-
1Academic Journal
Συγγραφείς: A. S. Zueva, A. I. Shevchenko, S. P. Medvedev, E. A. Elisaphenko, A. A. Sleptcov, M. S. Nazarenko, N. A. Tmoyan, S. M. Zakian, I. S. Zakharova, А. С. Зуева, А. И. Шевченко, С. П. Медведев, Е. А. Елисафенко, А. А. Слепцов, М. С. Назаренко, Н. А. Тмоян, С. М. Закиян, И. С. Захарова
Συνεισφορές: The work was supported by the Russian Science Foundation grant No. 24-15-00346, https://rscf.ru/project/ 24-15-00346/.
Πηγή: Vavilov Journal of Genetics and Breeding; Том 29, № 2 (2025); 189-199 ; Вавиловский журнал генетики и селекции; Том 29, № 2 (2025); 189-199 ; 2500-3259 ; 10.18699/vjgb-25-20
Θεματικοί όροι: изогенные линии клеток, LDLR, induced pluripotent stem cells, genome editing, isogenic cell lines, индуцированные плюрипотентные стволовые клетки, геномное редактирование
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/4537/1927; Bauer D.E., Canver M.C., Orkin S.H. Generation of genomic deletions in mammalian cell lines via CRISPR/Cas9. J Vis Exp. 2015; 95:e52118. doi 10.3791/52118; Bonnycastle L.L., Swift A.J., Mansell E.C., Lee A., Winnicki E., Li E.S., Robertson C.C., Parsons V.A., Huynh T., Krilow C., Mohlke K.L., Erdos M.R., Narisu N., Collins F.S. Generation of human isogenic induced pluripotent stem cell lines with CRISPR prime editing. Cris J. 2024;7(1):53-67. doi 10.1089/crispr.2023.0066; Bourbon M., Alves A.C., Medeiros A.M., Silva S., Soutar A.K. Familial hypercholesterolaemia in Portugal. Atherosclerosis. 2008; 196(2):633-642. doi 10.1016/j.atherosclerosis.2007.07.019; Brooks I.R., Garrone C.M., Kerins C., Kiar C.S., Syntaka S., Xu J.Z., Spagnoli F.M., Watt F.M. Functional genomics and the future of iPSCs in disease modeling. Stem Cell Rep. 2022;17(5):1033-1047. doi 10.1016/j.stemcr.2022.03.019; Cerneckis J., Cai H., Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct Target Ther. 2024;9(1):112. doi 10.1038/s41392-024-01809-0; Chai A.C., Cui M., Chemello F., Li H., Chen K., Tan W., Atmanli A., McAnally J.R., Zhang Y., Xu L., Liu N., Bassel-Duby R., Olson E.N. Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nat Med. 2023;29(2):401- 411. doi 10.1038/s41591-022-02176-5; Choppa P.C., Vojdani A., Tagle C., Andrin R., Magtoto L. Multiplex PCR for the detection of Mycoplasma fermentans, M. hominis and M. penetrans in cell cultures and blood samples of patients with chronic fatigue syndrome. Mol Cell Probes. 1998;12(5):301-308. doi 10.1006/mcpr.1998.0186; Cowan C.A., Klimanskaya I., McMahon J., Atienza J., Witmyer J., Zucker J.P., Wang S., Morton C.C., McMahon A.P., Powers D., Melton D.A. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med. 2004;350(13):1353-1356. doi 10.1056/nejmsr040330; Ezhov M.V., Bazhan S.S., Ershova A.I., Meshkov A.N., Sokolov A.A., Kukharchuk V.V., Gurevich V.S., Voevoda M.I., Sergienko I.V., Shakhtshneider E.V., Pokrovsky S.N., Konovalov G.A., Leontyeva I.V., Konstantinov V.O., Shcherbakova M.Yu., Zakharova I.N., Balakhonova T.V., Filippov A.E., Akhmedzhanov N.M., Aleksandrova O.Yu., Lipovetsky B.M. Clinical guidelines for familial hypercholesterolemia. Ateroscleroz. 2019;15(1):58-98 (in Russian); Ference B.A., Ginsberg H.N., Graham I., Ray K.K., Packard C.J., Bruckert E., Hegele R.A., Krauss R.M., Raal F.J., Schunkert H., Watt G.F., Borén J., Fazio S., Horton J.D., Masana L., Nicholls S.J., Nordestgaard B.G., Van De Sluis B., Taskinen M.R., Tokgözoǧlu L., Landmesser U., Laufs U., Wiklund O., Stock J.K., Chapman M.J., Catapano A.L. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38(32):2459- 2472. doi 10.1093/eurheartj/ehx144; Fularski P., Hajdys J., Majchrowicz G., Stabrawa M., Młynarska E., Rysz J., Franczyk B. Unveiling familial hypercholesterolemia – review, cardiovascular complications, lipid-lowering treatment and its efficacy. Int J Mol Sci. 2024;25(3):1637. doi 10.3390/ijms25031637; Gaudelli N.M., Komor A.C., Rees H.A., Packer M.S., Badran A.H., Bryson D.I., Liu D.R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017;551(7681): 464-471. doi 10.1038/nature24644; Grigor’eva E.V., Malakhova A.A., Yarkova E.S., Minina J.M., Vyatkin Y.V., Nadtochy J.A., Khabarova E.A., Rzaev J.A., Medvedev S.P., Zakian S.M. Generation and characterization of two induced pluripotent stem cell lines (ICGi052-A and ICGi052-B) from a patient with frontotemporal dementia with parkinsonism-17 associated with the pathological variant c.2013T>G in the MAPT gene. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2024;28(7):679-687. doi 10.18699/vjgb-24-76; Gu J., Gupta R.N., Cheng H.K., Xu Y., Raal F.J. Current treatments for the management of homozygous familial hypercholesterolaemia: a systematic review and commentary. Eur J Prev Cardiol. 2024; 31(15):1833-1849. doi 10.1093/eurjpc/zwae144; Harada-Shiba M. Impact of familial hypercholesterolemia diagnosis in real-world data. J Atheroscler Thromb. 2023;30(10):1303. doi 10.5551/jat.ED241; Hendricks-Sturrup R.M., Clark-Locascio J., Lu C.Y. A global review on the utility of genetic testing for familial hypercholesterolemia. J Pers Med. 2020;10(2):23. doi 10.3390/pm10020023; Hofer M., Lutolf M.P. Engineering organoids. Nat Rev Mater. 2021; 6(5):402-420. doi 10.1038/s41578-021-00279-y; Hopkins P.N., Toth P.P., Ballantyne C.M., Rader D.J. Familial hypercholesterolemias: prevalence, genetics, diagnosis and screening recommendations from the national lipid association expert panel on familial hypercholesterolemia. J Clin Lipidol. 2011;5(3):S9. doi 10.1016/j.jacl.2011.03.452; Hu J.H., Miller S.M., Geurts M.H., Tang W., Chen L., Sun N., Zeina C.M., Gao X., Rees H.A., Lin Z., Liu D.R. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018;556(7699):57-63. doi 10.1038/nature26155; Huang C.C., Niu D.M., Charng M.J. Genetic analysis in a Taiwanese cohort of 750 index patients with clinically diagnosed familial hypercholesterolemia. J Atheroscler Thromb. 2022;29(5):639-653. doi 10.5551/jat.62773; Jannes C.E., Santos R.D., de Souza Silva P.R., Turolla L., GagliardiA.C.M., Marsiglia J.D.C., ChacraA.P., Miname M.H., Rocha V.Z., Filho W.S., Krieger J.E., Pereira A.C. Familial hypercholesterolemia in Brazil: cascade screening program, clinical and genetic aspects. Atherosclerosis. 2015;238(1):101-107. doi 10.1016/j.atherosclerosis.2014.11.009; Kannan S., Farid M., Lin B.L., Miyamoto M., Kwon C. Transcriptomic entropy benchmarks stem cell-derived cardiomyocyte maturation against endogenous tissue at single cell level. PLoS Comput Biol. 2021;17(9):e1009305. doi 10.1371/journal.pcbi.1009305; Kawatani K., Nambara T., Nawa N., Yoshimatsu H., Kusakabe H., Hirata K., Tanave A., Sumiyama K., Banno K., Taniguchi H., Arahori H., Ozono K., Kitabatake Y. A human isogenic iPSC-derived cell line panel identifies major regulators of aberrant astrocyte proliferation in Down syndrome. Commun Biol. 2021;4(1):730. doi 10.1038/s42003-021-02242-7; Koblan L.W., Erdos M.R., Wilson C., Cabral W.A., Levy J.M., Xiong Z.M., Tavarez U.L., Davison L.M., Gete Y.G., Mao X., Newby G.A., Doherty S.P., Narisu N., Sheng Q., Krilow C., Lin C.Y., Gordon L.B., Cao K., Collins F.S., Brown J.D., Liu D.R. In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice. Nature. 2021;589(7843):608-614. doi 10.1038/s41586-020-03086-7; Komor A.C., Kim Y.B., Packer M.S., Zuris J.A., Liu D.R. Programmable editing of a target base in genomic DNA without doublestranded DNA cleavage. Nature. 2016;533(7603):420-424. doi 10.1038/nature17946; Lawlor K.T., Vanslambrouck J.M., Higgins J.W., Chambon A., Bishard K., Arndt D., Er P.X., Wilson S.B., Howden S.E., Tan K.S., Li F., Hale L.J., Shepherd B., Pentoney S., Presnell S.C., Chen A.E., Little M.H. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. Nat Mater. 2021;20(2):260-271. doi 10.1038/s41563-020-00853-9; Liang Y., Sun X., Duan C., Zhou Y., Cui Z., Ding C., Gu J., Mao S., Ji S., Chan H.F., Tang S., Chen J. Generation of a gene-corrected human iPSC line (CSUASOi004-A-1) from a retinitis pigmentosa patient with heterozygous c.2699G>A mutation in the PRPF6 gene. Stem Cell Res. 2022;64:103572. doi 10.1016/j.scr.2022.102911; Malakhova A.A., Grigor’eva E.V., Pavlova S.V., Malankhanova T.B., Valetdinova K.R., Vyatkin Y.V., Khabarova E.A., Rzaev J.A., Zakian S.M., Medvedev S.P. Generation of induced pluripotent stem cell lines ICGi021-A and ICGi022-A from peripheral blood mononuclear cells of two healthy individuals from Siberian population. Stem Cell Res. 2020;48:101952. doi 10.1016/j.scr.2020.101952; Meshkov A., Ershova A., Kiseleva A., Zotova E., Sotnikova E., Petukhova A., Zharikova A., Malyshev P., Rozhkova T., Blokhina A., Limonova A., Ramensky V., Divashuk M., Khasanova Z., Bukaeva A., Kurilova O., Skirko O., Pokrovskaya M., Mikova V., Snigir E., Akinshina A., Mitrofanov S., Kashtanova D., Makarov V., Kukharchuk V., Boytsov S., Yudin S., Drapkina O. The LDLR, APOB, and PCSK9 variants of index patients with familial hypercholesterolemia in Russia. Genes. 2021;12(1):66. doi 10.3390/genes12010066; Mohd Nor N.S., Al-Khateeb A.M., Chua Y.A., Mohd Kasim N.A., Mohd Nawawi H. Heterozygous familial hypercholesterolaemia in a pair of identical twins: a case report and updated review. BMC Pediatr. 2019;19(1):106. doi 10.1186/S12887-019-1474-y/tables/2; Nandy K., Babu D., Rani S., Joshi G., Ijee S., George A., Palani D., Premkumar C., Rajesh P., Vijayanand S., David E., Murugesan M., Velayudhan S.R. Efficient gene editing in induced pluripotent stem cells enabled by an inducible adenine base editor with tunable expression. Sci Rep. 2023;13(1):21953. doi 10.1038/s41598-023-42174-2; Nazarenko M.S., Sleptcov A.A., Zarubin A.A., Salakhov R.R., Shevchenko A.I., Tmoyan N.A., Elisaphenko E.A., Zubkova E.S., Zheltysheva N.V., Ezhov M.V., Kukharchuk V.V., Parfyonova Y.V., Zakian S.M., Zakharova I.S. Calling and phasing of single-nucleotide and structural variants of the LDLR gene using Oxford Nano- pore MinION. Int J Mol Sci. 2023;24(5):4471. doi 10.3390/ijms24054471; Newby G.A., Yen J.S., Woodard K.J., Mayuranathan T., Lazzarotto C.R., Li Y., Sheppard-Tillman H., Porter S.N., Yao Y., Mayberry K., Everette K.A., Jang Y., Podracky C.J., Thaman E., Lechauve C., Sharma A., Henderson J.M., Richter M.F., Zhao K.T., Miller S.M., Wang T., Koblan L.W., McCaffrey A.P., Tisdale J.F., Kalfa T.A., Pruett-Miller S.M., Tsai S.Q., Weiss M.J., Liu D.R. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature. 2021;595(7866):295-302. doi 10.1038/S41586-021-03609-w; Niemitz E. Isogenic iPSC-derived models of disease. Nat Genet. 2014;46(1):7. doi 10.1038/ng.2864; Okano H., Morimoto S. iPSC-based disease modeling and drug discovery in cardinal neurodegenerative disorders. Cell Stem Cell. 2022; 29(2):189-208. doi 10.1016/j.stem.2022.01.007; Okita K., Yamakawa T., Matsumura Y., Sato Y., Amano N., Watanabe A., Goshima N., Yamanaka S. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells. 2013;31(3): 458-466. doi 10.1002/stem.1293; Omer L., Hudson E.A., Zheng S., Hoying J.B., Shan Y., Boyd N.L. CRISPR correction of a homozygous low-density lipoprotein receptor mutation in familial hypercholesterolemia induced pluripotent stem cells. Hepatol Commun. 2017;1(9):886-898. doi 10.1002/hep4.1110; Palacios L., Grandoso L., Cuevas N., Olano-Martín E., Martinez A., Tejedor D., Stef M. Molecular characterization of familial hypercholesterolemia in Spain. Atherosclerosis. 2012;221(1):137-142. doi 10.1016/j.atherosclerosis.2011.12.021; Pavlova S.V., Shayakhmetova L.S., Pronyaeva K.A., Shulgina A.E., Zakian S.M., Dementyeva E.V. Generation of induced pluripotent stem cell lines ICGi022-A-3, ICGi022-A-4, and ICGi022-A-5 with p.Asn515del mutation introduced in MYBPC3 using CRISPR/Cas9. Russ J Dev Biol. 2023;54:96-103. doi 10.1134/S1062360423010113; Porto E.M., Komor A.C., Slaymaker I.M., Yeo G.W. Base editing: advances and therapeutic opportunities. Nat Rev Drug Discov. 2020; 19(12):839-859. doi 10.1038/s41573-020-0084-6; Ray K.K., Ference B.A., Séverin T., Blom D., Nicholls S.J., Shiba M.H., Almahmeed W., Alonso R., Daccord M., Ezhov M., Olmo R.F., Jankowski P., Lanas F., Mehta R., Puri R., Wong N.D., Wood D., Zhao D., Gidding S.S., Virani S.S., Lloyd-Jones D., Pinto F., Perel P., Santos R.D. World Heart Federation Cholesterol Roadmap 2022. Glob Heart. 2022;17(1):75. doi 10.5334/gh.1154; Ray K.K., Pillas D., Hadjiphilippou S., Khunti K., Seshasai S.R.K., Vallejo-Vaz A.J., Neasham D., Addison J. Premature morbidity and mortality associated with potentially undiagnosed familial hypercholesterolemia in the general population. Am J Prev Cardiol. 2023; 15:100580. doi 10.1016/j.ajpc.2023.100580; Renner H., Grabos M., Becker K.J., Kagermeier T.E., Wu J., Otto M., Peischard S., Zeuschner D., Tsytsyura Y., Disse P., Klingauf J., Leidel S.A., Seebohm G., Schöler H.R., Bruder J.M. A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids. eLife. 