-
1
-
2
-
3Academic Journal
Πηγή: Herald of Tver State University. Series: Biology and Ecology. :45-53
Θεματικοί όροι: 616.9 Инфекционные заболевания. Инфекционные лихорадки, 616 Патология. Клиническая медицина
Περιγραφή αρχείου: application/pdf
-
4
-
5
-
6Academic Journal
Πηγή: ТЕХНОЛОГИИ СОЦИАЛЬНОЙ РАБОТЫ В РАЗЛИЧНЫХ СФЕРАХ ЖИЗНЕДЕЯТЕЛЬНОСТИ.
Θεματικοί όροι: социальное обслуживание, медицинская помощь, inpatient medical care, инфекционные заболевания, rural district outpatient clinics, infectious diseases, 3. Good health, сельские участковые больницы, social services, paramedic and obstetric centers, сельские участковые амбулатории, medical care, сельское здравоохранение, rural healthcare, rural district hospitals, фельдшерско-акушерские пункты, стационарная медицинская помощь
-
7Academic Journal
Συγγραφείς: Л.М. Дамешек, И.Л. Дамешек, И.В. Орлова
Πηγή: Народы и религии Евразии, Vol 29, Iss 3, Pp 107-127 (2024)
Θεματικοί όροι: инородцы, восточная сибирь, инфекционные заболевания, сифилис, проказа, экспедиционные миссии, здравоохранение, Ethnology. Social and cultural anthropology, GN301-674
Περιγραφή αρχείου: electronic resource
Relation: http://journal.asu.ru/wv/article/view/15887; https://doaj.org/toc/2542-2332; https://doaj.org/toc/2686-8040
Σύνδεσμος πρόσβασης: https://doaj.org/article/a3c05840f04f4727a3932fc718b0d784
-
8Academic Journal
Συγγραφείς: Бодрова, А. Г., Bodrova, A. G.
Θεματικοί όροι: КАРЛИН АЛЬМА, ДИМИТРИЕВИЧ ЕЛЕНА, СЕКУЛИЧ ИСИДОРА, ПЕТРОВИЧ РАСТКО, ЛИТЕРАТУРОВЕДЕНИЕ, ЛИТЕРАТУРА ЕВРОПЫ — ЮГОСЛОВИЯ — 20 В. 1-Я ПОЛ, ЮГОСЛАВСКАЯ ЛИТЕРАТУРА, ЮГОСЛАВСКИЕ ПИСАТЕЛЬНИЦЫ, ЮГОСЛАВСКИЕ ПИСАТЕЛИ, ЛИТЕРАТУРНЫЕ СЮЖЕТЫ, ЛИТЕРАТУРНОЕ ТВОРЧЕСТВО, ЛИТЕРАТУРНЫЕ ЖАНРЫ, ТРАВЕЛОГИ, ПУТЕВЫЕ ЗАМЕТКИ, ЭКЗОТИЗМ, СВОЙ-ЧУЖОЙ, ЛИТЕРАТУРНЫЕ ОБРАЗЫ, ФЕНОМЕН БОЛЕЗНИ, ФЕНОМЕНОЛОГИЯ, ИМАГОЛОГИЯ, ИНФЕКЦИОННЫЕ ЗАБОЛЕВАНИЯ, ИНФЕКЦИИ, ИНФЕКЦИОННЫЕ БОЛЕЗНИ, ТРОПИЧЕСКИЕ БОЛЕЗНИ, ПСИХИЧЕСКИЕ ЗАБОЛЕВАНИЯ, ЛИТЕРАТУРНЫЕ МОТИВЫ, ЭТНОСЫ, ЭКЗОТИКА, ЭТНОКУЛЬТУРА, TRAVELOGUES
Θέμα γεωγραφικό: USPU
Relation: Филологический класс. 2021. Т. 26, № 1
-
9Academic Journal
Συγγραφείς: O. A. Podkolodnaya, I. V. Chadaeva, S. V. Filonov, N. L. Podkolodnyy, D. A. Rasskazov, N. N. Tverdokhleb, K. A. Zolotareva, A. G. Bogomolov, E. Yu. Kondratyuk, D. Yu. Oshchepkov, M. P. Ponomarenko, О. А. Подколодная, И. В. Чадаева, С. В. Филонов, Н. Л. Подколодный, Д. А. Рассказов, Н. Н. Твердохлеб, К. А. Золотарева, А. Г. Богомолов, Е. Ю. Кондратюк, Д. Ю. Ощепков, М. П. Пономаренко
Συνεισφορές: The work was supported by State Budget Projects FWNR-2022-0020 and FWNM-2025-0005, Работа выполнена при поддержке бюджетных проектов FWNR-2022-0020 и FWNM-2025-0005.
