Showing 1 - 20 results of 774 for search '"ИММУНОГИСТОХИМИЯ"', query time: 0.84s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Contributors: The study was carried out thanks to the financial support of the Ministry of Health of the Republic of Belarus (state registration No. 2020363), Исследование выполнено благодаря финансовой поддержке Министерства здравоохранения Республики Беларусь (государственная регистрация № 2020363)

    Source: Transplantologiya. The Russian Journal of Transplantation; Том 17, № 2 (2025); 167-183 ; Трансплантология; Том 17, № 2 (2025); 167-183 ; 2542-0909 ; 2074-0506

    File Description: application/pdf

    Relation: https://www.jtransplantologiya.ru/jour/article/view/1006/944; https://www.jtransplantologiya.ru/jour/article/view/1006/949; Goodman RR, Jong MK, Davies JE. Concise review: the challenges and opportunities of employing mesenchymal stromal cells in the treatment of acute pancreatitis. Biotechnol Adv. 2020;42:107338. PMID: 30639517 https://doi.org/10.1016/j.biotechadv.2019.01.005; Куделич О.А., Кондратенко Г.Г., Потапнев М.П. Клеточные технологии в лечении острого экспериментального панкреатита. Военная медицина. 2022;3(64):90–99. https://doi.org/10.51922/2074-5044.2022.3.90; Ahmed SM, Morsi M, Ghoneim NI, Abdel-Daim MM, El-Badri N. Mesenchymal stromal cell therapy for pancreatitis: a systematic review. Oxid Med Cell Longev. 2018;2018:3250864. PMID: 29743979 https://doi.org/10.1155/2018/3250864; Hu F, Lou N, Jiao J, Guo F, Xiang H, Shang D. Macrophages in pancreatitis: mechanisms and therapeutic potential. Biomed Pharmacother. 2020;131:110693. PMID: 32882586 https://doi.org/10.1016/j.biopha.2020.110693; Rehg JE, Bush D, Ward JM. The utility of immunohistochemistry for the identification of hematopoietic and lymphoid cells in normal tissues and interpretation of proliferative and inflammatory lesions of mice and rats. Toxicol Pathol. 2012;40(2):345– 374. PMID: 22434870 https://doi.org/10.1177/0192623311430695; Saito N, Pulford KA, Breton-Gorius J, Massé JM, Mason DY, Cramer EM. Ultrastructural localization of the CD68 macrophage-associated antigen in human blood neutrophils and monocytes. Am J Pathol. 1991;139(5):1053–1059. PMID: 1719819; Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, et al. TGF- β signaling in health, disease, and therapeutics. Signal Transduct Target Ther. 2024;9(1):61. PMID: 38514615 https://doi.org/10.1038/s41392-024-01764-w; Peng C, Li Z, Yu X. The role of pancreatic infiltrating innate immune cells in acute pancreatitis. Int J Med Sci. 2021;18(2):534–545. PMID: 33390823 https://doi.org/10.7150/ijms.51618; Nishikawa Y, Wang M, Carr BI. Changes in TGF-beta receptors of rat hepatocytes during primary culture and liver regeneration: increased expression of TGF-beta receptors associated with increased sensitivity to TGF-beta-mediated growth inhibition. J Cell Physiol. 1998;176(3):612–623. PMID: 9699514 https://doi.org/10.1002/(SICI)1097-4652(199809)176:33.0.CO;2-0; Riesle E, Friess H, Zhao L, Wagner M, Uhl W, Baczako K, et al. Increased expression of transforming growth factor beta s after acute oedematous pancreatitis in rats suggests a role in pancreatic repair. Gut. 1997;40(1):73–79. PMID: 9155579 https://doi.org/10.1136/gut.40.1.73; Friess H, Lu Z, Riesle E, Uhl W, Bründler AM, Horvath L, et al. Enhanced expression of TGF-betas and their receptors in human acute pancreatitis. Ann Surg. 1998;227(1):95–104. PMID: 9445116 https://doi.org/10.1097/00000658-199801000-00014; Gress T, Müller-Pillasch F, Elsässer HP, Bachem M, Ferrara C, Weidenbach H, et al. Enhancement of transforming growth factor beta 1 expression in the rat pancreas during regeneration from caerulein-induced pancreatitis. Eur J Clin Invest. 