Showing 1 - 20 results of 33 for search '"ИНГИБИТОР АНГИОТЕНЗИНПРЕВРАЩАЮЩЕГО ФЕРМЕНТА"', query time: 0.71s Refine Results
  1. 1
    Academic Journal

    Source: Počki, Vol 10, Iss 3, Pp 143-149 (2021)
    KIDNEYS; Vol. 10 No. 3 (2021); 143-149
    Почки-Počki; Том 10 № 3 (2021); 143-149
    Нирки-Počki; Том 10 № 3 (2021); 143-149

    File Description: application/pdf

  2. 2
  3. 3
    Academic Journal

    Contributors: Basic research “Study of the mechanisms of structural and functional myocardial remodeling in different phenotypes in heart failure of ischemic and non-ischemic etiology” No. 122020300045-5, Фундаментальное научное исследование «Изучение механизмов структурного и функционального ремоделирования миокарда при разных фенотипах хронической сердечной недостаточности ишемической и неишемической этиологии» № 122020300045-5

    Source: Bulletin of Siberian Medicine; Том 21, № 4 (2022); 44-53 ; Бюллетень сибирской медицины; Том 21, № 4 (2022); 44-53 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2022-21-4

    File Description: application/pdf

    Relation: https://bulletin.ssmu.ru/jour/article/view/5020/3301; https://bulletin.ssmu.ru/jour/article/view/5020/3326; Тепляков А.Т., Шилов С.Н., Попова А.А., Гракова Е.В., Березикова Е.Н., Неупокоева М.Н. и др. Состояние сердечно-сосудистой системы у больных с антрациклиновой кардиомиопатией. Бюллетень сибирской медицины. 2017;16(3):127–136. DOI:10.20538/1682-0363-2017-3-127136.; Kheiri B., Abdalla A., Osman M., Haykal T., Chahine A., Ahmed S. et al. Meta-Analysis of Carvedilol for the Prevention of Anthracycline-Induced Cardiotoxicity. Am. J. Cardiol. 2018;122(11):1959–1964. DOI:10.1016/j.amjcard.2018.08.039.; McCune C., McGowan M., Johnston R., McCarthy A., Watson C., Dixon L. The prevalence of late anthracycline induced cardiotoxicity in survivors of childhood malignancy in Northern Ireland. Heart. 2019;105:A52. DOI:10.1136/heartjnl-2019ICS.64.; Volkova M., Russell R. Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Curr. Cardiol. Rev. 2011;7(4):214–220. DOI:10.2174/157340311799960645.; Janbabai G., Nabati M., Faghihinia M., Azizi S., Borhani S., Yazdani J. Effect of enalapril on preventing anthracycline-induced cardiomyopathy. Cardiovasc. Toxicol. 2017;17(2):130– 139. DOI:10.1007/s12012-016-9365-z.; Cardinale D., Colombo A., Lamantia G., Colombo N., Civelli M., De Giacomi G. et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J. Am. Coll. Cardiol. 2010;19;55(3):213–220. DOI:10.1016/j.jacc.2009.03.095.; Aminkeng F., Ross C.J., Rassekh S.R., Hwang S., Rieder M.J., Bhavsar A.P. et al. CPNDS Clinical Practice Recommendations Group. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br. J. Clin. Pharmacol. 2016;82(3):683–695. DOI:10.1111/bcp.13008.; Elitok A., Oz F., Cizgici A.Y., Kilic L., Ciftci R., Sen F. et al. Effect of carvedilol on silent anthracycline-induced cardiotoxicity assessed by strain imaging: A prospective randomized controlled study with six-month follow-up. Cardiol. J. 2014;21(5):509–515. DOI:10.5603/CJ.a2013.0150.; Bansal N., Adams M.J., Ganatra S., Colan S.D., Aggarwal S., Steiner R. et al. Strategies to prevent anthracycline-induced cardiotoxicity in cancer survivors. Cardiooncology. 2019;2;5:18. DOI:10.1186/s40959-019-0054-5.; Book W.M. Carvedilol: a nonselective β blocking agent with antioxidant properties. Congestive Heart Failure. 2002;8:173– 190. DOI:10.1111/j.1527-5299.2002.00718.x.; Nabati M., Janbabai G., Baghyari S., Esmaili K., Yazdani J. Cardioprotective effects of carvedilol in inhibiting doxorubicin-induced cardiotoxicity. J. Cardiovasc. Pharmacol. 2017;69(5):279–285. DOI:10.1097/FJC.0000000000000470.; Avila M.S., Ayub-Ferreira S.M., de Barros Wanderley M.R. et al. Carvedilol for Prevention of ChemotherapyRelated Cardiotoxicity: The CECCY Trial. J. Am. Coll. Cardiol. 