Πηγή: Vavilov Journal of Genetics and Breeding; Том 29, № 1 (2025); 153-161 ; Вавиловский журнал генетики и селекции; Том 29, № 1 (2025); 153-161 ; 2500-3259 ; 10.18699/vjgb-25-01
Θεματικοί όροι: RNA-seq, DEG, mouse Mus musculus, mouse models of disease, age frustration, infectious diseases, circadian rhythm, ДЭГ, мышь, Mus musculus, мышиные модели заболеваний, возрастные расстройства, инфекционные заболевания, циркадный ритм
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/4487/1925; Amaladoss A., Chen Q., Liu M., Dummler S.K., Dao M., Suresh S., Chen J., Preiser P.R. De novo generated human red blood cells in humanized mice support Plasmodium falciparum infection. PLoS One. 2015;10(6):e0129825. doi:10.1371/journal.pone.0129825; Bruter A.V., Varlamova E.A., Okulova Y.D., Tatarskiy V.V., Silaeva Y.Y., Filatov M.A. Genetically modified mice as a tool for the study of human diseases. Mol Biol Rep. 2024;51(1):135. doi:10.1007/s11033023090660; Chadaeva I.V., Filonov S.V., Zolotareva K.A., Khandaev B.M., Ershov N.I., Podkolodnyy N.L., Kozhemyakina R.V., Rasskazov D.A., Bogomolov A.G., Kondratyuk E.Yu., Klimova N.V., Shikhevich S.G., Ryazanova M.A., Fedoseeva L.A., Redina О.Е., Kozhevnikova O.S., Stefanova N.A., Kolosova N.G., Markel A.L., Ponomarenko M.P., Oshchepkov D.Yu. RatDEGdb: a knowledge base of differentially expressed genes in the rat as a model object in biomedical research. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2023;27(7):794806. doi:10.18699/VJGB2392; Chen G., Tang Q., Yu S., Xie Y., Sun J., Li S., Chen L. The biological function of BMAL1 in skeleton development and disorders. Life Sci. 2020;253:117636. doi:10.1016/j.lfs.2020.117636; Chen Z., Huang Z., Zhao X., Zhou Y., Zhang P., Li Y. Transcriptome analysis of differentially expressed genes involved in the inflammageing status of gingiva in aged mice. Oral Dis. 2023;29(4):1757-1769. doi:10.1111/odi.14222; Chuang D.M., Chen R.W., ChaleckaFranaszek E., Ren M., Hashimoto R., Senatorov V., Kanai H., Hough C., Hiroi T., Leeds P. Neuroprotective effects of lithium in cultured cells and animal models of diseases. Bipolar Disord. 2002;4(2):129136. doi:10.1034/j.13995618.2002.01179.x; Chuprin J., Buettner H., Seedhom M.O., Greiner D.L., Keck J.G., Ishikawa F., Shultz L.D., Brehm M.A. Humanized mouse models for immunooncology research. Nat Rev Clin Oncol. 2023;20(3): 192206. doi:10.1038/s41571022007212; Conti L., Reitano E., Cattaneo E. Neural stem cell systems: diversities and properties after transplantation in animal models of diseases. Brain Pathol. 2006;16(2):143154. doi:10.1111/j.17503639.2006.00009.x; Ding H., Liu S., Yuan Y., Lin Q., Chan P., Cai Y. Decreased expression of Bmal2 in patients with Parkinson’s disease. Neurosci Lett. 2011;499(3):186188. doi:10.1016/j.neulet.2011.05.058; Elshazley M., Sato M., Hase T., Yamashita R., Yoshida K., Toyokuni S., Ishiguro F., Osada H., Sekido Y., Yokoi K., Usami N., Shames D.S., Kondo M., Gazdar A.F., Minna J.D., Hasegawa Y. The circadian clock gene BMAL1 is a novel therapeutic target for malignant pleural mesothelioma. Int J Cancer. 2012;131(12):28202831. doi:10.1002/ijc.27598; Fang K., Liu D., Pathak S.S., Yang B., Li J., Karthikeyan R., Chao O.Y., Yang Y.M., Jin V.X., Cao R. Disruption of circadian rhythms by ambient light during neurodevelopment leads to autisticlike molecular and behavioral alterations in adult mice. Cells. 2021;10(12):3314. doi:10.3390/cells10123314; Filonov S.V., Podkolodnyy N.L., Podkolodnaya O.A., Tverdokhleb N.N., Ponomarenko P.M., Rasskazov D.A., Bogomolov A.G., Ponomarenko M.P. Human_SNP_TATAdb: a database of SNPs that statistically significantly change the affinity of the TATA-binding protein to human gene promoters: genomewide analysis and use cases. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2023;27(7):728736. doi:10.18699/VJGB2385; FriasStaheli N., Dorner M., Marukian S., Billerbeck E., Labitt R.N., Rice C.M., Ploss A. Utility of humanized BLT mice for analysis of dengue virus infection and antiviral drug testing. J Virol. 2014; 88(4):22052218. doi:10.1128/JVI.0308513; Giebfried J., Lorentz A. Relationship between the biological clock and inflammatory bowel disease. Clocks Sleep. 2023;5(2):260275. doi:10.3390/clockssleep5020021; Girard C.A., Wunderlich F.T., Shimomura K., Collins S., Kaizik S., Proks P., Abdulkader F., Clark A., Ball V., Zubcevic L., Bentley L., Clark R., Church C., Hugill A., Galvanovskis J., Cox R., Rorsman P., Bruning J.C., Ashcroft F.M. Expression of an activating mutation in the gene encoding the KATP channel subunit Kir6.2 in mouse pancreatic beta cells recapitulates neonatal diabetes. J Clin Invest. 