 2, pp. 730–732.; Qin Y. Integral and Discrete Inequalities and Their Applications. Volume I: Linear Inequalities. Cham, 2016. https://doi.org/10.1007/978-3-319-33301-4; Korzyuk V. I., Rudzko J. V. On the absence and non-uniqueness of classical solutions of mixed problems for the telegraph equation with a nonlinear potential. Available at: https://arxiv.org/abs/2303.17483 (accessed 18 February 2024).; https://doklady.belnauka.by/jour/article/view/1230

  10. 10
  11. 11
  12. 12
  13. 13
    Academic Journal

    Συνεισφορές: The article was financially supported by the Ministry of Science and Higher Education of the Russian Federation in the framework of implementing the program of the Moscow Center for Fundamental and Applied Mathematics by Agreement no. 075-15-2022-284., Статья опубликована при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках реализации программы Московского центра фундаментальной и прикладной математики по соглашению № 075-15-2022-284.

    Πηγή: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; Том 60, № 2 (2024); 95-105 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; Том 60, № 2 (2024); 95-105 ; 2524-2415 ; 1561-2430 ; 10.29235/1561-2430-2024-60-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestifm.belnauka.by/jour/article/view/777/598; Stronge W. J. Impact Mechanics. Cambridge, Cambridge University Press, 2000. 280 p. https://doi.org/10.1017/cbo9780511626432; Boussinesq J. Du choc longitudinal d’une barre élastique prismatique fixée à un bout et heurtée à l’autre. Comptes Rendus, 1883, vol. 97, no. 2, pp. 154–157 (in French).; Saint-Venant B. Mémoire sur le choc longitudinal de deux barres élastiques de grosseurs et de matières semblables ou différentes, et sur la proportion de leur force vive qui est perdue pour la translation ultérieure; Et généralement sur le mouvement longitudinal d’un système de deux ou plusieurs prismes élastiques. Journal de Mathématiques Pures et Appliquées, 1867, vol. 12, pp. 237–376 (in French).; Saint-Venant B., Flamant M. Courbes représentatives des lois du choc longitudinal et du choc transversal d’une barre prismatique. Journal de l’École Polytechnique, 1889, vol. LIX, pp. 97–123 (in French).; Gajduk S. I. A mathematical study of certain problems concerning longitudinal impact on a finite rod. Differential Equations, 1977, vol. 13, pp. 1399–1411. https://zbmath.org/0449.73029; Gaiduk S. I. A mathematical investigation of the problem of longitudinal impact on a relaxing rod. Differential Equations, 1976, vol. 12, pp. 472–483. https://zbmath.org/0382.73043; Gaiduk S. I. Some problems related to the theory of longitudinal impact on a rod. Differential Equations, 1976, vol. 12, pp. 607–617. https://zbmath.org/0382.73044; Bityurin A. A., Manzhosov V. K. Waves induced by the longitudinal impact of a rod against a stepped rod in contact with a rigid barrier. Journal of Applied Mathematics and Mechanics, 2009, vol. 73, no. 2, pp. 162–168. https://doi.org/10.1016/j.jappmathmech.2009.04.006; Bityurin A. A. Mathematical modeling of the amplitude of transverse vibrations of homogeneous rods under longitudinal impact. Mechanics of Solids, 2021, vol. 56, no. 2, pp. 220–229. https://doi.org/10.3103/s0025654421020047; Bityurin A. A. Modeling of the maximum deflection of a stepped rod having an initial curvature upon impact against a rigid barrier. Mechanics of Solids, 2019, vol. 54, no. 7, pp. 1098–1107. https://doi.org/10.3103/s0025654419070100; Belyaev A. K., Ma C.