Showing 1 - 20 results of 173 for search '"Заместительная почечная терапия"', query time: 0.80s Refine Results
  1. 1
    Academic Journal

    Source: Transplantologiya. The Russian Journal of Transplantation; Том 17, № 2 (2025); 200-214 ; Трансплантология; Том 17, № 2 (2025); 200-214 ; 2542-0909 ; 2074-0506

    File Description: application/pdf

    Relation: https://www.jtransplantologiya.ru/jour/article/view/1008/946; https://www.jtransplantologiya.ru/jour/article/view/1008/952; Battistella S, Grasso M, Catanzaro E, D'Arcangelo F, Corrà G, Germani G, et al. Evolution of liver transplantation indications: expanding horizons. Medicina (Kaunas). 2024;60(3):412. PMID: 38541138 htpps://doi.org/10.3390/medicina60030412; Häberle J, Siri B, Dionisi-Vici C. Quo vadis ureagenesis disorders? A journey from 90 years ago into the future. J Inherit Metab Dis. 2024;47(6):1120-1128. PMID: 38837457 https://doi.org/10.1002/jimd.12763; Krutsinger D, Pezzulo A, Blevins AE, Reed RM, Voigt MD, Eberlein M. Idiopathic hyperammonemia after solid organ transplantation: primarily a lung problem? A single-center experience and systematic review. Clin Transplant. 2017;31(5):e12957. PMID: 28295601 https://doi.org/10.1111/ctr.12957; Lichtenstein GR, Yang YX, Nunes FA, Lewis JD, Tuchman M, Tino G, et al. Fatal hyperammonemia after orthotopic lung transplantation. Ann Int Med. 2000;132(4):283–287. PMID: 10681283 https://doi.org/10.7326/0003-4819-132-4-200002150-00006; Catherine Ch, Bain KB, Iuppa JA, Yusen RD, Byers DE, Patterson GA, et al. Hyperammonemia syndrome after lung transplantation: a single center experience. Transplantation. 2016;100(3):678– 684. PMID: 26335916 https://doi.org/10.1097/TP.0000000000000868; Seethapathy H, Fenves AZ. Pathophysiology and management of hyperammonemia in organ transplant patients. Am J Kidney Dis. 2019;74(3):390–398. PMID: 31040091 https://doi.org/10.1053/j.agkd.2019.03.419; Plöchl W, Plöchl E, Pokorny H, Kozek-Langenecker S, Zacherl J, Stöckler-Ipsiroglu S, et al. Multiorgan donation from a donor with unrecognized ornithine transcarbamylase deficiency. Transplant Int. 2001;14(3):196-201. PMID: 11499911 https://doi.org/10.1007/s001479900134; Jalan R, De Chiara F, Balasubramaniyan V, Andreola F, Khetan V, Malago M, et al. Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension. J Hepatol. 2016;64(4):823–833. PMID: 26654994 https://doi.org/10.1016/j.jhep.2015.11.019; Zhou Y, Eid T, Hassel B, Danbolt NC. Novel aspects of glutamine synthetase in ammonia homeostasis. Neurochem Int. 2020;140:104809. PMID: 32758585 https://doi.org/10.1016/j.neuint.2020.104809; Adeva MM, Souto G, Blanco N, Donapetry C. Ammonium metabolism in humans. Metabolism. 2012;61(11):1495– 1511. PMID: 22921946 https://doi.org/10.1016/j.metabol.2012.07.007; Olde Damink SW, Jalan R, Dejong CH. Interorgan ammonia trafficking in liver disease. Metab Brain Dis. 2009;24(1):169– 181. PMID: 19067143 https://doi.org/10.1007/s11011-008-9122-5; Long MT, Coursin DB. Undifferentiated non-hepatic hyperammonemia in the ICU: Diagnosis and management. J Crit Care. 2022;70:154042. PMID: 35447602 https://doi.org/10.1016/j.jcrc.2022.154042; Weiner ID, Verlander JW. Renal ammonia metabolism and transport. Compr Physiol. 2013;3(1):201–220. PMID: 23720285 https://doi.org/10.1002/cphy.c120010; Bourgeois S, Houillier P. State of knowledge on ammonia handling by the kidney. Pflugers Arch. 2024;476(4):517– 531. PMID: 38448728 https://doi.org/10.1007/s00424-024-02940-1; La M, Reid JJ. Endothelin-1 and the regulation of vascular tone. Clin Exp Pharmacol Physiol. 