2009;119(1):8090. doi:10.1172/jci35772; Gorr M.W., Francois A., Marcho L.M., Saldana T., McGrail E., Sun N., Stratton M.S. Molecular signature of cardiac remodeling associated with Polymerase Gamma mutation. Life Sci. 2022;298:120469. doi:10.1016/j.lfs.2022.120469; Gryksa K., Schmidtner A.K., MasisCalvo M., RodriguezVillagra O.A., Havasi A., Wirobski G., Maloumby R., Jagle H., Bosch O.J., Slattery D.A., Neumann I.D. Selective breeding of rats for high (HAB) and low (LAB) anxietyrelated behaviour: A unique model for comorbid depression and social dysfunctions. Neurosci Biobehav Rev. 2023;152:105292. doi:10.1016/j.neubiorev.2023.105292; Gunawan M., Her Z., Liu M., Tan S.Y., Chan X.Y., Tan W.W.S., Dharmaraaja S., Fan Y., Ong C.B., Loh E., Chang K.T.E., Tan T.C., Chan J.K.Y., Chen Q. A novel human systemic lupus erythematosus model in humanised mice. Sci Rep. 2017;7(1):16642. doi:10.1038/s41598017169997; Hild B., Dreier M.S., Oh J.H., McCulloch J.A., Badger J.H., Guo J., Thefaine C.E., Umarova R., Hall K.D., Gavrilova O., Rosshart S.P., Trinchieri G., Rehermann B. Neonatal exposure to a wildderived microbiome protects mice against dietinduced obesity. Nat Metab. 2021;3(8):10421057. doi:10.1038/s4225502100439y; Jacenik D., Cygankiewicz A.I., Mokrowiecka A., Malecka-Panas E., Fichna J., Krajewska W.M. Sex and agerelated estrogen signaling alteration in inflammatory bowel diseases: modulatory role of estrogen receptors. Int J Mol Sci. 2019;20(13):3175. doi:10.3390/ijms20133175; Kaya S., Schurman C.A., Dole N.S., Evans D.S., Alliston T. Prioritization of genes relevant to bone fragility through the unbiased integration of aging mouse bone transcriptomics and human GWAS analyses. J Bone Miner Res. 2022;37(4):804817. doi:10.1002/jbmr.4516; Keng C.T., Sze C.W., Zheng D., Zheng Z., Yong K.S., Tan S.Q., Ong J.J., Tan S.Y., Loh E., Upadya M.H., Kuick C.H., Hotta H., Lim S.G., Tan T.C., Chang K.T., Hong W., Chen J., Tan Y.J., Chen Q. Characterisation of liver pathogenesis, human immune responses and drug testing in a humanised mouse model of HCV infection. Gut. 2016; 65(10):17441753. doi:10.1136/gutjnl2014307856; Kikyo N. Circadian regulation of bone remodeling. Int J Mol Sci. 2024;25(9):4717. doi:10.3390/ijms25094717; Kim J.K., Forger D.B. A mechanism for robust circadian timekeeping via stoichiometric balance. Mol Syst Biol. 2012;8:630. doi:10.1038/msb.2012.62; Kiss T., NyulToth A., Gulej R., Tarantini S., Csipo T., Mukli P., Ungvari A., Balasubramanian P., Yabluchanskiy A., Benyo Z., Conley S.M., Wren J.D., Garman L., Huffman D.M., Csiszar A., Ungvari Z. Old blood from heterochronic parabionts accelerates vascular aging in young mice: transcriptomic signature of pathologic smooth muscle remodeling. GeroScience. 2022;44(2):953981. doi:10.1007/s11357022005191; Krause C., Suwada K., Blomme E.A.G., Kowalkowski K., Liguori M.J., Mahalingaiah P.K., Mittelstadt S., Peterson R., Rendino L., Vo A., Van Vleet T.R. Preclinical species gene expression database: development and metaanalysis. Front Genet. 2023;13:1078050. doi:10.3389/fgene.2022.1078050; Li J., Gao F., Wei L., Chen L., Qu N., Zeng L., Luo Y., Huang X., Jiang H. Predict the role of lncRNA in kidney aging based on RNA sequencing. BMC Genomics. 2022;23(1):254. doi:10.1186/s12864022084798; Li L., Zhang M., Zhao C., Cheng Y., Liu C., Shi M. Circadian clock gene ClockBmal1 regulates cellular senescence in Chronic obstructive pulmonary disease. BMC Pulm Med. 2022;22(1):435. doi:10.1186/s1289002202237y; Li Z., Zhang Z., Ren Y., Wang Y., Fang J., Yue H., Ma S., Guan F. Aging and agerelated diseases: from mechanisms to therapeutic stra tegies. Biogerontology. 2021;22(2):165187. doi:10.1007/s10522021099105; Liu B., Cui D., Liu J., Shi J.S. Transcriptome analysis of the aged SAMP8 mouse model of Alzheimer’s disease reveals novel molecular targets of formononetin protection. Front Pharmacol. 2024;15: 1440515. doi:10.3389/fphar.2024.1440515; Liu L., van Schaik T.A., Chen K.S., Rossignoli F., Borges P., Vrbanac V., Wakimoto H., Shah K. Establishment and immune phenotyping of patientderived glioblastoma models in humanized mice. Front Immunol. 2024;14:1324618. doi:10.3389/fimmu.2023.1324618; Lu Z. PubMed and beyond: a survey of web tools for searching biomedical literature. Database (Oxford). 2011;2011:baq036. doi:10.1093/database/baq036; Lukacs N.W., Strieter R.M., Standiford T.J., Kunkel S.L. Characterization of chemokine function in animal models of diseases. Methods. 