Showing 1 - 20 results of 225 for search '"КАРДИОТОКСИЧНОСТЬ"', query time: 0.85s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal
  7. 7
    Academic Journal

    Contributors: Авторы заявляют об отсутствии финансирования исследования.

    Source: Complex Issues of Cardiovascular Diseases; Том 14, № 5 (2025); 178-189 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 5 (2025); 178-189 ; 2587-9537 ; 2306-1278

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1473/1085; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1473/1619; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1473/1620; Васюк Ю.А., Гендлин Г.Е., Емелина Е.И., Шупенина Е.Ю., Баллюзек М.Ф., Баринова И.В., Виценя М.В., Давыдкин И.Л., Дундуа Д.П., Дупляков Д.В., Затейщиков Д.А., Золотовская И.А., Конради А.О., Лопатин Ю.М., Моисеева О.М., Недогода С.В., Недошивин А.О., Никитин И.Г., Полтавская М.Г., Потиевская В.И., Репин А.Н., Сумин А.Н., Зотова Г.А., Тумян Г.С., Шляхто Е.В., Хатьков И.Е., Якушин С.С., Беленков Ю.Н. Согласованное мнение Российских экспертов по профилактике, диагностике и лечению сердечно-сосудистой токсичности противоопухолевой терапии. Российский кардиологический журнал. 2021;26(9):4703. doi:10.15829/1560-4071-2021-4703; Lyon A.R., López-Fernández T., Couch L.S., Asteggiano R., Aznar M.C., Bergler-Klein J., Boriani G., Cardinale D., Cordoba R., Cosyns B., Cutter D.J., de Azambuja E., de Boer R.A., Dent S.F., Farmakis D., Gevaert S.A., Gorog D.A., Herrmann J., Lenihan D., Moslehi J., Moura B., Salinger S.S., Stephens R., Suter T.M., Szmit S., Tamargo J., Thavendiranathan P., Tocchetti C.G., van der Meer P., van der Pal H.J.H. 2022 ESC Guidelines on Cardio-Oncology Developed in Collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS): Developed by the Task Force on Cardio-Oncology of the European Society of Cardiology (ESC). Eur. Heart J. 2022;43(41):4229-4361. doi:10.1093/eurheartj/ehac244; Herrmann J., Lenihan D., Armenian S., Barac A., Blaes A., Cardinale D., Carver J., Dent S., Ky B., Lyon A.R., López-Fernández T., Fradley M.G., Ganatra S., Curigliano G., Mitchell J.D., Minotti G., Lang N.N., Liu J.E., Neilan T.G., Nohria A., O'Quinn R., Pusic I., Porter C., Reynolds K.L., Ruddy K.J., Thavendiranathan P., Valent P. Defining cardiovascular toxicities of cancer therapies: An International Cardio-Oncology Society (IC-OS) consensus statement. Eur. Heart J. 2022;43(4):280-299. doi:10.1093/eurheartj/ehab674; Jordan J.H., Castellino S.M., Meléndez G.C., Klepin H.D., Ellis L.R., Lamar Z., Vasu S., Kitzman D.W., Ntim W.O., Brubaker P.H., Reichek N., D'Agostino R.B. Jr, Hundley W.G. Left ventricular mass change after anthracycline chemotherapy. Circ. Heart Fail. 2018;11(7):e004560. doi:10.1161/CIRCHEARTFAILURE.117.004560.; Li M., Russo M., Pirozzi F., Tocchetti C.G., Ghigo A. Autophagy and cancer therapy cardiotoxicity: from molecular mechanisms to therapeutic opportunities. Biochim. Biophys. Acta Mol. Cell Res. 2020;1867(3):118493. doi:10.1016/j.bbamcr.2019.06.007; Емелина Е.И., Гендлин Г.Е., Никитин И.Г. Кардиоонкология и онкогематология: алгоритмы обследования, профилактика и лечения кардиотоксичности, направления реабилитации. Клиническая онкогематология. 2021;14(2):239–261. doi:10.21320/2500-2139-2021-14-2-239-261; Васюк Ю.А., Шупенина Е.Ю., Новосел Е.О., Выжигин Д.А., Носова А.Г., Жукова Л.Г., Филоненко Д.А., Хатькова Е.И. Возможности первичной медикаментозной профилактики кардиотоксичности противоопухолевой терапии у онкологических больных. Российский кардиологический журнал. 2022;27(12):5258. doi:10.15829/1560-4071-2022-5258; Wallace K.B., Sardão V.A., Oliveira P.J. Mitochondrial determinants of doxorubicin-induced cardiomyopathy. Circ. Res. 2020;126(7):926-941. doi:10.1161/CIRCRESAHA.119.314681; Wu B.B., Leung K.T., Poon E.N. Mitochondrial-Targeted Therapy for Doxorubicin-Induced Cardiotoxicity. Int. J. Mol. Sci. 2022;23(3):1912. doi:10.3390/ijms23031912; Danesi R., Bernardini N., Marchetti A., Bernardini M., Del Tacca M. Protective effects of fructose-1,6-diphosphate on acute and chronic doxorubicin cardiotoxicity in rats. Cancer Chemother. Pharmacol. 1990;25(5):326-332. doi:10.1007/BF00686231.; Díaz-Gavela A.A., Figueiras-Graillet L., Luis Á.M., Salas Segura J., Ciérvide R., Del Cerro Peñalver E., Couñago F., Arenas M., López-Fernández T. Breast radiotherapy-related cardiotoxicity. when, how, why. Risk prevention and control strategies. Cancers (Basel). 2021;13(7):1712. doi:10.3390/cancers13071712; Васюк Ю.А., Школьник Е.Л., Несветов В.В., Школьник Л.Д., Варлан Г.В., Пильщиков А.В. Нарушения метаболизма миокарда на фоне химиотерапевтического лечения, а также возможности их коррекции. CardioСоматика. 2013;(4):20-24.; Avagimyan A., Kakturskiy L. The impact of trimetazidine on the anthropometric parameters of doxorubicin-cyclophosphamide mode in chemotherapy-induced heart alteration. Georgian Med. News. 2022;322:158-161.; Curigliano G., Lenihan D., Fradley M., Ganatra S., Barac A., Blaes A., Herrmann J., Porter C., Lyon A.R., Lancellotti P., Patel A., DeCara J., Mitchell J., Harrison E., Moslehi J., Witteles R., Calabro M.G., Orecchia R., de Azambuja E., Zamorano J.L., Krone R., Iakobishvili Z., Carver J., Armenian S., Ky B., Cardinale D., Cipolla C.M., Dent S., Jordan K. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann. Oncol. 2020;31(2):171-190. doi:10.1016/j.annonc.2019.10.023; Sobczuk P., Czerwińska M., Kleibert M., Cudnoch-Jędrzejewska A. Anthracycline-induced cardiotoxicity and renin-angiotensin-aldosterone system - from molecular mechanisms to therapeutic applications. Heart Fail. Rev. 2022;27(1):295-319. doi:10.1007/s10741-020-09977-1; McCune C., McGowan M., Johnston R., McCarthy A., Watson C., Dixon L. The prevalence of late anthracycline induced cardiotoxicity in survivors of childhood malignancy in Northern Ireland. Heart. 2019;105:A52. doi:10.1136/heartjnl-2019ICS.64; Li M, Sala V., De Santis M.C., Cimino J., Cappello P., Pianca N., Di Bona A., Margaria J.P., Martini M., Lazzarini E., Pirozzi F., Rossi L., Franco I., Bornbaum J., Heger J., Rohrbach S., Perino A., Tocchetti C.G., Lima B.H.F., Teixeira M.M., Porporato P.E., Schulz R., Angelini A., Sandri M., Ameri P., Sciarretta S., Lima-Júnior R.CP., Mongillo M., Zaglia T., Morello F., Novelli F., Hirsch E., Ghigo A. Phosphoinositide 3-kinase gamma inhibition protects from anthracycline cardiotoxicity and reduces tumor growth. Circulation. 2018;138(7):696-711. doi:10.1161/CIRCULATIONAHA.117.030352; Carvalho R.A., Sousa R.P., Cadete V.J., Lopaschuk G.D., Palmeira C.M., Bjork J.A., Wallace K.B. Metabolic remodeling associated with subchronic doxorubicin cardiomyopathy. Toxicology. 2010;270(2-3):92-98. doi:10.1016/j.tox.2010.01.019.; Hrelia S., Fiorentini D., Maraldi T., Angeloni C., Bordoni A., Biagi P.L., Hakim G. Doxorubicin Induces Early Lipid Peroxidation Associatedwith Changes in Glucose Transport in Cultured Cardiomyocytes. Biochim. Biophys. Acta. 2002;1567(1-2):150-156. doi:10.1016/s0005-2736(02)00612-0; Dezsi C.A. Trimetazidine in Practice: Review of the clinical and experimental evidence. Am. J. Ther. 2016;23(3):e871-9. doi:10.1097/MJT.0000000000000180; Tallarico D., Rizzo V., Di Maio F., Petretto F., Bianco G., Placanica G., Marziali M., Paravati V., Gueli N., Meloni F., Campbell S.V. Myocardial cytoprotection by trimetazidine against anthracycline-induced cardiotoxicity in anticancer chemotherapy. Angiology. 2003;54(2):219-227. doi:10.1177/000331970305400212; Ватутин Н.Т., Калинкина Н.В., Риджок В.В., Столика О.И. Влияние триметазидина на вариабельность сердечного ритма и систолическую функцию левого желудочка у пациентов, получающих антрациклиновые антибиотики. Кровообращение, гемостаз. 2005;3-4:141-145; Donne M.G., Iannielli, A., Capozza P., Caterina, R., Marzilli M. Cardioprotective effect of Trimetazidine in patients with early breast cancer receiving anthracycline-based chemotherapy. European Heart Journal. 2020; 41(Supplement_2:880. doi:10.1093/ehjci/ehaa946.0880; Калинкина Н.В. Влияние триметазидина на безболевую ишемию миокарда и диастолическую функцию левого желудочка у пациентов, получающих антрациклиновые антибиотики. Вестник неотложной и восстановительной медицины. 2006;2:195-198; Pascale C., Fornengo P., Epifani G., Bosio A., Giacometto F. Cardioprotection of trimetazidine and anthracycline-induced acute cardiotoxic effects. Lancet. 2002;359(9312):1153-1154. doi:10.1016/S0140-6736(02)08135-7

  8. 8
  9. 9
    Academic Journal

    Contributors: The authors declare no funding for this study., Авторы заявляют об отсутствии финансирования при проведении исследования.

