Εμφανίζονται 1 - 20 Αποτελέσματα από 24 για την αναζήτηση '"КИСЛОРОДНЫЕ ВАКАНСИИ"', χρόνος αναζήτησης: 0,59δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: The study was conducted with the support of the Ministry of Education and Science of the Russian Federation within the framework of the state assignment (project FEWZ-2024-0020)., Исследование проведено при поддержке Минобрнауки РФ в рамках государственного задания (проект FEWZ-2024-0020).

    Πηγή: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 27, № 4 (2024); 324-329 ; Известия высших учебных заведений. Материалы электронной техники; Том 27, № 4 (2024); 324-329 ; 2413-6387 ; 1609-3577

    Relation: Larentis S., Nardi F., Balatti S., David C. Gilmer D.C., Ielmini D. Resistive switching by voltage-driven ion migration in bipolar RRAM – Part II: Modeling. IEEE Transactions on Electron Devices. 2012; 59(9): 2468—4275. https://doi.org/10.1109/TED.2012.2202320; Kim S., Kim S-J., Kim K.M., Lee S.R., Chang M., Cho E., Kim Y.-B., Kim Ch.J., Chung U. –I., Yoo I.-K. Physical electro-thermal model of resistive switching in bi-layered resistance-change memory. Scientific Reports. 2013; 3: 1680. https://doi.org/10.1038/srep01680; Kim S., Choi S.H., Lu W. Comprehensive Physical model of dynamic resistive switching in an oxide memristor. Acsnano. 2014; 8(3): 2369—2376. https://doi.org/10.1021/nn405827t; Basnet P., Pahinkar D.G., West M.P., Perini C.J., Graham S., Vogel E.M. Substrate dependent resistive switching in amorphous-HfOx memristors: an experimental and computational investigation. Journal of Materials Chemistry C. 2020; 8(15): 5092—5101. https://doi.org/10.1039/c9tc06736a; Parit A.K., Yadav M.S., Gupta A.K., Mikhaylov A., Rawat B. Design and modeling of niobium oxide-tantalum oxide based self-selective memristor for large-scale crossbar memory. Chaos, Solitons and Fractals. 2021; 145(10-12): 110818. https://doi.org/10.1016/j.chaos.2021.110818; Busygin A., Udovichenko S., Ebrahim A., Bobylev A., Gubin A. Mathematical model of metal-oxide memristor resistive switching based on full physical model of heat and mass transfer of oxygen vacancies and ions. Physica Status Solidi (A) Applications and Materials. 2023; 220(11): 2200478. https://doi.org/10.1002/pssa.202200478; Chernov A.A., Islamov D.R., Pik’nik A.A., Perevalov T.V., Gritsenko V.A. Three-dimensional non-linear complex model of dynamic memristor switching. ECS Transactions. 2017; 75(32): 95—104. https://doi.org/10.1149/07532.0095; Kuzmichev D.S., Markeev A.M. Neuromorphic properties of forming-free non-filamentary TiN/Ta2O5/Ta structures with an asymmetric current-voltage characteristic. Nanobiotechnology Reports. 2021; 16(6): 804—810. https://doi.org/10.1134/S2635167621060136; https://met.misis.ru/jour/article/view/636

  2. 2
  3. 3
  4. 4
  5. 5
    Academic Journal

    Συνεισφορές: This work was supported by the Belarusian National Research Programme “Convergence- 2020” (subprogram “Integration”, task No. 3.3.1), the State Committee on Science and Technology of the Republic of Belarus (grant No. Ф19ЛИТГ-001), the Research Council of Lithuania (grant No. S-LB-19-5), and by the EU Programme H2020-MSCA-RISE-2015 (grants No. 691010 HUNTER and No. 871284 SSHARE)., Работа выполнена в рамках задания 3.3.1 ГПНИ «Конвергенция-2020» (подпрограмма «Объединение»), белорусско-литовского проекта (№ Ф19ЛИТГ-001 и № S-LB-19-5), финансируемого ГКНТ Республики Беларусь и Научным советом Литвы и проектов № 691010 HUNTER и № 871284 SSHARE программы ЕС H2020-MSCA-RISE-2015.