1996;10(1):158165. doi:10.1006/meth.1996.0090; Monteiro C.J., Heery D.M., Whitchurch J.B. Modern approaches to mouse genome editing using the CRISPRCas toolbox and their applications in functional genomics and translational research. Adv Exp Med Biol. 2023;1429:1340. doi:10.1007/9783031333255_2; Myers M.J., Shaik F., Shaik F., Alway S.E., Mohamed J.S. Skeletal muscle gene expression profile in response to caloric restriction and aging: a role for Sirt1. Genes (Basel). 2021;12(5):691. doi:10.3390/genes12050691; Neba Ambe G.N.N., Breda C., Bhambra A.S., Arroo R.R.J. Effect of the citrus flavone nobiletin on circadian rhythms and metabolic syndrome. Molecules. 2022;27(22):7727. doi:10.3390/molecules27227727; Oishi K., Ohkura N., Amagai N., Ishida N. Involvement of circadian clock gene Clock in diabetesinduced circadian augmentation of plasminogen activator inhibitor1 (PAI-1) expression in the mouse heart. FEBS Lett. 2005;579(17):35553559. doi:10.1016/j.febslet.2005.05.027; Petrova D.D., Dolgova E.V., Proskurina A.S., Ritter G.S., Ruzanova V.S., Efremov Y.R., Potter E.A., Kirikovich S.S., Levites E.V., Taranov O.S., Ostanin A.A., Chernykh E.R., Kolchanov N.A., Bogachev S.S. The new general biological property of stemlike tumor cells. Part II: surface molecules, which belongs to distinctive groups with particular functions, form a unique pattern characteristic of a certain type of tumor stemlike cells. Int J Mol Sci. 2022;23(24):15800. doi:10.3390/ijms232415800; Podkolodnyy N.L., Tverdokhleb N.N., Podkolodnaya O.A. Computational model for mammalian circadian oscillator: interacting with NAD+/SIRT1 pathway and agerelated changes in gene expression of circadian oscillator. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2016;20(6):848856. doi:10.18699/VJ16.201; Puig O., Wang I.M., Cheng P., Zhou P., Roy S., Cully D., Peters M., Benita Y., Thompson J., Cai T.Q. Transcriptome profiling and network analysis of genetically hypertensive mice identifies potential pharmacological targets of hypertension. Physiol Genomics. 2010; 42A(1):2432. doi:10.1152/physiolgenomics.00010.2010; Roybal K., Theobold D., Graham A., DiNieri J.A., Russo S.J., Krishnan V., Chakravarty S., Peevey J., Oehrlein N., Birnbaum S., Vitaterna M.H., Orsulak P., Takahashi J.S., Nestler E.J., Carlezon W.A. Jr., McClung C.A. Manialike behavior induced by disruption of CLOCK. Proc Natl Acad Sci USA. 2007;104(15):6406-6411. doi:10.1073/pnas.0609625104; Sarsani V.K., Raghupathy N., Fiddes I.T., Armstrong J., Thibaud-Nissen F., Zinder O., Bolisetty M., Howe K., Hinerfeld D., Ruan X., Rowe L., Barter M., Ananda G., Paten B., Weinstock G.M., Churchill G.A., Wiles M.V., Schneider V.A., Srivastava A., Reinholdt L.G. The genome of C57BL/6J “Eve”, the mother of the laboratory mouse genome reference strain. G3 (Bethesda). 2019;9(6):17951805. doi:10.1534/g3.119.400071; Segalat L. Invertebrate animal models of diseases as screening tools in drug discovery. ACS Chem Biol. 2007;2(4):231236. doi:10.1021/cb700009m; Siniscalchi C., Nouvenne A., Cerundolo N., Meschi T., Ticinesi A.; on behalf of the Parma PostGraduate Specialization School in EmergencyUrgency Medicine Interest Group on Thoracic Ultrasound. Diaphragm ultrasound in different clinical scenarios : a review with a focus on older patients. Geriatrics (Basel). 2024;9(3):70. doi:10.3390/geriatrics9030070; Stelzer G., Rosen N., Plaschkes I., Zimmerman S., Twik M., Fishilevich S., Stein T.I., Nudel R., Lieder I., Mazor Y., Kaplan S., Dahary D., Warshawsky D., GuanGolan Y., Kohn A., Rappaport N., Safran M., Lancet D. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 2016;54:1.30.11.30.33. doi:10.1002/cpbi.5; Sun S., Wang Y., Maslov A.Y., Dong X., Vijg J. SomaMutDB: a data-base of somatic mutations in normal human tissues. Nucleic Acids Res. 2022;50(D1):D1100D1108. doi:10.1093/nar/gkab914; Swanson C.M., Kohrt W.M., Buxton O.M., Everson C.A., Wright K.P. Jr., Orwoll E.S., Shea S.A. The importance of the circadian system & sleep for bone health. Metabolism. 2018;84:2843. doi:10.1016/j.metabol.2017.12.002; Swindell W.R., Johnston A., Sun L., Xing X., Fisher G.J., Bulyk M.L., Elder J.T., Gudjonsson J.E. Meta-profiles of gene expression during aging: limited similarities between mouse and human and an un-expectedly decreased inflammatory signature. PLoS One. 2012; 7(3):e33204. doi:10.1371/journal.pone.0033204; Vandamme T.F. Use of rodents as models of human diseases. J Pharm Bioallied Sci. 2014;6(1):29. doi:10.4103/09757406.124301; Viehmann Milam A.A., Maher S.E., Gibson J.A., Lebastchi J., Wen L., Ruddle N.H., Herold K.C., Bothwell A.L. A humanized mouse model of autoimmune insulitis. Diabetes. 