    Source: The Russian Archives of Internal Medicine; Том 15, № 5 (2025); 336-345 ; Архивъ внутренней медицины; Том 15, № 5 (2025); 336-345 ; 2411-6564 ; 2226-6704

    File Description: application/pdf

    Relation: https://www.medarhive.ru/jour/article/view/2078/1444; Емелина Е.И., Шуйкова К.В., Гендлин Г.Е. и др. Поражение сердца при лечении современными противоопухолевыми препаратами и лучевые повреждения сердца у больных с лимфомами. Клиническая онкогематология. Фундаментальные исследования и клиническая практика. 2009; 2 (2): 152-160.; Виценя М.В., Агеев Ф.Т., Гиляров М.Ю., и др. Практические рекомендации по коррекции кардиоваскулярной токсичности противоопухолевой лекарственной терапии. Злокачественные опухоли. 2019; 9 (3S2): 609-627. doi:10.18027/2224-5057-2019-9-3s2-609-627.; Pantazi D., Tselepis A.D. Cardiovascular toxic effects of antitumor agents: Pathogenetic mechanisms. Thromb Res. 2022; 213 (1): S95-S102. doi:10.1016/j.thromres.2021.12.017.; Barachini S., Ghelardoni S., Varga Z.V. et.al. Antineoplastic drugs inducing cardiac and vascular toxicity — An update. Vascul Pharmacol. 2023; 153:107223. doi:10.1016/j.vph.2023.107223.; Nagy A., Borzsei D., Hoffmann A. et.al. A Comprehensive Overview on Chemotherapy-Induced Cardiotoxicity: Insights into the Underlying Inflammatory and Oxidative Mechanisms. Cardiovasc Drugs Ther. 2024; 16:22. doi:10.1007/s10557-024-07574-0.; Васюк Ю.А., Шупенина Е.Ю., Новосел Е.О. и др. Нарушения ритма и проводимости сердца как проявления кардиотоксичности противоопухолевого лечения — миф или реальность? Сибирский медицинский журнал. 2020; 35(1):13–21. doi:10.29001/2073-8552-2020-35-1-13-21.; Romitan D.M., Radulescu D., Berindan-Neagoe I. et. al. Cardiomyopathies and Arrhythmias Induced by Cancer Therapies. Biomedicines. 2020; 8(11):496. doi:10.3390/biomedicines8110496.; Васюк Ю.А., Гендлин Г.Е., Емелина Е.И. и др. Согласованное мнение российских экспертов по профилактике, диагностике и лечению сердечно-сосудистой токсичности противоопухолевой терапии. Российский кардиологический журнал. 2021; 26(9):4703. doi:10.15829/1560-4071-2021-4703; Bodziock GM, Melendez GC. Long-term QT prolongation in monkeys after doxorubicin administration at doses similar to breast cancer therapy. Front Cardiovasc Med. 2023; 10: 1247273. doi:10.3389/fcvm.2023.1247273.; Liu Z., Liu M., Zhong X. et al. Global longitudinal strain at 3 months after therapy can predict late cardiotoxicity in breast cancer. Cancer Med. 2023; 12(12):13374-13387. doi:10.1002/cam4.6039.; Chang H., Lee C., Su P. et.al. Subtle cardiac dysfunction in lymphoma patients receiving low to moderate dose chemotherapy. Sci Rep. 2021; 11(1):7100. doi:10.1038/s41598-021-86652-x.; Gong F.F., Cascino G.J., Murtagh G. et.al. Circulating Biomarkers for Cardiotoxicity Risk Prediction. Curr Treat Options Oncol. 2021; 22(6):46. doi:10.1007/s11864-021-00845-0.; Ehrhardt M.J., Liu Q., Mulrooney D.A. et al. Improved Cardiomyopathy Risk Prediction Using Global Longitudinal Strain and N-TerminalPro-B-Type Natriuretic Peptide in Survivors of Childhood Cancer Exposed to Cardiotoxic Therapy. J Clin Oncol. 2024; 42(11):1265-1277. doi:10.1200/JCO.23.01796.; Гиматдинова Г.Р., Данилова О.Е., Давыдкин И.Л. и др. Ассоциация клинико-диагностических показателей кардиоваскулярной токсичности у пациентов с неходжкинскими лимфомами в процессе программной противоопухолевой терапии. Архивъ внутренней медицины. 2024; 14(2): 144-153. doi:10.20514/2226-6704-2024-14-2-144-153.; https://www.medarhive.ru/jour/article/view/2078

  10. 10
    Academic Journal

    Source: Bulletin of the Academy of Sciences of Moldova. Medical Sciences; Vol. 79 No. 2 (2024): Medical Sciences; 166-169 ; Buletinul Academiei de Științe a Moldovei. Științe medicale; Vol. 79 Nr. 2 (2024): Ştiinţe medicale; 166-169 ; Вестник Академии Наук Молдовы. Медицина; Том 79 № 2 (2024): Медицина; 166-169 ; 1857-0011

    File Description: application/pdf

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
    Academic Journal

    Source: Siberian journal of oncology; Том 22, № 6 (2023); 64-73 ; Сибирский онкологический журнал; Том 22, № 6 (2023); 64-73 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2017-0-31-36

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2836/1181; Потиевская В.И., Ахобеков А.А., Болотина Л.В., Королева Л.А., Каприн А.Д. Кардиоваскулярные осложнения противоопухолевой терапии рака молочной железы: диагностика, профилактика и лечение. Сибирский онкологический журнал. 2021; 20(5): 138–48. doi:10.21294/1814-4861-2021-20-5-138-148.; Lyon A.R., López-Fernández T., Couch L.S., Asteggiano R., Aznar M.C., Bergler-Klein J., Boriani G., Cardinale D., Cordoba R., Cosyns B., Cutter D.J., de Azambuja E., de Boer R.A., Dent S.F., Farmakis D., Gevaert S.A., Gorog D.A., Herrmann J., Lenihan D., Moslehi J., Moura B., Salinger S.S., Stephens R., Suter T.M., Szmit S., Tamargo J., Thavendiranathan P., Tocchetti C.G., van der Meer P., van der Pal H.J.H.; ESC Scientifc Document Group. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J. 2022; 43(41): 4229–361. doi:10.1093/eurheartj/ehac244.; Plana J.C., Galderisi M., Barac A., Ewer M.S., Ky B., ScherrerCrosbie M., Ganame J., Sebag I.A., Agler D.A., Badano L.P., Banchs J., Cardinale D., Carver J., Cerqueira M., DeCara J.M., Edvardsen T., Flamm S.D., Force T., Griffn B.P., Jerusalem G., Liu J.E., Magalhães A., Marwick T., Sanchez L.Y., Sicari R., Villarraga H.R., Lancellotti P. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2014; 27(9): 911–39. doi:10.1016/j.echo.2014.07.012.; Curigliano G., Lenihan D., Fradley M., Ganatra S., Barac A., Blaes A., Herrmann J., Porter C., Lyon A.R., Lancellotti P., Patel A., DeCara J., Mitchell J., Harrison E., Moslehi J., Witteles R., Calabro M.G., Orecchia R., de Azambuja E., Zamorano J.L., Krone R., Iakobishvili Z., Carver J., Armenian S., Ky B., Cardinale D., Cipolla C.M., Dent S., Jordan K.; ESMO Guidelines Committee. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann Oncol. 2020; 31(2): 171–90. doi:10.1016/j.annonc.2019.10.023.; Виценя М.В., Агеев Ф.Т., Гиляров М.Ю., Овчинников А.Г., Орлова Р.В., Полтавская М.Г., Сычева Е.А. Практические рекомендации по коррекции кардиоваскулярной токсичности противоопухолевой лекарственной терапии. Злокачественные опухоли. 2019; 9(3s2): 609–27. doi:10.18027/2224-5057-2019-9-3s2-609-627.; Фашафша З.З., Чомахидзе П.Ш., Меситская Д.Ф., Суворов А.Ю., Секачева М.И., Поддубская Е.В., Тюканова Е.С., Санькова М.В., Озова М.А., Левина В.Д., Андреев Д.А., Копылов Ф.Ю. Особенности ранней динамики эхокардиографических показателей у онкологических пациентов на фоне химиотерапии. Российский кардиологический журнал. 2022; 27(11): 22–8. doi:10.15829/1560-4071-2022-5093.; Сумин А.Н., Щеглова А.В., Слепынина Ю.С., Иванова А.В., Поликутина О.М. Оценка диастолической дисфункции левого желудочка при лечении больных раком молочной железы антрациклинами. Acta Biomedica Scientifca. 2022; 7(3): 121–33. doi:10.29413/ABS.2022-7.3.13.; McDonagh T., Metra M., Adamo M., Gardner R.S., Baumbach A., Böhm M., Burri H., Butler J., Čelutkiené J., Chioncel O., Cleland J.G.F., Coats A.J.S., Crespo-Leiro M.G., Farmakis D., Gilard M., Heymans S., Hoes A.W., Jaarsma T., Jankowska E.A., Lainscak M., Lam C.S.P., Lyon A.R., McMurray J.J.V., Mebazaa A., Mindham R., Muneretto C., Piepoli M.F., Price S., Rosano G.M.C., Ruschitzka F., Skibelund A.K. 2021 Рекомендации ESC по диагностике и лечению острой и хронической сердечной недостаточности. Российский кардиологический журнал. 2023; 28(1): 117–224. doi:10.15829/1560-4071-2023-5168.; Петрова Е.Б., Попель О.Н., Шишко О.Н., Статкевич Т.В., Бельская М.И., Колядко М.Г., Митьковская Н.П. Дислипидемия и атеросклероз прецеребральных артерий у бессимптомных лиц с субклиническим гипотиреозом. Кардиология в Беларуси. 2023; 15(3): 333–43. doi:10.34883/PI.2023.15.3.004.; Mincu R.I., Lampe L.F., Mahabadi A.A., Kimmig R., Rassaf T., Totzeck M. Left Ventricular Diastolic Function Following AnthracyclineBased Chemotherapy in Patients with Breast Cancer without Previous Cardiac Disease-A Meta-Analysis. J Clin Med. 2021; 10(17): 3890. doi:10.3390/jcm10173890.; Конончук Н.Б., Петрова Е.Б., Галицкая С.С., Шаповал Е.В., Микулич Д.В., Мажуль О.С., Гутковская Е.А., Смирнов С.Ю., Митьковская Н.П. Кардиотоксический эффект противоопухолевой терапии при раке молочной железы. Неотложная кардиология и кардиоваскулярные риски. 2018; 2(1): 175–81.; Minotti G., Salvatorelli E., Reggiardo G., Mangiacapra F., Camilli M., Menna P. Cardiac Anthracycline Accumulation and B-Type Natriuretic Peptide to Defne Risk and Predictors of Cancer TreatmentRelated Early Diastolic Dysfunction. J Pharmacol Exp Ther. 2022; 381(3): 266–73. doi:10.1124/jpet.122.001101.; Zhang C., Chen Z., Qin S., Zhu Y., Shu L., Zuo Z. Incidence of adverse cardiovascular events associated with immune checkpoint inhibitors and risk factors for left ventricular dysfunction: A single-center prospective clinical study. Front Cardiovasc Med. 2023; 10. doi:10.3389/fcvm.2023.1052699.; Sławiński G., Hawryszko M., Liżewska-Springer A., NabiałekTrojanowska I., Lewicka E. Global Longitudinal Strain in CardioOncology: A Review. Cancers (Basel). 2023; 15(3): 986. doi:10.3390/cancers15030986.; Левина В.Д., Полтавская М.Г., Чомахидзе П.Ш., Болотина Л.В., Дешкина Т.И., Мещеряков А.А., Комарова А.Г., Кули-Заде З.А., Куклина М.Д., Герасимов А.Н., Седов В.П. Значение глобальной продольной деформации миокарда левого желудочка для прогнозирования кардиотоксичности, ассоциированной с малыми и средними кумулятивными дозами антрациклинов, при лечении рака молочной железы. Медицинский алфавит. 2022; (33): 19–26. doi:10.33667/2078-5631-2022-33-19-26.; Muckiene G., Vaitiekus D., Zaliaduonyte D., Zabiela V., Verseckaite-Costa R., Vaiciuliene D., Juozaityte E., Jurkevicius R. Prognostic Impact of Global Longitudinal Strain and NT-proBNP on Early Development of Cardiotoxicity in Breast Cancer Patients Treated with AnthracyclineBased Chemotherapy. Medicina (Kaunas). 2023 May; 59(5): 953. doi:10.3390/medicina59050953.; Chen J., Cheng C., Fan L., Xu X., Chen J., Feng Y., Tang Y., Yang C. Assessment of left heart dysfunction to predict doxorubicin cardiotoxicity in children with lymphoma. Front Pediatr. 2023; 11. doi:10.3389/fped.2023.1163664.; https://www.siboncoj.ru/jour/article/view/2836