1994;24(10):679– 685. PMID: 7851468 https://doi.org/10.1111/j.1365-2362.1994.tb01060.x; Wan M, Li C, Zhen G, Jiao K, He W, Jia X, et al. Injury-activated transforming growth factor β controls mobilization of mesenchymal stem cells for tissue remodeling. Stem Cells. 2012;30(11):2498–2511. PMID: 22911900 https://doi.org/10.1002/stem.1208; Bax NA, van Oorschot AA, Maas S, Braun J, van Tuyn J, de Vries AA, et al. In vitro epithelial-to-mesenchymal transformation in human adult epicardial cells is regulated by TGF β -signaling and WT1. Basic Res Cardiol. 2011;106(5):829– 847. PMID: 21516490 https://doi.org/10.1007/s00395-011-0181-0; Redini F, Galera P, Mauviel A, Loyau G, Pujol JP. Transforming growth factor beta stimulates collagen and glycosaminoglycan biosynthesis in cultured rabbit articular chondrocytes. FEBS Lett. 1988;234(1):172–176. PMID: 3164687 https://doi.org/10.1016/0014-5793(88)81327-9; Buss A, Pech K, Kakulas BA, Martin D, Schoenen J, Noth J, et al. TGF-beta1 and TGF-beta2 expression after traumatic human spinal cord injury. Spinal Cord. 2008;46(5):364–371. PMID: 18040277 https://doi.org/10.1038/sj.sc.3102148; Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. PMID: 30637094 https://doi.org/10.1080/20013078.2018.1535750; Yamaguchi R, Terashima H, Yoneyama S, Tadano S, Ohkohchi N. Effects of platelet-rich plasma on intestinal anastomotic healing in rats: PRP concentration is a key factor. J Surg Res. 2012;173(2):258–266. PMID: 21074782 https://doi.org/10.1016/j.jss.2010.10.001; Куделич О.А., Кондратенко Г.Г., Потапнев М.П., Колесникова Т.С., Клименкова О.В., Гончарова Н.В. Сравнительная оценка влияния биопродуктов клеточного происхождения на течение острого некротизирующего панкреатита в эксперименте. Хирургия. Восточная Европа. 2024;13(4):585– 601. https://doi.org/10.34883/PI.2024.13.4.024; Kang R, Lotze MT, Zeh HJ, Billiar TR, Tang D. Cell death and DAMPs in acute pancreatitis. Mol Med. 2014;20(1):466– 477. PMID: 25105302 https://doi.org/10.2119/molmed.2014.00117; Федоров А.А., Ермак Н.А., Геращенко Т.С., Топольницкий Е.Б., Шефер Н.А., Родионов Е.О. и др. Поляризация макрофагов: механизмы, маркеры и факторы индукции. Сибирский онкологический журнал. 2022;21(4):124– 136. https://doi.org/10.21294/1814-4861-2022-21-4-124-136; Булава Г.В. Иммунопатогенез острого панкреатита. Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». 2022;11(3):484– 492. https://doi.org/10.23934/2223-9022-2022-11-3-484-492; Roch AM, Maatman TK, Cook TG, Wu HH, Merfeld-Clauss S, Traktuev DO, et al. Therapeutic use of adipose-derived stromal cells in a murine model of acute pancreatitis. J Gastrointest Surg. 2020;24(1):67–75. PMID: 31745900 https://doi.org/10.1007/s11605-019-04411-w; Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell. 2013;13(4):392–402. PMID: 24094322 https://doi.org/10.1016/j.stem.2013.09.006; Jung KH, Song SU, Yi T, Jeon MS, Hong SW, Zheng HM, et al. Human bone marrow-derived clonal mesenchymal stem cells inhibit inflammation and reduce acute pancreatitis in rats. Gastroenterology. 2011;140(3):998–1008. PMID: 21130088 https://doi.org/10.1053/j.gastro.2010.11.047; Goswami TK, Singh M, Dhawan M, Mitra S, Emran TB, Rabaan AA, et al. Regulatory T cells (Tregs) and their therapeutic potential against autoimmune disorders - advances and challenges. Hum Vaccin Immunother. 2022;18(1):2035117. PMID: 35240914 https://doi.org/10.1080/21645515.2022.2035117; https://www.jtransplantologiya.ru/jour/article/view/1006

  7. 7
  8. 8
  9. 9
    Academic Journal

    Source: Research and Practical Medicine Journal; Том 12, № 1 (2025); 99-114 ; Research'n Practical Medicine Journal; Том 12, № 1 (2025); 99-114 ; 2410-1893 ; 10.17709/2410-1893-2025-12-1