1995;22(5):315– 323. PMID: 7554421 https://doi.org/10.1111/j.1440-1681.1995.tb02008.x; Ghabril M, Nguyen J, Kramer D, Genco T, Mai M, Rosser BG. Presentation of an acquired urea cycle disorder post liver transplantation. Liver Transpl. 2007;13(12):1714-1716. PMID: 18044746 https://doi.org/10.1002/lt.21291; Ali R, Nagalli S. Hyperammonemia. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan. PMID: 32491436; Chen H, Yang C, Yan S, Liu X, Zhou L, Yuan X. Sarcopenia in cirrhosis: from pathophysiology to interventional therapy. Exp Gerontol. 2024;196:112571. PMID: 39236869 https://doi.org/10.1016/j.exger.2024.112571; Weber ML, Ibrahim HN, Lake JR. Renal dysfunction in liver transplant recipients: evaluation of the critical issues. Liver Transpl. 2012;18(11):1290– 1301. PMID: 22847917 https://doi.org/10.1002/lt.23522; Hussaini T, Yoshida EM, Partovi N, Erb SR, Scudamore C, Chung S, et al. Early persistent progressive acute kidney injury and graft failure post liver transplantation. Transplant Direct. 2019;5(3):e429. PMID: 30882034 https://doi.org/10.1097/TXD.0000000000000868; Barritt AS 4th, Fried MW, Hayashi PH. Persistent portosystemic shunts after liver transplantation causing episodic hepatic encephalopathy. Dig Dis Sci. 2010;55(6):1794–1798. PMID: 19655248 https://doi.org/10.1007/s10620-009-0901-6; Mori DN, Kreisel D, Fullerton JN, Gilroy DW, Goldstein DR. Inflammatory triggers of acute rejection of organ allografts. Immunol Rev. 2014;258(1):132–144. PMID: 24517430 https://doi.org/10.1111/imr.12146; Vicente H-R, Agusti A, Cabrera-Pastor A, Fustero S, Delgado O, Taoro-Gonzalez L, et al. Sildenafil reduces neuroinflammation and restores spatial learning in rats with hepatic encephalopathy: underlying mechanisms. J Neuroinflammation. 2015;12:195. PMID: 26511444 https://doi.org/10.1186/s12974-015-0420-7; Taoro-Gonzalez L, Arenas YM, Cabrera-Pastor A, Felipo V. Hyperammonemia alters membrane expression of GluA1 and GluA2 subunits of AMPA receptors in hippocampus by enhancing activation of the IL-1 receptor: underlying mechanisms. J Neuroinflammation. 2018;15(1):36. PMID: 29422059 https://doi.org/10.1186/s12974-018-1082-z; Pun CK, Huang HC, Chang CC, Hsu SJ, Huang YH, Hou MC, et al. Hepatic encephalopathy: from novel pathogenesis mechanism to emerging treatments. J Chin Med Assoc. 2024;87(3):245–251. PMID: 38109364 https://doi.org/10.1097/JCMA.0000000000001041; Phillips SM, Pouch SM, Lo DJ, Kandiah S, Lomashvili KA, Subramanian RA, et al. A case of “cryptammonia”: disseminated cryptococcal infection generating profound hyperammonemia in a liver transplant recipient. J Investig Med High Impact Case Rep. 2022;10:23247096221129467. PMID: 36214295 https://doi.org/10.1177/23247096221129467; Baker RP, Schachter M, Phillips S, Kandiah S, Farrque M, Casadevall A, et al. Host and fungal factors both contribute to cryptococcosis-associated hyperammonemia (cryptammonia). Microbiol Spectr. 2024;12(7):e0390223. PMID: 38842310 https://doi.org/10.1128/spectrum.03902-23; Kolopaking MS. Urease, gastric bacteria and gastritis. Acta Med Indones. 2022;54(1):1–2. PMID: 35398819; Mouat S, Bishop J, Glamuzina E, Chin S, Best EJ, Evans HM. Fatal hyperammonemia associated with disseminated Serratia marcescens infection in a pediatric liver transplant recipient. Pediatr Transplantation. 