    Πηγή: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; Том 56, № 1 (2020); 102-113 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; Том 56, № 1 (2020); 102-113 ; 2524-2415 ; 1561-2430 ; 10.29235/1561-2430-2020-56-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestifm.belnauka.by/jour/article/view/509/423; Shankar, P. Gas sensing mechanism of metal oxides: The role of ambient atmosphere, type of semiconductor and ga ses -A review / P. Shankar, J. B. B. Rayappan // Sci. Lett. – 2015. – Vol. 4. – P. 126.; Yuliarto, B. SnO 2 Nanostructure as Pollutant Gas Sensors: Synthesis, Sensing Performances, and Mechanism / B. Yuliarto, G. Gumilar, N. L. W. Septiani // Adv. Mater. Sci. Eng. – 2015. – Vol. 2015. – ArticleID 694823. – P. 1–14. https://doi.org/10.1155/2015/694823; Das, S. SnO 2 : A comprehensive review on structures and gas sensors / S. Das, V. Jayaraman // Prog. Mater Sci. – 2014. – Vol. 66. – P. 112–255. https://doi.org/10.1016/j.pmatsci.2014.06.003; Ippommatsu, M. Sensing mechanism of SnO 2 gas sensors / M. Ippommatsu, H. Sasaki, H. Yanagida // J. Mater. Sci. – 1990. – Vol. 25, № 1. – P. 259–262. https://doi.org/10.1007/BF00544217; Davydov, S. Adsorption of Oxygen Molecules and Carbon Monoxide Molecules on Tin Dioxide / S. Davydov, V. Moshnikov, A. Fedotov // Tech. Phys. – 2006. – Vol. 51. – P. 139–141. https://doi.org/10.1134/S1063784206010221; Kílíç, C. Origins of coexistence of conductivity and transparency in SnO 2 / C. Kílíç, A. Zunger // Phys. Rev. Lett. – 2002. – Vol. 88, № 9. – P. 095501. https://doi.org/10.1103/PhysRevLett.88.095501; Effect of Humid Aging on the Oxygen Adsorption in SnO 2 Gas Sensors / K. Suematsu [et al.] // Sensors. – 2018. – Vol. 18, № 1. – P. 254. https://doi.org/10.3390/s18010254; Structural motifs of water on metal oxide surfaces / R. Mu [et al.] // Chem. Soc. Rev. – 2017. – Vol. 46, № 7. – P. 1785– 1806. https://doi.org/10.1039/c6cs00864j; First-principles study of the water adsorption on anatase(101) as a function of the coverage / R. Martinez-Casado [et al.] // J. Phys. Chem. C. – 2018. – Vol. 122, № 36. – P. 20736–20744. https://doi.org/10.1021/acs.jpcc.8b05081; Oxygen Vacancies as Active Sites for Water Dissociation on Rutile TiO 2 (110) / R. Schaub [et al.] // Phys. Rev. Lett. – 2001. – Vol. 87, № 26. – P. 266104. https://doi.org/10.1103/PhysRevLett.87.266104; Wang, J. G. Oxidation state of oxide supported nanometric gold / J. G. Wang, B. Hammer // Top. Catal. – 2007. – Vol. 44, № 1/2. – P. 49–56. https://doi.org/10.1007/s11244-007-0277-9; Role of water vapour in the interaction of SnO 2 gas sensors with CO and CH 4 / R. Ionescu [et al.] // Sensors and Actuators B: Chemical. – 1999. – Vol. 61, № 1. – P. 39–42. https://doi.org/10.1016/S0925-4005(99)00277-4; Competitive Adsorption of O 2 and H 2 O at the Neutral and Defective SnO 2 (110) Surface / B. Slater [et al.] // MRS Online Proceedings Library Archive. – 2000. – Vol. 658. https://doi.org/10.1557/proc-658-gg9.33; A computational chemist approach to gas sensors: Modeling the response of SnO 2 to CO, O 2 , and H 2 O Gases / J.-M. Ducéré [et al.] // J. Comput. Chem. – 2012. – Vol. 33, № 3. – P. 247–258.https://doi.org/10.1002/jcc.21959; Zakaryan, H. Adsorption of the H and H 2 O on SnO 2 Surfaces in an O 2 Environment: Density Functional Theory Study / H. Zakaryan // Armenian J. Phys. – 2016. – Vol. 9, № 4. – P. 283–293.; Malyshev, V. V. Response of semiconducting metal oxides to water vapor as a result of water molecules chemical transformations on catalytically active surfaces / V. V. Malyshev // Russ. J. Phys. Chem. A.