-C., Morozov N. F., Tovstik P. E., Tovstik T. P., Shurpatov A. O. Dynamics of a rod undergoing a longitudinal impact by a body. Vestnik St. Petersburg University, Mathematics, 2017, vol. 50, pp. 310–317. https://doi.org/10.3103/S1063454117030050; Morozov N. F., Belyaev A. K., Tovstik P. E., Tovstik T. P., Shurpatov A. O. Rod Vibrations Caused by Axial Impact. Doklady Physics, 2018, vol. 63, pp. 208–218. https://doi.org/10.3103/s1063454117030050; Belyaev A. K., Tovstik P. E., Tovstik T. P. Thin rod under longitudinal dynamic compression. Mechanics of Solids, 2017, vol. 52, pp. 364–377. https://doi.org/10.3103/s0025654417040021; Stepanov R., Romenskyi D., Tsarenko S. Dynamics of Longitudinal Impact in the Variable Cross-Section Rods. IOP Conference Series: Materials Science and Engineering, 2018, vol. 317, art. ID 012029. https://doi.org/10.1088/1757-899x/317/1/012029; Etiwa R. M., Elabsy H. M., Elkaranshawy H. A. Dynamics of longitudinal impact in uniform and composite rods with effects of various support conditions. Alexandria Engineering Journal, 2023, vol. 65, pp. 1–22. https://doi.org/10.1016/j.aej.2022.09.050; Hu B., Eberhard P. Symbolic computation of longitudinal impact waves. Computer Methods in Applied Mechanics and Engineering, 2001, vol. 190, no. 37–38, pp. 4805–4815. https://doi.org/10.1016/s0045-7825(00)00348-0; Bityurin A. A. Mathematical Modeling of Longitudinal Impact of Inhomogeneous Rod Systems on a Rigid Barrier with Unilateral Constraints. Ulyanovsk, 2007. 253 p. (in Russian).; Korzyuk V. I., Rudzko J. V., Kolyachko V. V. Solutions of problems with discontinuous conditions for the wave equation. Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika = Journal of the Belarusian State University. Mathematics and Informatics, 2023. vol. 3, pp. 6–18 (in Russian).; Korzyuk V. I., Rudzko J. V. Classical Solution of One Problem of a Perfectly Inelastic Impact on a Long Elastic SemiInfinite Bar with a Linear Elastic Element at the End. Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika = Journal of the Belarusian State University. Mathematics and Informatics, 2022, vol. 2, pp. 34–46 (in Russian). https://doi.org/10.33581/2520-6508-2022-2-34-46; Korzyuk V. I., Rudzko J. V. The classical solution of one problem of an absolutely inelastic impact on a long elastic semi-infinite bar. Vestsі Natsyyanalʼnai akademіі navuk Belarusі. Seryya fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2021, vol. 57, no. 4, pp. 417–427 (in Russian). https://doi.org/10.29235/1561-2430-2021-57-4-417-427; Korzyuk V. I., Rudzko J. V. The classical solution of the mixed problem for the one-dimensional wave equation with the nonsmooth second initial condition. Vestsі Natsyyanalʼnai akademіі navuk Belarusі. Seryya fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2021, vol. 57, no. 1, pp. 23–32 (in Russian). https://doi.org/10.29235/1561-2430-2021-57-1-23-32; Korzyuk V. I. Equations of Mathematical Physics. Moscow, URSS Publ., 2021. 480 p. (in Russian).; Yurchuk N. I., Novikov E. N. Necessary conditions for existence of classical solutions to the equation of semi-bounded string vibration. Vestsі Natsyyanalʼnai akademіі navuk Belarusі. Seryya fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2016, no. 4, pp. 116–120 (in Russian).; Korzyuk V. I., Rudzko J. V. Classical Solution of the Third Mixed Problem for the Telegraph Equation with a Nonlinear Potential. Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya XXXIV: Materialy mezhdunarodnoi Voronezhskoi vesennei matematicheskoi shkoly, posvyashchennoi 115-letiyu so dnya rozhdeniya akademika L. S. Pontryagina, 3–8 maya 2023 g. [Modern methods of the theory of boundary value problems. Pontryagin readings XXXIV: Materials of the international Voronezh spring mathematical school dedicated to the 115th anniversary from the birth of academician L. S. Pontryagin, May 3–8, 2023]. Voronezh, 2023, pp. 442–444.; Korzyuk V. I., Kozlovskaya I. S. Classical Solutions of Problems for Hyperbolic Equations. Part 2. Minsk, Belarusian State University, 2017. 52 p. (in Russian).; Korzyuk V. I., Kovnatskaya O. A. Solutions of problems for the wave equation with conditions on the characteristics. Vestsі Natsyyanalʼnai akademіі navuk Belarusі. Seryya fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2021, vol. 57, no. 2, pp. 148–155 (in Russian). https://doi.org/10.29235/1561-2430-2021-57-2-148-155; Korzyuk V. I., Stolyarchuk I. I. Classical Solution of the First Mixed Problem for Second-Order Hyperbolic Equation in Curvilinear Half-Strip with Variable Coefficients. Differential Equations, 2017, vol. 53, no. 1, pp. 74–85. https://doi.org/10.1134/S0012266117010074; Korzyuk V. I., Rudzko J. V. Classical Solution of the Second Mixed Problem for the Telegraph Equation with a Nonlinear Potential. Differential Equations, 2023, vol. 59, no. 9, pp. 1216–1234. https://doi.org/10.1134/S0012266123090070; Rabotnov Yu. N. Mechanics of Deformable Solid. Moscow, Nauka Publ., 1979. 744 p. (in Russian).; Goldsmith W. Impact: The Theory and Physical Behavior of Colliding Solid. London, Arnold, 1960. 379 p.; Moiseev E. I., Kholomeeva A. A. Optimal boundary control by displacement at one end of a string under a given elastic force at the other end. Proceedings of the Steklov Institute of Mathematics, 2012, vol. 276, pp. 153–160. https://doi.org/10.1134/s0081543812020125; Il’in V. A., Moiseev E. I. Optimization of the boundary control of string vibrations by an elastic force on an arbitrary sufficiently large time interval. Differential Equations, 2006, vol. 42, no. 12, pp. 1775–1786. https://doi.org/10.1134/S0012266106120123; Il’in V. A., Moiseev E. I. Optimization of the boundary control by shift or elastic force at one end of string in a sufficiently long arbitrary time. Automation and Remote Control, 2008, vol. 69, no. 3, pp. 354–362. https://doi.org/10.1134/s0005117908030028; https://vestifm.belnauka.by/jour/article/view/777

  14. 14
    Academic Journal

    Πηγή: Chebyshevskii Sbornik; Том 25, № 2 (2024); 222-234 ; Чебышевский сборник; Том 25, № 2 (2024); 222-234 ; 2226-8383 ; 10.22405/2226-8383-2024-25-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.chebsbornik.ru/jour/article/view/1740/1193; Craig W. Linear Reasoning. A New Form of the Herbrand–Gentzen Theorem. // Jour. symbolic; logic, Vol. 22, P. 250-268.; Lynon R. C. An Interpolation Theorem in the Predicate Calculus. // Pacific jour. math., Vol.; P. 129-142.; Тайцлин М. А. Реферат на ст. Линдона. // Jour. symbolic logic., Vol. 25, P. 273-274.; Henkin L. A. An Extension of the Craig–Lyndon Interpolation Theorem. // Ibid., Vol. 28, P.; 216.; Sch¨utte K. Der Interpolationssatz der intuitionistischen Pr¨adikaten-logik. // Math. Ann., Vol.; P. 192-200.; Максимова Л. Л. Теорема Крейга в суперинтуиционистских логиках и амальгамируемые; многообразия псевдобулевых алгебр. // Алгебра и логика, т. 16:6, с. 643-681.; Maksimova L. On Variable