2018;22(4):e13180. PMID: 29624817 https://doi.org/10.1111/petr.13180; Duarte T, Fidalgo P, Karvellas CJ, Cardoso FS. What every Intensivist should know about . Ammonia in liver failure. J Crit Care. 2024;81:154456. PMID: 37945461 https://doi.org/10.1016/j.jcrc.2023.154456; Rose CF, Amodio P, Bajaj JS, Dhiman RK, Montagnese S, Taylor-Robinson SD, et al. Hepatic encephalopathy: novel insights into classification, pathophysiology and therapy. J Hepatol. 2020;73(6):1526–1547. PMID: 33097308 https://doi.org/10.1016/j.jhep.2020.07.013; Deutsch-Link S, Moon AM, Jiang Y, Barritt AS 4th, Tapper EB. Serum ammonia in cirrhosis: clinical impact of hyperammonemia, utility of testing, and national testing trends. Clin Ther. 2022;44(3):e45–e57. PMID: 35125217 https://doi.org/10.1016/j.clinthera.2022.01.008; Лазебник Л.Б., Голованова Е.В., Алексеенко С.А., Буеверов А.О., Плотникова Е.Ю., Долгушина А.И. и др. Российский консенсус «Гипераммониемии у взрослых» (Версия 2021). Экспериментальная и клиническая гастроэнтерология. 2021;(3):97–118. https://doi.org/10.31146/1682-8658-ecg-187-3-97-118; Gupta S, Fenves AZ, Hootkins R. The role of RRT in hyperammonemic patients. Clin J Am Soc Nephrol. 2016;11(10):1872–1878. PMID: 27197910 https://doi.org/10.2215/CJN.01320216; Bernal W, Lee WM, Wendon J, Larsen FS, Williams R. Acute liver failure: a curable disease by 2024? J Hepatol. 2015;62(1 Suppl):S112–120. PMID: 25920080 https://doi.org/10.1016/j.jhep.2014.12.016; Butterworth RF. Ammonia removal by metabolic scavengers for the prevention and treatment of hepatic encephalopathy in cirrhosis. Drugs RD. 2021;21(2):123–132. PMID: 33890246 https://doi.org/10.1007/s40268-021-00345-4; Gluud LL, Dam G, Les I, Marchesini G, Borre M, Aagaard NK, et al. Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst Rev. 2017;5(5):CD001939. PMID: 28518283 https://doi.org/10.1002/14651858.CD001939.pub4; Jalan R, O Damink SW, Deutz NE, Lee A, Hayes PC. Moderate hypothermia for uncontrolled intracranial hypertension in acute liver failure. Lancet. 1999;354(9185):1164–1168. PMID: 10513710 https://doi.org/10.1016/s0140-6736(98)12440-6; Bosoi CR, Parent-Robitaille C, Anderson K, Tremblay M, Rose CF. AST-120 (spherical carbon adsorbent) lowers ammonia levels and attenuates brain edema in bile duct-ligated rats. Hepatology. 2011;53(6):1995–2002. PMID: 21384402 https://doi.org/10.1002/ hep.24273; Agarwal B, Cañizares RB, Saliba F, Ballester MP, Tomescu DR, Martin D, et al. Randomized, controlled clinical trial of the DIALIVE liver dialysis device versus standard of care in patients with acute-on-chronic liver failure. J Hepatol. 2023;79(1):79–92. PMID: 37268222 https://doi.org/10.1016/j.jhep.2023.03.013; Kurtz CB, Millet YA, Puurunen MK, Perreault M, Charbonneau MR, Isabella VM, et al. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci Transl Med. 2019;11(475):eaau7975. PMID: 30651324 https://doi.org/10.1126/scitranslmed.aau7975; Song G, Kerbet A, Jones H, Arias N, Davies N, Andreola F, et al. PS-149-recombinant glutamine synthetase: a novel strategy for the treatment of hyperammonemia and consequent hepatic encephalopathy in rodent model of cirrhosis and urea cycle enzyme deficiency. J Hepatol. 2019;70(1):e93–e94. https://doi.org/10.1016/S0618-8278(19)30167-7; Lévesque R, Leblanc M, Cardinal J, Teitlebaum J, Skrobik Y, Lebrun M. Haemodialysis for severe hyperammonaemic coma complicating urinary diversions. Nephrol Dial Transplant. 1999;14(2):458–461. PMID: 10069214 https://doi.org/10.1093/ndt/14.2.458; Naorungroj T, Yanase F, Eastwood GM, Baldwin I, Bellomo R. Extracorporeal ammonia clearance for hyperammonemia in critically Ill patients: a scoping review. Blood Purif. 