– 2008. – Vol. 82, № 13. – P. 2329– 2339. https://doi.org/10.1134/s0036024408130293; Адамчук, Д. B. Управление электрическими и оптическими параметрами активных элементов датчиков влажности на основе пленок оксидов олова переменного состава / Д. B. Адамчук, В. К. Ксеневич // Приборы и методы измерений. – 2019. – Т. 10, № 2. – P. 138–150. https://doi.org/10.21122/2220-9506-2019-10-2-138-150; Fabrication and characterization of transparent tin dioxide films with variable stoichiometric composition. / V. K. Ksenevich [et al.] // Acta Phys. Pol. A. – 2015. – Vol. 128, № 5. – P. 861–863. https://doi.org/10.12693/aphyspola.128.861; Nonstoichiometric tin oxide films: study by x-ray diffraction, raman scattering and electron paramagnetic resonance / V. K. Ksenevich [et al.] // Lithuanian J. Phys. – 2019. – Vol. 59, № 4. – P. 179–185.; Импедансная спектроскопия поликристаллических пленок диоксида олова / Д. В. Адамчук [и др.] // Приборы и методы измерений. – 2016. – Т. 7, № 3. – С. 312–321. https://doi.org/10.21122/2220-9506-2016-7-3-312-321; Boroojerdian, P. Structural and Optical Study of SnO Nanoparticles Synthesized Using Microwave – Assisted Hydrothermal Route / P. Boroojerdian // Int. J. Nanosci. Nanotechnol. – 2013. – Vol. 9, № 2. – P. 95–100.; Gardiner, D. J. Practical Raman Spectroscopy / D. J. Gardiner, P. R. Graves. – Berlin; Heidelberg: Springer-Verlag. – 1989. – 157 p. https://doi.org/10.1007/978-3-642-74040-4; The complete Raman spectrum of nanometric SnO 2 particles / A. Diéguez [et al.] // J. Appl. Phys. – 2001. – Vol. 90, № 3. – P. 1550–1557. https://doi.org/10.1063/1.1385573; Identification of oxygen vacancy types from Raman spectra of SnO 2 nanocrystals / L. Z. Liu [et al.] // J. Raman Spectroscopy. – 2012. – Vol. 43, № 10. – P. 1423–1426. https://doi.org/10.1002/jrs.4078; Batzill, M. The surface and materials science of tin oxide / M. Batzill, U. Diebold // Prog. Surf. Sci. – 2005. – Vol. 79, № 2. – P. 47–154. https://doi.org/10.1016/j.progsurf.2005.09.002; Calculated static and dynamic properties of -Sn and Sn-O compounds / E. L. Peltzer y Blancá [et al.] // Phys. Rev. B. – 1993. – Vol. 48, № 21. – P. 15712–15718. https://doi.org/10.1002/jrs.4078; Exploring Resonance Raman Spectroscopy / D. Tuschel [et al.] // Spectroscopy. – 2018. – Vol. 33, № 12. – P. 12–19.; Heiland, G. Physical and Chemical Aspects of Oxidic Semiconductor Gas Sensors / G. Heiland, D. Kohl // Chemical Sensor Technology. – Elsevier, 1988. – Vol. 1. – P. 15–38. https://doi.org/10.1016/B978-0-444-98901-7.50007-5; Gercher, V. A. Water adsorption on stoichiometric and defective SnO 2 (110) surfaces / V. A. Gercher, D. F. Cox // Surf. Sci. – 1995. – Vol. 322, № 1/3. – P. 177–184. https://doi.org/10.1016/0039-6028(95)90028-4; Site-selectively grown SnO 2 NWs networks on micromembranes for efficient ammonia sensing in humid conditions / J. Samà [et al.] // Sensors and Actuators B: Chemical. – 2016. – Vol. 232. – P. 402–409. https://doi.org/10.1016/j.snb.2016.03.091; https://vestifm.belnauka.by/jour/article/view/509

  6. 6
    Academic Journal

    Περιγραφή αρχείου: application/pdf

    Relation: Вестник Тюменского государственного университета. Серия: Физико-математическое моделирование. Нефть, газ, энергетика. — 2024. — Т. 10, № 3 (39)

  7. 7
  8. 8
  9. 9
    Conference
  10. 10
    Academic Journal

    Περιγραφή αρχείου: application/pdf

    Relation: Вестник Тюменского государственного университета. Серия: Физико-математическое моделирование. Нефть, газ, энергетика. – 2022. – Т. 8, № 2(30)

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
    Academic Journal

    Πηγή: Electronics and Communications : научно-технический журнал, № 2(73)

    Περιγραφή αρχείου: С. 9-15; application/pdf

    Relation: Белоголовский М. А. Наноэлектронные устройства с памятью на основе эффекта электромиграции кислородных вакансий в сложных оксидах переходных металлов / М. А. Белоголовский, С. Ю. Ларкин // Electronics and Communications : научно-технический журнал. – 2013. – № 2(73). – С. 9–15. – Библиогр.: 11 назв.; https://ela.kpi.ua/handle/123456789/3629

    Διαθεσιμότητα: https://ela.kpi.ua/handle/123456789/3629