2020;9:e52904. doi 10.7554/eLife.52904; Rothgangl T., Dennis M.K., Lin P.J.C., Oka R., Witzigmann D., Villiger L., Qi W., Hruzova M., Kissling L., Lenggenhager D., Borrelli C., Egli S., Frey N., Bakker N., Walker J.A., Kadina A.P., Victorov D.V., Pacesa M., Kreutzer S., Kontarakis Z., Moor A., Jinek M., Weissman D., Stoffel M., van Boxtel R., Holden K., Pardi N., Thöny B., Häberle J., Tam Y.K., Semple S.C., Schwank G. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat Biotechnol. 2021;39(8):949-957. doi 10.1038/s41587-021-00933-4; Semenova A.E., Sergienko I.V., García-Giustiniani D., Monserrat L., Popova A.B., Nozadze D.N., Ezhov M.V. Verification of underlying genetic cause in a cohort of Russian patients with familial hypercholesterolemia using targeted next generation sequencing. J Cardiovasc Dev Dis. 2020;7(2):16. doi 10.3390/jcdd7020016; Setia N., Saxena R., Arora A., Verma I.C. Spectrum of mutations in homozygous familial hypercholesterolemia in India, with four novel mutations. Atherosclerosis. 2016;255:31-36. doi 10.1016/j.atherosclerosis.2016.10.028; Shakhtshneider E., Ivanoshchuk D., Timoshchenko O., Orlov P., Semaev S., Valeev E., Goonko A., Ladygina N., Voevoda M. Analysis of rare variants in genes related to lipid metabolism in patients with familial hypercholesterolemia in Western Siberia (Russia). J Pers Med. 2021;11(11):1232. doi 10.3390/jpm11111232; Sharifi M., Walus-Miarka M., Idzior-Waluś B., Malecki M.T., Sanak M., Whittall R., Li K.W., Futema M., Humphries S.E. The genetic spectrum of familial hypercholesterolemia in south-eastern Poland. Metabolism. 2016;65(3):48-53. doi 10.1016/j.metabol.2015.10.018; Siegner S.M., Karasu M.E., Schröder M.S., Kontarakis Z., Corn J.E. PnB Designer: a web application to design prime and base editor guide RNAs for animals and plants. BMC Bioinformatics. 2021; 22(1):101. doi 10.1186/s12859-021-04034-6; Subramanian A., Sidhom E.H., Emani M., Vernon K., Sahakian N., Zhou Y., Kost-Alimova M., Slyper M., Waldman J., Dionne D., Nguyen L.T., Weins A., Marshall J.L., Rosenblatt-Rosen O., Regev A., Greka A. Single cell census of human kidney organoids shows reproducibility and diminished off-target cells after transplantation. Nat Commun. 2019;10(1):5462. doi 10.1038/S41467-019-13382-0; Südhof T.C., Goldstein J.L., Brown M.S., Russell D.W. The LDL receptor gene: a mosaic of exons shared with different proteins. Science. 1985;228(4701):815-822. doi 10.1126/science.2988123; Talmud P.J., Futema M., Humphries S.E. The genetic architecture of the familial hyperlipidaemia syndromes: rare mutations and common variants in multiple genes. Curr Opin Lipidol. 2014;25(4):274-281. doi 10.1097/MOL.0000000000000090; Thormaehlen A.S., Schuberth C., Won H.H., Blattmann P., JoggerstThomalla B., Theiss S., Asselta R., Duga S., Merlini P.A., Ardissino D., Lander E.S., Gabriel S., Rader D.J., Peloso G.M., Pepperkok R., Kathiresan S., Runz H. Systematic cell-based phenotyping of missense alleles empowers rare variant association studies: a case for LDLR and myocardial infarction. PLoS Genet. 2015; 11(2):e1004855. doi 10.1371/journal.pgen.1004855; Tichý L., Freiberger T., Zapletalová P., Soška V., Ravčuková B., Fajkusová L. The molecular basis of familial hypercholesterolemia in the Czech Republic: spectrum of LDLR mutations and genotypephenotype correlations. Atherosclerosis. 2012;223(2):401-408. doi 10.1016/j.atherosclerosis.2012.05.014; Vaskova E.A., Medvedev S.P., Sorokina A.E., Nemudryy A.A., Elisaphenko E.A., Zakharova I.S., Shevchenko A.I., Kizilova E.A., ZhelezovaA.I., Evshin I.S., Sharipov R.N., Minina J.M., Zhdanova N.S., Khegay I.I., Kolpakov F.A., Sukhikh G.T., Pokushalov E.A., Karaskov A.M., Vlasov V.V., Ivanova L.N., Zakian S.M. Transcriptome characteristics and X-chromosome inactivation status in cultured rat pluripotent stem cells. Stem Cells Dev. 2015;24(24):2912-2924. doi 10.1089/scd.2015.0204; Wang H., Luo Y., Li J., Guan J., Yang S., Wang Q. Generation of a gene corrected human isogenic iPSC line (CPGHi001-A-1) from a hearing loss patient with the TMC1 p.M418K mutation using CRISPR/Cas9. Stem Cell Res. 2022;60:102736. doi 10.1016/j.scr.2022.102736; Zakharova I.S., Shevchenko A.I., Tmoyan N.A., Elisaphenko E.A., Zubkova E.S., SleptcovA.A., Nazarenko M.S., Ezhov M.V., Kukharchuk V.V., Parfyonova Y.V., Zakian S.M. Induced pluripotent stem cell line ICGi036-A generated by reprogramming peripheral blood mononuclear cells from a patient with familial hypercholesterolemia caused due to compound heterozygous p.Ser177Leu/p.Cys352Arg mutations in LDLR. Stem Cell Res. 2022a;59:102653. doi 10.1016/j.scr.2022.102653; Zakharova I.S., Shevchenko A.I., Tmoyan N.A., Elisaphenko E.A., Kalinin A.P., Sleptcov A.A., Nazarenko M.S., Ezhov M.V., Kukharchuk V.V., Parfyonova Y.V., Zakian S.M. Induced pluripotent stem cell line ICGi037-A, obtained by reprogramming peripheral blood mononuclear cells from a patient with familial hypercholesterolemia due to heterozygous p.Trp443Arg mutations in LDLR. Stem Cell Res. 2022b;60:102703. doi 10.1016/j.scr.2022.102703; Zakharova I.S., Shevchenko A.I., Tmoyan N.A., Elisaphenko E.A., Zubkova E.S., SleptcovA.A., Nazarenko M.S., Ezhov M.V., Kukharchuk V.V., Parfyonova Y.V., Zakian S.M. Induced pluripotent stem cell line ICGi038-A, obtained by reprogramming peripheral blood mononuclear cells from a patient with familial hypercholesterolemia due to compound heterozygous c.1246C>T/c.940+3_940+6del mutations in LDLR. Stem Cell Res. 2022c;60:102702. doi 10.1016/j.scr.2022.102702; Zakharova I.S., Shevchenko A.I., Arssan M.A., Sleptcov A.A., Nazarenko M.S., Zarubin A.A., Zheltysheva N.V., Shevchenko V.A., Tmoyan N.A., Saaya S.B., Ezhov M.V., Kukharchuk V.V., Parfyonova Y.V., Zakian S.M. IPSC-derived endothelial cells reveal LDLR dysfunction and dysregulated gene expression profiles in familial hypercholesterolemia. Int J Mol Sci. 2024a;25(2):689. doi 10.3390/ijms25020689; Zakharova I.S., Shevchenko A.I., Zakian S.M. Familial hypercholesterolemia: current insight and challenges in its modelling. Pisma v Vavilovskii Zhurnal Genetiki i Selektsii = Letters to Vavilov Journal of Genetics and Breeding. 2024b;10(1):5-14. doi 10.18699/letvjgb-2024-10-2 (in Russian); https://vavilov.elpub.ru/jour/article/view/4537
-
2Academic Journal
Συγγραφείς: V. S. Podvysotskaya, E. V. Grigor’eva, A. A. Malakhova, J. M. Minina, Y. V. Vyatkin, E. A. Khabarova, J. A. Rzaev, S. P. Medvedev, L. V. Kovalenko, S. M. Zakian, В. С. Подвысоцкая, Е. В. Григорьева, А. А. Малахова, Ю. М. Минина, Ю. В. Вяткин, Е. А. Хабарова, Дж. А. Рзаев, С. П. Медведев, Л. В. Коваленко, С. М. Закиян
Συνεισφορές: The study was carried out with the financial support of the Foundation for Scientific and Technological Development of Yugra within the framework of scientific project No. 2023-573-05, Исследование выполнено при финансовой поддержке Фонда научно-технологического развития Югры в рамках научного проекта № 2023-573-05.
Πηγή: Vavilov Journal of Genetics and Breeding; Том 29, № 1 (2025); 15-25 ; Вавиловский журнал генетики и селекции; Том 29, № 1 (2025); 15-25 ; 2500-3259 ; 10.18699/vjgb-25-01
Θεματικοί όροι: ген LGR4, reprogramming, induced pluripotent stem cells, LGR4 gene, репрограммирование, индуцированные плюрипотентные стволовые клетки
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/4469/1910; Cowan C.A., Klimanskaya I., McMahon J., Atienza J., Witmyer J., Zucker J.P., Wang S., Morton C.C., McMahon A.P., Powers D., Melton D.A. Derivation of embryonic stemcell lines from human blastocysts. N Engl J Med. 2004;350(13):13531356. doi:10.1056/NEJMsr040330; Fernandes H.J.R., Hartfield E.M., Christian H.C., Emmanoulidou E., Zheng Y., Booth H., Bogetofte H., Lang C., Ryan B.J., Sardi S.P., Badger J., Vowles J., Evetts S., Tofaris G.K., Vekrellis K., Talbot K., Hu M.T., James W., Cowley S.A., WadeMartins R. ER stress and autophagic perturbations lead to elevated extracellular α-synuclein in GBAN370S Parkinson’s iPSCderived dopamine neurons. Stem Cell Rep. 2016;6(3):342356. doi:10.1016/j.stemcr.2016.01.013; Funayama M., Nishioka K., Li Y., Hattori N. Molecular genetics of Parkinson’s disease: сontributions and global trends. J Hum Genet. 2023;68(3):125130. doi:10.1038/s10038022010585; Grigor’eva E.V., Kopytova A.E., Yarkova E.S., Pavlova S.V., Sorogina D.A., Malakhova A.A., Malankhanova T.B., Baydakova G.V., Zakharova E.Y., Medvedev S.P., Pchelina S.N., Zakian S.M. Bioche mical characteristics of iPSCderived dopaminergic neurons from N370S GBA variant carriers with and without Parkinson’s disease. Int J Mol Sci. 2023;24:4437. doi:10.3390/ijms24054437; Grigor’eva E.V., Karapetyan L.V., Malakhova A.A., Medvedev S.P., Minina J.M., Hayrapetyan V.H., Vardanyan V.S., Zakian S.M., Arakelyan A., Zakharyan R. Generation of iPSCs from a patient with the M694V mutation in the MEFV gene associated with Familial Mediterranean fever and their differentiation into macrophages. Int J Mol Sci. 2024a;25:6102. doi:10.3390/ijms25116102; Grigor’eva E.V., Malakhova A.A., Yarkova E.S., Minina J.M., Vyatkin Y.V., Nadtochy J.A., Khabarova E.A., Rzaev J.A., Medvedev S.P., Zakian S.M. Generation and characterization of two in duced pluripotent stem cell lines (ICGi052A and ICGi052B) from a patient with frontotemporal dementia with parkinsonism17 associated with the pathological variant c.2013T>G in the MAPT gene. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2024b;28(7):679687. doi:10.18699/vjgb2476; Hastings R., Howell R., Bricarelli F.D., Kristoffersson U., Cavani S. General guidelines and quality assurance for cytogenetics. Eur Cytogenet Assoc Newsl. 2012;29:1125 ISCN 2020: An International System for Human Cytogenomic Nomen clature. S. Karger AG, 2020. doi:10.1159/isbn.9783318068672; Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using realtime quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402408. doi:10.1006/meth.2001.1262; Mancini A., Howard S.R., Marelli F., Cabrera C.P., Barnes M.R., Sternberg M.J.E., Leprovots M., Hadjidemetriou I., Monti E., David A., Wehkalampi K., Oleari R., Lettieri A., Vezzoli V., Vassart G., Cariboni A., Bonomi M., Garcia M.I., Guasti L., Dunkel L. LGR4 deficiency results in delayed puberty through impaired Wnt/β-catenin signaling. JCI Insight. 2023;5(11):e133434. doi:10.1172/jci.insight.133434; Marchetti B., Tirolo C., L’Episcopo F., Caniglia S., Testa N., Smith J.A., Pluchino S., Serapide M.F. Parkinson’s disease, aging and adult neurogenesis: Wnt/β-catenin signalling as the key to unlock the mystery of endogenous brain repair. Aging Cell. 2020;19(3):e13101. doi:10.1111/acel.13101; Marciniak S.J., Chambers J.E., Ron D. Pharmacological targeting of endoplasmic reticulum stress in disease. Nat Rev Drug Discov. 2022;21(2):115140. doi:10.1038/s41573021003203; Menzorov A., Pristyazhnyuk I., Kizilova H., Yunusova A., Battulin N., Zhelezova A., Golubitsa A., Serov O.L. Cytogenetic analysis and Dlk1-Dio3 locus epigenetic status of mouse embryonic stem cells during early passages. Cytotechnology. 2016;68(1):6171. doi:10.1007/s106160149751y; Niu Y., Zhang J., Dong M. Nrf2 as a potential target for Parkinson’s disease therapy. J Mol Med (Berl). 2021;99(7):917931. doi:10.1007/s00109021020715; Okita K., Yamakawa T., Matsumura Y., Sato Y., Amano N., Watanabe A., Goshima N., Yamanaka S. An efficient nonviral method to generate integrationfree humaninduced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells. 2013;31(3):458-466. doi:10.1002/stem.1293; Shi S., Li S., Zhang X., Wei Z., Fu W., He J., Hu Y., Li M., Zheng L., Zhang Z. LGR4 gene polymorphisms are associated with bone and obesity phenotypes in Chinese female nuclear families. Front Endocrinol. 2021;12:656077. doi:10.3389/fendo.2021.656077; Wang M., Ling K.-H., Tan J.J., Lu C.-B. Development and differentiation of midbrain dopaminergic neuron: from bench to bedside. Cells. 2020;9(6):1489. doi:10.3390/cells9061489; Yarkova E.S., Grigor’eva E.V., Medvedev S.P., Pavlova S.V., Zakian S.M., Malakhova A.A. IPSCderived astrocytes contribute to in vitro modeling of Parkinson’s disease caused by the GBA1 N370S mutation. Int J Mol Sci. 2023;25(1):327. doi:10.3390/ijms25010327; Yarkova E.S., Grigor’eva E.V., Medvedev S.P., Tarasevich D.A., Pavlova S.V., Valetdinova K.R., Minina J.M., Zakian S.M., Malakhova A.A. Detection of ER stress in iPSCderived neurons carrying the p.N370S mutation in the GBA1 gene. Biomedicines. 2024;12:744. doi:10.3390/biomedicines12040744; https://vavilov.elpub.ru/jour/article/view/4469
-
3Academic Journal
Συγγραφείς: L. И. Gumerova, D. Г. Zheglo, V. O. Pozhitnova, P. S. Sviridov, A. V. Kislova, V. V. Sviridova, D. S. Kiselev, N. С. Mingaleva, A. Alsalloum, E. А. Gornostal, E. S. Voronina, Л. И. Гумерова, Д. Г. Жегло, В. О. Пожитнова, Ф. С. Свиридов, А. В. Кислова, В. В. Свиридова, Д. С. Киселев, Н. С. Мингалёва, А. Алсаллум, Е. А. Горносталь, Е. С. Воронина
Συνεισφορές: Работа выполнена в рамках государственного задания Минобрнауки России для ФГБНУ МГНЦ.
