Εμφανίζονται 1 - 20 Αποτελέσματα από 69 για την αναζήτηση '"КВАНТОВОХИМИЧЕСКИЕ РАСЧЕТЫ"', χρόνος αναζήτησης: 0,82δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 67, № 5 (2023); 380-387 ; Доклады Национальной академии наук Беларуси; Том 67, № 5 (2023); 380-387 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2023-67-5

    Περιγραφή αρχείου: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1151/1157; Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts / ed. Ts. Ishikawa. – John Wiley & Sons, 2009. doi:10.1002/9780470740859; Organic Superbases in Recent Synthetic Methodology Research / T. R. Puleo [et al.] // Chem. Eur. J. – 2021. – Vol. 27, N 13. – P. 4216–4229. doi:10.1002/chem.202003580; Extremely Strong, Uncharged Auxiliary Bases, Monomeric and Polymer-Supported Polyaminophosphazenes (P2–P5) / R. Schwesinger [et al.] // Liebigs Ann. – 1996. – Vol. 1996, N 7. – P. 1055–1081. doi:10.1002/jlac.199619960705; Caubère, P. Unimetal Super Bases / P. Caubère // Chem. Rev. – 1993. – Vol. 93, N 6. – P. 2317–2334. doi:10.1021/cr00022a012; On the Basicity of Organic Bases in Different Media / S. Tshepelevitsh [et al.] // Eur. J. Org. Chem. – 2019. – Vol. 2019, N 40. – P. 6735–6748. doi:10.1002/ejoc.201900956; On the Basicity of Conjugated Nitrogen Heterocycles in Different Media / M. Lõkov [et al.] // Eur. J. Org. Chem. – 2017. – Vol. 2017, N 30. – P. 4475–4489. doi:10.1002/ejoc.201700749; Rossini, E. Empirical Conversion of pKa Values between Different Solvents and Interpretation of the Parameters: Application to Water, Acetonitrile, Dimethyl Sulfoxide, and Methanol / E. Rossini, A. D. Bochevarov, E. W. Knapp // ACS Omega. – 2018. – Vol. 3, N 2. – P. 1653–1662. doi:10.1021/acsomega.7b01895; Glasovac, Z. Basicity of organic bases and superbases in acetonitrile by the polarized continuum model and DFT calculations / Z. Glasovac, M. Eckert-Maksić, Z. B. Maksić // New J. Chem. – 2009. – Vol. 33, N 3. – P. 588–597. doi:10.1039/b814812k; Schwesinger, R. Starke ungeladene Stickstoffbasen / R. Schwesinger // Nachr. Chem., Tech. Lab. – 1990. – Vol. 38, N 10. – P. 1214–1226. doi:10.1002/nadc.19900381005; CH acidity of five-membered nitrogen-containing heterocycles: DFT investigation / V. E. Matulis [et al.] // J. Mol. Struct.: THEOCHEM. – 2009. – Vol. 909, N 1–3. – P. 19–24. doi:10.1016/j.theochem.2009.05.024; Kulsha, A. V. Strong Bases Design: Predicted Limits of Basicity / A. V. Kulsha, E. G. Ragoyja, O. A. Ivashkevich // J. Phys. Chem. A. – 2022. – Vol. 126, N 23. – P. 3642–3652. doi:10.1021/acs.jpca.2c00521; Tomaník, L. Solvation energies of ions with ensemble cluster-continuum approach / L. Tomaník, E. Muchová, P. Slavíček // Phys. Chem. Chem. Phys. – 2020. – Vol. 22, N 39. – P. 22357–22368. doi:10.1039/d0cp02768e; Reed, C. A. Myths about the Proton. The Nature of H+ in Condensed Media / C. A. Reed // Acc. Chem. Res. – 2013. – Vol. 46, N 11. – P. 2567–2575. doi:10.1021/ar400064q; Neese, F. Software update: the ORCA program system, version 4.0 / F. Neese // WIRes: Comput. Mol. Sci. – 2018. – Vol. 8, N 1. – Art. e1327. doi:10.1002/wcms.1327; Crampton, M. R. Kinetic and equilibrium studies of the ambident reactivity of aniline, and some derivatives, towards 4,6-dinitrobenzofuroxan / M. R. Crampton, L. C. Rabbitt // J. Chem. Soc., Perkin Trans. – 1999. – Vol. 2, N 8. – P. 1669−1674. doi:10.1039/a903123e; Kolthoff, I. M. Dissociation constants of uncharged and monovalent cation acids in dimethyl sulfoxide / I. M. Kolthoff, Jr. M. K. Chantooni, S. Bhowmik // J. Am. Chem. Soc. – 1968. – Vol. 90, N 1. – P. 23−28. doi:10.1021/ja01003a005; Crampton, M. R. Acidities of Some Substituted Ammonium Ions in Dimethyl Sulfoxide / M. R. Crampton, I. A. Robotham // J. Chem. Res. – 1997. – N 1. – P. 22−23. doi:10.1039/a606020j; Protonation of purines and related compounds in dimethylsulfoxide and water / R. L. Benoit [et al.] // Can. J. Chem. – 1985. – Vol. 63, N 6. – P. 1228−1232. doi:10.1139/v85-209; Mucci, A. Solvent effect on the protonation of some alkylamines / A. Mucci, R. Domain, R. L. Benoit // Can. J. Chem. – 1980. – Vol. 58, N 9. – P. 953−958. doi:10.1139/v80-151; Simm, N. G. Systematic microsolvation approach with a cluster-continuum scheme and conformational sampling / N. G. Simm, P. L. Türtscher, M. Reiher // J. Comp. Chem. – 2020. – Vol. 41, N 12. – P. 1144−1155. doi:10.1002/jcc.26161; Кульша, А. В. Дизайн молекулярных супероснований / А. В. Кульша, Е. Г. Рагойжа, О. А. Ивашкевич // Свиридовские чтения : сб. ст. / редкол.: О. А. Ивашкевич (пред.) [и др.]. − Минск, 2022. − Вып. 18. − С. 97−108.; https://doklady.belnauka.by/jour/article/view/1151

