Εμφανίζονται 1 - 20 Αποτελέσματα από 538 για την αναζήτηση '"ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ"', χρόνος αναζήτησης: 0,82δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Πηγή: Научно-технический вестник информационных технологий, механики и оптики, Vol 23, Iss 1, Pp 1-13 (2024)

    Περιγραφή αρχείου: electronic resource

    Σύνδεσμος πρόσβασης: https://doaj.org/article/5ec749e686b2493d8074dff6c3240f72

  3. 3
    Academic Journal

    Πηγή: Fundamental and applied research for key propriety areas of bioecology and biotechnology; 78-81 ; Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии; 78-81

    Περιγραφή αρχείου: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907965-64-5; https://phsreda.com/e-articles/10716/Action10716-138657.pdf; Mendes L., Queiroz M., Sena C.M. Melatonin and Vascular Function. Antioxidants (Basel). Search in PubMed. 2024 Jun 20;13(6):747. doi:10.3390/antiox13060747. EDN BFUWSJ; Rahmani S., Roohbakhsh A., Pourbarkhordar V., Hayes A.W., Karimi G. Melatonin regulates mitochondrial dynamics and mitophagy: Cardiovascular protection. J Cell Mol Med. Search in PubMed – 2024 Sep; 28 (18) : e70074. doi:10.1111/jcmm.70074. EDN KWUNYJ; Boutin J.A., Kennaway D.J., Jockers R. Melatonin: Facts, Extrapolations and Clinical Trials. Biomolecules Search in PubMed. – 2023 Jun 5; 13(6) : 943. doi:10.3390/biom13060943. EDN GUIQIY; Changjiu He, Jing Wang, Zhenzhen Zhang, Minghui Yang, Yu Li, Xiuzhi Tian, Teng Ma, Jingli Tao, Kuanfeng Zhu, Yukun Song, Pengyun Ji, Guoshi Liu. Mitochondria Synthesize Melatonin to Ameliorate Its Function and Improve Mice Oocyte's Quality under in Vitro Conditions. 2016.; Нейтрализация ангиопоэтина-2 и фактора роста эндотелия сосудов (vegf) с терапевтической целью / Е.Н. Шамитова, К.Г. Матьков, Д.Д. Шихранова, Р.Р. Абдуллин // Acta Medica Eurasica. – 2021. – №2. – С. 64–79. – DOI 10.47026/2413-4864-2021-2-64-79. – EDN DSQYIX; https://phsreda.com/article/138657/discussion_platform

  4. 4
    Academic Journal

    Πηγή: Energy saving. Power engineering. Energy audit.; No. 11-12(165-166) (2021): Energy saving. Power engineering. Energy audit; 34-42
    Энергосбережение. Энергетика. Энергоаудит.; № 11-12(165-166) (2021): Енергозбереження. Енергетика. Енергоаудит.; 34-42
    Загальнодержавний науково-виробничий та інформаційний журнал «Енергозбереження. Енергетика. Енергоаудит»; № 11-12(165-166) (2021): Енергозбереження. Енергетика. Енергоаудит.; 34-42

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://eee.khpi.edu.ua/article/view/256689

  5. 5
    Academic Journal

    Συγγραφείς: Viktor Moiseev, Yuriy Manoilo, Maksym Myalo

    Πηγή: Energy saving. Power engineering. Energy audit.; No. 5-6(171-172) (2022): Energy saving. Power engineering. Energy audit; 31-46
    Энергосбережение. Энергетика. Энергоаудит.; № 5-6(171-172) (2022): Енергозбереження. Енергетика. Енергоаудит; 31-46
    Загальнодержавний науково-виробничий та інформаційний журнал «Енергозбереження. Енергетика. Енергоаудит»; № 5-6(171-172) (2022): Енергозбереження. Енергетика. Енергоаудит; 31-46

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://eee.khpi.edu.ua/article/view/268061

  6. 6
    Academic Journal

    Πηγή: Energy saving. Power engineering. Energy audit.; No. 11-12(165-166) (2021): Energy saving. Power engineering. Energy audit; 34-42
    Энергосбережение. Энергетика. Энергоаудит.; № 11-12(165-166) (2021): Енергозбереження. Енергетика. Енергоаудит.; 34-42
    Загальнодержавний науково-виробничий та інформаційний журнал «Енергозбереження. Енергетика. Енергоаудит»; № 11-12(165-166) (2021): Енергозбереження. Енергетика. Енергоаудит.; 34-42