2014;63(5):17121724. doi:10.2337/db131141; Wang Y., Eng D.G., Pippin J.W., Gharib S.A., McClelland A., Gross K.W., Shankland S.J. Sex differences in transcriptomic profiles in aged kidney cells of renin lineage. Aging (Albany NY ). 2018;10(4):606621. doi:10.18632/aging.101416; White P.L., Wiederhold N.P., Loeffler J., Najvar L.K., Melchers W., Herrera M., Bretagne S., Wickes B., Kirkpatrick W.R., Barnes R.A., Donnelly J.P., Patterson T.F. Comparison of nonculture bloodbased tests for diagnosing invasive aspergillosis in an animal model. J Clin Microbiol. 2016;54(4):960966. doi:10.1128/jcm.0323315; Yajima M., Imadome K., Nakagawa A., Watanabe S., Terashima K., Nakamura H., Ito M., Shimizu N., Honda M., Yamamoto N., Fujiwara S. A new humanized mouse model of Epstein–Barr virus infection that reproduces persistent infection, lymphoproliferative disorder, and cellmediated and humoral immune responses. J Infect Dis. 2008;198(5):673682. doi:10.1086/590502; Yong K.S.M., Her Z., Chen Q. Humanized mice as unique tools for human-specific studies. Arch Immunol Ther Exp (Warsz). 2018;66(4): 245266. doi:10.1007/s000050180506x; Yuan G., Hua B., Yang Y., Xu L., Cai T., Sun N., Yan Z., Lu C., Qian R. The circadian gene Clock regulates bone formation via PDIA3. J Bone Miner Res. 2017;32(4):861871. doi:10.1002/jbmr.3046; Zayoud M., El Malki K., Frauenknecht K., Trinschek B., Kloos L., Karram K., Wanke F., Georgescu J., Hartwig U.F., Sommer C., Jonuleit H., Waisman A., Kurschus F.C. Subclinical CNS inflammation as response to a myelin antigen in humanized mice. J Neuroimmune Pharmacol. 2013; 8(4):10371047. doi:10.1007/s1148101394664; Zhou X., Zhang X.X., Mahmmod Y.S., Hernandez J.A., Li G.F., Huang W.Y., Wang Y.P., Zheng Y.X., Li X.M., Yuan Z.G. A transcriptome analysis: various reasons of adverse pregnancy outcomes caused by acute Toxoplasma gondii infection. Front Physiol. 2020; 11:115. doi:10.3389/fphys.2020.00115; https://vavilov.elpub.ru/jour/article/view/4487
-
10Academic Journal
Συγγραφείς: Y. A. Menchits, M. A. Gordukova, I. V. Obraztsov, A. V. Eremeeva, I. A. Korsunsky, L. A. Fedorova, D. A. Kudlai, A. A. Korsunsky, Я. А. Менчиц, М. А. Гордукова, И. В. Образцов, А. В. Еремеева, И. А. Корсунский, Л. А. Федорова, Д. А. Кудлай, А. А. Корсунский
Πηγή: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 70, № 1 (2025); 18-25 ; Российский вестник перинатологии и педиатрии; Том 70, № 1 (2025); 18-25 ; 2500-2228 ; 1027-4065
Θεματικοί όροι: прогнозирование, biomarkers, infectious diseases, laboratory diagnostics, pediatrics, prognosis, биомаркеры, инфекционные заболевания, лабораторная диагностика, педиатрия
Περιγραφή αρχείου: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/2134/1562; Naghavi M., Abajobir A.A., Abbafati C., Abbas K.M., Abd-Allah F., Abera S.F., et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet 2017; 390: 1151–210. DOI:10.1016/S0140–6736(17)32152–9; Nelson R.E., Hatfield K.M., Wolford H., Samore M.H., Scott R.D., Reddy S.C., et al. National Estimates of Healthcare Costs Associated With Multidrug-Resistant Bacterial Infections Among Hospitalized Patients in the United States. Clin Infect Dis 2021; 72: S17–26. DOI: org/10.1093/CID/CIAA1581; Mejias A., Wu B., Tandon N., Chow W., Varma R., Franco E., et al. Risk of childhood wheeze and asthma after respiratory syncytial virus infection in full-term infants. Pediatr Allergy Immunol 2020; 31: 47–56. DOI:10.1111/pai.13131; Ouellette C.P., Sánchez P.J., Xu Z., Blankenship D., Zeray F., Ronchi A., et al. Blood genome expression profiles in infants with congenital cytomegalovirus infection. Nat Commun 2020; 11. DOI:10.1038/S41467–020–17178–5; Godfred-Cato S., Bryant B., Leung J., Oster M.E., Conklin L., Abrams J., et al. COVID-19-Associated Multisystem Inflammatory Syndrome in Children — United States, March–July 2020. Morbidity and Mortality Weekly Report 2020; 69: 1074. DOI:10.15585/MMWR.MM6932E2; Bousfiha A., Moundir A., Tangye S.G., Picard C., Jeddane L., Al-Herz W., et al. The 2022 Update of IUIS Phenotypical Classification for Human Inborn Errors of Immunity. J Clin Immunol 2022;42:1508–1520. DOI: org/10.1007/s10875–022–01352-z/metrics; Redmond M.T., Scherzer R., Prince B.T. Novel Genetic Discoveries in Primary Immunodeficiency Disorders. Clin Rev Allergy Immunol 2022; 63: 55. DOI:10.1007/S12016–021–08881–2; Godfrey A., Vandendriessche B., Bakker J.P., Fitzer-Attas C., Gujar N., Hobbs M., et al. Fit-for-Purpose Biometric Monitoring Technologies: Leveraging the Laboratory Biomarker Experience. Clin Transl Sci 2021; 14: 62. DOI:10.1111/cts.12865; Mayeux R. Biomarkers: Potential Uses and Limitations. NeuroRx. 