  2. 2
  3. 3
  4. 4
    Academic Journal

    Συνεισφορές: This work was partially supported by The Belarusian Republican Foundation for Fundamental Research (agreement X20-118), Работа выполнена при частичной финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (договор Х20-118)

    Πηγή: Proceedings of the National Academy of Sciences of Belarus, Chemical Series; Том 56, № 3 (2020); 263-270 ; Известия Национальной академии наук Беларуси. Серия химических наук; Том 56, № 3 (2020); 263-270 ; 2524-2342 ; 1561-8331 ; 10.29235/1561-8331-2020-56-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestichem.belnauka.by/jour/article/view/593/570; Soldatov, V. S. Application of fibrous ion exchangers in air purification from acidic impurities / V. S. Soldatov, I. S. Elinson, A. A. Shunkevich // Hydrometallurgy’94. - Dordrecht: Springer, 1994. - P. 837-855. https://doi.org/10.1007/978-94-011-1214-7_57; Air pollution control with fibrous ion exchangers / V. S. Soldatov [et al.] // Chemistry for the protection of the environment, L. Pawlowski [et al.] (Eds.). - New York, London: Plenum Press, 1996. - Vol. 2. - P. 55-66. https://doi.org/10.1007/978-1-4613-0405-0_7; Чикин, Г. А. Иониты в газосорбционных технологиях / Г А. Чикин, О. Н. Мягкой // Ионообменные методы очистки веществ; под ред. Г. А. Чикин, О. Н. Мягкой. - Воронеж: ВГУ, 1984. - С. 326-367.; Soldatov, V. S. Ion exchangers for air purification / V. S. Soldatov, E. G. Kosandrovich // Ion exchange and solvent extraction, A series of advances. - USA: CRC Press Taylor and Francis Group, 2011. - Vol. 20. - P. 45-117. https://doi.org/10.1201/b10813-3; Косандрович, Е. Г. Волокнистый аминокарбоксильный сорбент для очистки воздуха от примесей диоксида серы / Е. Г. Косандрович, О. Н. Дорошкевич // Вес. Нац. акад. навук Беларусi. Сер. хiм. навук. - 2014. - № 1. - С. 91-95.; Каталитический способ получения и сорбционные свойства волокнистого анионита с третичными аминогруппами / Е. Г. Косандрович [и др.] // Вес. Нац. акад. навук Беларусi. Сер. хiм. навук. - 2017. - № 1. - С. 82-88.; Косандрович, Е. Г. Сорбция паров уксусной кислоты из воздуха волокнистыми анионитами с третичными и четвертичными аминогруппами / Е. Г Косандрович, Л. Н. Шаченкова, В. С. Солдатов // Докл. Нац. акад. наук Беларуси. - 2019. - Т. 63, № 5. - С. 548-553. https://doi.org/10.29235/1561-8323-2019-63-5-548-553; Косандрович, Е. Г Сорбция аммиака из воздуха волокнистым сульфокатионитом ФИБАН К-1 / Е. Г Косандрович, В.