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://eee.khpi.edu.ua/article/view/256689

  7. 7
  8. 8
  9. 9
    Academic Journal
  10. 10
    Academic Journal

    Πηγή: Energy saving. Power engineering. Energy audit.; No. 11-12(165-166) (2021): Energy saving. Power engineering. Energy audit; 34-42 ; Энергосбережение. Энергетика. Энергоаудит.; № 11-12(165-166) (2021): Енергозбереження. Енергетика. Енергоаудит.; 34-42 ; Загальнодержавний науково-виробничий та інформаційний журнал «Енергозбереження. Енергетика. Енергоаудит»; № 11-12(165-166) (2021): Енергозбереження. Енергетика. Енергоаудит.; 34-42 ; 2313-8890

    Περιγραφή αρχείου: application/pdf

    Διαθεσιμότητα: http://eee.khpi.edu.ua/article/view/256689

  11. 11
  12. 12
    Academic Journal

    Πηγή: Siberian journal of oncology; Том 23, № 4 (2024); 141-151 ; Сибирский онкологический журнал; Том 23, № 4 (2024); 141-151 ; 2312-3168 ; 1814-4861

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/3200/1259; Hamblin M.R., Abrahamse H. Factors Affecting Photodynamic Therapy and Anti-Tumor Immune Response. Anticancer Agents Med Chem. 2021; 21(2): 123–36. doi:10.2174/1871520620666200318101037.; Hamblin M.R. Photodynamic Therapy for Cancer: What’s Past is Prologue. Photochem Photobiol. 2020; 96(3): 506–16. doi:10.1111/php.13190.; Alvarez N., Sevilla A. Current Advances in Photodynamic Therapy (PDT) and the Future Potential of PDT-Combinatorial Cancer Therapies. Int J Mol Sci. 2024; 25(2): 1023. doi:10.3390/ijms25021023.; Fontana L.C., Pinto J.G., Magalhães J.A., Tada D.B., de Almeida R.M.S., Pacheco-Soares C., Ferreira-Strixino J. Comparison of the Photodynamic Effect of Two Chlorins, Photodithazine and Fotoenticine, in Gliosarcoma Cells. Photochem. 2022; 2(1): 165–80 doi:10.3390/photochem2010013.; Varzandeh M., Sabouri L., Mansouri V., Gharibshahian M., Beheshtizadeh N., Hamblin M.R., Rezaei N. Application of nano-radiosensitizers in combination cancer therapy. Bioeng Transl Med. 2023; 8(3): e10498. doi:10.1002/btm2.10498.; Черемисина О.В., Вусик М.В., Солдатов А.Н., Рейнер И.В. Современные возможности эндоскопических лазерных технологий в клинической онкологии. Сибирский онкологический журнал, 2007; (4): 5–11.; Huang F., Fu Q., Tang L., Zhao M., Huang M., Zhou X. Trends in photodynamic therapy for dermatology in recent 20 years: A scientometric review based on CiteSpace. J Cosmet Dermatol. 2024; 23(2): 391–402. doi:10.1111/jocd.16033.; Rodrigues J.A., Correia J.H. Enhanced Photodynamic Therapy: A Review of Combined Energy Sources. Cells. 2022; 11(24): 3995. doi:10.3390/cells11243995.; George B.P., Abrahamse H. Light-Activated Phytochemicals in Photodynamic Therapy for Cancer: A Mini Review. Photobiomodul Photomed Laser Surg. 2022; 40(11): 734–41. doi:10.1089/photob.2022.0094.; Решетов И.В., Коренев С.В., Романко Ю.С. Формы гибели клеток и мишени при фотодинамической терапии. Сибирский онкологический журнал. 2022; 21(5): 149–54. doi:10.21294/1814-4861-2022-21-5-149-154.; Linares I.A.P., Martinelli L.P., Moritz M.N.O., Selistre-de-Araujo H.S., de Oliveira K.T., Perussi J.R. Cytotoxicity of structurally-modified chlorins aimed for photodynamic therapy applications. J Photochem Photobiol A: Chemistry. 