  18. 18
    Academic Journal

    Contributors: The study was conducted on an initiative basis., Исследование проводилось на инициативной основе.

    Source: Drug development & registration; Том 13, № 1 (2024); 190-199 ; Разработка и регистрация лекарственных средств; Том 13, № 1 (2024); 190-199 ; 2658-5049 ; 2305-2066

    File Description: application/pdf

    Relation: https://www.pharmjournal.ru/jour/article/view/1720/1236; https://www.pharmjournal.ru/jour/article/downloadSuppFile/1720/2062; Di Marco A., Cassinelli G., Arcamone F. The discovery of daunorubicin. Cancer treatment reports. 1981;65(4):3–8.; Tan C., Tasaka H., Yu K. P., Murphy M. L., Karnofsky D. A. Daunomycin, an antitumor antibiotic, in the treatment of neoplastic disease. Clinical evaluation with special reference to childhood leukemia. Cancer. 1967;20(3):333–353. DOI:10.1002/1097-0142(1967)20:33.0.co;2-k.; Arcamone F., Cassinelli G., Fantini G., Grein A., Orezzi P., Pol C., Spalla C. Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S. peucetius var. caesius. Biotechnology and Bioengineering. 1969;11(6):1101–1110. DOI:10.1002/bit.260110607.; Chaulin A. M., Duplyakov D. V. Arrhythmogenic effects of doxorubicin. Complex Issues of Cardiovascular Diseases. 2020;9(3):69–80. DOI:10.17802/2306-1278-2020-9-3-69-80.; Yang F., Kemp C. J., Henikoff S. Doxorubicin Enhances Nucleosome Turnover around Promoters. Current Biology. 2013;23(9):782–787. DOI:10.1016/j.cub.2013.03.043.; Von Hoff D. D. Risk Factors for Doxorubicin-lnduced Congestive Heart Failure. Annals of Internal Medicine. 1979;91(5):710. DOI:10.7326/0003-4819-91-5-710.; Swain S. M., Whaley F. S., Ewer M. S. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97(11):2869–2879. DOI:10.1002/cncr.11407.; Cardinale D., Colombo A., Bacchiani G., Tedeschi I., Meroni C. A., Veglia F., Civelli M., Lamantia G., Colombo N., Curigliano G., Fiorentini C., Cipolla C. M. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131(22):1981–1988. DOI:10.1161/CIRCULATIONAHA.114.013777.; Cardinale D., Sandri M. T., Martinoni A., Borghini E., Civelli M., Lamantia G., Cinieri S., Martinelli G., Fiorentini C., Cipolla C. M. Myocardial injury revealed by plasma troponin I in breast cancer treated with high-dose chemotherapy. Annals of Oncology. 2002;13(5):710–715. DOI:10.1093/annonc/mdf170.; Thavendiranathan P., Poulin F., Lim K. D., Plana J. C., Woo A., Marwick T. H. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. Journal of the American College of Cardiology. 2014;63(25 Pt. A):2751–2768. DOI:10.1016/j.jacc.2014.01.073.; Linschoten M., Teske A. J., Cramer M. J., van der Wall E., Asselbergs F. W. Chemotherapy-Related Cardiac Dysfunction: A Systematic Review of Genetic Variants Modulating Individual Risk. Circulation: Genomic and Precision Medicine. 2018;11(1):e001753. DOI:10.1161/CIRCGEN.117.001753.; Miller K. D., Nogueira L., Mariotto A. B., Rowland J. H., Yabroff K. R., Alfano C. M., Jemal A., Kramer J. L., Siegel R. L. Cancer treatment and survivorship statistics, 2019. CA: A Cancer Journal for Clinicians. 2019;69(5):363–385. DOI:10.3322/caac.21565.; Billingham M. E., Mason J. W., Bristow M. R., Daniels J. R. Anthracycline cardiomyopathy monitored by morphologic changes. Cancer treatment reports. 1978;62(6):865–872.; Bristow M. R., Mason J. W., Billingham M. E., Daniels J. R. Doxorubicin cardiomyopathy: evaluation by phonocardiography, endomyocardial biopsy, and cardiac catheterization. Annals of Internal Medicine. 1978;88(2):168–175. DOI:10.7326/0003-4819-88-2-168.; Ewer S. M., Ewer M. S. Cardiotoxicity profile of trastuzumab. Drug Safety. 2008;31(6):459–467. DOI:10.2165/00002018-200831060-00002.; Ferrans V. J. Overview of cardiac pathology in relation to anthracycline cardiotoxicity. Cancer treatment reports. 1978;62(6):955–961.; Shan K., Lincoff A. M., Young J. B. Anthracycline-induced cardiotoxicity. Annals of Internal Medicine. 1996;125(1):47–58. DOI:10.7326/0003-4819-125-1-199607010-00008.; Berry G. J., Jorden M. Pathology of radiation and anthracycline cardiotoxicity. Pediatric Blood & Cancer. 2005;44(7):630–637. DOI:10.1002/pbc.20346.; Šimůnek T., Štěrba M., Popelová O., Adamcová M., Hrdina R., Geršl V. Anthracycline-induced cardiotoxicity: Overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacological Reports. 2009;61(1):154–171. DOI:10.1016/S1734-1140(09)70018-0.; Xu X., Persson H. L., Richardson D. R. Molecular Pharmacology of the Interaction of Anthracyclines with Iron. Molecular Pharmacology. 2005;68(2):261–271. DOI:10.1124/mol.105.013383.; Doroshow J. H., Davies K. J. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. Journal of Biological Chemistry. 1986;261(7):3068–3074. DOI:10.1016/s0021-9258(17)35747-2.; Winterbourn C. C. Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicology Letters. 1995;82–83:969–974. DOI:10.1016/0378-4274(95)03532-X.; Keizer H. G., Pinedo H. M., Schuurhuis G. J., Joenje H. Doxorubicin (adriamycin): a critical review of free radical-dependent mechanisms of cytotoxicity. Pharmacology & Therapeutics. 1990;47(2):219–231. DOI:10.1016/0163-7258(90)90088-j.; Myers C. E., Gianni L., Simone C. B., Klecker R., Greene R. Oxidative destruction of erythrocyte ghost membranes catalyzed by the doxorubicin-iron complex. Biochemistry. 1982;21(8):1707–1712. DOI:10.1021/bi00537a001.; Minotti G., Recalcati S., Mordente A., Liberi G., Calafiore A. M., Mancuso C., Preziosi P., Cairo G. The secondary alcohol metabolite of doxorubicin irreversibly inactivates aconitase/iron regulatory protein-1 in cytosolic fractions from human myocardium. The FASEB Journal. 1998;12(7):541–552. DOI:10.1096/fasebj.12.7.541.; Bugger H., Guzman C., Zechner C., Palmeri M., Russell K. S., Russell R. R. Uncoupling protein downregulation in doxorubicin-induced heart failure improves mitochondrial coupling but increases reactive oxygen species generation. Cancer Chemotherapy and Pharmacology. 2011;67(6):1381–1388. DOI:10.1007/s00280-010-1441-7.; Wu X.-Y., Luo A.-Y., Zhou Y.-R., Ren J.-H. N-acetylcysteine reduces oxidative stress, nuclear factor-κB activity and cardiomyocyte apoptosis in heart failure. Molecular Medicine Reports. 2014;10(2):615–624. DOI:10.3892/mmr.2014.2292.; Van Dalen E. C., Caron H. N., Dickinson H. O., Kremer L. C. M. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database of Systematic Reviews. 2011. DOI:10.1002/14651858.CD003917.pub4.; Jo S.-H., Kim L. S., Kim S.-A., Kim H.-S., Han S.-J., Park W. J., Choi Y. J. Evaluation of Short-Term Use of N-Acetylcysteine as a Strategy for Prevention of Anthracycline-Induced Cardiomyopathy: EPOCH Trial – A Prospective Randomized Study. Korean Circulation Journal. 2013;43(3):174–181. DOI:10.4070/kcj.2013.43.3.174.; Hasinoff B. B., Patel D., Wu X. The oral iron chelator ICL670A (deferasirox) does not protect myocytes against doxorubicin. Free Radical Biology and Medicine. 2003;35(11):1469–1479. DOI:10.1016/j.freeradbiomed.2003.08.005.; Popelová O., Sterba M., Simůnek T., Mazurová Y., Guncová I., Hroch M., Adamcová M., Geršl V. Deferiprone does not protect against chronic anthracycline cardiotoxicity in vivo. Journal of Pharmacology and Experimental Therapeutics. 2008;326(1):259–269. DOI:10.1124/jpet.108.137604.; Elihu N., Anandasbapathy S., Frishman W. H. Chelation therapy in cardiovascular disease: ethylenediaminetetraacetic acid, deferoxamine, and dexrazoxane. The Journal of Clinical Pharmacology. 1998;38(2):101–105. DOI:10.1002/j.1552-4604.1998.tb04397.x.; Giordano F. J. Oxygen, oxidative stress, hypoxia, and heart failure. Journal of Clinical Investigation. 