С. Солдатов // Вес. Нац. акад. навук Беларусi. Сер. хiм. - 2004. - № 3. - С. 95-98.; Granovsky Alex A. Firefly version 8 [Electronic Resource]. - Mode of access: www http://classic.chem.msu.su/gran/firefly/index.html. - Date of access: 05.04.2020.; General atomic and molecular electronic structure system / M. W. Schmidt [et al.] // Journal of Computational Chemistry. - 1993. - Vol. 14, Is. 11. - P. 1347-1363. https://doi.org/10.1002/jcc.540141112; Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange / A. D. Becke // Journal of Chemical Physics. - 1993. - Vol. 98, Is. 7. - P. 5648-5652. https://doi.org/10.1063/I464913; Chengteh, Lee. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density / Lee Chengteh, Yang Weitao, R. G. Parr // Physical Review B. - 1988. - Vol. 37, Is. 2. - P. 785-789. https://doi.org/10.1103/physrevb.37.785; Makrlik, E. A combined experimental and DFT study on the complexation of Mg2+ with beauvericin E / E. Makrlik, P. Toman, P. Vanura // Structural Chemistry. - 2012. - Vol. 23, Is. 3. - P. 765-769. https://doi.org/10.1007/s11224-011-9923-8; Novel guanidinium zwitterion and derived ionic liquids: physicochemical properties and DFT theoretical studies / Jiamei Liu Fang [et al.] // Structural Chemistry. - 2011. - Vol. 22, Is. 5. - P. 1119-1130. https://doi.org/10.1007/s11224-011-9807-y; Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li-F / T. Clark [et al.] // Journal of Computational Chemistry. - 1983. - Vol. 4, Is. 3. - P. 294-301. https://doi.org/10.1002/jcc.540040303; Hehre, W. J. Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules / W. J. Hehre, R. Ditchfield, J. A. Pople // Journal of Chemical Physics. -1972. - Vol. 56, Is. 5. - P. 2257-2261. https://doi.org/10.1063/I1677527; Hariharan, P. C. The influence of polarization functions on molecular orbital hydrogenation energies / P. C. Hariha-ran, J. A. Pople // Theoretica chimica acta. - 1973. - Vol. 28, Is. 3. - P. 213-222. https://doi.org/10.1007/bf00533485; Сиггиа, С. Количественный органический анализ по функциональным группам / С. Сиггиа, Дж. Г Ханна. -М.: Химия, 1983. - 405 с.; Ab initio investigations on the HOSO2+O2 → SO3+HO2 reaction / D. Majumdar [et al.] // J. of Chem. Physics. - 2000. -Vol. 112, N 2. - P. 723-730. https://doi.org/10.1063/1.480605; Квантово-химическое исследование некаталитического процесса окисления диоксида серы / А. И. Туктарова [и др.] // Вестн. технол. ун-та. - 2018. - Т. 21, № 9. - С. 32-37.; Хома, Р. Е. Моделирование равновесных процессов в системах “SO2-R2NCH2CH2NR2-H2O” / Р. Е. Хома // Сб. науч. ст. III междунар. науч-практ. конф. «Комп’ютерне моделювання в хiмii, технологiях i системах сталого розвитку КМХТ-2012», Киiв, Рубiжне, 10-12 травня, 2012. - Рубiжне: НТУУ «КПI», 2012. - С. 27-30.; https://vestichem.belnauka.by/jour/article/view/593