Πηγή: Medical Genetics; Том 23, № 11 (2024); 34-39 ; Медицинская генетика; Том 23, № 11 (2024); 34-39 ; 2073-7998
Θεματικοί όροι: анеуплоидия, induced pluripotent stem cells, IPSC, chromosome 12, centromere, aneuploidy, индуцированные плюрипотентные стволовые клетки, иПСК, хромосома 12, центромера
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2571/1828; Deng C., Ya A., Compton D.A., Godek K.M. A pluripotent developmental state confers a low fidelity of chromosome segregation. Stem Cell Reports. 2023;18(2):475-488. doi:10.1016/j.stemcr.2022.12.008.; Milagre I., Pereira C., Oliveira R.A. Compromised Mitotic Fidelity in Human Pluripotent Stem Cells. Int J Mol Sci. 2023 Jul 25;24(15):11933. doi:10.3390/ijms241511933.; Al Delbany D., Ghosh M.S., Krivec N., et al. De Novo Cancer Mutations Frequently Associate with Recurrent Chromosomal Abnormalities during Long-Term Human Pluripotent Stem Cell Culture. Cells. 2024;13(16):1395. doi:10.3390/cells13161395.; Stavish D., Price C.J., Gelezauskaite G., et al. Feeder-free culture of human pluripotent stem cells drives MDM4-mediated gain of chromosome 1q. Stem Cell Reports. 2024;19(8):1217-1232. doi:10.1016/j.stemcr.2024.06.003.; DuBose C.O., Daum J.R., Sansam C.L., Gorbsky GJ. Dynamic Features of Chromosomal Instability during Culture of Induced Pluripotent Stem Cells. Genes (Basel). 2022;13(7):1157. doi:10.3390/genes13071157.; Baker D., Hirst A.J., Gokhale P.J, et al. Detecting Genetic Mosaicism in Cultures of Human Pluripotent Stem Cells. Stem Cell Reports. 2016;7(5):998-1012. doi:10.1016/j.stemcr.2016.10.003.; Ludwig T.E., Andrews P.W., Barbaric I., et al. ISSCR standards for the use of human stem cells in basic research. Stem Cell Reports. 2023;18(9):1744-1752. doi:10.1016/j.stemcr.2023.08.003.; McIntire E., Taapken S., Leonhard K., Larson A.L. Genomic Stability Testing of Pluripotent Stem Cells. Curr Protoc Stem Cell Biol. 2020 Mar;52(1):e107. doi:10.1002/cpsc.107.; Ben-David U., Arad G., Weissbein U. et al. Aneuploidy induces profound changes in gene expression, proliferation and tumorigenicity of human pluripotent stem cells. Nat Commun. 2014; 5, 4825. Doi:10.1038/ncomms5825.; Khademi N.S., Farivar S., Bazrgar M., et al. Aneuploidy Rate and Stemness in Low-Level Mosaic Human Embryonic Stem Cells in the Presence/Absence of Bortezomib, Paclitaxel, and Lapatinib. Cells Tissues Organs. 2024;213(1):17-23. doi:10.1159/000526199.; Lamm N., Ben-David U., Golan-Lev T., et al. Genomic Instability in Human Pluripotent Stem Cells Arises from Replicative Stress and Chromosome Condensation Defects. Cell Stem Cell. 2016;18(2):253-61. doi:10.1016/j.stem.2015.11.003.; Yanagihara K., Hayashi Y., Liu Y., et al. Trisomy 12 compromises the mesendodermal differentiation propensity of human pluripotent stem cells. In Vitro Cell Dev Biol Anim. 2024;60(5):521-534. doi:10.1007/s11626-023-00824-9.; Contreras-Galindo R., Fischer S., Saha A.K. et al. Rapid molecular assays to study human centromere genomics. Genome Res. 2017;27(12):2040-2049. doi:10.1101/gr.219709.116.; Sharma R., Meister P. Generation of Inexpensive, Highly Labeled Probes for Fluorescence In Situ Hybridization (FISH). STAR Protoc. 2020;1(1):100006. doi:10.1016/j.xpro.2019.100006.; Lengauer C., Dunham I., Featherstone T., Cremer T. Generation of alphoid DNA probes for fluorescence in situ hybridization (FISH) using the polymerase chain reaction. Methods Mol Biol. 1994; 33: 51-61. doi:10.1385/0-89603-280-9:51. PMID: 7894592.; Zhigalina D.I., Skryabin N.A., Vasilieva O.Y. et al. FISH Diagnostics of Chromosomal Translocation with the Technology of Synthesis of Locus-Specific DNA Probes Based on Long-Range PCR. Russ J Genet. 2020; 5 6:739–746. https://doi.org/10.1134/S1022795420060150; Durm M., Haar F.M., Hausmann M., et al. Optimization of fast-fluorescence in situ hybridization with repetitive alpha-satellite probes. Z Naturforsch C J Biosci. 1996;51(3-4):253-61. doi:10.1515/znc-1996-3-418.; Пожитнова В.О., Свиридова В.В., Кислова А.В., и др. Аномалии кариотипа в линиях индуцированных плюрипотентных стволовых клеток, полученных от российских доноров. Медицинская генетика. 2023;22(12):59-66. https://doi.org/10.25557/2073-7998.2023.12.59-66; Dekel-Naftali M., Aviram-Goldring A., Litmanovitch T., et al. Screening of human pluripotent stem cells using CGH and FISH reveals low-grade mosaic aneuploidy and a recurrent amplification of chromosome 1q. Eur J Hum Genet. 2012;20(12):1248-55. doi:10.1038/ejhg.2012.128.; Peterson S.E., Westra J.W., Rehen S.K., et al. Normal human pluripotent stem cell lines exhibit pervasive mosaic aneuploidy. PLoS One. 2011;6(8):e23018. doi:10.1371/journal.pone.0023018
-
4Academic Journal
Συγγραφείς: И.С. Захарова, А.И. Шевченко, С.М. Закиян
Πηγή: Письма в Вавиловский журнал генетики и селекции, Vol 10, Iss 1, Pp 5-14 (2024)
Θεματικοί όροι: семейная гиперхолестеринемия, атеросклероз, рецептор липопротеинов низкой плотности, клеточные модели, индуцированные плюрипотентные стволовые клетки, эндотелий, Genetics, QH426-470
Περιγραφή αρχείου: electronic resource
Relation: https://pismavavilov.ru/wp-content/uploads/2024/03/003-PVJ-Zakharova_10_1.pdf; https://doaj.org/toc/2686-8482
Σύνδεσμος πρόσβασης: https://doaj.org/article/405e6d3506794b49af73e986c80648f4
-
5Academic Journal
Συγγραφείς: E. V. Grigor’eva, A. A. Malakhova, E. S. Yarkova, J. M. Minina, Y. V. Vyatkin, J. A. Nadtochy, E. A. Khabarova, J. A. Rzaev, S. P. Medvedev, S. M. Zakian, Е. В. Григорьева, А. А. Малахова, Е. С. Яркова, Ю. М. Минина, Ю. В. Вяткин, Ю. А. Надточий, Е. А. Хабарова, Дж. А. Рзаев, С. П. Медведев, С. М. Закиян
Συνεισφορές: The study was supported by the Ministry of Science and Higher Education of the Russian Federation, Agreement No. 075-15-2021-1063/10.