2022; 425: 113647. doi:10.1016/j.jphotochem.2021.113647.; Mironov A.F., Grin M.A., Pantushenko I.V., Ostroverkhov P.V., Ivanenkov Y.A., Filkov G.I., Plotnikova E.A., Karmakova T.A., Starovoitova A.V., Burmistrova N.V., Yuzhakov V.V., Romanko Y.S., Abakumov M.A., Ignatova A.A., Feofanov A.V., Kaplan M.A., Yakubovskaya R.I., Tsigankov A.A., Majouga A.G. Synthesis and Investigation of Photophysical and Biological Properties of Novel S-Containing Bacteriopurpurinimides. J Med Chem. 2017; 60(24): 10220–30. doi:10.1021/acs.jmedchem.7b00577.; Dragicevic N., Predic-Atkinson J., Nikolic B., Pajovic S.B., Ivkovic S., Adzic M. Nanocarriers in topical photodynamic therapy. Expert Opin Drug Deliv. 2024: 1–29. doi:10.1080/17425247.2024.2318460.; Shirmanova M.V., Lukina M.M., Sirotkina M.A., Shimolina L.E., Dudenkova V.V., Ignatova N.I., Tobita S., Shcheslavskiy V.I., Zagaynova E.V. Effects of Photodynamic Therapy on Tumor Metabolism and Oxygenation Revealed by Fluorescence and Phosphorescence Lifetime Imaging. Int J Mol Sci. 2024; 25(3): 1703. doi:10.3390/ijms25031703.; Логинова А.Г., Никитенко И.С., Тихоновский Г.В., Скобельцин А.С., Войтова А.В., Лощенов В.Б. Разработка метода оценки глубины проникновения этосом с метиленовым синим в кожу при аппликационном применении и фотодинамическим воздействии. Biomedical Photonics. 2022; 11(4): 11–8. doi:10.24931/2413-9432-2022-11-4-11-18.; Taldaev A., Terekhov R., Nikitin I., Melnik E., Kuzina V., Klochko M., Reshetov I., Shiryaev A., Loschenov V. and Ramenskaya G. Metylene blue in anticancer photodynamic therapy: systematic review of preclinical studies. Front Pharmacol. 2023; 14: 1264961. doi:10.3389/fphar.2023.1264961.; Решетов И.В., Романко Ю.С. Фундаментальные и прикладные исследования Института кластерной онкологии имени Л.Л. Левшина по разработке методов лечения заболеваний головы и шеи. Head and neck. Голова и шея. Российский журнал. 2023; 11(2): 81–91. doi:10.25792/HN.2023.11.2.81-91.; Зикиряходжаев А.Д., Старкова М.В., Тимошкин В.О. Индоцианин зеленый в диагностике и реконструктивной хирургии при раке молочной железы. Хирургия. Журнал им. Н.И. Пирогова. 2023; 9(2): 20–4. doi:10.17116/hirurgia202309220.; Филоненко Е.В., Каприн А.Д. Современные технологии диагностики в онкодерматологии. Biomedical Photonics. 2023; 12(4): 4-14. https://doi.org/10.24931/2413-9432-2023-12-4-4-14.; Филоненко Е.В., Иванова-Радкевич В.И. Флуоресцентная диагностика при немеланоцитарных опухолях кожи. Biomedical Photonics. 2022; 11(4): 32–40. doi:10.24931/2413-9432-2022-11-4-32-40.; Дубровин В.Ю., Тымчук С.С., Давлетшина В.В., Павлов Р.В., Кащенко В.А. Современные возможности ICG-флуоресцентной визуализации в абдоминальной онкохирургии. Сибирский онкологический журнал. 2023; 22(2): 143–59. doi:10.21294/1814-4861-2023-22-2-143-159.; Фаррахова Д.С., Романишкин И.Д., Яковлев Д.В., Маклыгина Ю.С., Олейников В.А., Федотов П.В., Кравчик М.В., Бездетная Л., Лощенов В.Б. Взаимосвязь спектроскопических и структурных свойств j-агрегатов индоцианина зеленого. Biomedical Photonics. 2022; 11(3): 4–16. doi:10.24931/2413-9432-2022-11-3-4-16.; Han R., Zhao M., Wang Z., Liu H., Zhu S., Huang L., Wang Y., Wang L., Hong Y., Sha Y., Jiang Y. Super-efficient in Vivo Two-Photon Photodynamic Therapy with a Gold Nanocluster as a Type I Photosensitizer. ACS Nano. 2020; 14(8): 9532–44. doi:10.1021/acsnano.9b05169.; Романко Ю.С., Цыб А.Ф., Каплан М.А., Попучиев В.В. Влияние фотодинамической терапии с фотодитазином на морфофункциональные характеристики саркомы М-1. Бюллетень экспериментальной биологии и медицины. 2004; 138(12): 658–64.; Романко Ю.