  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
    Academic Journal

    Πηγή: Chemistry, Physics and Technology of Surface; Том 6, № 2 (2015): Хімія, фізика та технологія поверхні; 224-233 ; Химия, физика и технология поверхности; Том 6, № 2 (2015): Хімія, фізика та технологія поверхні; 224-233 ; Хімія, фізика та технологія поверхні; Том 6, № 2 (2015): Хімія, фізика та технологія поверхні; 224-233 ; 2518-1238 ; 2079-1704 ; 10.15407/hftp06.02

    Περιγραφή αρχείου: application/pdf

  14. 14
    Academic Journal

    Πηγή: Chemistry, Physics and Technology of Surface; Том 6, № 1 (2015): Хімія, фізика та технологія поверхні; 32-41 ; Химия, физика и технология поверхности; Том 6, № 1 (2015): Хімія, фізика та технологія поверхні; 32-41 ; Хімія, фізика та технологія поверхні; Том 6, № 1 (2015): Хімія, фізика та технологія поверхні; 32-41 ; 2518-1238 ; 2079-1704 ; 10.15407/hftp06.01

    Περιγραφή αρχείου: application/pdf

  15. 15
  16. 16
    Academic Journal

    Πηγή: Технічні науки та технології; № 2 (2) (2015): Технічні науки та технології
    Technical sciences and technology; No. 2 (2) (2015): Technical sciences and technology
    Технические науки и технологии; № 2 (2) (2015): Технические науки и технологии

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://tst.stu.cn.ua/article/view/70726

  17. 17
  18. 18
  19. 19
  20. 20
    Academic Journal

    Πηγή: Fine Chemical Technologies; Vol 8, No 1 (2013); 56-61 ; Тонкие химические технологии; Vol 8, No 1 (2013); 56-61 ; 2686-7575 ; 2410-6593