Πηγή: Vavilov Journal of Genetics and Breeding; Том 28, № 7 (2024); 679-687 ; Вавиловский журнал генетики и селекции; Том 28, № 7 (2024); 679-687 ; 2500-3259 ; 10.18699/vjgb-24-75
Θεματικοί όροι: ген MAPT, induced pluripotent stem cells, MAPT gene, индуцированные плюрипотентные стволовые клетки
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/4341/1875; Britti E., Ros J., Esteras N., Abramov A.Y. Tau inhibits mitochondrial calcium efflux and makes neurons vulnerable to calcium-induced cell death. Cell Calcium. 2020;86:102150. DOI 10.1016/j.ceca.2019.102150; Choppa P.C., Vojdani A., Tagle C., Andrin R., Magtoto L. Multiplex PCR for the detection of Mycoplasma fermentans, M. hominis and M. penetrans in cell cultures and blood samples of patients with chronic fatigue syndrome. Mol. Cell Probes. 1998;12(5):301-308. DOI 10.1006/mcpr.1998.0186; Cowan C.A., Klimanskaya I., McMahon J., Atienza J., Witmyer J., Zucker J.P., Wang S., Morton C.C., McMahon A.P., Powers D., Melton D.A. Derivation of embryonic stem-cell lines from human blastocysts. N. Engl. J. Med. 2004;350(13):1353-1356. DOI 10.1056/NEJMsr040330; Dawson H.N., Cantillana V., Chen L., Vitek M.P. The tau N279K exon 10 splicing mutation recapitulates frontotemporal dementia and parkinsonism linked to chromosome 17 tauopathy in a mouse model. J. Neurosci. 2007;27(34):9155-9168. DOI 10.1523/JNEUROSCI.5492-06.2007; D’Souza I., Schellenberg G.D. Arginine/serine-rich protein interaction domain-dependent modulation of a tau exon 10 splicing enhancer: altered interactions and mechanisms for functionally antagonistic FTDP-17 mutations Δ280K and N279K. J. Biol. Chem. 2006;281: 2460-2469. DOI 10.1074/jbc.M505809200; Esmaeli-Azad B., McCarty J.H., Feinstein S.C. Sense and antisense transfection analysis of tau function: tau influences net microtubule assembly, neurite outgrowth and neuritic stability. J. Cell Sci. 1994; 107(4):869-879. DOI 10.1242/jcs.107.4.869; Esteras N., Kundel F., Amodeo G.F., Pavlov E.V., Klenerman D., Abramov A.Y. Insoluble tau aggregates induce neuronal death through modification of membrane ion conductance, activation of voltage-gated calcium channels and NADPH oxidase. FEBS J. 2021;288(1):127-141. DOI 10.1111/febs.15340; Ghetti B., Oblak A.L., Boeve B.F., Johnson K.A., Dickerson B.C., Goedert M. Invited review: Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging. Neuropathol. Appl. Neurobiol. 2015;41(1):24-46. DOI 10.1111/nan.12213; Grigor’eva E.V., Kopytova A.E., Yarkova E.S., Pavlova S.V., Sorogina D.A., Malakhova A.A., Malankhanova T.B., Baydakova G.V., Zakharova E.Y., Medvedev S.P., Pchelina S.N., Zakian S.M. Biochemical characteristics of iPSC-derived dopaminergic neurons from N370S GBA variant carriers with and without Parkinson’s disease. Int. J. Mol. Sci. 2023;24(5):4437. DOI 10.3390/ijms24054437; Hasegawa M., Smith M.J., Iijima M., Tabira T., Goedert M. FTDP-17 mutations N279K and S305N in tau produce increased splicing of exon 10. FEBS Lett. 1999;443(2):93-96. DOI 10.1016/S0014-5793(98)01696-2; Hernández F., Merchán-Rubira J., Vallés-Saiz L., Rodríguez-Matellán A., Avila J. Differences between human and murine tau at the N-terminal end. Front. Aging Neurosci. 2020;12:11. DOI 10.3389/fnagi.2020.00011; Iovino M., Agathou S., González-Rueda A., Del Castillo VelascoHerrera M., Borroni B., Alberici A., Lynch T., O’Dowd S., Geti I., Gaffney D., Vallier L., Paulsen O., Káradóttir R.T., Spillantini M.G. Early maturation and distinct tau pathology in induced pluripotent stem cell-derived neurons from patients with MAPT mutations. Brain. 2015;138(11):3345-3359. DOI 10.1093/brain/awv222; Korn L., Speicher A.M., Schroeter C.B., Gola L., Kaehne T., Engler A., Disse P., Fernández-Orth J., Csatári J., Naumann M., Seebohm G., Meuth S.G., Schöler H.R., Wiendl H., Kovac S., Pawlowski M. MAPT genotype-dependent mitochondrial aberration and ROS production trigger dysfunction and death in cortical neurons of patients with hereditary FTLD. Redox Biol. 2023;59:102597. DOI 10.1016/j.redox.2022.102597; Liu G., David B.T., Trawczynski M., Fessler R.G. Advances in pluripotent stem cells: history, mechanisms, technologies, and applications. Stem Cell Rev. Rep. 2020;16(1):3-32. DOI 10.1007/s12015-019-09935-x; Lynch T., Sano M., Marder K.S., Bell K.L., Foster N.L., Defendini R.F., Sima A.A., Keohane C., Nygaard T.G., Fahn S., Mayeux R., Rowland L., Wilhelmsen K. Clinical characteristics of a family-with chromosome 17-linked disinhibition-dementia-parkinsonism-amyotrophy complex. Neurology. 1994;44(10):1878-1884. DOI 10.1212/wnl.44.10.1878; Okita K., Yamakawa T., Matsumura Y., Sato Y., Amano N., Watanabe A., Goshima N., Yamanaka S. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells. 2013;31(3):458- 466. DOI 10.1002/stem.1293; Ritter M.L., Avila J., García-Escudero V., Hernández F., Pérez M. Frontotemporal dementia-associated N279K tau mutation localizes at the nuclear compartment. Front. Cell. Neurosci. 2018;12:202. DOI 10.3389/fncel.2018.00202; Valetdinova K.R., Malankhanova T.B., Zakian S.M., Medvedev S.P. The cutting edge of disease modeling: synergy of induced pluripotent stem cell technology and genetically encoded biosensors. Biomedicines. 2021;9(8):960. DOI 10.3390/biomedicines9080960; Wren M.C., Zhao J., Liu C.-C., Murray M.E., Atagi Y., Davis M.D., Fu Y., Okano H.J., Ogaki K., Strongosky A.J., Tacik P., Rademakers R., Ross O.A., Dickson D.W., Wszolek Z.K., Kanekiyo T., Bu G. Frontotemporal dementia-associated N279K tau mutant disrupts subcellular vesicle trafficking and induces cellular stress in iPSC-derived neural stem cells. Mol. Neurodegener. 2015;10:46. DOI 10.1186/s13024-015-0042-7.; https://vavilov.elpub.ru/jour/article/view/4341
-
6Academic Journal
Συγγραφείς: N. V. Neroeva, N. V. Balatskaya, A. G. Brilliantova, L. A. Katargina, A. E. Kharitonov, M. A. Lagarkova, A. N. Bogomazova, Н. В. Нероева, Н. В. Балацкая, А. Г. Бриллиантова, Л. А. Катаргина, А. Е. Харитонов, М. А. Лагарькова, А. Н. Богомазова
Πηγή: Ophthalmology in Russia; Том 21, № 1 (2024); 193-204 ; Офтальмология; Том 21, № 1 (2024); 193-204 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2024-1
Θεματικοί όροι: иммуносупрессия, atrophy, induced pluripotent stem cells, transplantation, immunoreactivity, cytokine, immunosuppression, атрофия, индуцированные плюрипотентные стволовые клетки, трансплантация, иммунореактивность, цитокины
Περιγραφή αρχείου: application/pdf
Relation: https://www.ophthalmojournal.com/opht/article/view/2311/1205; Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, Wong TY. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014 Feb;2(2):e106–116. doi:10.1016/S2214-109X(13)70145-1.; Jin ZB, Gao ML, Deng WL, Wu KC, Sugita S, Mandai M, Takahashi M. Stemming retinalregeneration with pluripotent stem cells. Prog Retin Eye Res. 2019 Mar;69:38–56. doi:10.1016/j.preteyeres.2018.11.003.; Klein R, Klein BE, Cruickshanks KJ. The prevalence of age-related maculopathy by geographic region and ethnicity. Prog Retin Eye Res. 1999 May;18(3):371–389. doi:10.1016/s1350-9462(98)00025-1.; Nita M, Strzałka-Mrozik B, Grzybowski A, Romaniuk W, Mazurek U. Ophthalmic transplantology: posterior segment of the eye-part II. Med Sci Monit. 2012 Jun;18(6):RA97–103. doi:10.12659/msm.882868.; Petrash CC, Palestine AG, Canto-Soler MV. Immunologic Rejection of Transplanted Retinal Pigmented Epithelium: Mechanisms and Strategies for Prevention. Front Immunol. 2021 May 12;12:621007. doi:10.3389/fimmu.2021.621007.; Харитонов А.Е., Сурдина А.В., Лебедева О.С., Богомазова А.Н., Лагарькова М.А. Возможности использования плюрипотентных стволовых клеток для восстановления поврежденного пигментного эпителия сетчатки глаза. Acta Naturae. 2018;10(3):31–41. doi:10.32607/20758251-2018-10-3-30-39.; Li L, Baroja ML, Majumdar A, Chadwick K, Rouleau A, Gallacher L, Ferber I, Lebkowski J, Martin T, Madrenas J, Bhatia M. Human embryonic stem cells possess immune-privileged properties. Stem Cells. 2004;22(4):448–456. doi:10.1634/stemcells.22-4-448.; Drukker M, Katchman H, Katz G, Even-Tov Friedman S, Shezen E, Hornstein E, Mandelboim O, Reisner Y, Benvenisty N. Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells. 2006 Feb;24(2):221–229. doi:10.1634/stemcells.2005-0188. Epub 2005 Aug 18.; Zhou R, Caspi RR. Ocular immune privilege. F1000 Biol Rep. 2010 Jan 18;2:3. doi:10.3410/B2-3.; Sugita S, Futatsugi Y, Ishida M, Edo A, Takahashi M. Retinal Pigment Epithelial Cells Derived from Induced Pluripotent Stem (iPS) Cells Suppress or Activate T Cells via Costimulatory Signals. Int J Mol Sci. 2020 Sep 5;21(18):6507. doi:10.3390/ijms21186507.; Jiang LQ, Jorquera M, Streilein JW. Subretinal space and vitreous cavity as immunologically privileged sites for retinal allografts. Invest Ophthalmol Vis Sci. 1993 Nov;34(12):3347–3354.; Rajendran Nair DS, Zhu D, Sharma R, Martinez Camarillo JC, Bharti K, Hinton DR, Humayun MS, Thomas BB. Long-Term Transplant Effects of iPSC-RPE Monolayer in Immunodeficient RCS Rats. Cells. 2021 Oct 29;10(11):2951. doi:10.3390/cells10112951.; Rezai KA, Farrokh-Siar L, Godowski K, Patel SC, Ernest JT. A model for xenogenic immune response. Graefes Arch Clin Exp Ophthalmol. 2000 Apr;238(4):352–358. doi:10.1007/s004170050364.; Тихомирова АВ, Горячев ДВ, Меркулов ВА, Лысикова ИВ, Губенко АИ, Зебрев АИ, Соловьева АП, Ромодановский ДП, Мельникова ЕВ. Доклинические и клинические аспекты разработки биомедицинских клеточных продуктов. Ведомости Научного центра экспертизы средств медицинского применения. 2018;8(1): 23–35. doi:10.30895/1991-2919-20188-1-23-35.; Koster C, Wever KE, Wagstaff EL, Van den Hurk KT, Hooijmans CR, Bergen AA. A Systematic Review on Transplantation Studies of the Retinal Pigment EpitheliuminAnimal Models. Int J Mol Sci. 2020 Apr;21(8):2719. doi:10.3390/ijms21082719.; Newell KA, Turka LA. Tolerance signatures in transplant recipients. Curr Opin Organ Transplant. 2015 Aug;20(4):400–405. doi:10.1097/MOT.0000000000000207.; Нероева НВ, Нероев ВВ, Катаргина ЛА, Рябина МВ, Илюхин ПА, Кармокова АГ, Лосанова ОА, Майбогин АМ, Харитонов АЕ, Еремеев АВ, Лагарькова МА. Заместительная трансплантация стволовыми клетками при атрофии ретинального пигментного эпителия в эксперименте. Вестник офтальмологии. 2022;138(3):7–15.; Нероева НВ, Нероев ВВ, Катаргина ЛА, Рябина МВ, Илюхин ПА, Кармокова АГ, Лосанова ОА,, Майбогин АМ, Лагарькова МА, Еремеев АВ, Харитонов АЕ. Способ субретинальной трансплантации клеток ретинального пигментного эпителия (РПЭ), дифференцированных из индуцированных плюрипотентных стволовых клеток человека, при атрофии ретинального пигментного эпителия в эксперименте. Патент RU 2729937,15.11.2019.; Davis FA. The Anatomy and Histology of the Eye and Orbit of the Rabbit. Trans Am Ophthalmol Soc. 1929;27:400–441.; Zhou XX, Song YP, Zhao YX, Wu JG. Induction of Branch Retinal Vein Occlusion by Photodynamic Therapy with Rose Bengal in a Rabbit Model [Internet]. Advances in Ophthalmology. InTech; 2012. doi:10.5772/27623.; Гуляев ВА, Хубутия МШ, Новрузбеков МС, Миронов АС. Ксенотрансплантация: история, проблемы и перспективы развития. Трансплантология 2019; 11(1):37–54. doi 10.23873/2074-0506-2019-11-1-37-54.; Zhou T, Huang Z, Sun X, Zhu X, Zhou L, Li M, Cheng B, Liu X, He C. Microglia Polarization with M1/M2 Phenotype Changes in rd1 Mouse Model of Retinal Degeneration Front Neuroanat. 2017 Sep 5;11:77. doi:10.3389/fnana.2017.00077. eCollection 2017; Chan JL, Singh AK, Corcoran PC, Thomas ML, Lewis BG, Ayares DL, Vaught T, Horvath KA, Mohiuddin MM. Encouraging experience using multi-transgenic xenografts in a pig to baboon cardiac xenotransplantation mode. Xenotransplantation. 2017;24(6): e12330. doi:10.1111/xen.12330.; Cooper DKC, Pierson RN 3rd, Hering BJ, Mohiuddin MM, Fishman JA, Denner J, Ahn C, Azimzadeh AM, Buhler LH, Cowan PJ, Hawthorne WJ, Kobayashi T, Sachs DH. Regulation of clinical xenotransplantation — time for a reappraisal. Transplantation. 2017;101(8):1766–1769. doi:10.1097/TP.000000000000168332.; Ilmarinen T, Hiidenmaa H, Kööbi P, Nymark S, Sorkio A, Wang JH, Stanzel BV, Thieltges F, Alajuuma P, Oksala O, Kataja M, Uusitalo H, Skottman H. Ultrathin Polyimide Membrane as Cell Carrier for Subretinal Transplantation of Human Embryonic Stem Cell Derived Retinal Pigment Epithelium. PLoS One. 2015 Nov 25;10(11):e0143669. doi:10.1371/journal.pone.0143669.; Li MO, Wan YY, Flavell RA. T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1and Th17-cell differentiation. Immunity. 