2021;50(4-5):453–461. PMID: 33279903 https://doi.org/10.1159/000512100; Slack AJ, Auzinger G, Willars C, Dew T, Musto R, Corsilli D, et al. Ammonia clearance with haemofiltration in adults with liver disease. Liver Int. 2014;34(1):42–48. PMID: 23786538 https://doi.org/10.1111/liv.12221; Uchino S, Fealy N, Baldwin I, Morimatsu H, Bellomo R. Pre-dilution vs. post-dilution during continuous venovenous hemofiltration: impact on filter life and azotemic control. Nephron Clin Pract. 2003;94(4):c94–98. PMID: 12972719 https://doi.org/10.1159/000072492; Fisher C, Baldwin I, Fealy N, Naorungroj T, Bellomo R. Ammonia clearance with different continuous renal replacement therapy techniques in patients with liver failure. Blood Purif. 2022;51(10):840–846. PMID: 35042216 https://doi.org/10.1159/000521312; Dong V, Karvellas CJ. Liver assistive devices in acute liver failure: current use and future directions. Best Pract Res Clin Gastroenterol. 2024;73:101964. PMID: 39709218 https://doi.org/10.1016/j.bpg.2024.101964; Krisper P, Haditsch B, Stauber R, Jung A, Stadlbauer V, Trauner M, et al. In vivo quantification of liver dialysis: comparison of albumin dialysis and fractionated plasma separation. J Hepatol. 2005;43(3):451–7. PMID: 16023249 https://doi.org/10.1016/j.jhep.2005.02.038; MacDonald AJ, Karvellas CJ. Emerging role of extracorporeal support in acute and acute-on-chronic liver failure: recent developments. Semin Respir Crit Care Med. 2018;39(5):625– 634. PMID: 30485892 https://doi.org/10.1055/s-0038-1675334; Maiwall R, Bajpai M, Singh A, Agarwal T, Kumar G, Bharadwaj A, et al. Standard-volume plasma exchange improves outcomes in patients with acute liver failure: a randomized controlled trial. Clin Gastroenterol Hepatol. 2022;20(4):e831–e854. PMID: 33524593 https://doi.org/10.1016/j.cgh.2021.01.036; Larsen FS, Saliba F. Liver support systems and liver transplantation in acute liver failure. Liver Int. 2025;45(3):e15633. PMID: 37288706 https://doi.org/10.1111/liv.15633; https://www.jtransplantologiya.ru/jour/article/view/1008

  2. 2
  3. 3
  4. 4
  5. 5
    Academic Journal
  6. 6
  7. 7
    Academic Journal

    Source: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 21, № 1 (2024); 35-45 ; Вестник анестезиологии и реаниматологии; Том 21, № 1 (2024); 35-45 ; 2541-8653 ; 2078-5658

    File Description: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/927/688; Бовкун И. В., Гаврилова Е. Г., Соколов Д. В. и др. Опыт применения селективной лпс-сорбции в комплексной терапии больных с грамотрицательным сепсисом // Вестник анестезиологии и реаниматологии. – 2017. – Т. 14, № 3. – С. 68–73. DOI:10.21292/2078-5658-2017-14-3-68-73.; Магомедов М. А., Ким Т. Г., Масолитин С. В. и др. Использование сорбента на основе сверхсшитого стирол-дивинилбензольного сополимера с иммобилизованным ЛПС-селективным лигандом при гемоперфузии для лечения пациентов с септическим шоком // Общая реаниматология. – 2020. – Т. 16, № 6. – С. 31–53. DOI:10.15360/1813-9779-2020-6-31-53.; Марухов А. В., Захаров М. В., Чубченко Н. В. и др. Антибактериальная терапия сепсиса при экстракорпоральной детоксикации: актуальные проблемы и пути их решения // Вестник анестезиологии и реаниматологии. – 2020. – Т. 17, № 6. – С. 80–87. DOI:10.21292/2078-5658-2020-17-6-80-87.; Масолитин С. В., Магомедов М. А., Ким Т. Г. и др. Применение селективной гемосорбции и гемодиафильтрации у пациента с рабдомиолизом токсического генеза, осложненным острым почечным повреждением // Вестник анестезиологии и реаниматологии. – 2022. – Т. 19, № 6. – С. 78–85. DOI:10.21292/2078-5658-2022-19-6-78-85.; Масолитин