Separation in Modal and Superintuitionistic Logics. // Studia; Logica, Vol. 55, P. 99-112.; Beth E. W. On Padoa’s Method in the Teory of Definition. // Ibid., Vol. 56, P. 330-339.; Robinson A. A Result of Consistency and It’s Application to the Theory of Definition. // Kon.; Ned. Akad., Amsterdam, Proc., Ser. A, Vol. 59, P. 47-58.; Kleene S. C. Mathematical Logic. // John Wiley & Sons, inc., 1967, New York, P. 394-441.; Мальцев А. И. Алгебраические системы. // Наука, 1970, Москва, с. 163-192.; Оревков В. П. Верхние оценки удлинения выводов при устранении сечений. // Записки; науч. семинаров ЛОМИ, т. 137, с. 87-98.; Оревков В. П. О гливенковских классах секвенций. // Труды ордена Ленина Мат. инсти-; тута им. Стеклова, т. 98, с. 131-154.; Ершов Ю.Л., Палютин Е. А. Математическая логика. // Наука, 1987, Москва, с. 209-214.; Gentzen G. Untersuchungen ¨uber das logische Schließen. I, II. // Math. Zeitschrift, Vol. 39, P. 176-210, 405-443.; Kleene S. C. Permutability of inferences in Gentzen’s caculi LK and LJ. // Memories of the; Am. math. society, Vol. 10, P. 1-26.; https://www.chebsbornik.ru/jour/article/view/1740

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
    Academic Journal

    Πηγή: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; Том 59, № 1 (2023); 37-50 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; Том 59, № 1 (2023); 37-50 ; 2524-2415 ; 1561-2430 ; 10.29235/1561-2430-2023-59-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestifm.belnauka.by/jour/article/view/701/560; Корзюк, В. И. Частное решение задачи для системы уравнений из механики с негладкими условиями Коши / В. И. Корзюк, Я. В. Рудько // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. – 2022. – Т. 58, № 3. – С. 300–311. https://doi.org/10.29235/1561-2430-2022-58-3-300-311; Ржаницын, А. Р. Теория ползучести / А. Р. Ржаницын. – М.: Стройиздат, 1968. – 418 с.; Ландау, Л. Д. Теоретическая физика: учеб. пособие для вузов: в 10 т. / Л. Д. Ландау, Е. М. Лифшиц. – 5-е изд., стер. – М.: Физматлит, 2003. – Т. 7: Теория упругости. – 264 с.; Greiner, W. Relativistic Quantum Mechanics. Wave Equations / W. Greiner. – 3rd ed. – Berlin; Heidelberg: SpringerVerlag, 2000. – 424 p. https://doi.org/10.1007/978-3-662-04275-5; Polyanin, A. D. Handbook of Linear Partial Differential Equations for Engineers and Scientists / A. D. Polyanin. – New York: Chapman and Hall/CRC, 2001. – 800 p. https://doi.org/10.1201/9781420035322; Harrington, R. F. Time-Harmonic Electromagnetic Fields / R. F. Harrington. – New York: Wiley-IEEE-Press, 2001. – 496 p. https://doi.org/10.1109/9780470546710; Араманович, И. Г. Уравнения математической физики / И. Г. Араманович, В. И. Левин. – 2-е изд. – М.: Наука, 1969. – 288 с.; Пикулин, В. П. Практический курс по уравнениям математической физики / В. П. Пикулин, С. И. Похожаев. – 2-е изд. – М.: МЦНМО, 2004. – 208 с.; Смирнов, В. И. Курс высшей математики / В. И. Смирнов. – 24-е изд. – СПб.: БХВ-Петербург, 2008. – Т. 2. – 848 с.; Корзюк, В. И. Решение задачи Коши для телеграфного уравнения методом характеристик / В. И. Корзюк, И. С. Козловская, Ю. В. Шейко // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. – 2011. – № 4. – С. 48–54.; Бронштейн, И. Н. Справочник по математике для инженеров и учащихся втузов / И. Н. Бронштейн, К. А. Семендяев. – 13-е изд. – М.: Наука, 1986. – 545 с.; Бицадзе, А. В. Некоторые классы уравнений в частных производных / А. В. Бицадзе. – М.: Наука, 1981. – 448 с.; Chen, J. Analytical