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/653/699; Grafstein D., Dvorak J. Neocarboranes, a new family of stable organoboranes isomeric with the carboranes // Inorg. Chem. 1963. V. 2. P. 1128–1133.; Papetti S., Heying T.L. p-Carborane [1,12-dicarbaclovododecaborane(12)] // J. Am. Chem. Soc. 1964. V. 86. P. 2295.; Grimes R.N. Carboranes. 2nd ed. – Academic Press, Elsevier Inc., 2011. 1139 p.; Kaczmarczyk A., Dobrott R.D., Lipscomb W.N. Reactions of B10H102ion // Proc. Nat. Acad. Sci. U.S. 1962. V. 48. P. 729–733.; Hoffmann R., Lipscomb W.N. Intramolecular isomerization and transformations in carboranes and substituted polyhedral molecules // Inorg. Chem. 1963. V. 2. P. 231–232.; Lipscomb W.N. Framework rearrangement in boranes and carboranes // Science. 1966. V.153. P. 373–378.; Kaesz H.D., Bau R., Beall H.A., Lipscomb W.N. Rearrangements in the icosahedral carboranes // J. Am. Chem. Soc. 1967. V. 89. P. 4218–4220.; Wong H.S., Lipscomb W.N. Studies on the thermal rearrangements of chlorophosphacarboranes. Molecular and crystal structure of 9,10-dichlorophosphacarborane // Inorg. Chem. 1975. V. 14. P. 1350–1357.; Muetterties E.L. Topological representation of stereoisomerism I. Polytopal rearrangements // J. Am. Chem. Soc. 1969. V. 91. P. 1636–1643.; Roberts Y.V., Johnson B.F.G. Dicarbadodecaborane rearrangements: An appraisal of rotational mechanisms // J. Chem. Soc. Dalton Trans. 1994. V. 5. P. 759–766.; Hart H.V., Lipscomb W.N. Thermal rearrangements of icosahedral carboranes. Molecular and crystal structure of 5,12-dichloro-l,7-dimethyl-l,7dicarba-closo-dodecaborane(12) // Inorg. Chem. 1973. V. 12. P. 2644–2649.; Hart H.V., Lipscomb W.N. Rearrangements of icosahedral monohalo-m-carboranes // J. Am. Chem. Soc. 1969. V. 91. P. 771–772.; Edvenson G.M., Gaines D.F. Thermal isomerization of regiospecifically 10B-labeled icosahedral carboranes // Inorg. Chem. 1990. V. 29. P. 1210–1216.; Wu H., Jones, Jr. M. The mechanism of rearrangement of the icosahedral carboranes // J. Am. Chem. Soc. 1989. V. 111. P. 5373–5384.; Garrioch R.M., Kuballa P., Low K.S., Rosair G.M., Welch A.J. The ‘1,2 to 1,2’ cage carbon isomerisation in bisphosphine carbanickelaboranes: Synthesis and spectroscopic and crystallographic characterization of 1,2-Ph2-4,4-(PMe2Ph)2-4,1,2-closo-NiC2B9H9, 1,2-Ph2-4,4-(PEt3)2-4,1,2-closo-NiC2B9H9 and 1,2-Ph2-4-(dppe)-4,1,2-closo-NiC2B9H9 // J. Organometallic Chem. 1999. V. 575. P. 57–62.; Robertson S., Ellis D., Rosair G.M., Welch A.J. Platination of [3-X-7,8-Ph2-7,8-nido-C2B9H8]2- (X = Et, F). Synthesis and characterization of slipped and 1,2 → 1,7 isomerised products // J. Organometallic Chem. 2003. V. 680. P. 286–293.; Robertson S., Garrioch R.M., Ellis D., McGrath Th.D., Hodson B.E., Rosair G.M., Welch A.J. Towards the mechanism of heteroborane isomerisation: 1,2 → 1,2 and 1,2 → 1,7 low-temperature isomerizations from metallations of [5-I-7,8-Ph2-7,8-nido-C2B9H8]2- // Inorganica Chim. Acta. 2005. V. 358. P. 1485–1493.; Ellis D., Garrioch R.M., Rosair G.M., Welch A.J. Isomerization following the platination of [7,8-Ph2-9,11-I2-7,8-nido-C2B9H7]2- // Polyhedron. 2006. V. 25. P. 915–922.; Welch A.J., Weller A.S. Synthesis and reactivity of 79-diphenyl-nido-carbaundecaboranes: Rearrangement processes in carbaplatinaboranes revisited // J. Chem. Soc. Dalton Trans. 1997. P. 1205–1212.; Perekalin D.S., Holub J., Golovanov D.G., Lyssenko K.A., Petrovskii P.V., Štíbr B., Kudinov A.R. Ferra- and ruthenatricarbollides CpFeC3B8H11 and CpRuC3B8H11 // Organometallics. 