Εμφανίζονται 1 - 20 Αποτελέσματα από 87 για την αναζήτηση '"КВАНТОВАЯ ЗАПУТАННОСТЬ"', χρόνος αναζήτησης: 1,05δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
    Academic Journal

    Συνεισφορές: The study was carried out with financial support from the Russian Science Foundation (project No. 21-72-30026, https://rscf.ru/en/project/21-72-30026/)., Исследование выполнено при финансовой поддержке Российского научного фонда (проект № 21-72-30026, https://rscf.ru/en/project/21-72-30026/).

    Πηγή: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 27, № 2 (2024); 154-164 ; Известия высших учебных заведений. Материалы электронной техники; Том 27, № 2 (2024); 154-164 ; 2413-6387 ; 1609-3577

    Relation: Beloborodov I.S., Efetov K.B., Lopatin A.V., Vinokur V.M. Granular electronic systems. Reviews of Modern Physics. 2007; 79(2): 469. https://doi.org/10.1103/RevModPhys.79.469; van der Zant H.S.J., Elion W.J., Geerligs L.J., Mooij J.E. Quantum phase transitions in two dimensions: Experiments in Josephson-junction arrays. Physical Review B. Condensed matter. 1996; 54(14): 10081. https://doi.org/10.1103/PhysRevB.54.10081; Fazio R., van der Zant H.S.J. Quantum phase transitions and vortex dynamics in superconducting networks. Physics Reports. 2001; 355(4): 235—334. https://doi.org/10.1016/S0370-1573(01)00022-9; Rzchowski M.S. Phase transitions in a kagom´e lattice of Josephson junctions. Physical Review B. Condensed matter. 1997; 55: 11745—11750. https://doi.org/10.1103/PhysRevB.55.11745; Feofanov A.K., Oboznov V.A., Bol’ginov V.V., Lisenfeld J., Poletto S., Ryazanov V.V., Rossolenko A.N., Khabipov M., Balashov D., Zorin A.B., Dmitriev P.N., Koshelets V.P., Ustinov A.V. Implementation of superconductor/ferromagnet/ superconductor pi-shifters in superconducting digital and quantum circuits. Nature Physics. 2010; 6(8): 593—597. https://doi.org/10.1038/nphys1700; Jeanneret B., Benz S.P. Application of the Josephson effect in electrical metrology. The European Physical Journal Special Topics. 2009; 172(1): 181—206. https://doi.org/10.1140/epjst/e2009-01050-6; Mukhanov O.A. Energy-efficient single flux quantum technology. IEEE Transactions on Applied Superconductivity.2011; 21(3): 760—769. https://doi.org/0.1109/TASC.2010.2096792; Fedorov A.K., Akimov A.V., Biamonte J.D., Kavokin A.V., Khalili F.Ya., Kiktenko E.O., Kolachevsky N.N., Kurochkin Y.V., Lvovsky A.I., Rubtsov A.N., Shlyapnikov G.V., Straupe S.S., Ustinov A.V., Zheltikov A.M. Quantum technologies in Russia. Quantum Science and Technology. 2019; 4(4): 040501. https://doi.org/10.1088/2058-9565/ab4472; Acín A., Bloch I., Buhrman H., Calarco T., Eichler Ch., Eisert J., Esteve D., Gisin N., Glaser S.J., Jelezko F., Kuhr S., Lewenstein M., Riedel M.F., Schmidt P.O., Thew R., Wallraff A., Walmsley I., Wilhelm F.K. The quantum technologies roadmap: a European community view. New Journal of Physics. 2018; 20(8): 080201. https://doi.org/10.1088/1367-2630/aad1ea; Gyongyosi L., Imre S. A survey on quantum computing technology. Computer Science Review. 2019; 31(9): 51—71. https://doi.org/10.1016/j.cosrev.2018.11.002; Siddiqi I. Engineering high-coherence superconducting qubits. Nature Reviews Materials. 2021; 6(10): 875—891. https://doi.org/10.1038/s41578-021-00370-4; Orlando T.P., Mooij J.E., Tian L., van der Wal C.H., Levitov L.S., Lloyd S., Mazo J.J. Superconducting persistent-current qubit. Physical Review B. Condensed matter. 1999; 60(22): 15398—15413. https://doi.org/10.1103/physrevb.60.15398; Krantz Ph., Kjaergaard M., Yan F., Orlando T.P., Gustavsson S., Oliver W.D. A quantum engineer’s guide to superconducting qubits. Applied Physics Reviews. 2019; 6(2): 021318. https://doi.org/10.1063/1.5089550; Kjaergaard M., Schwartz M.E., Braumüller J., Krantz Ph., Wang J.I.-J., Gustavsson S., Oliver W.D. Superconducting qubits: Current state of play. Annual Review of Condensed Matter Physics. 2020; 11: 369—395. https://doi.org/10.1146/annurev-conmatphys-031119-050605; King A.D., Carrasquilla J., Raymond J., Ozfidan I., Andriyash E., Berkley A., Reis M., Lanting T., Harris R., Altomare F., Boothby K., Bunyk P.I., Enderud C., Fréchette A., Hoskinson E., Ladizinsky N., Oh T., Poulin-Lamarre G., Rich Ch., Sato Y., Smirnov A.Yu., Swenson L.J., Volkmann M.H., Whittaker J., Yao J., Ladizinsky E., Johnson M.W, Hilton J., Amin M.H. Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature. 2018; 560(7719): 456—460. https://doi.org/10.1038/s41586-018-0410-x; King A.D., Raymond J., Lanting T., Harris R., Zucca A., Altomare F., Berkley A.J., Boothby K., Ejtemaee S., Enderud C., Hoskinson E., Huang Sh., Ladizinsky E., MacDonald A.J.R., Marsden G., Molavi R., Oh T., Poulin-Lamarre G., Reis M., Rich C., Sato Y., Tsai N., Volkmann M., Whittaker J.D., Yao J., Sandvik A.W., Amin M.H. Quantum critical dynamics in a 5,000-qubit programmable spin glass. Nature. 2023; 617(7959): 61—66. https://doi.org/10.1038/s41586-023-05867-2; Park H., Lee H. Frustrated ising model on d-wave quantum annealing machine. Journal of the Physical Society of Japan. 2022; 91(7): 074001. https://doi.org/10.7566/JPSJ.91.074001; Xu K., Chen J.