2007 May;26(5):579–591. doi:10.1016/j.immuni.2007.03.014.; Hirsch L, Nazari H, Sreekumar PG, Kannan R, Dustin L, Zhu D, Barron E, Hinton DR. TGF-β2 secretion from RPE decreases with polarization and becomes apically oriented. Cytokine. 2015 Feb;71(2):394-6. doi:10.1016/j.cyto.2014.11.014.; Hamby ME, Hewett JA, Hewett SJ. Smad3-dependent signaling underlies the TGF-β1-mediated enhancement in astrocytic iNOS expression. Glia. 2010 Aug 15;58(11):1282–1291. doi:10.1002/glia.21005.; Flanders KC, Ren RF, Lippa CF. Transforming growth factor-betas in neurodegenerative disease. Prog Neurobiol. 1998 Jan;54(1):71–85. doi:10.1016/s0301-0082(97)00066-x.; Henrich-Noack P, Prehn JH, Krieglstein J. TGF-beta 1 protects hippocampal neurons against degeneration caused by transient global ischemia. Dose-response relationship and potential neuroprotective mechanisms. Stroke. 1996 Sep;27(9):1609– 1614; discussion 1615. doi:10.1161/01.str.27.9.1609.; Zhang JG, Walmsley MW, Moy JV, Cunningham AC, Talbot D, Dark JH, Kirby JA. Differential effects of cyclosporin A and tacrolimus on the production of TGF-beta: implications forthe development of obliterative bronchiolitis afterlung transplantation. Transpl Int. 1998;11 Suppl 1:S325–327. doi:10.1007/s001470050489.; Шевченко ОП, Цирульникова ОМ, Курабекова РМ, Цирульникова ИЕ, Олефиренко ГА, Готье СВ. Уровень трансформирующего фактора роста β1 в плазме крови детей-реципиентов печени и его связь с функцией трансплантата. Иммунология. 2015;36(6):343–347.; Masli S, Turpie B, Hecker KH, Streilein JW. Expression of thrombospondin in TGFbeta-treated APCs and its relevance to their immune deviation-promoting properties. J Immunol. 2002 Mar 1;168(5):2264–2273. doi:10.4049/jimmunol.168.5.2264.; Masli S, Turpie B, Streilein JW. Thrombospondin orchestrates the tolerancepromoting properties of TGFbeta-treated antigen-presenting cells. Int Immunol. 2006 May;18(5):689–699. doi:10.1093/intimm/dxl006.; Enzmann V, Faude F, Wiedemann P, Kohen L. The local and systemic secretion of the pro-inflammatory cytokine interleukin-6 after transplantation of retinal pigment epithelium cells in a rabbit model. Curr Eye Res. 2000 Jul;21(1):530–534.; Girard S, Larouche A, Kadhim H, Rola-Pleszczynski M, Gobeil F, Sébire G. Lipopolysaccharide and hypoxia/ischemia induced IL-2 expression by microglia in neonatal brain. Neuroreport. 2008 Jul 2;19(10):997–1002. doi:10.1097/WNR.0b013e3283036e88.; Serrano-Pérez MC, Martín ED, Vaquero CF, Azcoitia I, Calvo S, Cano E, Tranque P. Response of transcription factor NFATc3 to excitotoxic and traumatic brain insults: identification of a subpopulation of reactive astrocytes. Glia. 2011 Jan;59(1):94–107. doi:10.1002/glia.21079.; https://www.ophthalmojournal.com/opht/article/view/2311
-
7Academic Journal
Συγγραφείς: M. V. Epifanova, А. А. Kostin, А. А. Epifanov, K. A. Kirillova, М. В. Епифанова, А. А. Костин, А. А. Епифанов, К. А. Кириллова
Πηγή: Andrology and Genital Surgery; Том 25, № 2 (2024); 17-30 ; Андрология и генитальная хирургия; Том 25, № 2 (2024); 17-30 ; 2412-8902 ; 2070-9781
Θεματικοί όροι: индуцированные плюрипотентные стволовые клетки, stem cells, platelet rich plasma, exosomes, spermatogonial stem cells, induced pluripotent stem cells, стволовые клетки, аутоплазма, обогащенная тромбоцитарными факторами роста, экзосомы, сперматогониальные стволовые клетки
Περιγραφή αρχείου: application/pdf
Relation: https://agx.abvpress.ru/jour/article/view/755/578; EAU Guidelines. Edn. presented at the EAU Annual Congress Milan 2023. ISBN 978-94-92671-19-6.; Hajiesmailpoor A., Emami P., Kondori B.J. et al. Stem cell therapy as a recent advanced approach in male infertility. Tissue Cell 2021;73:101634. DOI:10.1016/j.tice.2021.101634.; Agarwal A., Baskaran S., Parekh N. et al. Male infertility. Lancet 2021;397(10271):319-333. DOI:10.1016/S0140-6736(20)32667-2.; Mao A.S., Mooney D.J. Regenerative medicine: Current therapies and future directions. Proc Natl Acad Sci USA 2015;112(47):14452-9. DOI:10.1073/pnas.1508520112. PMID: 26598661; PMCID: PMC4664309.; Galipeau J., Sensebe L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell 2018;22(6):824–833. DOI:10.1016/j.stem.2018.05.004.; Squillaro T., Peluso G., Galderisi U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant. 2016;25(5):829–848. DOI:10.3727/096368915X689622.; Wang J., Liu C., Fujino M. et al. Stem cells as a resource for treatment of infertility-related diseases. Curr. Mol. Med 2019;19:539–546. DOI:10.2174/1566524019666190709172636.; Dunlop C.E., Telfer E.E., Anderson R.A. Ovarian stem cells— Potential roles in infertility treatment and fertility preservation. Maturitas. 2013;76:279–283. DOI:10.1016/j.maturitas.2013.04.017.; Pourmoghadam Z., Aghebati-Maleki L., Motalebnezhad M. et al. Current approaches for the treatment of male infertility with stem cell therapy. J Cell Physiol 2018;233(10):6455–6469.; Lorzadeh N., Kazemirad N. Embryonic Stem Cells and Infertility. Am J Perinatol 2018;35(10):925-930. DOI:10.1055/s-0038-1632367.; Saha S., Roy P., Corbitt C. et al. Application of Stem Cell Therapy for Infertility. Cells 2021;10(7):1613. DOI:10.3390/cells10071613.; Geijsen N., Horoschak M., Kim K. et al. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 2004;427(6970):148–154.; Zhao X.Y., Li W., Lv Z. et al. Viable fertile mice generated from fully pluripotent iPS cells derived from adult somatic cells. Stem Cell Rev 2010;6(03):390–397.; Nayernia K., Nolte J., Michelmann H.W. et al. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev Cell 2006;11(01):125–132.; Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663–676. DOI:10.1016/j.cell.2006.07.024.; Fang F., Li Z., Zhao Q. et al. Human induced pluripotent stem cells and male infertility: An overview of current progress and perspectives. Hum. Reprod 2018;33:188–195. DOI:10.1093/humrep/dex369.; Eguizabal C., Montserrat N., Vassena R. et al. Complete meiosis from human induced pluripotent stem cells. Stem Cells 2011;29:1186–1195. DOI:10.1002/stem.672.; Ramathal C., Durruthy-Durruthy J., Sukhwani M. et al. Fate of iPSCs derived from azoospermic and fertile men following xenotransplantation to murine seminiferous tubules. Cell Rep 2014;7:1284–1297. DOI:10.1016/j.celrep.2014.03.067.; Irie N., Weinberger L., Tang W.W. et al. SOX17 is a critical specifier of human primordial germ cell fate. Cell 2015;160:253–268. DOI:10.1016/j.cell.2014.12.013.; Sasaki K., Yokobayashi S., Nakamura T. et al. Robust In Vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell 2015;17:178–194. DOI:10.1016/j.stem.2015.06.014.; Volarevic V., Bojic S., Nurkovic J. et al. Stem cells as new agents for the treatment of infertility: Current and future perspectives and challenges. Biomed Res Int 2014;2014:507234. DOI:10.1155/2014/507234.; Zhu Y., Hu H.-L., Li P. et al. Generation of male germ cells from induced pluripotent stem cells (iPS cells): An in vitro and in vivo study. Asian J Androl 2012;14(4):574-9. DOI:10.1038/aja.2012.3.; Cai H., Xia X., Wang L. et al. In vitro and in vivo differentiation of induced pluripotent stem cells into male germ cells. Biochem Biophys Res Commun 2013;433(3):286-291. DOI:10.1016/j.bbrc.2013.02.107.; Yamashiro C., Sasaki K., Yabuta Y. et al. Generation of human oogonia from induced pluripotent stem cells In Vitro. Science 2018;362:356-360. DOI:10.1126/science.aat1674.; Lee A.S., Tang C., Rao M.S. et al. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 2013;19(8):998-1004. DOI:10.1038/nm.3267.; Amidi F., Ataie Nejad N., Agha Hoseini M. et al. In vitro differentiation process of human Wharton’s jelly mesenchymal stem cells to male germ cells in the presence of gonadal and non-gonadal conditioned media with retinoic acid. In Vitro Cell Dev Biol Anim 2015;51(10): 1093–1101. DOI:10.1007/s11626-015-9929-4.; Abd Allah S.H., Pasha H.F., Abdelrahman A.A. et al. Molecular effect of human umbilical cord blood CD34-positive and CD34-negative stem cells and their conjugate in azoospermic mice. Mol Cell Biochem 2017;428(1-2):179-191. DOI:10.1007/s11010-016-2928-2.; Chen H., Tang Q.L., Wu X.Y. et al. Differentiation of human umbilical cord mesenchymal stem cells into germ-like cells in mouse seminiferous tubules. Mol Med Rep 2015;12(1):819-828. DOI:10.3892/mmr.2015.3528.; Tsekouras A., Mantas D., Tsilimigras D.I. et al. Comparison of the Viability and Yield of Adipose-Derived Stem Cells (ASCs) from Different Donor Areas. In Vivo 2017;31(6):1229-1234. DOI:10.21873/invivo.11196.; Bruder S.P., Jaiswal N., Haynesworth S.E. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997;64(2):278-94. DOI:10.1002/(sici)1097-4644(199702)64:23.0.co;2-f.; Pittenger M.F., Mackay A.M., Beck S.C. et a. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284(5411):143-7. DOI:10.1126/science.284.5411.143.; Vangsness C.T. Jr., Sternberg H., Harris L. Umbilical Cord Tissue Offers the Greatest Number of Harvestable Mesenchymal Stem Cells for Research and Clinical Application: A Literature Review of Different Harvest Sites. Arthroscopy 2015;31(9):1836-43. DOI:10.1016/j.arthro.2015.03.014.; Hernigou P., Homma Y., Flouzat Lachaniette C.H. et al. Benefits of small volume and small syringe for bone marrow aspirations of mesenchymal stem cells. Int Orthop 2013;37(11):2279-87. DOI:10.1007/s00264-013-2017-z.; Li C.Y., Wu X.Y. Tong J.B. et al. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther 2015;6(1):55. DOI:10.1186/s13287-015-0066-5.; Tamadon A., Zhan-Byrbekuly U., Kairgaliyev I. et al. Mesenchymal stem cell therapy of male infertility. Male Reproductive Health, IntechOpen. 2019;105–112. DOI:10.5772/intechopen.88343; Monsef M., Fereydouni B., Rohani L. et al. Mesenchymal stem cells repair germinal cells of seminiferous tubules of sterile rats. Iran J Reprod Med 2013;11:537–44.; Vahdati A., Fathi A., Hajihoseini M. et al. The regenerative efect of bone marrow-derived stem cells in spermatogenesis of infertile hamster. World journal of plastic surgery 2017;6(1):18–25.; Cakici C., Buyrukcu B., Duruksu G. et al. Recovery of fertility in azoospermia rats after injection of adipose-tissue-derived mesenchymal stem cells: the sperm generation. Biomed Res Int 2013;2013:1–18.; Ghasemzadeh-Hasankolaei M., Batavani R., Eslaminejad M.B. et al. Transplantation of autologous bone marrow mesenchymalstem cells into the testes of infertile male rats and new germ cell formation. Int J Stem Cells 2016;9:250–63. DOI:10.15283/ijsc16010.; Zhang D., Liu X., Peng J. et al. Potential spermatogenesis recovery with bone marrow mesenchymal stem cells in an azoospermic rat model. Int J Mol Sci 2014;15:13151–65. DOI:10.3390/ijms150813151.; Hassan A.I., Alam S.S. Evaluation of mesenchymal stem cells in treatment of infertility in male rats. Stem Cell Res Ther 2014;5:131. DOI:10.1186/scrt521.; Karimaghai N., Tamadon A., Rahmanifar F. et al. Spermatogenesis after transplantation of adipose tissue-derived mesenchymal stem cells in busulfan-induced azoospermic hamster. Iran J Basic Med Sci 2018;21:660.; Mehrabani D., Hassanshahi M.A., Tamadon A. et al. Adipose tissue-derived mesenchymal stem cells repair germinal cells of seminiferous tubules of busulfan-induced azoospermic rats. J Hum Reprod Sci 2015;8(2):103-110. DOI:10.4103/0974-1208.158618.; Hsiao C.H., Ji A.T., Chang C.C. et al. Local injection of mesenchymal stem cells protects testicular torsion-induced germ cell injury. Stem Cell Res Ther 2015;6(1):113. DOI:10.1186/s13287-015-0079-0.; Sherif I.O., Sabry D., Abdel-Aziz A. et al. The role of mesenchymal stem cells in chemotherapy-induced gonadotoxicity. Stem Cell Res Ther 2018;9(1):196. DOI:10.1186/s13287-018-0946-6.; Ganjibakhsh M., Mehraein F., Koruji M. et al. The therapeutic potential of adipose tissue-derived mesenchymal stromal cells in the treatment of busulfan-induced azoospermic mice. J Assist Reprod Genet 2022;39(1):153-163. DOI:10.1007/s10815-021-02309-8.; Zhankina R., Afshar A., Farrar Z. et al. Restoration of spermatogenesis in azoospermic mice by bone marrow mesenchymal stromal/stem cells conditioned medium, 04 February 2022, PREPRINT (Version 2) available at Research Square DOI:10.21203/rs.3.rs-169243/v2.; Tamadon A., Mehrabani D., Rahmanifar F. et al. Induction of Spermatogenesis by Bone Marrow-derived Mesenchymal Stem Cells in Busulfan-induced Azoospermia in Hamster. Int J Stem Cells 2015;8(2):134-145. DOI:10.15283/ijsc.2015.8.2.134.; Hajihoseini M., Vahdati A., Ebrahim Hosseini S. et al. Induction of spermatogenesis after stem cell therapy of azoospermic guinea pigs. Vet Arh 2017;87(3): 333–350.; Aghamir S.M., Salavati A., Yousefie R. et al. Does bone marrow-derived mesenchymal stem cell transfusion prevent antisperm antibody production after traumatic testis rupture? Urology 2014;84(1): 82–86.; Xu L., Liu Y., Sun Y. et al. Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue. Stem Cell Res Ther 2017;8(1):275.; Bakry S. MSCs For Treatment of Azoospermic Patients. Доступно по: https://clinicaltrials.gov/study/NCT02025270.; AlZoubi A. Intra-Testicular Transplantation of Autologous Stem Cells for Treatment of Non-Obstructive Azoospermia Male Infertility. Доступно по: https://clinicaltrials.gov/study/NCT02641769.; Gadalla K.A. Intra Testicular Artery Injection of Bone Marrow Stem Cell in Management of Azoospermia. Доступно по: https://classic.clinicaltrials.gov/ct2/show/NCT02008799.; Elshaer H.S. Testicular Injection of Autologous Stem Cells for Treatment of Patients With Azoospermia. Доступно по: https://classic.clinicaltrials.gov/ct2/show/NCT02041910; Volchkov S. Autologous Adipose-Derived Adult Stromal Vascular Cell Administration for Male Patients With Infertility. Доступно по: https://classic.clinicaltrials.gov/ct2/show/NCT03762967.; Gadalla K.A. Sperm Production in Kleinfelter Syndrome Patients After Mesenchymal Stem Cell Injection. Доступно по: https://clinicaltrials.gov/study/NCT02414295.; Ryu B.Y., Orwig K.E., Oatley J.M. et al. Effects of aging and niche microenvironment on spermatogonial stem cell self-renewal. Stem Cells 2006;24(6):1505-1511. DOI:10.1634/stemcells.2005-0580.; Vlajković S., Cukuranović R., Bjelaković M.D. et al. Possible therapeutic use of spermatogonial stem cells in the treatment of male infertility: a brief overview. Scientific World Journal 2012;2012:374151. DOI:10.1100/2012/374151.; Melo-Narváez M.C., Stegmayr J., Wagner D.E. et al. Lung regeneration: implications of the diseased niche and ageing. Eur Respir Rev 2020;29:200222. DOI:10.1183/16000617.0222-2020.; Shao H., Im H. New technologies for analysis of extracellular vesicles. Chem Rev 2018;118(4):1917–1950. DOI:10.1021/acs.chemrev.7b00534.; Heldring N., Mager I., Wood M.J.A. et al. Therapeutic potential of multipotent mesenchymal stromal cells and their extracellular vesicles. Hum Gene Ther 2015;26(8):506–517. DOI:10.1089/hum.2015.072.; Mendt M., Rezvani K., Shpall E. Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant 2019;54:789–792. DOI:10.1038/s41409-019-0616-z.; Shao L.B., Zhang Y., Lan B.B. et al. MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair. Biomed Res Int 2017 DOI:10.1155/2017/4150705.; Pelizzo G., Avanzini M.A., Cornaglia A.I. et al. Extracellular vesicles derived from mesenchymal cells: perspective treatment for cutaneous wound healing in pediatrics. Regen Med 2018;13(4):385–94. DOI:10.2217/rme-2018-0001.; Clark K., Zhang S., Barthe S. et al. Placental mesenchymal stem cell-derived extracellular vesicles promote myelin regeneration in an animal model of multiple sclerosis. Cells 2019;8(12):1497. DOI:10.3390/cells8121497.; Kharazi U., Badalzadeh R. A review on the stem cell therapy and an introduction to exosomes as a new tool in reproductive medicine. Reprod Biol 2020;20(4):447-459. DOI:10.1016/j.repbio.2020.07.002.; Mobarak H., Heidarpour M., Rahbarghazi R. et al. Amniotic fluid-derived exosomes improved spermatogenesis in a rat model of azoospermia. Life Sci 2021;274:119336. DOI:10.1016/j.lfs.2021.119336.; McLean D.J. Spermatogonial stem cell transplantation, testicular function, and restoration of male fertility in mice. Methods Mol Biol 2008;450:149-162. DOI:10.1007/978-1-60327-214-8_11.; Ibtisham F., Honaramooz A. Spermatogonial Stem Cells for In Vitro Spermatogenesis and In Vivo Restoration of Fertility. Cells 2020;9(3):745. DOI:10.3390/cells9030745.; Kubota H., Brinster R.L. Spermatogonial stem cells. Biol Reprod 2018;99(1):52-74. DOI:10.1093/biolre/ioy077.; Forbes C.M., Flannigan R., Schlegel P.N. Spermatogonial Stem Cell Transplantation and Male Infertility: Current Status and Future Directions. Arab J Urol 2018;16:171–80.; Gul M., Hildorf S., Dong L. et al. Review of Injection Techniques for Spermatogonial Stem Cell Transplantation. Hum Reprod Update 2020; 26:368–91.; Honaramooz A., Behboodi E., Megee S.O. et al. Fertility and germline transmission of donor haplotype following germ cell transplantation in immunocompetent goats. Biol Reprod 2003;69(4):1260-1264. DOI:10.1095/biolreprod.103.018788.; Herrid M., Olejnik J., Jackson M. et al. Irradiation enhances the efficiency of testicular germ cell transplantation in sheep. Biol Reprod 2009;81(5):898-905. DOI:10.1095/biolreprod.109.078279.; Kanatsu-Shinohara M., Morimoto H., Shinohara T. Fertility of Male Germline Stem Cells Following Spermatogonial Transplantation in Infertile Mouse Models. Biol Reprod 2016;94(5):112. DOI:10.1095/biolreprod.115.137869.; Hermann B.P., Sukhwani M., Winkler F. et al. Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm. Cell Stem Cell 2012;11(5):715-726. DOI:10.1016/j.stem.2012.07.017.; Azizollahi S., Aflatoonian R., Sadighi Gilani M.A. et al. Alteration of spermatogenesis following spermatogonial stem cells transplantation in testicular torsion-detorsion mice. J Assist Reprod Genet 2016;33(6):771-781. DOI:10.1007/s10815-016-0708-2.; Skaletsky N.N., Skaletskaya G.N., Sevastianov V. I. Possible use of spermatogonial stem cells in the treatment of male infertility. Russian Journal of Transplantology and Artificial Organs 2020;21(4):134 DOI:10.15825/1995-1191-2019-4-134-142.; Liu H.C., Xie Y., Deng C.H. et al. Stem cell-based therapies for fertility preservation in males: Current status and future prospects. World J Stem Cells 2020;12(10):1097-1112. DOI:10.4252/wjsc.v12.i10.1097.; Sagaradze G.D., Basalova N.A., Efimenko A.Y. et al. Mesenchymal Stromal Cells as Critical Contributors to Tissue Regeneration. Front Cell Dev Biol 2020;8:576176. DOI:10.3389/fcell.2020.576176.; Teymur H., Tiftikcioglu Y.O., Cavusoglu T. et al. Effect of platelet-rich plasma on reconstruction with nerve autografts. Kaohsiung J Med Sci 2017;33(2):69-77. DOI:10.1016/j.kjms.2016.11.005.; Cecerska-Heryć E., Goszka M., Serwin N. et al. Applications of the regenerative capacity of platelets in modern medicine. Cytokine Growth Factor Rev 2022;64:84-94. DOI:10.1016/j.cytogfr.2021.11.003.; Hesseler M.J., Shyam N. Platelet-rich plasma and its utility in medical dermatology: A systematic review. J Am Acad Dermatol 2019;81(3):834-846. DOI:10.1016/j.jaad.2019.04.037.; Zaporozhan V., Kholodkova O., Kuleshova O. Platelet-rich plasma induces morphofunctional restoration of mice testes following doxorubomycine hydrochloride exposure. J Exp Clin Med 2014;31:183-187.; Dehghani F., Sotoude N., Bordbar H. et al. The use of platelet-rich plasma (PRP) to improve structural impairment of rat testis induced by busulfan. Platelets 2019;30(4):513-520. DOI:10.1080/09537104.2018.1478400.; Sekerci C.A., Tanidir Y., Sener T.E. et al. Effects of platelet-rich plasma against experimental ischemia/reperfusion injury in rat testis. J Pediatr Urol 2017;13(3):317.e1-317.e9. DOI:10.1016/j.jpurol.2016.12.016.; Bader R., Ibrahim J.N., Moussa M. et al. In vitro effect of autologous platelet-rich plasma on H2O2 -induced oxidative stress in human spermatozoa. Andrology 2020;8(1):191-200. DOI:10.1111/andr.12648.; Al-Nasser R., Khrait Z., Jamali S. The Effectiveness of Autologous Platelet-Rich Plasma (PRP) in the Therapy of Infertile Men with Non-Abstractive Azoospermia. J Reprod Med Gynecol Obstet 2018;3: 011.; Gudelci T., Cakiroglu Y., Yuceturk A. et al. The effect of intratesticular injection of autologous platelet rich plasma (PRP) on sperm retrieval rates and ivf outcomes in men with non-obstructive azoospermia and history of failed testicular sperm extraction. Fertility and Sterility 2021; 116 (3) Supplement:E331. DOI:10.1016/j.fertnstert.2021.07.893.; Angellee J., Novalinda Ginting C., Chiuman L. et al. Role of Platelet-Rich Plasma to Sperm Quality in Male Partners Undergoing Infertility Treatment. IEEE International Conference on Health, Instrumentation & Measurement, and Natural Sciences (InHeNce) 2021;1: 1-5. DOI:10.1109/InHeNce52833.2021.9537240.; Mirzaei J., Movahedin M., Halvaei I. Plasma-Rich in Growth Factors Ameliorates Detrimental Effects of Cryopreservation on Human Sperm: A Prospective Study. Cell J 2022;24(6):330-336. DOI:10.22074/cellj.2022.8119.; Yan B., Zhang Y., Tian S. et al. Effect of autologous platelet-rich plasma on human sperm quality during cryopreservation. Cryobiology 2021;98:12-16. DOI:10.1016/j.cryobiol.2021.01.009.; Salem M., Feizollahi N., Jabari A. et al. Differentiation of human spermatogonial stem cells using a human decellularized testicular scaffold supplemented by platelet-rich plasma. Artif Organs 2023;47(5):840-853. DOI:10.1111/aor.14505.; Tiras B. The Effects of Intratesticular PRP Injection in Men With Azoospermia or Cryptozoospermia. Доступно по: https://classic.clinicaltrials.gov/ct2/show/NCT04237779; Епифанова, М.В. Применение технологий регенеративной медицины при сексуальной дисфункции и нарушении фертильности у мужчин : дис. . д-р. мед. наук : 3.1.13 / Епифанова Майя Владимировна. – М., 2021. – 400 с.; Епифанова М.В., Епифанов А.А., Артеменко С.А. Способ протекции и восстановления сперматогенеза при оперативных вмешательствах на семенном канатике, яичке, придатке яичка. – Патент на изобретение РФ №2735888. Москва. 09 ноября 2020. // Бюллетень No 31 от 09.11.2020; Епифанова М.В., Епифанов А.А., Артеменко С.А. Способ лечения мужского бесплодия. – Патент на изобретение РФ №2738543. Москва. 14 декабря 2020. // Бюллетень No 35 от 14.12.2020; https://agx.abvpress.ru/jour/article/view/755
-
8Academic Journal
Συγγραφείς: L. A. Mozheiko
Πηγή: Žurnal Grodnenskogo Gosudarstvennogo Medicinskogo Universiteta, Vol 19, Iss 4, Pp 376-381 (2021)
Θεματικοί όροι: инсулин-продуцирующие клетки, эмбриональные стволовые клетки, индуцированные плюрипотентные стволовые клетки, сахарный диабет, Medicine
Περιγραφή αρχείου: electronic resource
Relation: http://journal-grsmu.by/index.php/ojs/article/view/2677; https://doaj.org/toc/2221-8785; https://doaj.org/toc/2413-0109
Σύνδεσμος πρόσβασης: https://doaj.org/article/0642adc42b9a4ba1a41f6043b524bf4b
-
9Academic Journal
Συγγραφείς: E. V. Kondrateva, A. G. Demchenko, A. V. Lavrov, S. A. Smirnikhina, Е. В. Кондратьева, А. Г. Демченко, А. В. Лавров, С. А. Смирнихина
Συνεισφορές: The work has been funded by the state assignment of the Ministry of Science and Higher Education of the Russian Federation., Работа выполнена в рамках государственного задания Минобрнауки России для ФГБНУ «МГНЦ».
Πηγή: Medical Genetics; Том 22, № 11 (2023); 20-26 ; Медицинская генетика; Том 22, № 11 (2023); 20-26 ; 2073-7998
Θεματικοί όροι: индуцированные плюрипотентные стволовые клетки, c.3846G>A (p.Trp1282, W1282X) mutation, CFTR gene, genome editing, base editors, induced pluripotent stem cells, мутация c.3846G>A (p.Trp1282, W1282X), ген CFTR, геномное редактирование, редакторы оснований