2005;115(3):500–508. DOI:10.1172/JCI200524408.; Goormaghtigh E., Chatelain P., Caspers J., Ruysschaert J. M. Evidence of a complex between adriamycin derivatives and cardiolipin: Possible role in cardiotoxicity. Biochemical Pharmacology. 1980;29(21):3003–3010. DOI:10.1016/0006-2952(80)90050-7.; Childs A. C., Phaneuf S. L., Dirks A. J., Phillips T., Leeuwenburgh C. Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2:Bax ratio. Cancer Research. 2002;62(16):4592–4598.; Ichikawa Y., Ghanefar M., Bayeva M., Wu R., Khechaduri A., Naga Prasad S. V., Mutharasan R. K., Naik T. J., Ardehali H. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. Journal of Clinical Investigation. 2014;124(2):617–630. DOI:10.1172/JCI72931.; Tewey K. M., Rowe T. C., Yang L., Halligan B. D., Liu L. F. Adriamycin-Induced DNA Damage Mediated by Mammalian DNA Topoisomerase II. Science. 1984;226(4673):466–468. DOI:10.1126/science.6093249.; Wang J. C. Cellular roles of DNA topoisomerases: a molecular perspective. Nature Reviews Molecular Cell Biology. 2002;3(6):430–440. DOI:10.1038/nrm831.; Zhang S., Liu X., Bawa-Khalfe T., Lu L.-S., Lyu Y. L., Liu L. F., Yeh E. T. H. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine. 2012;18(11):1639–1642. DOI:10.1038/nm.2919.; Vavrova A., Jansova H., Mackova E., Machacek M., Haskova P., Tichotova L., Sterba M., Simunek T. Catalytic inhibitors of topoisomerase II differently modulate the toxicity of anthracyclines in cardiac and cancer cells. PloS One. 2013;8(10):e76676. DOI:10.1371/journal.pone.0076676.; Classen S., Olland S., Berger J. M. Structure of the topoisomerase II ATPase region and its mechanism of inhibition by the chemotherapeutic agent ICRF-187. Proceedings of the National Academy of Sciences. 2003;100(19):10629–10634. DOI:10.1073/pnas.1832879100.; Khiati S., Dalla Rosa I., Sourbier C., Ma X., Rao V. A., Neckers L. M., Zhang H., Pommier Y. Mitochondrial Topoisomerase I (Top1mt) Is a Novel Limiting Factor of Doxorubicin Cardiotoxicity. Clinical Cancer Research. 2014;20(18):4873–4881. DOI:10.1158/1078-0432.CCR-13-3373.; Lebrecht D., Kokkori A., Ketelsen U. P., Setzer B., Walker U. A. Tissue-specific mtDNA lesions and radical-associated mitochondrial dysfunction in human hearts exposed to doxorubicin. The Journal of Pathology. 2005;207(4):436–444. DOI:10.1002/path.1863.; Lebrecht D., Setzer B., Ketelsen U. P., Haberstroh J., Walker U. A. Time-Dependent and Tissue-Specific Accumulation of mtDNA and Respiratory Chain Defects in Chronic Doxorubicin Cardiomyopathy. Circulation. 2003;108(19):2423–2429. DOI:10.1161/01.CIR.0000093196.59829.DF.; Yin J., Guo J., Zhang Q., Cui L., Zhang L., Zhang T., Zhao J., Li J., Middleton A., Carmichael P. L., Peng S. Doxorubicin-induced mitophagy and mitochondrial damage is associated with dysregulation of the PINK1/parkin pathway. Toxicology in Vitro. 2018;51:1–10. DOI:10.1016/j.tiv.2018.05.001.; Vega R. B., Horton J. L., Kelly D. P. Maintaining ancient organelles. Mitochondrial biogenesis and maturation. Circulation Research. 2015;116(11):1820–1834. DOI:10.1161/CIRCRESAHA.116.305420.; Kruiswijk F., Labuschagne C. F., Vousden K. H. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nature Reviews Molecular Cell Biology. 2015;16(7):393–405. DOI:10.1038/nrm4007.; Zhuang J., Ma W., Lago C. U., Hwang P. M. Metabolic regulation of oxygen and redox homeostasis by p53: lessons from evolutionary biology? Free Radical Biology and Medicine. 2012;53(6):1279–1285. DOI:10.1016/j.freeradbiomed.2012.07.026.; Hoshino A., Mita Y., Okawa Y., Ariyoshi M., Iwai-Kanai E., Ueyama T., Ikeda K., Ogata T., Matoba S. Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nature Communications. 2013;4(1):2308. DOI:10.1038/ncomms3308.; Dhingra R., Margulets V., Chowdhury S. R., Thliveris J., Jassal D., Fernyhough P., Dorn G. W., Kirshenbaum L. A. Bnip3 mediates doxorubicin-induced cardiac myocyte necrosis and mortality through changes in mitochondrial signaling. Proceedings of the National Academy of Sciences. 2014;111(51):E5537–E5544. DOI:10.1073/pnas.1414665111.; Fang X., Wang H., Han D., Xie E., Yang X., Wei J., Gu S., Gao F., Zhu N., Yin X., Cheng Q., Zhang P., Dai W., Chen J., Yang F., Yang H.-T., Linkermann A., Gu W., Min J., Wang F. Ferroptosis as a target for protection against cardiomyopathy. Proceedings of the National Academy of Sciences. 2019;116(7):2672–2680. DOI:10.1073/pnas.1821022116.; Zhu W., Soonpaa M. H., Chen H., Shen W., Payne R. M., Liechty E. A., Caldwell R. L., Shou W., Field L. J. Acute doxorubicin cardiotoxicity is associated with p53-induced inhibition of the mammalian target of rapamycin pathway. Circulation. 2009;119(1):99–106. DOI:10.1161/CIRCULATIONAHA.108.799700.; Zhu W., Zhang W., Shou W., Field L. J. P53 inhibition exacerbates late-stage anthracycline cardiotoxicity. Cardiovascular Research. 2014;103(1):81–89. DOI:10.1093/cvr/cvu118.; Nithipongvanitch R., Ittarat W., Velez J. M., Zhao R., St. Clair D. K., Oberley T. D. Evidence for p53 as Guardian of the Cardiomyocyte Mitochondrial Genome Following Acute Adriamycin Treatment. Journal of Histochemistry & Cytochemistry. 2007;55(6):629–639. DOI:10.1369/jhc.6A7146.2007.; Saleme B., Gurtu V., Zhang Y., Kinnaird A., Boukouris A. E., Gopal K., Ussher J. R., Sutendra G. Tissue-specific regulation of p53 by PKM2 is redox dependent and provides a therapeutic target for anthracycline-induced cardiotoxicity. Science Translational Medicine. 2019;11(478):eaau8866. DOI:10.1126/scitranslmed.aau8866.; Sala V., Li M., Ghigo A. New avenues in cardio-oncology. Aging. 2019;11(4):1075–1076. DOI:10.18632/aging.101817.; Sawyer D. B., Zuppinger C., Miller T. A., Eppenberger H. M., Suter T. M. Modulation of Anthracycline-Induced Myofibrillar Disarray in Rat Ventricular Myocytes by Neuregulin-1β and Anti-erbB2: Potential Mechanism for Trastuzumab-Induced Cardiotoxicity. Circulation. 2002;105(13):1551–1554. DOI:10.1161/01.CIR.0000013839.41224.1C.; Granzier H. L., Labeit S. The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circulation Research. 2004;94(3):284–295. DOI:10.1161/01.RES.0000117769.88862.F8.; Ali M. A. M., Cho W. J., Hudson B., Kassiri Z., Granzier H., Schulz R. Titin is a Target of Matrix Metalloproteinase-2: Implications in Myocardial Ischemia/Reperfusion Injury. Circulation. 2010;122(20):2039–2047. DOI:10.1161/CIRCULATIONAHA.109.930222.; Lim C. C., Zuppinger C., Guo X., Kuster G. M., Helmes M., Eppenberger H. M., Suter T. M., Liao R., Sawyer D. B. Anthracyclines Induce Calpain-dependent Titin Proteolysis and Necrosis in Cardiomyocytes. Journal of Biological Chemistry. 2004;279(9):8290–8299. DOI:10.1074/jbc.M308033200.; Sala V., Della Sala A., Hirsch E., Ghigo A. Signaling Pathways Underlying Anthracycline Cardiotoxicity. Antioxidants & Redox Signaling. 2020;32(15):1098–1114. DOI:10.1089/ars.2020.8019.; Galvez A. S., Diwan A., Odley A. M., Hahn H. S., Osinska H., Melendez J. G., Robbins J., Lynch R. A., Marreez Y., Dorn G. W. Cardiomyocyte degeneration with calpain deficiency reveals a critical role in protein homeostasis. Circulation Research. 2007;100(7):1071–1078. DOI:10.1161/01.RES.0000261938.28365.11.; Taneike M., Mizote I., Morita T., Watanabe T., Hikoso S., Yamaguchi O., Takeda T. , Oka T., Tamai T., Oyabu J., Murakawa T., Nakayama H., Nishida K., Takeda J., Mochizuki N., Komuro I., Otsu K. Calpain protects the heart from hemodynamic stress. Journal of Biological Chemistry. 