    File Description: application/pdf

    Relation: https://www.rpmj.ru/rpmj/article/view/1079/677; Lowrie DJ. Histology – An Essential Textbook (1. Auflage). Germany: Thieme Medical Publishers, 2020.; Ross MH, Pawlina W. Histology: A text and atlas: with correlated cell and molecular biology Wolters Kluwer, 2020.; Moinfar F. Essentials of diagnostic breast pathology: A practical approach. Springer, 2007.; Schnitt SJ, Collins LC. Biopsy interpretation of the breast. Wolters Kluwer Health, 2017.; Tuffaha MSA, Guski H, Kristiansen G. Immunohistochemistry in tumor diagnostics. Springer, 2018.; Dabbs DJ. (ed.). Diagnostic immunohistochemistry: Theranostic and genomic applications (Fifth edition). Elsevier, 2019.; Arendt LM, Kuperwasser C. Form and function: how estrogen and progesterone regulate the mammary epithelial hierarchy. J Mammary Gland Biol Neoplasia. 2015 Jun;20(1-2):9–25. https://doi.org/10.1007/s10911-015-9337-0; Smith GH, Medina D. Does the Mouse Mammary Gland Arise from Unipotent or Multipotent Mammary Stem/Progenitor Cells? J Mammary Gland Biol Neoplasia. 2018 Jun;23(1-2):1–3. https://doi.org/10.1007/s10911-018-9394-2; Elfstrum AK, Bapat AS, Schwertfeger KL. Defining and targeting macrophage heterogeneity in the mammary gland and breast cancer. Cancer Med. 2024 Feb;13(3):e7053. https://doi.org/10.1002/cam4.7053; Atabai K, Sheppard D, Werb Z. Roles of the innate immune system in mammary gland remodeling during involution. J Mammary Gland Biol Neoplasia. 2007 Mar;12(1):37–45. https://doi.org/10.1007/s10911-007-9036-6; Paine IS, Lewis MT. The Terminal End Bud: the Little Engine that Could. J Mammary Gland Biol Neoplasia. 2017 Jun;22(2):93–108. https://doi.org/10.1007/s10911-017-9372-0; Vickers R, Porter W. Immune Cell Contribution to Mammary Gland Development. J Mammary Gland Biol Neoplasia. 2024 Aug 23;29(1):16. https://doi.org/10.1007/s10911-024-09568-y; Herve L, Lollivier V, Quesnel H, Boutinaud M. Oxytocin Induces Mammary Epithelium Disruption and Could Stimulate Epithelial Cell Exfoliation. J Mammary Gland Biol Neoplasia. 2018 Sep;23(3):139–147. https://doi.org/10.1007/s10911-018-9400-8; Maynadier M, Chambon M, Basile I, Gleizes M, Nirde P, Gary-Bobo M, Garcia M. Estrogens promote cell-cell adhesion of normal and malignant mammary cells through increased desmosome formation. Mol Cell Endocrinol. 2012 Nov 25;364(1-2):126–133. https://doi.org/10.1016/j.mce.2012.08.016; Itoh M, Bissell MJ. The organization of tight junctions in epithelia: implications for mammary gland biology and breast tumorigen esis. J Mammary Gland Biol Neoplasia. 2003 Oct;8(4):449–462. https://doi.org/10.1023/b:jomg.0000017431.45314.07; Pai VP, Horseman ND. Biphasic regulation of mammary epithelial resistance by serotonin through activation of multiple pathways. J Biol Chem. 2008 Nov 7;283(45):30901–30910. https://doi.org/10.1074/jbc.m802476200; Sadovnikova A, Garcia SC, Hovey RC. A Comparative Review of the Cell Biology, Biochemistry, and Genetics of Lactose Synthesis. J Mammary Gland Biol Neoplasia. 2021 Jun;26(2):181–196. https://doi.org/10.1007/s10911-021-09490-7; Sadovnikova A, Garcia SC, Hovey RC. A Comparative Review of the Extrinsic and Intrinsic Factors Regulating Lactose Synthesis. J Mammary Gland Biol Neoplasia. 