solution for time-fractional telegraph equation by the method of separating variables / J. Chen, F. Liu, V. Ahn // J. Math. Anal. Appl. – 2008. –Vol. 338, № 2. – P. 1364–1377. https://doi.org/10.1016/j.jmaa.2007.06.023; Корзюк, В. И. Классическое решение первой смешанной задачи для уравнения Клейна – Гордона – Фока в полуполосе / В. И. Корзюк, И. И. Столярчук // Дифференц. уравнения. – 2014. – Т. 50, № 8. – C. 1108–1117.; Корзюк, В. И. Классическое решение смешанной задачи для уравнения типа Клейна – Гордона – Фока в полуполосе с косыми производными в граничных условиях / В. И. Корзюк, И. И. Столярчук // Вес. Нац. акад. навук Беларусi. Сер. фiз.-мат. навук. – 2018. – Т. 54, № 4. – С. 391–403. https://doi.org/10.29235/1561-2430-2018-54-4-391-403; Корзюк, В. И. Классическое решение смешанной задачи для уравнения типа Клейна – Гордона – Фока с характеристическими косыми производными в граничных условиях / В. И. Корзюк, И. И. Столярчук // Вес. Нац. акад. навук Беларусi. Сер. фiз.-мат. навук. – 2019. – Т. 55, № 1. – С. 7–21. https://doi.org/10.29235/1561-2430-2019-55-1-7-21; Smirnov, I. N. Mixed problems for the telegraph equation in case of a system consisting of two segments with different densities and elasticities but equal impedances / I. N. Smirnov // Doklady Mathematics. – 2010. – Vol. 82, № 3. – P. 887– 891. https://doi.org/10.1134/s106456241006013x; Корзюк, В. И. Классическое решение первой смешанной задачи для уравнения Клейна – Гордона – Фока в криволинейной полуполосе / В. И. Корзюк, И. И. Столярчук // Докл. Нац. акад. наук Беларуси. – 2014. – Т. 58, № 3. – С. 9–15.; Корзюк, В. И. Классическое решение первой смешанной задачи для гиперболического уравнения второго порядка в криволинейной полуполосе с переменными коэффициентами / В. И. Корзюк, И. И. Столярчук // Дифференц. уравнения. – 2017. – Т. 53, № 1. – С. 77–88.; Giusti, A. Dispersive Wave Solutions of the Klein-Gordon equation in Cosmology [Electronic resource] / A. Giusti. – Università di Bologna, 2013. – Mode of access: https://amslaurea.unibo.it/id/eprint/6148. – Date of access: 02.03.2021.; Корзюк, В. И. Классические решения задач для гиперболических уравнений: курс лекций: в 10 ч. / В. И. Корзюк, И. С. Козловская. – Минск: БГУ, 2012. – Ч. 3. – 52 с.; Корзюк, В. И. Уравнения математической физики / В. И. Корзюк. – 2-е изд., испр. и доп. – М.: URSS, 2021. – 480 с.; Корзюк, В. И. Классическое решение смешанной задачи для одномерного волнового уравнения с негладким вторым условием Коши / В. И. Корзюк, Я. В. Рудько // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. – 2021. – Т. 57, № 1. – С. 23–32. https://doi.org/10.29235/1561-2430-2021-57-1-23-32; Корзюк, В. И. Классическое решение смешанных задач для одномерного волнового уравнения с негладкими условиями Коши / В. И. Корзюк, С. И. Пузырный // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. – 2016. – № 2. – С. 22–31.; Корзюк, В. И. Классическое решение первой смешанной задачи для уравнения типа Клейна – Гордона – Фока с неоднородными условиями согласования / В. И. Корзюк, И. И. Столярчук // Докл. Нац. акад. наук Беларуси. – 2019. – Т. 63, № 1. – С. 7–13. https://doi.org/10.29235/1561-8323-2019-63-1-7-13; Корзюк, В. И. Классическое решение первой смешанной задачи для телеграфного уравнения с нелинейным потенциалом / В. И. Корзюк, Я. В. Рудько // Дифференц. уравнения. – 2022. – Т. 58, № 2. – С. 174–184. https://doi.org/10.31857/S0374064122020042; https://vestifm.belnauka.by/jour/article/view/701