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2370/1749; Shteinberg M., Haq I.J., Polineni D., Davies J.C. Cystic fibrosis. Lancet. 2021 Jun 5;397(10290):2195-2211. doi:10.1016/S01406736(20)32542-3; Lopes-Pacheco M. CFTR Modulators: The Changing Face of Cystic Fibrosis in the Era of Precision Medicine. Front Pharmacol. 2020 Feb 21;10:1662. doi:10.3389/fphar.2019.01662; Zainal Abidin N., Haq I.J., Gardner A.I., Brodlie M. Ataluren in cystic fibrosis: development, clinical studies and where are we now? Expert Opin Pharmacother. 2017 Sep;18(13):1363-1371. doi:10.1080/14656566.2017.1359255; Doudna J.A. The promise and challenge of therapeutic genome editing. Nature. 2020 Feb;578(7794):229-236. doi:10.1038/s41586020-1978-5; Anzalone A.V., Koblan L.W., Liu D.R. Genome editing with CRISPRCas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020 Jul;38(7):824-844. doi:10.1038/s41587-020-0561-9; Komor A.C., Kim Y.B., Packer M.S., Zuris J.A., Liu .DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016 May 19;533(7603):4204. doi:10.1038/nature17946; Gaudelli N.M., Komor A.C., Rees H.A., Packer M.S., Badran A.H., Bryson D.I., Liu D.R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017 Nov 23;551(7681):464-471. doi:10.1038/nature24644; Lavrov A.V., Varenikov G.G., Skoblov M.Y. Genome scale analysis of pathogenic variants targetable for single base editing. BMC Med Genomics. 2020 Sep 18;13(Suppl 8):80. doi:10.1186/s12920-020-00735-8; Petrova N., Balinova N., Marakhonov A., Vasilyeva T., Kashirskaya N., Galkina V., Ginter E., Kutsev S., Zinchenko R. Ethnic Differences in the Frequency of CFTR Gene Mutations in Populations of the European and North Caucasian Part of the Russian Federation. Front Genet. 2021 Jun 16;12:678374. doi:10.3389/fgene.2021.678374; Регистр пациентов с муковисцидозом в Российской Федерации. 2020 год. Под редакцией Е.И. Кондратьевой, С.А. Красовского, М.А. Стариновой, А.Ю. Воронковой, Е.Л. Амелиной, Н.Ю. Каширской, С.Н. Авдеева, С.И. Куцева. Москва: МЕДПРАКТИКА-М, 2022. 68 с.; Kondrateva E., Demchenko A., Slesarenko Y,. Pozhitnova V., Yasinovsky M., Amelina E., Tabakov V., Voronina E., Lavrov A., Smirnikhina S. Generation of two induced pluripotent stem cell lines (RCMGi004-A and -B) from human skin fibroblasts of a cystic fibrosis patient with compound heterozygous F508del/W1282X mutations. Stem Cell Research 2021; 52: 102232. DOI:10.1016/j.scr.2021.102232; Hwang G.H., Park J., Lim K., Kim S., Yu J., Yu E., Kim S.T., Eils R., Kim J.S., Bae S. Web-based design and analysis tools for CRISPR base editing. BMC Bioinformatics. 2018 Dec 27;19(1):542. doi:10.1186/s12859-018-2585-4; Clement K., Rees H., Canver M.C., Gehrke J.M., Farouni R., Hsu J.Y., Cole M.A., Liu D.R., Joung J.K., Bauer D.E., Pinello L. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat Biotechnol. 2019 Mar; 37(3):224-226. doi:10.1038/s41587-019-0032-3; Hu J.H., Miller S.M., Geurts M.H., Tang W., Chen L., Sun N., Zeina C.M, Gao X., Rees H.A., Lin Z., Liu D.R. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018 Apr 5;556(7699):57-63. doi:10.1038/nature26155; Rees H.A., Liu D.R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. 2018 Dec;19(12):770-788. doi:10.1038/s41576-018-0059-1; Wilschanski M. Class 1 CF Mutations. Front Pharmacol. 2012 Jun 20;3:117. doi:10.3389/fphar.2012.00117; Demchenko A., Kondrateva E., Tabakov V., Efremova A., Salikhova D., Bukharova T., Goldshtein D., Balyasin M., Bulatenko N., Amelina E., Lavrov A., Smirnikhina S. Airway and Lung Organoids from HumanInduced Pluripotent Stem Cells Can Be Used to Assess CFTR Conductance. Int. J. Mol. Sci. 2023, 24, 6293. https://doi.org/10.3390/ijms24076293; Maxwell K.G., Millman J.R. Applications of iPSC-derived beta cells from patients with diabetes. Cell Rep Med. 2021 Apr 20;2(4):100238. doi:10.1016/j.xcrm.2021.100238; Fleischer A., Vallejo-Díez S., Martín-Fernández J.M., SánchezGilabert A., Castresana M., Del Pozo A., Esquisabel A., Ávila S., Castrillo J.L., Gaínza E., Pedraz J.L., Viñas M., Bachiller D. iPSCDerived Intestinal Organoids from Cystic Fibrosis Patients Acquire CFTR Activity upon TALEN-Mediated Repair of the p.F508del Mutation. Mol Ther Methods Clin Dev. 2020 Apr 18;17:858-870. doi:10.1016/j.omtm.2020.04.005; Palmer D.J., Turner D.L., Ng P. A Single «All-in-One» HelperDependent Adenovirus to Deliver Donor DNA and CRISPR/ Cas9 for Efficient Homology-Directed Repair. Mol Ther Methods Clin Dev. 2020 Feb 4;17:441-447. doi:10.1016/j.omtm.2020.01.014; Suzuki S., Chosa K., Barillà C., Yao M., Zuffardi O., Kai H., Shuto T., Suico M.A., Kan Y.W., Sargent R.G., Gruenert D.C. Seamless Gene Correction in the Human Cystic Fibrosis Transmembrane Conductance Regulator Locus by Vector Replacement and Vector Insertion Events. Front Genome Ed. 2022 Apr 6;4:843885. doi:10.3389/fgeed.2022.843885; Johnson L.G., Olsen J.C., Sarkadi B., Moore K.L., Swanstrom R., Boucher R.C. Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis. Nat Genet. 1992 Sep;2(1):21-5. doi:10.1038/ng0992-21; Geurts M.H., de Poel E., Amatngalim G.D., et al. CRISPR-Based Adenine Editors Correct Nonsense Mutations in a Cystic Fibrosis Organoid Biobank [published online ahead of print, 2020 Feb 13]. Cell Stem Cell. 2020;S1934-5909(20)30019-9. doi:10.1016/j.stem.2020.01.019; Krishnamurthy S., Traore S., Cooney A.L., Brommel C.M., Kulhankova K., Sinn P.L., Newby GA, Liu DR, McCray PB. Functional correction of CFTR mutations in human airway epithelial cells using adenine base editors. Nucleic Acids Res. 2021 Oct 11;49(18):10558-10572. doi:10.1093/nar/gkab788; Chiavetta R.F., Titoli S., Barra V., Cancemi P., Melfi R., Di Leonardo A. Site-Specific RNA Editing of Stop Mutations in the CFTR mRNA of Human Bronchial Cultured Cells. Int J Mol Sci. 2023 Jun 30;24(13):10940. doi:10.3390/ijms241310940; Melfi R., Cancemi P., Chiavetta R., Barra V., Lentini L., Di Leonardo A. Investigating REPAIRv2 as a Tool to Edit CFTR mRNA with Premature Stop Codons. Int J Mol Sci. 2020 Jul 6;21(13):4781. doi:10.3390/ijms21134781; Cuevas-Ocaña S., Yang J.Y., Aushev M., Schlossmacher G., Bear C.E., Hannan N.R.F., Perkins N.D., Rossant J., Wong A.P., Gray M.A. A Cell-Based Optimised Approach for Rapid and Efficient Gene Editing of Human Pluripotent Stem Cells. Int J Mol Sci. 2023 Jun 17;24(12):10266. doi:10.3390/ijms241210266; Erwood S., Laselva O., Bily T.M.I., Brewer R.A., Rutherford A.H., Bear C.E., Ivakine E.A. Allele-Specific Prevention of Nonsense-Mediated Decay in Cystic Fibrosis Using Homology-Independent Genome Editing. Mol Ther Methods Clin Dev. 2020 May 12;17:11181128. doi:10.1016/j.omtm.2020.05.002; Santos L., Mention K., Cavusoglu-Doran K., Sanz D.J., Bacalhau M., Lopes-Pacheco M., Harrison P.T., Farinha C.M. Comparison of Cas9 and Cas12a CRISPR editing methods to correct the W1282X-CFTR mutation. J Cyst Fibros. 2021 Jun 5:S15691993(21)00167-3. doi:10.1016/j.jcf.2021.05.014
-
10Academic Journal
Συγγραφείς: Медведев, Сергей Петрович, Ахмерова, Валерия Игоревна, Надточий, Юлия Андреевна, Григорьева, Елена Викторовна, Павлова, Софья Викторовна, Закиян, Сурен Минасович
Πηγή: Вестник Томского государственного университета. Биология. 2025. № 69. С. 113-121
Θεματικοί όροι: индуцированные плюрипотентные стволовые клетки, клеточные модели, Паркинсона болезнь, лобно-височная деменция с паркинсонизмом-17, редактирование геномов
Περιγραφή αρχείου: application/pdf
Relation: koha:001154769; https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001154769
-
11Academic Journal
Συγγραφείς: Малахова, Анастасия Александровна, Аллаярова, Элина Равильевна, Шарипова, Динара Витальевна, Павлова, Софья Викторовна, Григорьева, Елена Викторовна, Медведев, Сергей Петрович, Закиян, Сурен Минасович
Πηγή: Вестник Томского государственного университета. Биология. 2025. № 69. С. 103-112
Θεματικοί όροι: клеточные модели, протеинопатия, альфа-синуклеин, нейродегенеративные заболевания, индуцированные плюрипотентные стволовые клетки
Περιγραφή αρχείου: application/pdf
Relation: koha:001154768; https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001154768
-
12Academic Journal
Συγγραφείς: T.O. DEPUTATOVA
Πηγή: Biotechnologia Acta, Vol 10, Iss 1, Pp 17-25 (2017)
Θεματικοί όροι: 0301 basic medicine, PLURIPOTENCY INDUCTION,REPROGRAMMING,SOMATIC CELLS,INDUCED PLURIPOTENT STEM CELLS,іНДУКЦіЯ ПЛЮРИПОТЕНТНОСТі,ПЕРЕПРОГРАМУВАННЯ,СОМАТИЧНі КЛіТИНИ,іНДУКОВАНі ПЛЮРИПОТЕНТНі СТОВБУРОВі КЛіТИНИ,ИНДУКЦИЯ ПЛЮРИПОТЕНТНОСТИ,ПЕРЕПРОГРАММИРОВАНИЕ,СОМАТИЧЕСКИЕ КЛЕТКИ,ИНДУЦИРОВАННЫЕ ПЛЮРИПОТЕНТНЫЕ СТВОЛОВЫЕ КЛЕТКИ, 03 medical and health sciences, induced pluripotent stem cells, reprogramming, TP248.13-248.65, pluripotency induction, somatic cells, Biotechnology
Περιγραφή αρχείου: text/html
Σύνδεσμος πρόσβασης: http://biotechnology.kiev.ua/index.php?view=article&catid=118%3A2017-1&id=714%3A2017-05-08-12-22-51&format=pdf&option=com_content&Itemid=140&lang=en
https://doaj.org/article/8bf29a3965eb41048e61392a6c0e2506
https://core.ac.uk/display/89144112
http://cyberleninka.ru/article_covers/17037820.png
http://cyberleninka.ru/article/n/molecular-mechanisms-of-pluripotency-induction-and-reprogramming-of-somatic-cells -
13Academic Journal
Συγγραφείς: M. E. Lopatkina, V. S. Fishman, M. M. Gridina, N. A. Skryabin, T. V. Nikitina, A. A. Kashevarova, L. P. Nazarenko, O. L. Serov, I. N. Lebedev, М. Е. Лопаткина, В. С. Фишман, М. М. Гридина, Н. А. Скрябин, Т. В. Никитина, А. А. Кашеварова, Л. П. Назаренко, О. Л. Серов, И. Н. Лебедев
Πηγή: Medical Genetics; Том 19, № 3 (2020); 10-11 ; Медицинская генетика; Том 19, № 3 (2020); 10-11 ; 2073-7998
Θεματικοί όροι: induced pluripotent stem cells, CNTN6, дифференциальная экспрессия генов, индуцированные плюрипотентные стволовые клетки, intellectual disability, differential gene expression
Περιγραφή αρχείου: application/pdf
-
14Academic Journal
Συγγραφείς: E.V. Novosadova, E.D. Nekrasov, I.V. Chestkov, A.V. Surdina, E.M. Vasina, A.N. Bogomazova, E.S. Manuilova, E.L. Arsenyeva, V.V. Simonova, E.V. Konovalova, E.Yu. Fedotova, N.Yu. Abramycheva, L.G. Khaspekov, I.A. Grivennikov, V.Z. Tarantul, S.L. Kiselev, S.N. Illarioshkin
Πηγή: Sovremennye tehnologii v medicine. 8:157-166
Θεματικοί όροι: 0301 basic medicine, 03 medical and health sciences, cell reprogramming, induced pluripotent stem cells, platform for iPSC, fibroblasts, dopaminergic neurons, Parkinson's disease, КЛЕТОЧНОЕ РЕПРОГРАММИРОВАНИЕ,ИНДУЦИРОВАННЫЕ ПЛЮРИПОТЕНТНЫЕ СТВОЛОВЫЕ КЛЕТКИ,ПЛАТФОРМА ДЛЯ ИПСК,ФИБРОБЛАСТЫ,ДОФАМИНЕРГИЧЕСКИЕ НЕЙРОНЫ,БОЛЕЗНЬ ПАРКИНСОНА
Περιγραφή αρχείου: text/html
Σύνδεσμος πρόσβασης: http://www.stm-journal.ru/en/numbers/2016/4/1293/pdf
https://cyberleninka.ru/article/n/a-platform-for-studying-molecular-and-cellular-mechanisms-of-parkinson-s-disease-based-on-human-induced-pluripotent-stem-cells-1/pdf
http://www.stm-journal.ru/en/numbers/2016/4/1293
https://cyberleninka.ru/article/n/a-platform-for-studying-molecular-and-cellular-mechanisms-of-parkinson-s-disease-based-on-human-induced-pluripotent-stem-cells-1
http://cyberleninka.ru/article/n/a-platform-for-studying-molecular-and-cellular-mechanisms-of-parkinson-s-disease-based-on-human-induced-pluripotent-stem-cells-1
http://cyberleninka.ru/article_covers/16966121.png
http://cyberleninka.ru/article/n/a-platform-for-studying-molecular-and-cellular-mechanisms-of-parkinson-s-disease-based-on-human-induced-pluripotent-stem-cells
http://cyberleninka.ru/article_covers/16942207.png -
15Academic Journal
Συγγραφείς: Bystrykh, S. A., Proschenko, D. A., Быстрых, С. А., Прощенко, Д. А.
Πηγή: Сборник статей
Θεματικοί όροι: GEN, MUTATION, GENOME EDITING, NEURODEGENERATIVE DISEASES, INDUCED PLURIPOTENT STEM CELLS (IPSCS), ZFN, TALEN, CRISPR/CAS9, ГЕН, МУТАЦИЯ, РЕДАКТИРОВАНИЕ ГЕНОМА, НЕЙРОДЕГЕНЕРАТИВНЫЕ ЗАБОЛЕВАНИЯ, ИНДУЦИРОВАННЫЕ ПЛЮРИПОТЕНТНЫЕ СТВОЛОВЫЕ КЛЕТКИ (ИПСК)
Περιγραφή αρχείου: application/pdf
Relation: Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей IV Международной научно-практической конференции молодых учёных и студентов, IV Всероссийского форума медицинских и фармацевтических вузов «За качественное образование», (Екатеринбург, 10-12 апреля 2019): в 3-х т. - Екатеринбург: УГМУ, CD-ROM.; http://elib.usma.ru/handle/usma/4010
Διαθεσιμότητα: http://elib.usma.ru/handle/usma/4010
-
16Academic Journal
Συγγραφείς: D. D. Namestnikova, I. L. Gubskiy, D. I. Salikhova, G. E. Leonov, K. K. Sukhinich, P. A. Melnikov, D. A. Vishnevskiy, E. A. Cherkashova, A. N. Gabashvili, T. B. Bukharova, V. V. Burunova, T. Kh. Fatkhudinov, V. P. Chekhonin, L. V. Gubsky, S. L. Kiselev, D. V. Goldstein, K. N. Yarygin, Д. Д. Наместникова, И. Л. Губский, Д. И. Салихова, Г. Е. Леонов, К. К. Сухинич, П. А. Мельников, Д. А. Вишневский, Э. А. Черкашова, А. Н. Габашвили, Т. Б. Бухарова, В. В. Бурунова, Т. Х. Фатхудинов, В. П. Чехонин, Л. В. Губский, С. Л. Киселев, Д. В. Гольдштейн, К. Н. Ярыгин
Συνεισφορές: the Ministry of Education and Science of the Russian Federation (project no. №14.604.21.0184 RFMEFI60417X0184), the Program for Basic Research of State Academies of Sciences for 2013–2020, Theme 0518-2018-0005., Министерство образования и науки Российской Федерации (проект №14.604.21.0184 RFMEFI60417X0184), Программа фундаментальных научных исследований государственных академий наук на 2013–2020 г., тема 0518-2018-0005.