2021 Jun;26(2):197–215. https://doi.org/10.1007/s10911-021-09491-6; Pundir S, Wall CR, Mitchell CJ, Thorstensen EB, Lai CT, Geddes DT, Cameron-Smith D. Variation of Human Milk Glucocorticoids over 24 hour Period. J Mammary Gland Biol Neoplasia. 2017 Mar;22(1):85–92. https://doi.org/10.1007/s10911-017-9375-x; Hassiotou F, Geddes DT. Immune cell-mediated protection of the mammary gland and the infant during breastfeeding. Adv Nutr. 2015 May 15;6(3):267–275. https://doi.org/10.3945/an.114.007377; Smith GH. Binuclear Cells in the Lactating Mammary Gland: New Insights on an Old Concept? J Mammary Gland Biol Neoplasia. 2016 Jun;21(1-2):21–23. https://doi.org/10.1007/s10911-016-9356-5; Hitchcock JR, Hughes K, Harris OB, Watson CJ. Dynamic architectural interplay between leucocytes and mammary epithelial cells. FEBS J. 2020 Jan;287(2):250–266. https://doi.org/10.1111/febs.15126; Rios AC, Fu NY, Jamieson PR, Pal B, Whitehead L, Nicholas KR, et al. Essential role for a novel population of binucleated mammary epithelial cells in lactation. Nat Commun. 2016 Apr 22;7:11400. https://doi.org/10.1038/ncomms11400; Baker NE, Montagna C. Reducing the aneuploid cell burden cell competition and the ribosome connection. Dis Model Mech. 2022 Nov 1;15(11):dmm049673. https://doi.org/10.1242/dmm.049673; Birts CN, Savva C, Laversin SA, Lefas A, Krishnan J, Schapira A, et al. Prognostic significance of crown-like structures to trastuzum ab response in patients with primary invasive HER2 + breast carcinoma. Sci Rep. 2022 May 24;12(1):7802. https://doi.org/10.1038/s41598-022-11696-6; Carter JM, Hoskin TL, Pena MA, Brahmbhatt R, Winham SJ, Frost MH, et al. Macrophagic "Crown-like Structures" Are Associated with an Increased Risk of Breast Cancer in Benign Breast Disease. Cancer Prev Res (Phila). 2018 Feb;11(2):113–119. https://doi.org/10.1158/1940-6207.capr-17-0245; Maliniak ML, Cheriyan AM, Sherman ME, Liu Y, Gogineni K, Liu J, et al. Detection of crown-like structures in breast adipose tissue and clinical outcomes among African-American and White women with breast cancer. Breast Cancer Res. 2020 Jun 17;22(1):65. https://doi.org/10.1186/s13058-020-01308-4; Moukarzel LA, Ferrando L, Stylianou A, Lobaugh S, Wu M, Nobre SP, et al. Impact of obesity and white adipose tissue inflammation on the omental microenvironment in endometrial cancer. Cancer. 2022 Sep 15;128(18):3297–3309. https://doi.org/10.1002/cncr.34356; Wang L, Zhao RP, Song XY, Wu WF. Targeting ERβ in Macrophage Reduces Crown-like Structures in Adipose Tissue by Inhibiting Osteopontin and HIF-1α. Sci Rep. 2019 Oct 31;9(1):15762. https://doi.org/10.1038/s41598-019-52265-8; Ким О. Т., Дадаева В. А., Нуруллина Г. И., Драпкина О. М. Хроническое воспаление при ассоциированных с ожирением заболеваниях. Профилактическая медицина. 2025;28(1):115–121. / Kim OT, Dadaeva VA, Nurullina GI, Drapkina OM. Chronic inflammation in case of obesity-associated diseases. Russian Journal of Preventive Medicine. 2025;28(1):115–121. (In Russ.). https://doi.org/10.17116/profmed202528011115; https://www.rpmj.ru/rpmj/article/view/1079