2018;22;71(20):2281–2290. DOI:10.1016/j.jacc.2018.02.049.; Guglin M., Krischer J., Tamura R., Fink A., Bello-Matricaria L., McCaskill-Stevens W. et al. Randomized Trial of Lisinopril Versus Carvedilol to Prevent Trastuzumab Cardiotoxicity in Patients With Breast Cancer. J. Am. Coll. Cardiol. 2019;11;73(22):2859–2868. DOI:10.1016/j.jacc.2019.03.495.; Cardinale D., Colombo A., Sandri M., Lamantia G., Colombo N., Civelli M. et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;5;114(23):2474–2481. DOI:10.1161/CIRCULATIONAHA.106.635144.; Silber J.H., Cnaan A., Clark B.J., Paridon S.M., Chin A.J., Rychik J. et al. Enalapril to prevent cardiac function decline in long-term survivors of pediatric cancer exposed to anthracyclines. J. Clin. Oncol. 2004;1;22(5):820–828. DOI:10.1200/JCO.2004.06.022.; Bosch X., Rovira M., Sitges M., Domènech A., Ortiz-Pérez J.T., de Caralt T.M. et al. Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (preventiOn of left Ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of Malignant hEmopathies). J. Am. Coll. Cardiol. 2013;11;61(23):2355–2362. DOI:10.1016/j.jacc.2013.02.072.; Nazarenko M.S., Markov A.V., Sleptsov A.A. et al. Comparative analysis of gene expression in vascular cells of patients with advanced atherosclerosis. Biomed. Khim. 2018;64(5):416–442. DOI:10.18097/PBMC20186405416.; Brodde O.E. Beta1and beta2-adrenoceptor polymorphisms and cardiovascular diseases. Fundam. Clin. Pharmacol. 2008;22(2):107–125. DOI:10.1111/j.1472-8206.2007.00557.x.; Baudhuin L.M., Miller W.L., Train L., Bryant S., Hartman K.A., Phelps M. et al. Relation of ADRB1, CYP2D6, and UGT1A1 polymorphisms with dose of, and response to, carvedilol or metoprolol therapy in patients with chronic heart failure. Am. J. Cardiol. 2010;1;106(3):402–408. DOI:10.1016/j.amjcard.2010.03.041.; Metra M., Covolo L., Pezzali N., Zacà V., Bugatti S., Lombardi C. et al. Role of beta-adrenergic receptor gene polymorphisms in the long-term effects of beta-blockade with carvedilol in patients with chronic heart failure. Cardiovasc. Drugs Ther. 2010;24(1):49–60. DOI:10.1007/s10557-010-6220-5.; Chen L., Meyers D., Javorsky G., Burstow D. et al. Arg389Gly-beta1-adrenergic receptors determine improvement in left ventricular systolic function in nonischemic cardiomyopathy patients with heart failure after chronic treatment with carvedilol. Pharmacogenet. Genomics. 2007;17(11):941–949. DOI:10.1097/FPC.0b013e3282ef7354.; Luzum J.A., Sweet K.M., Binkley P.F., Schmidlen T.J., Jarvis J.P., Christman M.F. et al. CYP2D6 genetic variation and beta-blocker maintenance dose in patients with heart failure. Pharm. Res. 2017;34(8):1615–1625. DOI:10.1007/s11095017-2104-8.; Shihmanter R., Nulman I., Goland S., Caspi A., Bar-Haim A., Harary I. et al. Variation in the CYP2D6 genotype is not associated with carvedilol dose changes in patients with heart failure. J. Clin. Pharm. Ther. 2014;39(4):432–438. DOI:10.1111/jcpt.12154.; Katsarou M.S., Karathanasopoulou A., Andrianopoulou A., Desiniotis V., Tzinis E., Dimitrakis E. et al. Beta 1, Beta 2 and Beta 3 adrenergic receptor gene polymorphisms in a southeastern European population. Front. Genet. 2018;28;9:560. DOI:10.3389/fgene.2018.00560.; Uemura K., Nakura J., Kohara K. Miki T. Association of ACE I/D polymorphism with cardiovascular risk factors. Hum Genet. 2000; 107(3):239-42. doi:10.1007/s004390000358.; Niu T., Chen X., Xu X. Angiotensin converting enzyme gene insertion/deletion polymorphism and cardiovascular disease: therapeutic implications. Drugs. 2002;62(7):977–993. DOI:10.2165/00003495-200262070-00001.; https://bulletin.ssmu.ru/jour/article/view/5020

  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    File Description: text/html

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20