Πηγή: Russian Journal of Transplantology and Artificial Organs; Том 21, № 1 (2019); 153-164 ; Вестник трансплантологии и искусственных органов; Том 21, № 1 (2019); 153-164 ; 1995-1191 ; 10.15825/1995-1191-2019-1
Θεματικοί όροι: модель окклюзии средней мозговой артерии, induced pluripotent stem cells, cell therapy, ischemic stroke, middle cerebral artery occlusion model, индуцированные плюрипотентные стволовые клетки, клеточная терапия, ишемический инсульт
Περιγραφή αρχείου: application/pdf
Relation: https://journal.transpl.ru/vtio/article/view/1001/789; Sinden JD, Hicks C, Stroemer P, Vishnubhatla I, Corteling R. Human Neural Stem Cell Therapy for Chronic Ischemic Stroke: Charting Progress from Laboratory to Patients. Stem Cells Dev. 2017; 26 (13): 933–947. doi:10.1089/scd.2017.0009.; Oki K, Tatarishvili J, Wood J, Koch P, Wattananit S, Mine Y et al. Human-induced pluripotent stem cells form functional neurons and improve recovery after grafting in stroke-damaged brain. Stem Cells. 2012; 30 (6): 1120–1133. doi:10.1002/stem.1104.; Polentes J, Jendelova P, Cailleret M, Braun H, Romanyuk N, Tropel P et al. Human induced pluripotent stem cells improve stroke outcome and reduce secondary degeneration in the recipient brain. Cell Transplant. 2012; 21 (12): 2587–2602. doi:10.3727/096368912X653228.; Nekrasov ED, Vigont VA, Klyushnikov SA, Lebedeva OS, Vassina EM, Bogomazova AN et al. Manifestation of Huntington’s disease pathology in human induced pluripotent stem cell-derived neurons. Mol Neurodegener. 2016; 11: 27. doi:10.1186/s13024-016-0092-5.; Koizumi J-i, Yoshida Y, Nakazawa T, Ooneda G. Experimental studies of ischemic brain edema 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Nosotchu. 1986; 8 (1): 1–8. doi:10.3995/jstroke.8.1.; Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989; 20 (1): 84–91.; Gubskiy IL, Namestnikova DD, Cherkashova EA, Chekhonin VP, Baklaushev VP, Gubsky LV et al. MRI Guiding of the Middle Cerebral Artery Occlusion in Rats Aimed to Improve Stroke Modeling. Transl Stroke Res. 2018; 9 (4): 417–425. doi:10.1007/s12975-017-0590-y.; Namestnikova D, Gubskiy I, Gabashvili A, Sukhinich K, Melnikov P, Vishnevskiy D et al. MRI evaluation of frequent complications after intra-arterial transplantation of mesenchymal stem cells in rats. Journal of Physics: Conference Series. 2017; 886 (1): 012012.; Boltze J, Kowalski I, Geiger K, Reich D, Gunther A, Buhrle C et al. Experimental treatment of stroke in spontaneously hypertensive rats by CD34+ and CD34– cord blood cells. Ger Med Sci. 2005; 3: Doc09.; Seltmann S, Lekschas F, Muller R, Stachelscheid H, Bittner MS, Zhang W et al. hPSCreg – the human pluripotent stem cell registry. Nucleic Acids Res. 2016; 44 (D1): D757–63. doi:10.1093/nar/gkv963.; Liu J. Induced pluripotent stem cell-derived neural stem cells: new hope for stroke? Stem Cell Res Ther. 2013; 4 (5): 115. doi:10.1186/scrt326.; von Kummer R, Broderick JP, Campbell BC, Demchuk A, Goyal M, Hill MD et al. The Heidelberg Bleeding Classification: Classification of Bleeding Events After Ischemic Stroke and Reperfusion Therapy. Stroke. 2015; 46 (10): 2981–2986. doi:10.1161/STROKEAHA.115.010049.; https://journal.transpl.ru/vtio/article/view/1001
-
17Academic Journal
Συγγραφείς: А. В. Вялкова, Е. В. Дементьева, С. П. Медведев, Е. А. Покушалов, С. М. Закиян
Πηγή: Патология кровообращения и кардиохирургия, Vol 19, Iss 4-2, Pp 85-94 (2016)
Θεματικοί όροι: Синдром удлиненного интервала QT, Индуцированные плюрипотентные стволовые клетки, Кардиомиоциты, Surgery, RD1-811
Περιγραφή αρχείου: electronic resource
Relation: http://journalmeshalkin.ru/index.php/heartjournal/article/view/289; https://doaj.org/toc/1681-3472; https://doaj.org/toc/2500-3119
Σύνδεσμος πρόσβασης: https://doaj.org/article/53a9f96623d640f68a4635656e88dd6c
-
18Academic Journal
Συγγραφείς: Д. Р. Байзигитов, С. П. Медведев, Е. В. Дементьева, Е. А. Покушалов, С. М. Закиян
Πηγή: Патология кровообращения и кардиохирургия, Vol 19, Iss 4-2, Pp 95-103 (2016)
Θεματικοί όροι: Индуцированные плюрипотентные стволовые клетки, Кардиомиопатия, Моделирование заболеваний, Surgery, RD1-811
Περιγραφή αρχείου: electronic resource
Relation: http://journalmeshalkin.ru/index.php/heartjournal/article/view/290; https://doaj.org/toc/1681-3472; https://doaj.org/toc/2500-3119
Σύνδεσμος πρόσβασης: https://doaj.org/article/9739f01752e54b45afdc80988984f3bc
-
19Academic Journal
Συγγραφείς: M. M. Slotvitsky, V. A. Tsvelaya, S. R. Frolova, E. V. Dement’eva, K. I. Agladze, М. М. Слотвицкий, В. А. Цвелая, Ш. Р. Фролова, Е. В. Дементьева, К. И. Агладзе
Πηγή: Vavilov Journal of Genetics and Breeding; Том 22, № 2 (2018); 187-195 ; Вавиловский журнал генетики и селекции; Том 22, № 2 (2018); 187-195 ; 2500-3259
Θεματικοί όροι: синдром удлинения интервала QT (LQTS), patient specificity, induced pluripotent stem cells (iPSC), the long QT interval syndrome (LQTS), пациент-специфичность, индуцированные плюрипотентные стволовые клетки (ИПСК)
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/1440/1048; Burridge P.W., Matsa E., Shukla P., Lin Z.C., Churko J.M., Ebert A.D., Lan F., Diecke S., Huber B., Mordwinkin N.M., Plews J.R., Abilez O.J., Cui B., Gold J.D., Wu J.C. Chemically defined generation of human cardiomyocytes. Nat. Methods. 2014;11(8):855-860.; Campuzano O., Perez-Serra A., Cesar S., Iglesias A., Brugada R. Genetic basis of atrial fibrillation. Genes & Diseases. 2016;3(4):257-262.; El-Sherif N., Turitto G., Boutjdir M., Pilai S., Otte B., Pedalino R. Electrophysiological basis of ECG characteristics of torsades de pointes in long QT syndrome. Card. Electrophysiol. Clin. 2014;6(3);433-444.; Estacion M., Waxman S.G. The response of Na(V)1.3 sodium channels to ramp stimuli: multiple components and mechanisms. J. Neurophysiol. 2013;109(2):306-314.; Fast V.G., Kléber A.G. Role of wavefront curvature in propagation of cardiac impulse. Cardiovasc. Res. 1997;33(2):258-271.; Gintant G., Sager P.T., Stockbridge N. Evolution of strategies to improve preclinical cardiac safety testing. Nat. Rev. Drug Discov. 2016;15(7):457-471.; Grigor’eva E.V., Valetdinova K.R., Ustyantseva E.I., Shevchenko A.I., Medvedev S.P., Mazurok N.A., Maretina M.A., Kuranova M.L., Kiselev A.V., Baranov V.S., Zakian S.M. Neural differentiation of patient-specific induced pluripotent stem cells from patients with a hereditary form of spinal muscle atrophy. Geny i kletki = Genes & Cells. 2016;XI(2):70-81. (in Russian); Horbach S.P., Halffman W. The ghosts of HeLa: How cell line misidentification contaminates the scientific literature. PloS ONE. 2017; 12(10):e0186281.; Hou L., Deo M., Furspan P., Pandit S.V., Mironov S., Auerbach D.S., Gong Q., Zhou Z., Berenfeld O., Jalife J.A. Major role for hERG in determining frequency of reentry in neonatal rat ventricular myocyte monolayer novelty and significance. Circ. Res. 2010;107(12):1503-1511.; Itzhaki I., Maizels L., Huber I., Zwi-Dantsis L., Caspi O., Winterstern A., Feldman O., Gepstein A., Arbel G., Hammerman H., Boulos M., Gepstein L. Modelling the long QT syndrome with induced pluripotent stem cells. Nature. 2011;471(7337):225-229.; Jervell A., Lange-Nielsen F. Congenital deaf-mutism, functional heart disease with prolongation of the QT interval, and sudden death. Am. Heart J. 1957;54(1):59-68.; Kang C., Qiao Y., Li G., Baechle K., Camelliti P., Rentschler S., Efimov I.R. Human organotypic cultured cardiac slices: new platform for high throughput preclinical human trials. Sci. Rep. 2016;6:28798.; Klimanskaya I., Rosenthal N., Lanza R. Derive and conquer: sourcing and differentiating stem cells for therapeutic applications. Nat. Rev. Drug Discov. 2008;7(2):131-142.; Lian X., Zhang J., Azarin S.M., Zhu K., Hazeltine L.B., Bao X., Hsiao C., Kamp T.J., Palecek S.P. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat. Protoc. 2013;8(1):162-175.; Lippiat J.D. Whole-cell recording using the perforated patch clamp technique. Potassium Channels: Methods and Protocols. Humana Press, 2009;141-149.; Ma J., Guo L., Fiene S.J., Anson B.D., Thomson J.A., Kamp T.J., Kolaja K.L., Swanson B.J., January C.T. High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am. J. Physiol. Heart Circ. Physiol. 2011;301(5):H2006-H2017.; Matsa E., Rajamohan D., Dick E., Young L., Mellor I., Staniforth A., Denning C. Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. Eur. Heart J. 2011;32(8):952-962.; Mauritz C., Schwanke K., Reppel M., Neef S., Katsirntaki K., MaierL.S., Nguemo F., Menke S., Haustein M., Hescheler J., Hasenfuss G., Martin U. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation. 2008;118(5):507-517.; Medvedev S.P., Malakhova A.A., Grigor’eva E.V., Shevchenko A.I., Dementyeva E.V., Sobolev I.A., Lebedev I.N., Shilov A.G., Zhimulev I.F., Zakian S.M. Derivation of induced pluripotent stem cells from fetal human skin fibroblasts. Acta Naturae. 2010;2(2);102-106.; Passier R., van Laake L.W., Mummery C.L. Stem-cell-based therapy and lessons from the heart. Nature. 2008;453(7193):322-329.; Pelzmann B., Schaffer P., Bernhart E., Lang P., Mächler H., Rigler B., Koidl B. L-type calcium current in human ventricular myocytes at a physiological temperature from children with tetralogy of Fallot. Cardiovasc. Res. 1998;38(2):424-432.; Schwartz P.J., Periti M., Malliani A. The long QT syndrome. Am. Heart J. 1975;89(3):378-390.; Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861-872.; Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663-676.; https://vavilov.elpub.ru/jour/article/view/1440
-
20Academic Journal
Συγγραφείς: A. A. Kashevarova, E. O. Belyaeva, A. M. Nikonov, O. V. Plotnikova, I. G. Gergert, T. V. Nikitina, N. A. Skryabin, A. G. Menzorov, M. M. Gridina, S. A. Vasilyev, M. E. Lopatkina, R. R. Savchenko, A. V. Churilova, E. N. Tolmacheva, O. L. Serov, L. P. Nazarenko, I. N. Lebedev, А. А. Кашеварова, Е. О. Беляева, А. М. Никонов, О. В. Плотникова, И. Г. Гергерт, Т. В. Никитина, Н. А. Скрябин, А. Г. Мензоров, М. М. Гридина, С. А. Васильев, М. Е. Лопаткина, Р. Р. Савченко, А. В. Чурилова, Е. Н. Толмачева, О. Л. Серов, Л. П. Назаренко, И. Н. Лебедев
Πηγή: Medical Genetics; Том 16, № 12 (2017); 18-26 ; Медицинская генетика; Том 16, № 12 (2017); 18-26 ; 2073-7998
Θεματικοί όροι: chromosomal therapy, кольцевые хромосомы, индуцированные плюрипотентные стволовые клетки, хромосомная нестабильность, хромосомная терапия, intellectual disability, ring chromosomes, induced pluripotent stem cells, chromosomal instability
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/352/268; Khan MA, Khan S, Windpassinger C et al. The Molecular Genetics of Autosomal Recessive Nonsyndromic Intellectual Disability: a Mutational Continuum and Future Recommendations. Ann Hum Genet. 2016; 80(6):342-368.; Chiurazzi P, Pirozzi F. Advances in understanding - genetic basis of intellectual disability. 2016; doi:10.12688/f1000research.7134.1.; Kim T, Bershteyn M, Wynshaw-Boris A. Chromosome therapy. Correction of large chromosomal aberrations by inducing ringchromosomes in induced pluripotent stem cells (iPSCs). Nucleus. 2014; 5(5):391-395.; Plona K, Kim T, Halloran K, Wynshaw-Boris A. Chromosome therapy: Potential strategies for the correction of severe chromosome aberrations. Am J Med Genet C Semin Med Genet. 2016; 172(4):422-430.; Протокол aCGH для микрочипов Agilent Technologies - http://www.chem-agilent.com/pdf/G4410-90020v3_1_CGH_ULS_Protocol.pdf; База данных геномных вариантов - http://projects.tcag.ca/variation/?source=hg18; Каталог «Менделевское наследование у человека» - https://www.ncbi.nlm.nih.gov/omim; Takahashi K, Okita K, Nakagawa M, Yamanaka S. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc. 2007; 2(12):3081-3089.; База данных геномных вариантов и фенотипов - https://decipher.sanger.ac.uk/; Bershteyn M, Hayashi Y, Desachy G et al. Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells. Nature. 2014;507(7490):99-103.; Кашеварова АА, Лебедев ИН. Траектории интерпретации фенотипа и кариотипа через призму взаимодействия врача-генетика и лабораторного генетика. Молекулярно-биологические технологии в медицинской практике / Под ред. чл.-корр. РАЕН А.Б. Масленникова. - Вып. 26. - Новосибирск: Академиздат, 2017; 47-55.; Izykowska K, Przybylski GK, Gand C et al. Genetic rearrangements result in altered gene expression and novel fusion transcripts in Sеzary syndrome. Oncotarget. 2017; 8(24):39627-39639.; Беляева ЕО, Кашеварова АА, Никонов АМ и др. Значимость молекулярного кариотипирования для уточнения диагноза при цитогенетически визуализируемой хромосомной патологии. Медицинская генетика. 2016; 7:17-20.; Rocchi M, Archidiacono N, Carbone R et al. Isolation of a human chromosome 22-specific alpha satellite clone. Cytogenet. Cell Genet. 1991; 58:2050-2051.
Διαθεσιμότητα: https://www.medgen-journal.ru/jour/article/view/352