2011;286(37):32170–32177. DOI:10.1074/jbc.M111.248088.; Wang Y., Zheng D., Wei M., Ma J., Yu Y., Chen R., Lacefield J. C., Xu H., Peng T. Over-expression of calpastatin aggravates cardiotoxicity induced by doxorubicin. Cardiovascular Research. 2013;98(3):381–390. DOI:10.1093/cvr/cvt048.; Chan B. Y. H., Roczkowsky A., Moser N., Poirier M., Hughes B. G., Ilarraza R., Schulz R. Doxorubicin induces de novo expression of N-terminal-truncated matrix metalloproteinase-2 in cardiac myocytes. Canadian Journal of Physiology and Pharmacology. 2018;96(12):1238–1245. DOI:10.1139/cjpp-2018-0275.; Doucet A., Overall C. Protease proteomics: Revealing protease in vivo functions using systems biology approaches. Molecular Aspects of Medicine. 2008;29(5):339–358. DOI:10.1016/j.mam.2008.04.003.; McCawley L. J., Matrisian L. M. Matrix metalloproteinases: they’re not just for matrix anymore! Current Opinion in Cell Biology. 2001;13(5):534–540. DOI:10.1016/s0955-0674(00)00248-9.; Gao C. Q., Sawicki G., Suarez-Pinzon W. L., Csont T., Wozniak M., Ferdinandy P., Schulz R. Matrix metalloproteinase-2 mediates cytokine-induced myocardial contractile dysfunction. Cardiovascular Research. 2003;57(2):426–433. DOI:10.1016/s0008-6363(02)00719-8.; Wang W., Schulze C. J., Suarez-Pinzon W. L., Dyck J. R. B., Sawicki G., Schulz R. Intracellular Action of Matrix Metalloproteinase-2 Accounts for Acute Myocardial Ischemia and Reperfusion Injury. Circulation. 2002;106(12):1543–1549. DOI:10.1161/01.CIR.0000028818.33488.7B.; Sawicki G., Leon H., Sawicka J., Sariahmetoglu M., Schulze C. J., Scott P. G., Szczesna-Cordary D., Schulz R. Degradation of Myosin Light Chain in Isolated Rat Hearts Subjected to Ischemia-Reperfusion Injury: A New Intracellular Target for Matrix Metalloproteinase-2. Circulation. 2005;112(4):544–552. DOI:10.1161/CIRCULATIONAHA.104.531616.; Sung M. M., Schulz C. G., Wang W., Sawicki G., Bautista-López N. L., Schulz R. Matrix metalloproteinase-2 degrades the cytoskeletal protein α-actinin in peroxynitrite mediated myocardial injury. Journal of Molecular and Cellular Cardiology. 2007;43(4):429–436. DOI:10.1016/j.yjmcc.2007.07.055.; Bergman M. R., Teerlink J. R., Mahimkar R., Li L., Zhu B. Q., Nguyen A., Dahi S., Karliner J. S., Lovett D. H. Cardiac matrix metalloproteinase-2 expression independently induces marked ventricular remodeling and systolic dysfunction. American Journal of Physiology-Heart and Circulatory Physiology. 2007;292(4):H1847–H1860. DOI:10.1152/ajpheart.00434.2006.; Chan B. Y. H., Roczkowsky A., Cho W. J., Poirier M., Sergi C., Keschrumrus V., Churko J. M., Granzier H., Schulz R. MMP inhibitors attenuate doxorubicin cardiotoxicity by preventing intracellular and extracellular matrix remodelling. Cardiovascular Research. 2021;117(1):188–200. DOI:10.1093/cvr/cvaa017.; Tanihata J., Nishioka N., Inoue T., Bando K., Minamisawa S. Urinary Titin Is Increased in Patients After Cardiac Surgery. Frontiers in Cardiovascular Medicine. 2019;6. DOI:10.3389/fcvm.2019.00007.; Zhang T., Zhang Y., Cui M., Jin L., Wang Y., Lv F., Liu Y., Zheng W., Shang H., Zhang J., Zhang M., Wu H., Guo J., Zhang X., Hu X., Cao C.-M., Xiao R.-P. CaMKII is a RIP3 substrate mediating ischemiaand oxidative stress-induced myocardial necroptosis. Nature Medicine. 2016;22(2):175–182. DOI:10.1038/nm.4017.; Meng L., Lin H., Zhang J., Lin N., Sun Z., Gao F., Luo H., Ni T., Luo W., Chi J., Guo H. Doxorubicin induces cardiomyocyte pyroptosis via the TINCR-mediated posttranscriptional stabilization of NLR family pyrin domain containing 3. Journal of Molecular and Cellular Cardiology. 2019;136:15–26. DOI:10.1016/j.yjmcc.2019.08.009.; Zheng X., Zhong T., Ma Y., Wan X., Qin A., Yao B., Zou H., Song Y., Yin D. Bnip3 mediates doxorubicin-induced cardiomyocyte pyroptosis via caspase-3/GSDME. Life Sciences. 2020;242:117186. DOI:10.1016/j.lfs.2019.117186.; Arola O. J., Saraste A., Pulkki K., Kallajoki M., Parvinen M., Voipio-Pulkki L. M. Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Research. 2000;60(7):1789–1792.; Bartlett J. J., Trivedi P. C., Pulinilkunnil T. Autophagic dysregulation in doxorubicin cardiomyopathy. Journal of Molecular and Cellular Cardiology. 2017;104:1–8. DOI:10.1016/j.yjmcc.2017.01.007.; Koleini N., Kardami E. Autophagy and mitophagy in the context of doxorubicin-induced cardiotoxicity. Oncotarget. 2017;8(28):46663–46680. DOI:10.18632/oncotarget.16944.; Li M., Russo M., Pirozzi F., Tocchetti C. G., Ghigo A. Autophagy and cancer therapy cardiotoxicity: From molecular mechanisms to therapeutic opportunities. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research. 2020;1867(3):118493. DOI:10.1016/j.bbamcr.2019.06.007.; Xiao B., Hong L., Cai X., Mei S., Zhang P., Shao L. The true colors of autophagy in doxorubicin-induced cardiotoxicity. Oncology Letters. 2019;18(3):2165–2172. DOI:10.3892/ol.2019.10576.; Bartlett J. J., Trivedi P. C., Yeung P., Kienesberger P. C., Pulinilkunnil T. Doxorubicin impairs cardiomyocyte viability by suppressing transcription factor EB expression and disrupting autophagy. Biochemical Journal. 2016;473(21):3769–3789. DOI:10.1042/BCJ20160385.; Li D. L., Wang Z. V., Ding G., Tan W., Luo X., Criollo A., Xie M., Jiang N., May H., Kyrychenko V., Schneider J. W., Gillette T. G., Hill J. A. Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification. Circulation. 2016;133(17):1668–1687. DOI:10.1161/CIRCULATIONAHA.115.017443.; Li M., Sala V., De Santis M. C., Cimino J., Cappello P., Pianca N., Di Bona A., Margaria J. P., Martini M., Lazzarini E., Pirozzi F., Rossi L., Franco I., Bornbaum J., Heger J., Rohrbach S., Perino A., Tocchetti C. G., Lima B. H. F., Teixeira M. M., Porporato P. E., Schulz R., Angelini A., Sandri M., Ameri P., Sciarretta S., Lima-Júnior R. C. P., Mongillo M., Zaglia T., Morello F., Novelli F., Hirsch E., Ghigo A. Phosphoinositide 3-Kinase Gamma Inhibition Protects From Anthracycline Cardiotoxicity and Reduces Tumor Growth. Circulation. 2018;138(7):696–711. DOI:10.1161/CIRCULATIONAHA.117.030352.; Ejiri J., Inoue N., Kobayashi S., Shiraki R., Otsui K., Honjo T., Takahashi M., Ohashi Y., Ichikawa S., Terashima M., Mori T., Awano K., Shinke T., Shite J., Hirata K.-I., Yokozaki H., Kawashima S., Yokoyama M. Possible role of brain-derived neurotrophic factor in the pathogenesis of coronary artery disease. Circulation. 2005;112(14):2114–2120. DOI:10.1161/CIRCULATIONAHA.104.476903.; Meloni M., Caporali A., Graiani G., Lagrasta C., Katare R., Van Linthout S., Spillmann F., Campesi I., Madeddu P., Quaini F., Emanueli C. Nerve growth factor promotes cardiac repair following myocardial infarction. Circulation Research. 2010;106(7):1275–1284. DOI:10.1161/CIRCRESAHA.109.210088.; Liao D., Zhang C., Liu N., Cao L., Wang C., Feng Q., Yao D., Long M., Jiang P. Involvement of neurotrophic signaling in doxorubicin-induced cardiotoxicity. Experimental and Therapeutic Medicine. 2020;19(2):1129–1135. DOI:10.3892/etm.2019.8276.; Hang P., Zhao J., Sun L., Li M., Han Y., Du Z., Li Y. Brain-derived neurotrophic factor attenuates doxorubicin-induced cardiac dysfunction through activating Akt signalling in rats. Journal of Cellular and Molecular Medicine. 2017;21(4):685–696. DOI:10.1111/jcmm.13012.; Zhao J., Du J., Pan Y., Chen T., Zhao L., Zhu Y., Chen Y., Zheng Y., Liu Y., Sun L., Hang P., Du Z. Activation of cardiac TrkB receptor by its small molecular agonist 7,8-dihydroxyflavone inhibits doxorubicin-induced cardiotoxicity via enhancing mitochondrial oxidative phosphorylation. Free Radical Biology and Medicine. 2019;130:557–567. DOI:10.1016/j.freeradbiomed.2018.11.024.; https://www.pharmjournal.ru/jour/article/view/1720

