-
1Academic Journal
Authors: Alexander N. Kirillov, Inna V. Danilova, Александр Николаевич Кириллов, Инна Владимировна Данилова
Source: Modeling and Analysis of Information Systems; Том 30, № 3 (2023); 234-245 ; Моделирование и анализ информационных систем; Том 30, № 3 (2023); 234-245 ; 2313-5417 ; 1818-1015
Subject Terms: utility function, rationality of choice, measure of awareness, information cost
File Description: application/pdf
Relation: https://www.mais-journal.ru/jour/article/view/1801/1372; R. B. Aumann, “Rationality and Bounded Rationality,” Games and econimic behavior, vol. 21, no. 1, pp. 2–14, 1997.; P. A. Ortega, D. A. Braun, J. Dyer, K.-E. Kim, and N. Tishby, “Information-Theoretic Bounded Rationality.” 2015, [Online]. Available: https://arxiv.org/abs/1512.06789.; D. A. Braun and P. A. Ortego, “Information-Theoretic Bounded Rationality and ε-Optimality,” Entropy, vol. 16, pp. 4662–4676, 2014.; M. D. Breed and J. Moore, Encyclopedia of animal behavior. Elsevier Ltd., 2019.; E. Kagan and I. Ben-Gal, Search and foraging individual motion and swarm dynamics. Taylor and Francis Group, LLC, 2015.; B. Y. Hayden and M. E. Walton, “Neuroscience of foraging,” Frontiers in Neuroscience, vol. 8, p. 81, 2014.; D. L. Barack, C. S. W., and P. M. L., “Posterior cingulate neurons dynamically signal decisions to disengage during foraging,” Neuron, vol. 96, no. 2, pp. 339–347, 2017.; J. S. Greene et al., “Balancing selection shapes density-dependent foraging behaviour,” Nature, vol. 539, pp. 254–258, 2016.; R. Cressman and V. Krivan, “The ideal free distribution as an evolutionarily stable state in density-dependent population games,” Oikos, vol. 119, no. 8, pp. 1231–1242, 2010.; R. Cressman and V. Krivan, “Two-patch population models with adaptive dispersal: the effects of varying dispersal speeds,” Mathematical Biology, vol. 67, pp. 329–358, 2013.; M. Shuichi, R. Arlinghaus, and U. Dieckmann, “Foraging on spatially distributed resources with suboptimal movement, imperfect information, and travelling; costs: departures from the ideal free distribution,” Oikos, vol. 119, no. 9, pp. 1469–1483, 2010.; L. D. Landau and E. M. Lifshitz, Statistical physics. Nauka, 1976.; I. P. Kornfeld, Y. G. Sinai, and S. V. Fomin, Ergodic theory. Nauka, 1980.; R. Bowen, Methods of symbolic dynamics. Mir, 1979.; C. J. C. H. Watkins and P. Dayan, “Technical note Q-Learning,” Machine Learning, vol. 8, no. 3, pp. 279–292, 1992.; A. Kianercy and A. Galstyan, “Dynamics of Boltzmann Q learning in two-player two-action games,” Physical review, vol. 85, no. 4, p. 041145, 2012.; P. A. Ortega and D. A. Braun, “Thermodynamics as a theory of decision-making with information-processing costs,” Proceedings of the Royal Society, vol. 469, no. 2153, p. 20120683, 2013.; S. K. Mitter and N. J. Newton, “Information and entropy flow in the Kalman-Bucy filter,” Journal of Statistical Physics, vol. 118, pp. 145–176, 2005.; P. Pirolli, Information foraging theory. Oxford university press, 2007.; K. Lerman and A. Galstyan, “Mathematical model of foraging in a group of robots: effect of interference,” Autonomous robots, vol. 13, pp. 127–141, 2002.; A. N. Kirillov and I. V. Danilova, “Dynamics of population patch distribution,” Modeling and Analysis of Information Systems, vol. 25, no. 3, pp. 268–275, 2018.; A. N. Kirillov and I. V. Danilova, “Utility function in the foraging problem with imperfect information,” Information and Control Systems, vol. 105, no. 2, pp. 71–77, 2020.; I. V. Danilova, A. N. Kirillov, and A. A. Krizhanovsky, “Boltzmann distribution in relation to the problem of population migration,” Proceedings of Voronezh State University. Series: Systems Analysis and Information Technologies, no. 2, pp. 92–102, 2020.
-
2Academic Journal
Authors: Alexander N. Kirillov, Inna V. Danilova, Александр Николаевич Кириллов, Инна Владимировна Данилова
Contributors: Работа выполнена при поддержке РФФИ, грант 18-01-00249а.
Source: Modeling and Analysis of Information Systems; Том 25, № 3 (2018); 268-275 ; Моделирование и анализ информационных систем; Том 25, № 3 (2018); 268-275 ; 2313-5417 ; 1818-1015
Subject Terms: распределение Больцмана, the patch, utility function, stability, Boltzmann distribution, ареал, функция полезности, устойчивость
File Description: application/pdf
Relation: https://www.mais-journal.ru/jour/article/view/686/539; Charnov E. L., “Optimal foraging, the marginal value theorem”, Theoretical Population Biology, 9 (1976), 129–136.; Patlak C. S., “Random walk with persistence and external bias”, Bulletin of Mathematical Biophysics, 15 (1953), 311–338.; Hoffmann G., “Optimization of Brownian search strategies”, Biological Cybernetics, 49 (1983), 21–31.; Bovet P., Benhamou S., “Spatial analysis of animals’ movements using a correlated random walk model”, Journal of Theoretical Biology, 131:4 (1988), 419–433.; Fretwell S. D., Lucas H. L., “On territorial behavior and other factors influencing habitat distribution in birds”, Acta Biotheoretica, 19 (1970), 16–36.; Shuichi M., Arlinghaus R., Dieckmann U., “Foraging on spatially distributed resources with sub-optimal movement, imperfect information, and travelling costs: departures from the ideal free distribution”, Synthesising Ecology, 119:9 (2010), 1469–1483.