  10. 10
    Academic Journal

    Source: Medical science of Uzbekistan; No. 3 (2025): May-June; 09-13 ; Медицинская наука Узбекистана; № 3 (2025): Май-Июнь; 09-13 ; O`zbekiston tibbiyot ilmi; No. 3 (2025): May-Iyun; 09-13 ; 2181-3612

    File Description: application/pdf

  11. 11
    Academic Journal
  12. 12
    Academic Journal

    Source: General Reanimatology; Том 21, № 1 (2025); 55-61 ; Общая реаниматология; Том 21, № 1 (2025); 55-61 ; 2411-7110 ; 1813-9779

    File Description: application/pdf

    Relation: https://www.reanimatology.com/rmt/article/view/2516/1912; https://www.reanimatology.com/rmt/article/view/2516/1919; Mullen R. J., Buck C. R., Smith A. M. NeuN, a neuronal specific nuclear protein in vertebrates. Development. 1992; 116 (1): 201–211. DOI:10.1242/dev.116.1.201. PMID: 1483388.; Kim K. K., Adelstein R.S, Kawamoto S. Identification of neuronal nuclei (NeuN) as Fox-3, a new member of the Fox-1 gene family of splicing factors. J Biol Chem. 2009; 284 (45): 31052-31061. DOI:10.1074/jbc.M109.052969 PMID: 19713214.; Alekseeva O. S., Guselnikova V. V., Beznin G. V., Korzhevsky D. E. [Prospects for the application of neun nuclear protein as a marker of the functional state of nerve cells in vertebrates. J Evol Biochem. Phys. 2015; 51: 357–369. DOI:10.1134/S0022093015050014.; Shen C. C., Yang Y. C., Chiao M. T., Cheng W. Y., Tsuei Y. S., Ko J. L. Characterization of endogenous neural progenitor cells after experimental ischemic stroke. Curr Neurovasc Res. 2010; 7 (1): 6–14. DOI:10.2174/156720210790820208.; Davoli M. A., Fourtounis J., Tam J., Xanthoudakis S., Nicholson D., Robertson G. S., Ng G. Y., Xu D. Immunohistochemical and biochemical assessment of caspase-3 activation and DNA fragmentation following transient focal ischemia in the rat. Neuroscience. 2002; 115 (1): 125–136. DOI:10.1016/S0306-4522(02)00376-7. PMID: 12401327.; Sugawara T., Lewén A., Noshita N., Gasche Y., Chan P. H. Effects of global ischemia duration on neuronal, astroglial, oligodendroglial, and microglial reactions in the vulnerable hippocampal CA1 subregion in rats. J Neurotrauma. 2002; 19: 85–98. DOI:10.1089/089771502753460268. PMID: 11852981.; Alekseeva O. S., Gusel’nikova V. V., Beznin G. V., Korzhevskii D. E. [Prospects of the nuclear protein NeuN application as an index of functional state of the vertebral nerve cells]. Zh Evol Biokhim Fiziol. 2015; 51 (5): 313–323. (in Russ.). PMID: 26856070.; Duan W., Zhang Y. P., Hou Z., Huang C., Zhu H., Zhang C. Q., Yin Q. Novel insights into NeuN: from neuronal marker to splicing regulator. Mol Neurobiol. 2016; 53: 1637–1647. DOI:10.1007/s12035-015-9122-5. PMID: 25680637.; Kim K. K., Adelstein R. S., Kawamoto S. Identification of neuronal nuclei (NeuN) as Fox-3, a new member of the Fox-1 gene family of splicing factors. J Biol Chem. 2009; 284: 31052–31061. DOI:10.1074/jbc.M109.052969. PMID: 19713214.; Unal-Cevik I., Kilinç M., Gürsoy-Ozdemir Y., Gurer G., Dalkara T. Loss of NeuN immunoreactivity after cerebral ischemia does not indicate neuronal cell loss: A cautionary note. Brain Res. 2004; 1015: 169–174. DOI:10.1016/j.brainres.2004.04.032. PMID: 15223381.; Babkina A. S., Yadgarov M. Y., Lyubomudrov M. A., Ostrova I. V., Volkov A. V., Kuzovlev A. N., Grechko A. V., et al. Morphologic findings in the cerebral cortex in COVID-19: association of microglial changes with clinical and demographic variables. Biomedicines. 