  19. 19
    Academic Journal

    Source: Drug development & registration; Том 13, № 3 (2024); 208-218 ; Разработка и регистрация лекарственных средств; Том 13, № 3 (2024); 208-218 ; 2658-5049 ; 2305-2066

    File Description: application/pdf

    Relation: https://www.pharmjournal.ru/jour/article/view/1913/1312; https://www.pharmjournal.ru/jour/article/downloadSuppFile/1913/2426; Andreev D. A., Balakin E. I., Samoilov A. S., Pustovoit V. I. The Role of Doxorubicin in the Formation of Cardiotoxicity – Generally Accepted Statement. Part I. Prevalence and Mechanisms of Formation (Review). Drug development & registration. 2024;13(1):190–199. (In Russ.) DOI:10.33380/2305-2066-2024-13-1-1508.; Wallace K. B., Sardão V. A., Oliveira P. J. Mitochondrial Determinants of Doxorubicin-Induced Cardiomyopathy. Circulation Research. 2020;126(7):926–941. DOI:10.1161/CIRCRESAHA.119.314681.; Lefrak E. A., Pitha J., Rosenheim S., Gottlieb J. A. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer. 1973;32(2):302–314. DOI:10.1002/1097-0142(197308)32:23.0.co;2-2.; Swain S. M., Whaley F. S., Ewer M. S. Congestive heart failure in patients treated with doxorubicin. Cancer. 2003;97(11):2869–2879. DOI:10.1002/cncr.11407.; Arai M., Yoguchi A., Takizawa T., Yokoyama T., Kanda T., Kurabayashi M., Nagai R. Mechanism of doxorubicin-induced inhibition of sarcoplasmic reticulum Ca 2+ -ATPase gene transcription. Circulation Research. 2000;86(1):8–14. DOI:10.1161/01.res.86.1.8.; Steinherz L. J., Steinherz P. G., Tan C. T., Heller G., Murphy M. L. Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA. 1991;266(12):1672–1677.; Maksjutov N. F., Murtazin A. A., Balakin E. I., Pustovoit V. I. Using machine learning approaches and omics technologies for assessment of human functional state. Modern Issues of Biomedicine. 2022;6(3). (In Russ.) DOI:10.51871/2588-0500_2022_06_03_14.; Cardinale D., Colombo A., Bacchiani G., Tedeschi I., Meroni C. A., Veglia F., Civelli M., Lamantia G., Colombo N., Curigliano G., Fiorentini C., Cipolla C. M. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131(22):1981–1988. DOI:10.1161/CIRCULATIONAHA.114.013777.; Pustovoit V. I., Balakin E. I., Maksjutov N. F., Murtazin A. A., Samoylov A. S. Change in the functional status of extreme athletes in response to adverse environmental conditions. Human sport medicine. 2022;22(S2):22–29. DOI:10.14529/hsm22s203.; Jordan J. H., Castellino S. M., Meléndez G. C., Klepin H. D., Ellis L. R., Lamar Z., Vasu S., Kitzman D. W., Ntim W. O., Brubaker P. H., Reichek N., D’Agostino R. B., Hundley W. G. Left Ventricular Mass Change After Anthracycline Chemotherapy. Circulation: Heart Failure. 2018;11(7):e004560. DOI:10.1161/CIRCHEARTFAILURE.117.004560.; Willis M. S., Parry T. L., Brown D. I., Mota R. I., Huang W., Beak J. Y., Sola M., Zhou C., Hicks S. T., Caughey M. C., D’Agostino R. B., Jordan J., Hundley W. G., Jensen B. C. Doxorubicin Exposure Causes Subacute Cardiac Atrophy Dependent on the Striated Muscle-Specific Ubiquitin Ligase MuRF1. Circulation: Heart Failure. 2019;12(3):e005234. DOI:10.1161/CIRCHEARTFAILURE.118.005234.; Kajihara H., Yokozaki H., Yamahara M., Kadomoto Y., Tahara E. Anthracycline induced myocardial damage: An analysis of 16 autopsy cases. Pathology – Research and Practice. 1986;181(4):434–441. DOI:10.1016/S0344-0338(86)80079-6.; Prezioso L., Tanzi S., Galaverna F., Frati C., Testa B., Savi M., Graiani G., Lagrasta C., Cavalli S., Galati S., Madeddu D., Rizzini E., Ferraro F., Musso E., Stilli D., Urbanek K., Piegari E., De Angelis A., Maseri A., Rossi F., Quaini E., Quaini F. Cancer Treatment-Induced Cardiotoxicity: a Cardiac Stem Cell Disease? Cardiovascular & Hematological Agents in Medicinal Chemistry. 2010;8(1):55–75. DOI:10.2174/187152510790796165.; Bearzi C., Rota M., Hosoda T., Tillmanns J., Nascimbene A., De Angelis A., Yasuzawa-Amano S., Trofimova I., Siggins R. W., LeCapitaine N., Cascapera S., Beltrami A. P., D'Alessandro D. A., Zias E., Quaini F., Urbanek K., Michler R. E., Bolli R., Kajstura J., Leri A., Anversa P. Human cardiac stem cells. Proceedings of the National Academy of Sciences. 2007;104(35):14068–14073. DOI:10.1073/pnas.0706760104.; Beltrami A. P., Barlucchi L., Torella D., Baker M., Limana F., Chimenti S., Kasahara H., Rota M., Musso E., Urbanek K., Leri A., Kajstura J., Nadal-Ginard B., Anversa P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114(6):763–776. DOI:10.1016/s0092-8674(03)00687-1.; Pfister O., Mouquet F., Jain M., Summer R., Helmes M., Fine A., Colucci W. S., Liao R. CD31 – but Not CD31 + cardiac side population cells exhibit functional cardiomyogenic differentiation. Circulation Research. 2005;97(1):52–61. DOI:10.1161/01.RES.0000173297.53793.fa.; Smith R. R., Barile L., Cho H. C., Leppo M. K., Hare J. M., Messina E., Giacomello A., Abraham M. R., Marbán E. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 2007;115(7):896–908. DOI:10.1161/CIRCULATIONAHA.106.655209.; Cesselli D., Beltrami A. P., D’Aurizio F., Marcon P., Bergamin N., Toffoletto B., Pandolfi M., Puppato E., Marino L., Signore S., Livi U., Verardo R., Piazza S., Marchionni L., Fiorini C., Schneider C., Hosoda T., Rota M., Kajstura J., Anversa P., Beltrami C. A., Leri A. Effects of age and heart failure on human cardiac stem cell function. The American Journal of Pathology. 2011;179(1):349–366. DOI:10.1016/j.ajpath.2011.03.036.; Chimenti C., Kajstura J., Torella D., Urbanek K., Heleniak H., Colussi C., Di Meglio F., Nadal-Ginard B., Frustaci A., Leri A., Maseri A., Anversa P. Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circulation Research. 2003;93(7):604–613. DOI:10.1161/01.RES.0000093985.76901.AF.; Rota M., LeCapitaine N., Hosoda T., Boni A., De Angelis A., Padin-Iruegas M. E., Esposito G., Vitale S., Urbanek K., Casarsa C., Giorgio M., Lüscher T. F., Pelicci P. G., Anversa P., Leri A., Kajstura J. Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66 shc gene. Circulation Research. 2006;99(1):42–52. DOI:10.1161/01.RES.0000231289.63468.08.; Rupp S., Bauer J., von Gerlach S., Fichtlscherer S., Zeiher A. M., Dimmeler S., Schranz D. Pressure overload leads to an increase of cardiac resident stem cells. Basic Research in Cardiology. 2012;107(2):252. DOI:10.1007/s00395-012-0252-x.; Urbanek K., Torella D., Sheikh F., De Angelis A., Nurzynska D., Silvestri F., Beltrami C. A., Bussani R., Beltrami A. P., Quaini F., Bolli R., Leri A., Kajstura J., Anversa P. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proceedings of the National Academy of Sciences. 2005;102(24):8692–8697. DOI:10.1073/pnas.0500169102.; Avolio E., Gianfranceschi G., Cesselli D., Caragnano A., Athanasakis E., Katare R., Meloni M., Palma A., Barchiesi A., Vascotto C., Toffoletto B., Mazzega E., Finato N., Aresu G., Livi U., Emanueli C., Scoles G., Beltrami C. A., Madeddu P., Beltrami A. P. Ex vivo molecular rejuvenation improves the therapeutic activity of senescent human cardiac stem cells in a mouse model of myocardial infarction. Stem Cells. 2014;32(9):2373–2385. DOI:10.1002/stem.1728.; Kajstura J., Gurusamy N., Ogórek B., Goichberg P., Clavo-Rondon C., Hosoda T., D'Amario D., Bardelli S., Beltrami A. P., Cesselli D., Bussani R., del Monte F., Quaini F., Rota M., Beltrami C. A., Buchholz B. A., Leri A., Anversa P. Myocyte Turnover in the Aging Human Heart. Circulation Research. 2010;107(11):1374–1386. DOI:10.1161/CIRCRESAHA.110.231498.; Huang C., Zhang X., Ramil J. M., Rikka S., Kim L., Lee Y., Gude N. A., Thistlethwaite P. A., Sussman M. A., Gottlieb R. A., Gustafsson Å. B. Juvenile exposure to anthracyclines impairs cardiac progenitor cell function and vascularization resulting in greater susceptibility to stress-induced myocardial injury in adult mice. Circulation. 2010;121(5):675–683. DOI:10.1161/CIRCULATIONAHA.109.902221.; De Angelis A., Piegari E., Cappetta D., Marino L., Filippelli A., Berrino L., Ferreira-Martins J., Zheng H., Hosoda T., Rota M., Urbanek K., Kajstura J., Leri A., Rossi F., Anversa P. Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation. 2010;121(2):276–292. DOI:10.1161/CIRCULATIONAHA.109.895771.; Piegari E., De Angelis A., Cappetta D., Russo R., Esposito G., Costantino S., Graiani G., Frati C., Prezioso L., Berrino L., Urbanek K., Quaini F., Rossi F. Doxorubicin induces senescence and impairs function of human cardiac progenitor cells. Basic Research in Cardiology. 2013;108(2):334. DOI:10.1007/s00395-013-0334-4.; De Angelis A., Piegari E., Cappetta D., Russo R., Esposito G., Ciuffreda L. P., Ferraiolo F. A. V., Frati C., Fagnoni F., Berrino L., Quaini F., Rossi F., Urbanek K. SIRT1 activation rescues doxorubicin-induced loss of functional competence of human cardiac progenitor cells. International Journal of Cardiology. 2015;189:30–44. DOI:10.1016/j.ijcard.2015.03.438.; Linke A., Müller P., Nurzynska D., Casarsa C., Torella D., Nascimbene A., Castaldo C., Cascapera S., Böhm M., Quaini F., Urbanek K., Leri A., Hintze T. H., Kajstura J., Anversa P. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proceedings of the National Academy of Sciences. 2005;102(25):8966–8971. DOI:10.1073/pnas.0502678102.; Torella D., Rota M., Nurzynska D., Musso E., Monsen A., Shiraishi I., Zias E., Walsh K., Rosenzweig A., Sussman M. A., Urbanek K., Nadal-Ginard B., Kajstura J., Anversa P., Leri A. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circulation Research. 2004;94(4):514–524. DOI:10.1161/01.RES.0000117306.10142.50.; Urbanek K., Rota M., Cascapera S., Bearzi C., Nascimbene A., De Angelis A., Hosoda T., Chimenti S., Baker M., Limana F., Nurzynska D., Torella D., Rotatori F., Rastaldo R., Musso E., Quaini F., Leri A., Kajstura J., Anversa P. Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circulation Research. 2005;97(7):663–673. DOI:10.1161/01.RES.0000183733.53101.11.; Powell E. M., Mars W. M., Levitt P. Hepatocyte Growth Factor/Scatter Factor Is a Motogen for Interneurons Migrating from the Ventral to Dorsal Telencephalon. Neuron. 2001;30(1):79–89. DOI:10.1016/S0896-6273(01)00264-1.; Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120(4):513–522. DOI:10.1016/j.cell.2005.02.003.; Beauséjour C. M., Krtolica A., Galimi F., Narita M., Lowe S. W., Yaswen P., Campisi J. Reversal of human cellular senescence: roles of the p53 and p16 pathways. The EMBO Journal. 2003;22(16):4212–4222. DOI:10.1093/emboj/cdg417.; Takai H., Smogorzewska A., de Lange T. DNA damage foci at dysfunctional telomeres. Current Biology. 2003;13(17):1549–1556. DOI:10.1016/s0960-9822(03)00542-6.; Ali M. K., Ewer M. S., Gibbs H. R., Swafford J., Graff K. L. Late doxorubicin-associated cardiotoxicity in children. Cancer. 1994;74(1):182–188. DOI:10.1002/1097-0142(19940701)74:13.0.co;2-2.; Chen M. H., Colan S. D., Diller L. Cardiovascular disease: cause of morbidity and mortality in adult survivors of childhood cancers. Circulation Research. 2011;108(5):619–628. DOI:10.1161/CIRCRESAHA.110.224519.; Pai V. B., Nahata M. C. Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Safety. 2000;22(4):263–302. DOI:10.2165/00002018-200022040-00002.; Kuwahara F., Kai H., Tokuda K., Kai M., Takeshita A., Egashira K., Imaizumi T. Transforming growth Factor-β function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation. 2002;106(1):130–135. DOI:10.1161/01.cir.0000020689.12472.e0.; Krstić J., Trivanović D., Mojsilović S., Santibanez J. F. Transforming Growth Factor-Beta and Oxidative Stress Interplay: Implications in Tumorigenesis and Cancer Progression. Oxidative Medicine and Cellular Longevity. 2015;2015:654594. DOI:10.1155/2015/654594.; Li A.-H., Liu P. P., Villarreal F. J., Garcia R. A. Dynamic changes in myocardial matrix and relevance to disease: translational perspectives. Circulation Research. 2014;114(5):916–927. DOI:10.1161/CIRCRESAHA.114.302819.; Cappetta D., Esposito G., Piegari E., Russo R., Ciuffreda L. P., Rivellino A., Berrino L., Rossi F., De Angelis A., Urbanek K. SIRT1 activation attenuates diastolic dysfunction by reducing cardiac fibrosis in a model of anthracycline cardiomyopathy. International Journal of Cardiology. 2016;205:99–110. DOI:10.1016/j.ijcard.2015.12.008.; Urbanek K., Cesselli D., Rota M., Nascimbene A., De Angelis A., Hosoda T., Bearzi C., Boni A., Bolli R., Kajstura J., Anversa P., Leri A. Stem cell niches in the adult mouse heart. Proceedings of the National Academy of Sciences. 2006;103(24):9226–9231. DOI:10.1073/pnas.0600635103.; Ramkisoensing A. A., de Vries A. A. F., Atsma D. E., Schalij M. J., Pijnappels D. A. Interaction between myofibroblasts and stem cells in the fibrotic heart: balancing between deterioration and regeneration. Cardiovascular Research. 2014;102(2):224–231. DOI:10.1093/cvr/cvu047.; Soultati A., Mountzios G., Avgerinou C., Papaxoinis G., Pectasides D., Dimopoulos M.-A., Papadimitriou C. Endothelial vascular toxicity from chemotherapeutic agents: Preclinical evidence and clinical implications. Cancer Treatment Reviews. 2012;38(5):473–483. DOI:10.1016/j.ctrv.2011.09.002.; Bielak-Zmijewska A., Wnuk M., Przybylska D., Grabowska W., Lewinska A., Alster O., Korwek Z., Cmoch A., Myszka A., Pikula S., Mosieniak G., Sikora E. A comparison of replicative senescence and doxorubicin-induced premature senescence of vascular smooth muscle cells isolated from human aorta. Biogerontology. 2014;15(1):47–64. DOI:10.1007/s10522-013-9477-9.; Murata T., Yamawaki H., Hori M., Sato K., Ozaki H., Karaki H. Chronic vascular toxicity of doxorubicin in an organ-cultured artery. British Journal of Pharmacology. 2001;132(7):1365–1373. DOI:10.1038/sj.bjp.0703959.; Urbich C., Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circulation Research. 2004;95(4):343–353. DOI:10.1161/01.RES.0000137877.89448.78.; Rafii S., Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nature Medicine. 2003;9(6):702–712. DOI:10.1038/nm0603-702.; Hamed S., Barshack I., Luboshits G., Wexler D., Deutsch V., Keren G., George J. Erythropoietin improves myocardial performance in doxorubicin-induced cardiomyopathy. European Heart Journal. 2006;27(15):1876–1883. DOI:10.1093/eurheartj/ehl044.; Takahashi T., Kalka C., Masuda H., Chen D., Silver M., Kearney M., Magner M., Isner J. M., Asahara T. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature Medicine. 1999;5(4):434–438. DOI:10.1038/7434.; Hill J. M., Zalos G., Halcox J. P. J., Schenke W. H., Waclawiw M. A., Quyyumi A. A., Finkel T. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. New England Journal of Medicine. 2003;348(7):593–600. DOI:10.1056/NEJMoa022287.; Maejima Y., Adachi S., Ito H., Hirao K., Isobe M. Induction of premature senescence in cardiomyocytes by doxorubicin as a novel mechanism of myocardial damage. Aging Cell. 2008;7(2):125–136. DOI:10.1111/j.1474-9726.2007.00358.x.; Spallarossa P., Altieri P., Barisione C., Passalacqua M., Aloi C., Fugazza G., Frassoni F., Podestà M., Canepa M., Ghigliotti G., Brunelli C. p38 MAPK and JNK antagonistically control senescence and cytoplasmic p16INK4A expression in doxorubicin-treated endothelial progenitor cells. PLoS ONE. 2010;5(12):e15583. DOI:10.1371/journal.pone.0015583.; Wada T., Stepniak E., Hui L., Leibbrandt A., Katada T., Nishina H., Wagner E. F., Penninger J. M. Antagonistic control of cell fates by JNK and p38-MAPK signaling. Cell Death & Differentiation. 2008;15(1):89–93. DOI:10.1038/sj.cdd.4402222.; Spallarossa P., Altieri P., Pronzato P., Aloi C., Ghigliotti G., Barsotti A., Brunelli C. Sublethal doses of an anti-erbB2 antibody leads to death by apoptosis in cardiomyocytes sensitized by low prosenescent doses of epirubicin: the protective role of dexrazoxane. Journal of Pharmacology and Experimental Therapeutics. 2010;332(1):87–96. DOI:10.1124/jpet.109.159525.; Yasuda K., Park H.-C., Ratliff B., Addabbo F., Hatzopoulos A. K., Chander P., Goligorsky M. S. Adriamycin nephropathy: a failure of endothelial progenitor cell-induced repair. The American Journal of Pathology. 