С., Цыб А.Ф., Каплан М.А., Попучиев В.В. Зависимость противоопухолевой эффективности фотодинамической терапии от плотности световой энергии. Бюллетень экспериментальной биологии и медицины. 2005; 139(4): 456–61.; Филоненко Е.В., Иванова-Радкевич В.И. Фотодинамическая терапия больных псориазом. Biomedical Photonics. 2023; 12(1): 28–36. doi:10.24931/2413-9432-2023-12-1-28-36.б.; Филоненко Е.В., Иванова-Радкевич В.И. Фотодинамическая терапия при акне. Biomedical Photonics. 2023; 12(2): 48–53. doi:10.24931/2413-9432-2023-12-2-48-56.; Решетов И.В., Фатьянова А.С., Бабаева Ю.В., Гафаров М.М., Огданская К.В., Сухова Т.Е., Коренев С.В., Денисенко М.В., Романко Ю.С. Современные аспекты фотодинамической терапии актинического кератоза. Biomedical Photonics. 2019; 8(2): 25–30. doi:10.24931/2413–9432–2019–8–2–25–30.; Филоненко Е.В., Окушко С.С. Актинический кератоз (обзор литературы). Biomedical Photonics. 2022; 11(1): 37–48. doi:10.24931/2413-9432-2022-11-1-37-48.; Решетов И.В., Коренев С.В., Романко Ю.С. Современные аспекты фотодинамической терапии при базальноклеточном раке кожи. Biomedical Photonics. 2022; 11(3): 35–9. doi:10.24931/2413-9432-2022-11-3-35-39.; Романко Ю.С., Каплан М.А., Иванов С.А., Галкин В.Н., Молочкова Ю.В., Кунцевич Ж.С., Третьякова Е.И., Сухова Т.Е., Молочков В.А., Молочков А.В. Эффективность фотодинамической терапии базальноклеточной карциномы с использованием фотосенсибилизаторов различных классов. Вопросы онкологии. 2016; 62(3): 447–50.; Филоненко Е.В., Иванова-Радкевич В.И. Фотодинамическая терапия пациентов с болезнью Боуэна. Biomedical Photonics. 2023; 12(4): 22-9. [Filonenko E.V., Ivanova-Radkevich V.I. Photodynamic therapy of Bowen’s disease. Biomed Photon. 2023; 12(4): 22-9. (in Russian)]. doi:10.17116/onkolog201870515.; Филоненко Е.В., Иванова-Радкевич В.И. Фотодинамическая терапия в лечении больных грибовидным микозом. Biomedical Photonics. 2022; 11(1): 27–36.doi:10.24931/2413-9432-2022-11-1-27-36.; Гилядова А.В., Романко Ю.С., Ищенко А.А., Самойлова С.В., Ширяев А.А., Алексеева П.М., Эфендиев К.Т., Решетов И.В. Фотодинамическая терапия предраковых заболеваний и рака шейки матки (обзор литературы). Biomedical Photonics. 2021; 10(4): 59–67. doi:10.24931/2413-9432-2021-10-4-59-67.; Панферова О.И., Николенко В.Н., Кочурова Е.В., Кудасова Е.О. Этиология, патогенез, основные принципы лечения плоскоклеточного рака слизистой оболочки полости рта. Head and neck. Голова и шея. Российский журнал. 2022; 10(2): 69–77. doi:10.25792/HN.2022.10.2.69-77.; Кит О.И., Енгибарян М.А., Комарова Е.Ю., Комарова Е.Ф., Маслов А.А., Димитриади С.Н. Первый опыт применения интраоперационной фотодинамической терапии первичного местнораспространенного рака слизистой оболочки полости рта. Head and neck. Голова и шея. Российский журнал. 2023; 11(4): 33–8. doi:10.25792/HN.2023.11.4.33-38.; Каприн А.Д., Рассказова Е.А., Филоненко Е.В., Сарибекян Э.К., Зикиряходжаев А.Д., Чиссов В.И. Интраоперационная фотодинамическая терапия больной раком молочной железы IIIC стадии (8-летний период безрецидивного наблюдения). Biomedical Photonics. 2017; 6(2): 34–7. doi:10.24931/2413-9432-2017-6-2-34-37.; Филоненко Е.В., Иванова-Радкевич В.И. Фотодинамическая терапия в лечении экстрамаммарного рака Педжета. Biomedical Photonics. 2022; 11(3): 24–34. doi:10.24931/2413-9432-2022-11-3-24-34.; Eмeльянoвa O.O., Зикиряходжаев А.Д., Сарибекян Э.К., Филоненко Е.