2004; 1: 182. DOI:10.1602/neurorx.1.2.182; Wan-Ibrahim W.I., Singh V.A., Hashim O.H., Abdul-Rahman P.S. Biomarkers for Bone Tumors: Discovery from Genomics and Proteomics Studies and Their Challenges. Mol Med 2015; 21: 861. DOI: org/10.2119/MOLMED.2015.00183; Mert D.G., Terzi H. Mean platelet volume in bipolar disorder: the search for an ideal biomarker. Neuropsychiatr Dis Treat 2016; 12: 2057. DOI: org/10.2147/NDT.S112374; Van Der Poll T., Van De Veerdonk F.L., Scicluna B.P., Netea M.G. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol 2017; 17: 407–420. DOI:10.1038/NRI.2017.36; Langlais D., Fodil N., Gros P. Genetics of Infectious and Inflammatory Diseases: Overlapping Discoveries from Association and Exome-Sequencing Studies. Annu Rev Immunol 2017; 35: 1–30. DOI:10.1146/annurev-immunol-051116–052442; Zhong Y., Xu F., Wu J., Schubert J., Li M.M. Application of Next Generation Sequencing in Laboratory Medicine. Ann Lab Med 2021; 41: 25–43. DOI:10.3343/alm.2021.41.1.25; Asgari S., McLaren P.J., Peake J., Wong M., Wong R., Bartha I., et al. Exome Sequencing Reveals Primary Immunodeficiencies in Children with Community-Acquired Pseudomonas aeruginosa Sepsis. Front Immunol 2016; 7. DOI:10.3389/fimmu.2016.00357; Borghesi A., Trück J., Asgari S., Sancho-Shimizu V., Agyeman P.K.A., Bellos E., et al. Whole-exome Sequencing for the Identification of Rare Variants in Primary Immunodeficiency Genes in Children With Sepsis: A Prospective, Population-based Cohort Study. Clin Infect Dis 2020; 71: E614–23. DOI:10.1093/cid/ciaa290; Hermans P.W.M., Hibberd M.L., Booy R., Daramola O., Hazelzet J.A., De Groot R., et al. 4G/5G promoter polymorphism in the plasminogen-activator-inhibitor-1 gene and outcome of meningococcal disease. Lancet 1999; 354: 556–560. DOI:10.1016/S0140–6736(99)02220–5; Brouwer M.C., Read R.C., van de Beek D. Host genetics and outcome in meningococcal disease: a systematic review and meta-analysis. Lancet Infect Dis 2010; 10: 262–274. DOI:10.1016/S1473–3099(10)70045–1; Mazzotti L., Gaimari A., Bravaccini S., Maltoni R., Cerchione C., Juan M., et al. T-Cell Receptor Repertoire Sequencing and Its Applications: Focus on Infectious Diseases and Cancer. Int J Mol Sci 2022; 23. DOI:10.3390/IJMS23158590/S1; Korsunskiy I., Blyuss O., Gordukova M., Davydova N., Zaikin A., Zinovieva N., et al. Expanding TREC and KREC Utility in Primary Immunodeficiency Diseases Diagnosis. Front Immunol 2020; 11: 320. DOI:10.3389/FIMMU.2020.00320; Sottini A., Serana F., Bertoli D., Chiarini M., Valotti M., Tessitore M.V., et al. Simultaneous Quantification of T-Cell Receptor Excision Circles (TRECs) and K-Deleting Recombination Excision Circles (KRECs) by Real-time PCR. J Vis Exp 2014; 94: 52184. DOI:10.3791/52184; Borte S., Von Döbeln U., Fasth A., Wang N., Janzi M., Winiarski J., et al. Neonatal screening for severe primary immunodeficiency diseases using high-throughput triplex real-time PCR. Blood 2012; 119: 2552–2555. DOI:10.1182/blood-2011–08–371021; Korsunskiy I., Blyuss O., Gordukova M., Davydova N., Gordleeva S., Molchanov R., et al. TREC and KREC levels as predictors of lymphocyte subpopulations measured by flow cytometry. Front Physiol 2019; 10. DOI:10.3389/fphys.2018.01877; Remaschi G., Ricci S., Cortimiglia M., De Vitis E., Iannuzzi L., Boni L., et al. TREC and KREC in very preterm infants: reference values and effects of maternal and neonatal factors. J Maternal-Fetal Neonatal Med 2021; 34: 3946–3951. DOI:10.1080/14767058.2019.1702951; Zanotti C., Chiarini M., Serana F., Sottini A., Garrafa E., Torri F., et al. Peripheral accumulation of newly produced T and B lymphocytes in natalizumab-treated multiple sclerosis patients. Clin Immunol 2012; 145: 19–26. DOI:10.1016/J.CLIM.2012.07.007; Sottini A., Capra R., Zanotti C., Chiarini M., Serana F., Ricotta D., et al. Pre-existing T- and B-cell defects in one progressive multifocal leukoencephalopathy patient. PLoS One 2012; 7. DOI:10.1371/journal.pone.0034493; Masuda S., Nakazawa D., Shida H., Miyoshi A., Kusunoki Y., Tomaru U., et al. NETosis markers: Quest for specific, objective, and quantitative markers. Clinica Chimica Acta 2016; 459: 89–93. DOI:10.1016/J.CCA.2016.05.029; Xu J., Zhang X., Pelayo R., Monestier M., Ammollo C. T., Semeraro F., et al. Extracellular histones are major mediators of death in sepsis. Nat Med 2009; 15: 1318–21. DOI:10.1038/NM.2053; Fuchs T.A., Brill A., Wagner D.D. Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arterioscler Thromb Vasc Biol 2012; 32: 1777–1783. DOI:10.1161/atvbaha.111.242859; Nakazawa D., Tomaru U., Suzuki A., Masuda S., Hasegawa R., Kobayashi T., et al. Abnormal conformation and impaired degradation of propylthiouracil-induced neutrophil extracellular traps: Implications of disordered neutrophil extracellular traps in a rat model of myeloperoxidase antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum 2012; 64: 3779–3787. DOI:10.1002/art.34619; Zhang H., Wang Y., Qu M., Li W., Wu D., Cata J. P., et al. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin Transl Med 2023; 13. DOI:10.1002/ctm2.1170; Zhang Y.Y., Ning B.T. Signaling pathways and intervention therapies in sepsis. Signal Transduct Target Ther 2021; 6. DOI:10.1038/S41392–021–00816–9; Ackermann M., Anders H. J., Bilyy R., Bowlin G. L., Daniel C., De Lorenzo R., et al. Patients with COVID-19: in the dark- NETs of neutrophils. Cell Death Differ 2021; 28: 3125–3139. DOI:10.1038/S41418–021–00805-Z; Russell C.D., Baillie J.K. Treatable traits and therapeutic targets: Goals for systems biology in infectious disease. Curr Opin Syst Biol 2017; 2: 140–146. DOI:10.1016/j.coisb.2017.04.003; Ghezzi P., Cerami A. Tumor necrosis factor as a pharmacological target. Methods Mol Med 2004; 98: 1–8. DOI:10.1385/1–59259–771–8:001; Qiu P., Cui X., Barochia A., Li Y., Natanson C., Eichacker P.Q. The evolving experience with therapeutic TNF inhibition in sepsis: considering the potential influence of risk of death. Expert Opin Investig Drugs 2011; 20: 1555–64. DOI:10.1517/13543784.2011.623125; Cannon J.G., Tompkins R.G., Gelfand J.A., Michie H.R., Stanford G.G., van der Meer J.W.M., et al. Circulating interleukin-1 and tumor necrosis factor in septic shock and experimental endotoxin fever. J Infect Dis 1990; 161: 79–84. DOI:10.1093/infdis/161.1.79; Joosten L.A.B., Van De Veerdonk F.L., Vonk A.G., Boerman O.C., Keuter M., Fantuzzi G., et al. Differential susceptibility to lethal endotoxaemia in mice deficient in IL-1α, IL-1β or IL-1 receptor type I. APMIS 2010; 118: 1000–1007. DOI:10.1111/J.1600–0463.2010.02684.X; Образцов И.В., Черникова Е.А., Образцова А.А., Епифанова М.А., Жиркова Ю.В. Динамика интерлейкина-6 как маркера генерализации инфекции при развитии неонатального сепсиса. Анестезиология и реаниматология 2024; 3: 35‑42.; Kao P.C., Shiesh S.C., Wu T.J. Serum C-reactive protein as a marker for wellness assessment. Ann Clin Lab Sci 2006 Spring; 36(2): 163–169.; Whelan S.A., Hendricks N., Dwight Z.L., Fu Q., Moradian A., Van Eyk J.E. et al. Assessment of a 60-Biomarker Health Surveillance Panel (HSP) on Whole Blood from Remote Sampling Devices by Targeted LC/MRM-MS and Discovery DIA-MS Analysis. Anal Chem 2023; 95(29): 11007–11018. DOI:10.1021/acs.analchem.3c01189; Mauri T., Bellani G., Patroniti N., Coppadoro A., Peri G., Cuccovillo I., et al. Persisting high levels of plasma pentraxin 3 over the first days after severe sepsis and septic shock onset are associated with mortality. Intensive Care Med 2010; 36: 621–629. DOI:10.1007/S00134–010–1752–5; Kofoed K., Andersen O., Kronborg G., Tvede M., Petersen J., Eugen-Olsen J., et al. Use of plasma C-reactive protein, procalcitonin, neutrophils, macrophage migration inhibitory factor, soluble urokinase-type plasminogen activator receptor, and soluble triggering receptor expressed on myeloid cells-1 in combination to diagnose infections: a prospective study. Crit Care 2007; 11: R38. DOI:10.1186/cc5723; Shapiro N.I., Trzeciak S., Hollander J.E., Birkhahn R., Otero R., Osborn T.M., et al. A prospective, multicenter derivation of a biomarker panel to assess risk of organ dysfunction, shock, and death in emergency department patients with suspected sepsis. Crit Care Med 2009; 37: 96–104. DOI:10.1097/ccm.0b013e318192fd9d; Gibot S., Béné M.C., Noel R., Massin F., Guy J., Cravoisy A., et al. Combination biomarkers to diagnose sepsis in the critically ill patient. Am J Respir Crit Care Med 2012; 186: 65–71. DOI:10.1164/rccm.201201–0037oc; Stryjewski G.R., Nylen E.S., Bell M.J., Snider R.H., Becker K.L., Wu A., et al. Interleukin-6, interleukin-8, and a rapid and sensitive assay for calcitonin precursors for the determination of bacterial sepsis in febrile neutropenic children. Pediatr Crit Care Med 2005; 6: 129–135. DOI:10.1097/01.pcc.0000149317.15274.48; Bozza F.A., Salluh J.I., Japiassu A.M., Soares M., Assis E.F., Gomes R.N., et al. Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis. Crit Care 2007; 11. DOI:10.1186/cc5783; Monneret G., Finck M. E., Venet F., Debard A. L., Bohé J., Bienvenu J., et al. The anti-inflammatory response dominates after septic shock: association of low monocyte HLA-DR expression and high interleukin-10 concentration. Immunol Lett 2004; 95: 193–198. DOI:10.1016/j.imlet.2004.07.009; Guignant C., Lepape A., Huang X., Kherouf H., Denis L., Poitevin F., et al. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Crit Care 2011; 15. DOI:10.1186/cc10112; Urbonas V., Eidukaitė A., Tamulienė I. Increased interleukin-10 levels correlate with bacteremia and sepsis in febrile neutropenia pediatric oncology patients. Cytokine 2012; 57: 313–315. DOI:10.1016/j.cyto.2011.11.012; Zeitoun A.A.H., Gad S.S., Attia F.M., Abu Maziad A.S., Bell E.F. Evaluation of neutrophilic CD64, interleukin 10 and procalcitonin as diagnostic markers of early- and late-onset neonatal sepsis. Scand J Infect Dis 2010; 42: 299–305. DOI:10.3109/00365540903449832; Shubin N.J., Navalkar K., Sampson D., Yager T.D., Cermelli S., Seldon T., et al. Serum Protein Changes in Pediatric Sepsis Patients Identified With an Aptamer-Based Multiplexed Proteomic Approach. Crit Care Med 2020; 48: E48–57. DOI:10.1097/ccm.0000000000004083; Pilar-Orive F.J., Astigarraga I., Azkargorta M., Elortza F., Garcia-Obregon S. A Three-Protein Panel to Support the Diagnosis of Sepsis in Children. J Clin Med 2022; 11. DOI:10.3390/jcm11061563; Luo T., Yan H., Li X., Deng Y., Huang J., Li L., et al. Proteomic analysis identified potential age-associated prognostic biomarkers in pneumonia-derived paediatric sepsis. Proteomics Clin Appl 2022; 16. DOI:10.1002/prca.202100036; Wong H.R., Cvijanovich N.Z., Hall M., Allen G.L., Thomas N.J., Freishtat R.J., et al. Interleukin-27 is a novel candidate diagnostic biomarker for bacterial infection in critically ill children. Crit Care 2012; 16. DOI:10.1186/CC11847
-
11Academic Journal
-
12Academic Journal
-
13Academic Journal
Πηγή: Azerbaijan Medical Journal. :114-120
Θεματικοί όροι: yoluxucu xəstəliklər, нарушения ритма сердца, cardiac arrhythmias, ürək aritmiyaları, инфекционные заболевания, instrumental diaqnostika, инструментальная диагностика, infectious diseases, 3. Good health, instrumental diagnostics
-
14Academic Journal
Συγγραφείς: Kleban, N.V., Rakhmetova, D.S., Shcherbina, T.N., Baltabekova, A.N.
Πηγή: Наука и здравоохранение. :284-288
Θεματικοί όροι: поражение центральной нервной системыз, жұқпалы аурулар, беременные, damage to the central nervous system, кене энцефалиті, жүкті әйелдер, Tick-borne encephalitis, инфекционные заболевания, орталық жүйке жүйесінің зақымдануы, infectious diseases, pregnant women, 3. Good health, Клещевой энцефалит
-
15Academic Journal
Συγγραφείς: Chen, C., Li, L., Zhong, Sh., Liang, H., Leontiev, V. N., Ignatovets, O. S.
Θεματικοί όροι: бруцеллёз, endemic zoonotic disease, бруцеллы, brucellosis, инфекционные заболевания, brucella, антитела к бруцеллам, brucella antibodies
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/65381
-
16Dissertation/ Thesis
Συνεισφορές: Филинкова, Т. Н.
Θεματικοί όροι: ШКОЛЬНЫЙ КУРС БИОЛОГИИ, ЗООЛОГИЯ БЕСПОЗВОНОЧНЫХ, КЛЕЩЕВЫЕ ИНФЕКЦИИ, ИНФЕКЦИОННЫЕ ЗАБОЛЕВАНИЯ
Σύνδεσμος πρόσβασης: https://elar.uspu.ru/handle/ru-uspu/65258
-
17
-
18
-
19Academic Journal
Συγγραφείς: Arakelian, R.S., Stulova, M.V., Karpenko, S.F., Gasanova, E.D., Okunskaia, Ye.I., Gerasina, N.I., Adaidaeva, V.Zh., Kuzina, A.Yu.
Πηγή: ACTUAL INFECTOLOGY; № 4.13 (2016); 22-26
Актуальная инфектология-Aktualʹnaâ Infektologiâ; № 4.13 (2016); 22-26
Актуальна інфектологія-Aktualʹnaâ Infektologiâ; № 4.13 (2016); 22-26Θεματικοί όροι: инфекционные заболевания, паразитарные заболевания, диагностика, биологический материал, 0202 electrical engineering, electronic engineering, information engineering, 0102 computer and information sciences, 02 engineering and technology, infectious diseases, parasitic diseases, diagnosis, biological material, інфекційні захворювання, паразитарні захворювання, діагностика, біологічний матеріал, 01 natural sciences, 3. Good health
Περιγραφή αρχείου: application/pdf
-
20Academic Journal
Συγγραφείς: Vygovska, O.V., Grechuha, E.A., Tkachuk, O.I.
Πηγή: Aktualʹnaâ Infektologiâ, Vol 5, Iss 5, Pp 217-222 (2017)
ACTUAL INFECTOLOGY; Том 5, № 5 (2017); 217-222
Актуальная инфектология-Aktualʹnaâ Infektologiâ; Том 5, № 5 (2017); 217-222
Актуальна інфектологія-Aktualʹnaâ Infektologiâ; Том 5, № 5 (2017); 217-222Θεματικοί όροι: 0301 basic medicine, Staphylococcus aureus, antibiotic resistance, Streptococcus pyogenes, Infectious and parasitic diseases, RC109-216, antibiotic susceptibility, infectious diseases, bacteria, researches, Klebsiella pneumoniae, антибіотикорезистентність, антибіотикочутливість, інфекційні захворювання, бактерії, дослідження, 3. Good health, 03 medical and health sciences, антибиотикорезистентность, антибиотикочувствительность, инфекционные заболевания, бактерии, исследования, Klebsiella pneumoniае
Περιγραφή αρχείου: application/pdf