2010;176(4):1685–1695. DOI:10.2353/ajpath.2010.091071.; Moore M. A. S., Hattori K., Heissig B., Shieh J.-H., Dias S., Crystal R. G., Rafii S. Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1. Annals of the New York Academy of Sciences. 2001;938(1):36–47. DOI:10.1111/j.1749-6632.2001.tb03572.x.; McNiece I. K., Briddell R. A., Hartley C. A., Smith K. A., Andrews R. G. Stem cell factor enhances in vivo effects of granulocyte colony stimulating factor for stimulating mobilization of peripheral blood progenitor cells. STEM CELLS. 1993;11(S2):36–41. DOI:10.1002/stem.5530110807.; Quaini F., Urbanek K., Beltrami A. P., Finato N., Beltrami C. A., Nadal-Ginard B., Kajstura J., Leri A., Anversa P. Chimerism of the transplanted heart. New England Journal of Medicine. 2002;346(1):5–15. DOI:10.1056/NEJMoa012081.; Thiele J., Varus E., Wickenhauser C., Kvasnicka H. M., Metz K. A., Beelen D. W. Regeneration of heart muscle tissue: quantification of chimeric cardiomyocytes and endothelial cells following transplantation. Histol Histopathol. 2004;19(1):201–209. DOI:10.14670/HH-19.201.; Fukuhara S., Tomita S., Nakatani T., Ohtsu Y., Ishida M., Yutani C., Kitamura S. G-CSF promotes bone marrow cells to migrate into infarcted mice heart, and differentiate into cardiomyocytes. Cell Transplantation. 2004;13(7–8):741–748. DOI:10.3727/000000004783983486.; Tomita S., Ishida M., Nakatani T., Fukuhara S., Hisashi Y., Ohtsu Y., Suga M., Yutani C., Yagihara T., Yamada K., Kitamura S. Bone marrow is a source of regenerated cardiomyocytes in doxorubicin-induced cardiomyopathy and granulocyte colony-stimulating factor enhances migration of bone marrow cells and attenuates cardiotoxicity of doxorubicin under electron microscopy. The Journal of Heart and Lung Transplantation. 2004;23(5):577–584. DOI:10.1016/j.healun.2003.06.001.; Urbanek K., Frati C., Graiani G., Madeddu D., Falco A., Cavalli S., Lorusso B., Gervasi A., Prezioso L., Savi M., Ferraro F., Galaverna F., Rossetti P., Lagrasta C., Re F., Quaini E., Rossi F., Angelis A., Quaini F. Cardioprotection by Targeting the Pool of Resident and Extracardiac Progenitors. Current Drug Targets. 2015;16(8):884–894. DOI:10.2174/1389450116666150126105002.; Yang F., Chen H., Liu Y., Yin K., Wang Y., Li X., Wang G., Wang S., Tan X., Xu C., Lu Y., Cai B. Doxorubicin caused apoptosis of mesenchymal stem cells via p38, JNK and p53 pathway. Cellular Physiology and Biochemistry. 2013;32(4):1072–1082. DOI:10.1159/000354507.; Oliveira M. S., Carvalho J. L., De Angelis Campos A. C., Gomes D. A., de Goes A. M., Melo M. M. Doxorubicin has in vivo toxicological effects on ex vivo cultured mesenchymal stem cells. Toxicology Letters. 2014;224(3):380–386. DOI:10.1016/j.toxlet.2013.11.023.; Lipshultz S. E., Lipsitz S. R., Sallan S. E., Dalton V. M., Mone S. M., Gelber R. D., Colan S. D. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. Journal of Clinical Oncology. 2005;23(12):2629–2636. DOI:10.1200/JCO.2005.12.121.; Legha S. S., Benjamin R. S., Mackay B., Yap H. Y., Wallace S., Ewer M., Blumenschein G. R., Freireich E. J. Adriamycin therapy by continuous intravenous infusion in patients with metastatic breast cancer. Cancer. 1982;49(9):1762–1766. DOI:10.1002/1097-0142(19820501)49:93.0.co;2-q.; Batist G. Cardiac safety of liposomal anthracyclines. Cardiovascular Toxicology. 2007;7(2):72–74. DOI:10.1007/s12012-007-0014-4.; Van Dalen E. C., Michiels E. M. C., Caron H. N., Kremer L. C. M. Different anthracycline derivates for reducing cardiotoxicity in cancer patients. Cochrane Database of Systematic Reviews. 2010;(3):CD005006. DOI:10.1002/14651858.CD005006.pub3.; Lipshultz S. E., Scully R. E., Lipsitz S. R., Sallan S. E., Silverman L. B., Miller T. L., Barry E. V., Asselin B. L., Athale U., Clavell L. A., Larsen E., Moghrabi A., Samson Y., Michon B., Schorin M. A., Cohen H. J., Neuberg D. S., Orav E. J., Colan S. D. Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: long-term follow-up of a prospective, randomised, multicentre trial. The Lancet Oncology. 2010;11(10):950–961. DOI:10.1016/S1470-2045(10)70204-7.; Speyer J. L., Green M. D., Zeleniuch-Jacquotte A., Wernz J. C., Rey M., Sanger J., Kramer E., Ferrans V., Hochster H., Meyers M. ICRF-187 permits longer treatment with doxorubicin in women with breast cancer. Journal of Clinical Oncology. 1992;10(1):117–127. DOI:10.1200/JCO.1992.10.1.117.; Hochster H. S. Clinical pharmacology of dexrazoxane. Seminars in Oncology. 1998;25(4 Suppl 10):37–42.; Lyu Y. L., Kerrigan J. E., Lin C.-P., Azarova A. M., Tsai Y.-C., Ban Y., Liu L. F. Topoisomerase IIβ–Mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Research. 2007;67(18):8839–8846. DOI:10.1158/0008-5472.CAN-07-1649.; Ladas E. J., Jacobson J. S., Kennedy D. D., Teel K., Fleischauer A., Kelly K. M. Antioxidants and cancer therapy: a systematic review. Journal of Clinical Oncology. 2004;22(3):517–528. DOI:10.1200/JCO.2004.03.086.; Kalay N., Basar E., Ozdogru I., Er O., Cetinkaya Y., Dogan A., Oguzhan A., Eryol N. K., Topsakal R., Ergin A., Inanc T. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. Journal of the American College of Cardiology. 2006;48(11):2258–2262. DOI:10.1016/j.jacc.2006.07.052.; Kaya M. G., Ozkan M., Gunebakmaz O., Akkaya H., Kaya E. G., Akpek M., Kalay N., Dikilitas M., Yarlioglues M., Karaca H., Berk V., Ardic I., Ergin A., Lam Y. Y. Protective effects of nebivolol against anthracycline-induced cardiomyopathy: a randomized control study. International Journal of Cardiology. 2013;167(5):2306–2310. DOI:10.1016/j.ijcard.2012.06.023.; Spallarossa P., Garibaldi S., Altieri P., Fabbi P., Manca V., Nasti S., Rossettin P., Ghigliotti G., Ballestrero A., Patrone F. Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. Journal of Molecular and Cellular Cardiology. 2004;37(4):837–846. DOI:10.1016/j.yjmcc.2004.05.024.; Mason R. P., Kalinowski L., Jacob R. F., Jacoby A. M., Malinski T. Nebivolol reduces nitroxidative stress and restores nitric oxide bioavailability in endothelium of black Americans. Circulation. 2005;112(24):3795–3801. DOI:10.1161/CIRCULATIONAHA.105.556233.; Singal P., Li T., Kumar D., Danelisen I., Iliskovic N. Adriamycin-induced heart failure: mechanism and modulation. Molecular and Cellular Biochemistry. 2000;207(1–2):77–86. DOI:10.1023/a:1007094214460.; Ascensão A., Magalhães J., Soares J. M. C., Ferreira R., Neuparth M. J., Marques F., Oliveira P. J., Duarte J. A. Moderate endurance training prevents doxorubicin-induced in vivo mitochondriopathy and reduces the development of cardiac apoptosis. American Journal of Physiology-Heart and Circulatory Physiology. 2005;289(2):H722–H731. DOI:10.1152/ajpheart.01249.2004.; Foote K., Reinhold J., Yu E. P. K., Figg N. L., Finigan A., Murphy M. P., Bennett M. R. Restoring mitochondrial DNA copy number preserves mitochondrial function and delays vascular aging in mice. Aging Cell. 2018;17(4):e12773. DOI:10.1111/acel.12773.; Yue P., Jing S., Liu L., Ma F., Zhang Y., Wang C., Duan H., Zhou K., Hua Y., Wu G., Li Y. Association between mitochondrial DNA copy number and cardiovascular disease: Current evidence based on a systematic review and meta-analysis. PLOS ONE. 2018;13(11):e0206003. DOI:10.1371/journal.pone.0206003.; Pustovoit V. I. Database of methods for complex nutritional-metabolic correction of the functional state of an athlete’s body under extreme loads. RF patent for invention. Patent RUS № RU 2022622848. 11.11.2022. Available at: https://istina.msu.ru/patents/510751941/ Accessed: 29.01.2024.; Pustovoit V. I., Balakin E. I., Khan A. V., Murtazin A. A., Maksjutov N. F., Merkulova P. S., Kubyshev K. A. The combination of traditional cardiorespiratory markers during treadmill testing "to failure" in athletes, depending on professional activity. Sports medicine: research and practice. 2022;12(3):51–59. (In Russ.) DOI:10.47529/2223-2524.2022.3.5.; https://www.pharmjournal.ru/jour/article/view/1913

  20. 20