В. Современный консенсус относительно диагностики и лечения экстрамаммарного рака Педжета. Вестник дерматологии и венерологии. 2023; 99(3): 23–32. doi:10.25208/vdv1400.; Sun W., Zhang Q., Wang X., Jin Z., Cheng Y., Wang G. Clinical practice of photodynamic therapy for non-small cell lung cancer in different scenarios: who is the better candidate? Respiration. 2024. doi:10.1159/000535270.; Li Y., Li Y., Song Y., Liu S. Advances in research and application of photodynamic therapy in cholangiocarcinoma (Review). Oncol Rep. 2024; 51(3): 53. doi:10.3892/or.2024.8712.; Жиляева Е.П., Демешко П.Д., Науменко Л.В., Красный С.А., Церковский Д.А., Жерко И.Ю. Фотодинамическая терапия первичных и рецидивных слабопигментных форм меланомы сосудистой оболочки глаза. Biomedical Photonics. 2022; 11(3): 17–23. doi:10.24931/2413-9432-2022-11-3-17-23.; Kubrak T.P, Kołodziej P., Sawicki J., Mazur A., Koziorowska K., Aebisher D. Some Natural Photosensitizers and Their Medicinal Properties for Use in Photodynamic Therapy. Molecules. 2022; 27(4): 1192. doi:10.3390/molecules27041192.; Щербатюк Т.Г., Жукова (Плеханова) Е.С., Никитина Ю.В., Гапеев А.Б. Окислительная модификация белков в тканях крыс при опухолевом росте в условиях озоно-фотодинамического воздействия. Биофизика. 2020; 65(2): 367–75. doi 10.1134/S0006350920020219.; Beck-Sickinger A.G., Becker D.P., Chepurna O., Das B., Flieger S., Hey-Hawkins E., Hosmane N., Jalisatgi S.S., Nakamura H., Patil R., Vicente M.D.G.H., Viñas C. New Boron Delivery Agents. Cancer Biother Radiopharm. 2023; 38(3): 160–72. doi:10.1089/cbr.2022.0060.; Asano R., Nagami A., Fukumoto Y., Miura K., Yazama F., Ito H., Sakata I., Tai A. Synthesis and biological evaluation of new BSH-conjugated chlorin derivatives as agents for both photodynamic therapy and boron neutron capture therapy of cancer. J Photochem Photobiol B. 2014; 140: 140–9. doi:10.1016/j.jphotobiol.2014.07.008.; Talko V.V., Lavrenchuk G.Y., Pochapinskyi O.D., Atamanuk N.P., Chernyshov A.V. Efficiency of photon capture beam technology and photodynamic impact on malignant and normal human cells in vitro. Probl Radiac Med Radiobiol. 2022; 27: 234–48. doi:10.33145/2304-8336-2022-27-234-248.; Кастыро И.В., Решетов И.В., Коренев С.В., Фатьянова А.С., Бабаева Ю.В., Романко Ю.С. Фотобиомодуляция орального мукозита при химиолучевой терапии рака головы и шеи. Head and neck. Голова и шея. Российский журнал. 2023; 11(2): 65–74. doi:10.25792/HN.2023.11.2.65-74.; Shurygina I.P., Zilov V.G., Smekalkina L.V., Naprienko M.B., Safonov M.I., Akulov S.N. Effect of Infrared Low-Intensity Laser Irradiation on Lipid Peroxidation under Conditions of Experimental Circulatory Hypoxia of Visual Analyzer. Bull Exp Biol Med. 2020; 168(5): 602–4. doi:10.1007/s10517-020-04760-6.; de Faria C.M.G., Costa C.S., Bagnato V.S. Photobiomodulation effects on photodynamic therapy in HNSCC cell lines. J Photochem Photobiol B. 2021; 217: 112170. doi:10.1016/j.jphotobiol.2021.112170.; Aniogo E.C., George B.P., Abrahamse H. Photobiomodulation Improves Anti-Tumor Efficacy of Photodynamic Therapy against Resistant MCF-7 Cancer Cells. Biomedicines. 2023; 11(6): 1547. doi:10.3390/biomedicines11061547.; Panetta J.V., Cvetkovic D., Chen X., Chen L., Ma C.C. Radiodynamic therapy using 15-MV radiation combined with 5-aminolevulinic acid and carbamide peroxide for prostate cancer in vivo. Phys Med Biol. 2020; 65(16): 165008. doi:10.1088/1361-6560/ab9776.; Hambsch P., Istomin Y.P., Tzerkovsky D.A., Patties I., Neuhaus J., Kortmann R.D., Schastak S., Glasow A. Efficient cell death induction in human glioblastoma cells by photodynamic treatment with Tetrahydroporphyrin-Tetratosylat (THPTS) and ionizing irradiation. Oncotarget. 