2005. V.24. P. 4387–4392.; King R.B. Chemical applications of topology and group theory. 11. Degenerate edges as a source of inherent fluxionality in deltahedra // Inorganica Chim. Acta. 1981. V. 49. P. 231–240.; Wales D.J., Bone R.G.A. Ab initio studies of fundamental cluster rearrangement mechanisms // J. Am. Chem. Soc. 1992. V.114. P. 5399–5406.; Wales D.J., Stone A.J. theoretical study of rearrangement in boranes // Inorg. Chem. 1987. V. 26. P. 3845–3850.; Gimarc B.M., Ott J.J. Isomers of C2B3H5 and the diamond-square-diamond rearrangement mechanism // Inorg. Chem. 1986. V. 25. P. 83–85.; Gimarc B.M., Ott J.J. Possible mechanisms for the isomerization of B9H92and C2B7H9 // Inorg. Chem. 1986. V. 25. P. 2708–2711.; Ott J.J., Brown C.A., Gimarc B.M. Diamond-square-diamond isomerization of C2B5H7 // Inorg. Chem. 1989. V. 28. P. 4269–4273.; Gimarc B.M., Ott J.J. Isomerization of carboranes C2B6H8, C2B8H10 and C2B9H11 by the diamond-square-diamond rearrangement // J. Am. Chem. Soc. 1987. V. 109. P. 1388–1392.; Gimarc B.M., Dai B., Warren D.S., Ott J.J. Isomers and isomerizations of C2B9H11 and a comparison of relative isomer stabilities // J. Am. Chem. Soc. 1990. V.112. P. 2591–2601.; Wales D.J., Mingos D.M.P., Zhenyang L. Skeletal rearrangements in clusters. 2. // Inorg. Chem. 1989. V. 28. P. 2154–2164.; Wales D.J., Mingos D.M.P. Skeletal rearrangements in clusters. III. Application of vibrational symmetry analyses // Polyhedron. 1989. V. 8. P. 1933–1938.; Wales D.J. Rearrangement mechanisms of B12H122- and C2B10H12 // J. Am. Chem. Soc. 1993. V. 115. P. 1557–1567.; Salinger R.M., Frye C.L. Facile polyhedral rearrangement of icosahedral silylcarboranes // Inorg. Chem. 1965. V. 4. P. 1815–1816.; Gimarc B.M., Warren D.S., Ott J.J., Brown C. Calculations for various structural forms of B12H122- as clues to the possible mechanisms for the isomerizations of C2B10H12 // Inorg. Chem. 1991. V. 30. P. 1598–1605.; Brown C.A., McKee M.L. Rearrangements in icosahedral boranes and carboranes revisited // J. Mol. Model. 2006. V. 12. P. 653–664.; Gaussian 09, Revision A.02, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H.Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox. – Gaussian, Inc., Wallingford CT, 2009.; Becke A.D. Density-functional thermochemistry. III. The role of exact exchange // J. Chem. Phys. 1993. V. 98. P. 5648–5652.; Zhao Y., Truhlar D. G. Comparative DFT study of van der Waals complexes: Rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimmers // J. Phys. Chem. 2006. V. 110. P. 5121–5129.; Sousa S.F., Fernandes P.A., Ramos M.J. General performance of density functionals // J. Phys. Chem. A. 2007. V. 111. P. 10439–10452.; Csonka G.I., Perdew J.P., Ruzsinszky A. Global hybrid functionals: A look at the engine under the hood // J. Chem. Theory Comput. 2010. V. 6. P. 3688–3703.; Zhao Y., Truhlar D.G. Density functionals with broad applicability in chemistry // Accounts Chem. Res. 2008. V. 41. № 2. P. 157–167.; Jacquemin D., Perpete E.A., Ciofini I., Adamo C., Valero R., Zhao Y., Truhlar D.G. On the Performances of the M06 Family of Density Functionals for Electronic Excitation Energies // J. Chem. Theory Comput. 2010. V. 6. P. 2071–2085. 43. Zhao Y., Truhlar D.G. Density Functional Theory for Reaction Energies: Test of Meta and Hybrid Meta Functionals, Range-Separated Functionals, and Other High-Performance Functionals // J. Chem. Theory Comput. 2011. V. 7. P. 669–676.