2023; 11 (5): 1407. DOI:10.3390/biomedicines11051407. PMID: 37239078.; Lin Y. S., Kuo K. T., Chen S. K., Huang H. S. RBFOX3/NeuN is dispensable for visual function. PLoS One. 2018; 13 (2): e0192355. DOI:10.1371/journal.pone.0192355. PMID: 29401485.; Maxeiner S., Glassmann A., Kao H. T., Schilling K. The molecular basis of the specificity and cross-reactivity of the NeuN epitope of the neuron-specific splicing regulator, Rbfox3. Histochem Cell Biol. 2014; 141: 43–55. DOI:10.1007/s00418-013-1159-9. PMID: 24150744.; Van Nassauw L., Wu M., De Jonge F., Adriaensen D., Timmermans J. P. Cytoplasmic, but not nuclear, expression of the neuronal nuclei (NeuN) antibody is an exclusive feature of Dogiel type II neurons in the guinea-pig gastrointestinal tract. Histochem. Cell Biol. 2005; 124: 369–377. DOI:10.1007/s00418-005-0019-7. PMID: 16049694.; Yu P., McKinney E. C., Kandasamy M. M., Albert A. L., Meagher R. B. Characterization of brain cell nuclei with decondensed chromatin. Dev Neurobiol. 2015; 75 (7): 738–756. DOI:10.1002/dneu.22245. PMID: 25369517.; Azevedo F. A., Carvalho L. R., Grinberg L. T., Farfel J. M., Ferretti R. E., Leite R. E., Jacob Filho W., et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009; 513 (5): 532–541. DOI:10.1002/cne.21974. PMID: 19226510.; Hernandez M. L., Chatlos T., Gorse K. M., Lafrenaye A. D. Neuronal membrane disruption occurs late following diffuse brain trauma in rats and involves a subpopulation of NeuN negative cortical neurons. Front Neurol. 2019; 10: 1238. DOI:10.3389/fneur.2019.01238. PMID: 31824411.; Cannon J. R., Greenamyre J. T. NeuN is not a reliable marker of dopamine neurons in rat substantia nigra. Neurosci Lett. 2009; 464 (1): 14–17. DOI:10.1016/j.neulet.2009.08.023. PMID: 19682546.; Unal-Cevik I., Kilinç M., Gürsoy-Ozdemir Y., Gurer G., Dalkara T. Loss of NeuN immunoreactivity after cerebral ischemia does not indicate neuronal cell loss: a cautionary note. Brain Res. 2004; 1015 (1–2): 169–174. DOI:10.1016/j.brainres.2004.04.032. PMID: 15223381.; Yagi S., Splinter J. E.J., Tai D., Wong S., Wen Y., Galea L. A. M. Sex differences in maturation and attrition of adult neurogenesis in the hippocampus. eNeuro. 2020; 7 (4): ENEURO.0468-19.2020. DOI:10.1523/ENEURO.0468-19.2020. PMID: 32586842.; Demarest T. G., Waite E. L., Kristian T., Puche A. C., Waddell J., McKenna M. C., Fiskum G. Sex-dependent mitophagy and neuronal death following rat neonatal hypoxia-ischemia. Neuroscience. 2016; 335: 103–113. DOI:10.1016/j.neuroscience.2016.08.026. PMID: 27555552.; Sugiura A., Shimizu T., Kameyama T., Maruo T., Kedashiro S., Miyata M., Mizutani K., et al. Identification of Sox2 and NeuN double-positive cells in the mouse hypothalamic arcuate nucleus and their reduction in number with aging. Front Aging Neurosci. 2021; 12: 609911. DOI:10.3389/fnagi.2020.609911. PMID: 33776740.; Luijerink L., Waters K. A., Machaalani R. Immunostaining for NeuN does not show all mature and healthy neurons in the human and pig brain: focus on the hippocampus. Appl Immunohistochem Mol Morphol. 2021; 29: e46–e56. DOI:10.1097/PAI.0000000000000925. PMID: 33710124.; McPhail L. T., McBride C. B., McGraw J., Steeves J. D., Tetzlaff W. Axotomy abolishes NeuN expression in facial but not rubrospinal neurons. Exp Neurol. 2004; 185 (1): 182–190. DOI:10.1016/j.expneurol.2003.10.001. PMID: 14697329.; Lavezzi A. M., Corna M. F., Matturri L. Neuronal nuclear antigen (NeuN): a useful marker of neuronal immaturity in sudden unexplained perinatal death. J Neurol Sci. 2013; 329 (1–2): 45–50. DOI:10.1016/j.jns.2013.03.012. PMID: 23570982.; Anderson M. B., Das S., Miller K. E. Subcellular localization of neuronal nuclei (NeuN) antigen in size and calcitonin gene-related peptide (CGRP) populations of dorsal root ganglion (DRG) neurons during acute peripheral inflammation. Neurosci Lett. 2021: 24; 760: 135974. DOI:10.1016/j.neulet.2021.135974. PMID: 34146639.; https://www.reanimatology.com/rmt/article/view/2516

  13. 13
  14. 14
  15. 15
    Academic Journal

    Source: Fundamental and applied research for key propriety areas of bioecology and biotechnology; 131-142
    Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии; 131-142

    File Description: text/html

  16. 16
  17. 17
  18. 18
  19. 19
  20. 20