2017; 8(42): 72411–23. doi:10.18632/oncotarget.20403.; Церковский Д.А., Протопович Е.Л., Козловский Д.И., Суслова В.А. Противоопухолевая эффективность контактной лучевой терапии в комбинации с фотосенсибилизатором хлоринового ряда в эксперименте. Biomedical Photonics. 2021; 10(2): 25–33. doi:10.24931/2413-9432-2021-10-2-25-33.; Церковский Д.А., Мазуренко А.Н., Козловский Д.И., Адаменко Н.Д., Боричевский Ф.Ф. Комбинированная фотодинамическая и радиодинамическая терапии с хлориновым фотосенсибилизатором при фракционированном лучевом воздействии на перевивные опухоли в эксперименте in vivo. Российский биотерапевтический журнал. 2023; 22(3): 75–86. doi:10.17650/1726-9784-2023-22-3-75-86.; Souris J.S., Leoni L., Zhang H.J., Pan A., Tanios E., Tsai H.M., Balyasnikova I.V., Bissonnette M., Chen C.T. X-ray Activated Nanoplatforms for Deep Tissue Photodynamic Therapy. Nanomaterials (Basel). 2023; 13(4): 673. doi:10.3390/nano13040673.; Церковский Д.А., Козловский Д.И., Мазуренко А.Н., Адаменко Н.Д., Боричевский Ф.Ф. Экспериментальные исследования in vivo противоопухолевой эффективности фотодинамической и радиодинамической терапии, а также их сочетания. Biomedical Photonics. 2023; 12(2): 24–33. doi:10.24931/2413-9432-2023-12-2-24-33.; Zhang G., Guo M., Ma H., Wang J., Zhang X.D. Catalytic nanotechnology of X-ray photodynamics for cancer treatments. Biomater Sci. 2023; 11(4): 1153–81. doi:10.1039/d2bm01698b.; Marcus S.L., de Souza M.P. Theranostic Uses of the Heme Pathway in Neuro-Oncology: Protoporphyrin IX (PpIX) and Its Journey from Photodynamic Therapy (PDT) through Photodynamic Diagnosis (PDD) to Sonodynamic Therapy (SDT). Cancers (Basel). 2024; 16(4): 740. doi:10.3390/cancers16040740.; Протопович Е.Л., Церковский Д.А. Противоопухолевая эффективность сонодинамической терапии с фотосенсибилизатором хлоринового ряда в эксперименте. Российский биотерапевтический журнал 2022; 21(1): 68–75. doi:10.17650/1726-9784-2022-21-1-68-75.; Park J., Kong C., Shin J., Park J.Y., Na Y.C., Han S.H., Chang J.W., Song S.H., Chang W.S. Combined Effects of Focused Ultrasound and Photodynamic Treatment for Malignant Brain Tumors Using C6 Glioma Rat Model. Yonsei Med J. 2023; 64(4): 233–42. doi:10.3349/ymj.2022.0422.; Zhu J.X., Zhu W.T., Hu J.H., Yang W., Liu P., Liu Q.H., Bai Y.X., Xie R. Curcumin-Loaded Poly(L-lactide-co-glycolide) Microbubble-Mediated Sono-photodynamic Therapy in Liver Cancer Cells. Ultrasound Med Biol. 2020; 46(8): 2030–43. doi:10.1016/j.ultrasmedbio.2020.03.030.; Kulbacka J., Chodaczek G., Rossowska J., Szewczyk A., Saczko J., Bazylińska U. Investigating the photodynamic efficacy of chlorin e6 by millisecond pulses in metastatic melanoma cells. Bioelectrochemistry. 2021; 138: 107728. doi:10.1016/j.bioelechem.2020.107728.; Fakayode O.J., Kruger C.A., Songca S.P., Abrahamse H., Oluwafemi O.S. Photodynamic Therapy Evaluation of Methoxypolyethyleneglycol-Thiol-SPIONs-Gold-Meso-Tetrakis(4-Hydroxyphenyl)Porphyrin Conjugate against Breast Cancer Cells. Mater Sci Eng C Mater Biol Appl. 2018; 92: 737–44. doi:10.1016/j.msec.2018.07.026.; https://www.siboncoj.ru/jour/article/view/3200