-J., Zeng Y., Zhang Y.-R., Song Ch., Liu W., Guo Q., Zhang P., Xu D., Deng H., Huang K., Wang H., Zhu X., Zheng D., Fan H. Emulating many-body localization with a superconducting quantum processor. Physical Review Letters. 2018; 120(5): 050507. https://doi.org/10.1103/PhysRevLett.120.050507; Neyenhuys O., Fistul M.V., Eremin I.M. Long-range Ising spins models emerging from frustrated Josephson junctions arrays with topological constraints. Physical Review B. Condensed matter. 2023; 108: 165413. https://doi.org/10.1103/PhysRevB.108.165413; Anderson P.W. The concept of frustration in spin glasses. Journal of the Less Common Metals. 1978; 62: 291—294. https://doi.org/10.1016/0022-5088(78)90040-1; Moessner R., Ramirez A.P. Geometrical frustration. Physics Today. 2006; 59(2): 24—29. https://doi.org/10.1063/1.2186278; Balents L. Spin liquids in frustrated magnets. Nature. 2010;464(7286):199–208. https://doi.org/10.1038/nature08917; Mi X., Sonner M., Niu M.Y. et al. Noise-resilient edge modes on a chain of superconducting qubits. Science. 2022; 378(6621): 785—790. https://doi.org/10.1126/science.abq5769; Douçot B., Vidal J. Pairing of cooper pairs in a fully frustrated Josephson- junction chain. Physical Review Letters. 2002; 8(22): 227005. https://doi.org/10.1103/physrevlett.88.227005; Heras U.L., Mezzacapo A., Lamata L., Filipp S., Wallraff A., Solano E. Digital quantum simulation of spin systems in superconducting circuits. Physical Review Letters. 2014; 112(20): 200501. https://doi.org/10.1103/PhysRevLett.112.200501; Nisoli C., Moessner R., Schiffer P. Colloquium: Artificial spin ice: Designing and imaging magnetic frustration. Reviews of Modern Physics. 2013; 85(4): 1473. https://doi.org/10.1103/RevModPhys.85.1473; Bell R.E. Frustration in physics. Physics Today. 1982; 35(8): 78—78. https://doi.org/10.1063/1.2915237; Gilbert I., Nisoli C., Schiffer P. Frustration by design. Physics Today. 2016; 69(7): 54—59. https://doi.org/10.1063/PT.3.3237; Baniodeh A., Magnani N., Lan Y., Buth G., Anson Ch.E., Richter J., Affronte M., Schnack J., Powell A.K. High spin cycles: topping the spin record for a single molecule verging on quantum criticality. npj Quantum Materials. 2018; 3(1): 10. https://doi.org/10.1038/s41535-018-0082-7; Han T.-H., Helton J.S., Chu Sh., Nocera D.G., Rodriguez- Rivera J.A., Broholm C., Lee Y.S. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature. 2012; 492(7429): 406–410. https://doi.org/10.1038/nature11659; Mahmoudian S., Rademaker L., Ralko A., Fratini S., Dobrosavljević V. Glassy dynamics in geometrically frustrated coulomb liquids without disorder. Physical Review Letters. 2015; 115(2): 025701. https://doi.org/10.1103/PhysRevLett.115.025701; Caputo P., Fistul M.V., Ustinov A.V. Resonances in one and two rows of triangular Josephson junction cells. Physical Review B. Condensed matter. 2001; 63(21): 214510. https://doi.org/10.1103/PhysRevB.63.214510; Andreanov A., Fistul M.V. Resonant frequencies and spatial correlations in frustrated arrays of Josephson type nonlinear oscillators. Journal of Physics A: Mathematical and Theoretical. 2019; 52(10): 105101. https://doi.org/10.1088/1751-8121/ab013d; Andreanov A., Fistul M.V. Frustration-induced highly anisotropic magnetic patterns in the classical xy model on the kagome lattice. Physical Review B. Condensed matter. 2020; 102(14): 140405. https://doi.org/10.1103/physrevb.102.140405; Pop I.M., Hasselbach K., Buisson O., Guichard W., Pannetier B., Protopopov I. Measurement of the current- phase relation in Josephson junction rhombi chains. Physical Review B. Condensed matter. 2008; 78(10): 104504. https://doi.org/10.1103/PhysRevB.78.104504; Rizzi M., Cataudella V., Fazio R. 4e-condensation in a fully frustrated Josephson junction diamond chain. Physical Review B. Condensed matter. 2006; 73(10): 100502(R). https://doi.org/10.1103/PhysRevB.73.100502; Protopopov I.V., Feigel’man M.V. Anomalous periodicity of supercurrent in long frustrated Josephson-junction rhombi chains. Physical Review B. Condensed matter. 2004; 70(18): 184519. https://doi.org/10.1103/PhysRevB.70.184519; Hilgenkamp H. Pi-phase shift Josephson structures. Superconductor Science and Technology. 2008; 21(3): 034011. https://doi.org/10.1088/0953-2048/21/3/034011; Sondhi Sh.L., Girvin S.M., Carini J.P., Shahar D. Continuous quantum phase transitions. Reviews of Modern Physics. 1997; 69(1): 315. https://doi.org/10.1103/RevModPhys.69.315; Haviland D.B., Andersson K., Agren P. Superconducting and insulating behavior in one-dimensional Josephson junction arrays. Journal of Low Temperature Physics. 2000; 118(5): 733—749. https://doi.org/10.1023/A:1004603814529; Ильичев Е.В. Введение в динамику сверхпроводящих квантовых цепей. Новосибирск: НГТУ; 2018. 174 с.; Landau L.D., Lifshitz E.M. Quantum mechanics: non-relativistic theory. Elsevier; 2013. Vol. 3. 300 p.; Derzhko O., Honecker A., Richter J. Low-temperature thermodynamics for a flat-band ferromagnet: Rigorous versus numerical results. Physical Review B. Condensed matter. 2007; 76(22): 220402. https://doi.org/10.1103/physrevb.76.220402; https://met.misis.ru/jour/article/view/570