  13. 13
    Academic Journal

    Πηγή: Scientific and educational space in the context of modern challenges; 163-166 ; Научное и образовательное пространство в условиях вызовов современности; 163-166

    Περιγραφή αρχείου: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-6052738-4-4; https://interactive-plus.ru/e-articles/923/Action923-563321.pdf; Демидов С.Ф. Исследование процесса сушки листьев щавеля инфракрасным излучением выделенной длиной волны / С.Ф. Демидов, Л.Ф. Пелевина, Е.А. Нестеренко [и др.] // Интерактивная наука. – 2023. – С. 14–15. – ISSN 2414–9411.; Демидов С.Ф. Кинетические закономерности процесса сушки панировочной хлебной крошки инфракрасным излучением / С.Ф. Демидов, С.С. Беляева, Л.Ф. Пелевина [и др.] // Актуальные направления научных исследований: от теории к практике: материалы VII Междунар. науч.-практ. конф. (Чебоксары, 12 февр. 2016 г.). – Чебоксары: ЦНС «Интерактив плюс», 2016. – №1 (7). – С. 160–163. – ISSN 2412–0510.; Демидов С.Ф. Сушка инфракрасным излучением торфа для производства биоконтейнера с растительным посевным материалом / С.Ф. Демидов, Л.Ф. Пелевина, Е.А. Нестеренко [и др.] // Наука, образование, общество: тенденции и перспективы развития: материалы IX Междунар. науч.-практ. конф. (Чебоксары, 12 февр. 2018 г.). – Чебоксары: ЦНС «Интерактив плюс», 2018. – С. 12–14. – ISBN 978–5-6040732–3-0.; Демидов С.Ф. Источники инфракрасного излучения с электроподводом для термообработки пищевых продуктов / Демидов С.Ф., Демидов А.С., Беляева С.С. [и др.] // Научный журнал НИУ ИТМО. Серия: Процессы и аппараты пищевых производств (электронный журнал). – 2011. – №1.

  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal

    Συγγραφείς: Kinaschuk, Mykhailo

    Πηγή: Technology audit and production reserves; Том 4, № 1(54) (2020): Industrial and technology systems; 8-15
    Technology audit and production reserves; Том 4, № 1(54) (2020): Виробничо-технологічні системи; 8-15
    Technology audit and production reserves; Том 4, № 1(54) (2020): Производственно-технологические системы; 8-15

    Περιγραφή αρχείου: application/pdf

  19. 19
  20. 20