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
    Conference

    Συγγραφείς: Соснин, А. С., Sosnin, A. S.

    Θέμα γεωγραφικό: RU, RSVPU, РФ, РГППУ

    Περιγραφή αρχείου: application/pdf

    Relation: Наука. Информатизация. Технологии. Образование : материалы XII международной научно-практической конференции. - Екатеринбург, 2019

    Διαθεσιμότητα: https://elar.uspu.ru/handle/ru-uspu/28259

  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
    Academic Journal

    Θεματικοί όροι: ПРИНЦИП СИММЕТРИИ,PRINCIPLE OF SYMMETRY,ЗАКОНЫ СОХРАНЕНИЯ,CONSERVATION LAWS,"ТВЕРДЬ НЕБЕСНАЯ","ВОДЫ","WATER",КНИГА БЫТИЯ,THE BOOK OF GENESIS,МОДЕЛЬ МИРОВОГО КРИСТАЛЛА,THE MODEL OF GLOBAL CRYSTAL,СТАНДАРТНАЯ КОСМОЛОГИЧЕСКАЯ МОДЕЛЬ,STANDARD COSMOLOGICAL MODEL,ВЕЩЕСТВО И ПОЛЕ,SUBSTANCE AND FIELD,СХЕМА ДЕЛЕНИЯ ОБЛАСТИ НАУЧНОГО ЗНАНИЯ,CIRCUIT DIVIDING THE AREA OF SCIENTIFIC KNOWLEDGE,ЯВЛЕНИЯ ПРИРОДЫ,THE PHENOMENA OF NATURE,ЗАКОНЫ ПРИРОДЫ,LAWS OF NATURE,ПРИНЦИПЫ ИНВАРИАНТНОСТИ,INVARIANCE PRINCIPLES,НЕЛОКАЛЬНОСТЬ ПРОСТРАНСТВА-ВРЕМЕНИ,SPACE-TIME NONLOCALITY,КВАНТОВАЯ ЗАПУТАННОСТЬ,QUANTUM ENTANGLEMENT,ПРИНЦИП ПРИЧИННОСТИ,THE PRINCIPLE OF CAUSALITY,"FIRMAMENT"

    Περιγραφή αρχείου: text/html