С. В., Проценко Д. Н., Тюрин И. Н. и др. Применение комбинированной экстракорпоральной детоксикации у пациентов с тяжелым острым панкреатитом: ретроспективное когортное исследование // Вестник интенсивной терапии им. А. И. Салтанова. – 2023. – Т. 3. – С. 108–121. DOI:10.21320/1818-474X-2023-3-108-121.; Петров В. С., Петрова М. М., Свиридов С. В. и др. Экстракорпоральная гемокоррекция и ее влияние на свободнорадикальное окисление и антиоксидантную защиту при абдоминальном сепсисе // Вестник анестезиологии и реаниматологии. – 2018. – Т. 15, № 1. – С. 40–45. DOI:10.21292/2078-5658-2018-15-1-40-45.; Полушин Ю. С., Соколов Д. В., Древаль Р. О. и др. Клинико-экономическая оценка использования селективных сорбционных методик экстракорпоральной гемокоррекции у пациентов ОРИТ // Вестник анестезиологии и реаниматологии. – 2023. – Т. 20, № 1. – С. 6–16. DOI:10.24884/2078-5658-2023-20-1-6-16.; Тюрин И. Н., Авдейкин С. Н., Проценко Д. Н. и др. Эпидемиология сепсиса у больных, поступающих в отделение реаниматологии многопрофильного стационара (оригинальное исследование) // Общая реаниматология. – 2019. – Т. 15, № 4. – С. 42–57. DOI:10.15360/1813-9779-2019-4-42-57.; Хорошилов С. Е., Никулин А. В. Современные возможности экстракорпорального лечения сепсиса // Медицинский алфавит. – 2018. – Т. 3. – № 28. – С. 25–31.; Bauer M., Groesdonk H. V., Preissing F. et al. Ergebnisse eines systematischen reviews mit metaanalyse [Mortality in sepsis and septic shock in Germany. Results of a systematic review and meta-analysis] // Anaesthesist. – 2021. – Vol. 70, № 8. – P. 673–680. DOI:10.1007/s00101-021-00917-8.; Besen B. A. M. P., Romano T. G., Nassar A. P. Jr. et al. Sepsis-3 definitions predict ICU mortality in a low-middle-income country // Ann Intensive Care. – 2016. – Vol. 6, № 1. – P. 107. DOI:10.1186/s13613-016-0204-y.; Braun D. A retrospective review of the sepsis definition after publication of sepsis-3 // Am J Med. – 2019. – Vol. 132, № 3. – P. 382–384. DOI:10.1016/j.amjmed.2018.11.003.; Buttenschoen K., Radermacher P., Bracht H. Endotoxin elimination in sepsis: physiology and therapeutic application // Langenbecks Arch Surg. – 2010. – Vol. 395, № 6. – P. 597–605. DOI:10.1007/s00423-010-0658-6.; Chen W. Y., Cai L. H., Zhang Z. H. et al. The timing of continuous renal replacement therapy initiation in sepsis-associated acute kidney injury in the intensive care unit: the CRTSAKI Study (Continuous RRT Timing in Sepsis-associated AKI in ICU): study protocol for a multicentre, randomised controlled trial // BMJ Open. – 2021. – Vol. 11, № 2. – e040718. DOI:10.1136/bmjopen-2020-040718.; De Rosa S., Cutuli S. L., Lorenzin A. et al. Sequential extracorporeal therapy in sepsis // Contrib Nephrol. – 2023. – Vol. 200. – P. 149–159. DOI:10.1159/000527573.; Driessen R. G. H., Kiers D., Schalkwijk C. G. et al. Systemic inflammation down-regulates glyoxalase-1 expression: an experimental study in healthy males // Biosci Rep. – 2021. – Vol. 41, № 7. – BSR20210954. DOI:10.1042/BSR20210954.; Evans L., Rhodes A., Alhazzani W. et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021 // Intensive Care Med. – 2021. – Vol. 47, № 11. – P. 1181–1247. DOI:10.1007/s00134-021-06506-y.; Fuhrmann V., Weber T., Roedl K. et al. Advanced organ support (ADVOS) in the critically ill: first clinical experience in patients with multiple organ failure // Ann Intensive Care. – 2020. – Vol. 10, № 1. – P. 96. DOI:10.1186/s13613-020-00714-3.; Girardot T., Schneider A., Rimmelé T. Blood purification techniques for sepsis and septic AKI // Semin Nephrol. – 2019. – Vol. 39, № 5. – P. 505–514. DOI:10.1016/j.semnephrol.2019.06.010.; Gotts J. E., Matthay M. A. Sepsis: pathophysiology and clinical management // BMJ. – 2016. – Vol. 353. – P. i1585. DOI:10.1136/bmj.i1585.; Hamers L., Kox M., Pickkers P. Sepsis-induced immunoparalysis: mechanisms, markers, and treatment options // Minerva Anestesiol. – 2015. – Vol. 81, № 4. – P. 426–439. PMID: 24878876.; Hartmann J., Harm S. A new integrated technique for the supportive treatment of sepsis // Int J Artif Organs. – 2017. – Vol. 40, № 1. – P. 4–8. DOI:10.5301/ijao.5000550.; Huang M. The pathogenesis of sepsis and potential therapeutic targets // Int. J. Mol. Sci. – 2019. – Vol. 20, № 21. – P. е5376.; Huerta L. E., Rice T. W. Pathologic difference between sepsis and bloodstream infections // J Appl Lab Med. – 2019. – Vol. 3, № 4. – P. 654–663. DOI:10.1373/jalm.2018.026245.; Kaçar C. K., Uzundere O., Kandemir D. et al. Efficacy of HA330 hemoperfusion adsorbent in patients followed in the intensive care unit for septic shock and acute kidney injury and treated with continuous venovenous hemodiafiltration as renal replacement therapy // Blood Purif. – 2020. – Vol. 49, № 4. – P. 448–456. DOI:10.1159/000505565.; Karkar A., Ronco C. Prescription of CRRT: a pathway to optimize therapy // Ann. Intensive Care. – 2020. – Vol. 10, № 1. – Р. 32. DOI:10.1186/s13613-020-0648-y.; Larsen F. F., Petersen J. A. Novel biomarkers for sepsis: A narrative review // Eur J Intern Med. – 2017. – Vol. 45. – P. 46–50. DOI:10.1016/j.ejim.2017.09.030.; Leypoldt J. K., Pietribiasi M., Echeverri J. et al. Modeling acid-base balance during continuous kidney replacement therapy // J Clin Monit Comput. – 2022. – Vol. 36, № 1. – P. 179–189. DOI:10.1007/s10877-020-00635-3.; Liu Y. C., Yao Y., Yu M. M. et al. Frequency and mortality of sepsis and septic shock in China: a systematic review and meta-analysis // BMC Infect Dis. – 2022. – Vol. 22, № 1. – P. 564. DOI:10.1186/s12879-022-07543-8.; Monard C., Rimmelé T., Ronco C. Extracorporeal blood purification therapies for sepsis // Blood Purif. – 2019. – Vol. 47, Suppl 3. – P. 1–14. DOI:10.1159/000499520.; Montomoli J., Donati A., Ince C. Acute kidney injury and fluid resuscitation in septic patients: are we protecting the kidney? // Nephron. – 2019. – Vol. 143, № 3. – P. 170–173. DOI:10.1159/000501748.; Paul R., Sathe P., Kumar S. et al. Multicentered prospective investigator initiated study to evaluate the clinical outcomes with extracorporeal cytokine adsorption device (CytoSorb®) in patients with sepsis and septic shock // World J Crit Care Med. – 2021. – Vol. 10, № 1. – P. 22–34. DOI:10.5492/wjccm.v10.i1.22.; Petejova N., Martinek A., Zadrazil J. et al. acute kidney injury in septic patients treated by selected nephrotoxic antibiotic agents-pathophysiology and biomarkers-a review // Int J Mol Sci. – 2020. – Vol. 21, № 19. – P. 7115. DOI:10.3390/ijms21197115.; Pstras L., Ronco C., Tattersall J. Basic physics of hemodiafiltration // Semin Dial. – 2022. – Vol. 35, № 5. – P. 390–404. DOI:10.1111/sdi.13111.; Rachoin J. S., Foster D., Giese R. et al. Importance of endotoxin clearance in endotoxemic septic shock: an analysis from the evaluating use of polymyxinb hemoperfusion in a randomized controlled trial of adults treated for endotoxemic septic shock (EUPHRATES) // Trial. Crit Care Explor. – 2020. – Vol. 2, № 2. – e0083. DOI:10.1097/CCE.0000000000000083.; Rehn M., Chew M. S., Olkkola K. T. et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock in adults 2021 – endorsement by the Scandinavian society of anaesthesiology and intensive care medicine // Acta Anaesthesiol Scand. – 2022. – Vol. 66, № 5. – P. 634–635. DOI:10.1111/aas.14045.; Ricci Z., Romagnoli S., Reis T. et al. Hemoperfusion in the intensive care unit // Intensive Care Med. – 2022. – Vol. 48. – P. 1397–1408. DOI:10.1007/s00134-022-06810-1.; Rimmelé T., Kellum J.A. Clinical review: blood purification for sepsis // Crit Care. – 2011. – Vol. 15, № 1. – P. 205. DOI:10.1186/cc9411.; Ronco C., Bellomo R. Hemoperfusion: technical aspects and state of the art // Crit Care. – 2022. – Vol. 26, № 1. – P. 135. DOI:10.1186/s13054-022-04009-w.; Rudd K. E., Johnson S. C., Agesa K. M. et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study // Lancet. – 2020. – Vol. 395, № 10219. – P. 200–211. DOI:10.1016/S0140-6736(19)32989-7.; Seymour C. W., Liu V. X., Iwashyna T. J. et al. Assessment of clinical criteria for sepsis: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) // JAMA. – 2016. – Vol. 315, № 8. – P. 762–774. DOI:10.1001/jama.2016.0288.; Singer M., Deutschman C. S., Seymour C. W. et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3) // JAMA. – 2016. – Vol. 315, № 8. – P. 801–810. DOI:10.1001/jama.2016.0287.; Snow T. A. C., Littlewood S., Corredor C. et al. Effect of extracorporeal blood purification on mortality in sepsis: a meta-analysis and trial sequential analysis // Blood Purif. – 2021. – Vol. 50, № 4–5. – P. 462–472. DOI:10.1159/000510982.; Vincent J. L., Jones G., David S. et al. Frequency and mortality of septic shock in Europe and North America: a systematic review and meta-analysis // Crit Care. – 2019. – Vol. 23, № 1. – P. 196. DOI:10.1186/s13054-019-2478-6.; Wagenlehner F. M. E., Dittmar F. Re: Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021 // Eur Urol. – 2022. – Vol. 81, № 2. – P. 213. DOI:10.1016/j.eururo.2021.11.014.; Wu X., Ye J., Sun M. et al. Relationship between the timing of initiation of continuous renal replacement therapy and the prognosis of patients with sepsis-associated acute kidney injury // Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. – 2020. – Vol. 32, № 11. – P. 1352–1355. DOI:10.3760/cma.j.cn121430-20200304-00206.; Zuccari S., Damiani E., Domizi R. et al. Changes in cytokines, haemodynamics and microcirculation in patients with sepsis/septic shock undergoing continuous renal replacement therapy and blood purification with cytosorb // Blood Purif. – 2020. – Vol. 49, № 1–2. – P. 107–113. DOI:10.1159/000502540.

  8. 8
    Academic Journal

    Contributors: The study had no sponsorship, Исследование не имеет спонсорской поддержки

    Source: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 13, № 2 (2024); 186-195 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 13, № 2 (2024); 186-195 ; 2541-8017 ; 2223-9022

    File Description: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/1878/1455; Batlle D, Soler MJ, Sparks MA, Hiremath S, South AM, Welling PA, et al. Acute kidney injury in COVID-19: emerging evidence of a distinct pathophysiology. J Am Soc Nephrol. 2020;31(7):1380–1383. PMID: 32366514 doi:10.1681/ASN.2020040419; Gagliardi I, Patella G, Michael A, Serra R, Provenzano M, Andreucci M. COVID-19 and the kidney: from epidemiology to clinical practice. J Clin Med. 2020;9(8):2506. PMID: 32759645 doi:10.3390/jcm9082506; Fisher M, Neugarten J, Bellin E, Yunes M, Stahl L, Johns TS, et al. AKI in Hospitalized Patients with and without COVID-19: A Comparison Study. J Am Soc Nephrol. 2020;31(9):2145–2157. PMID: 32669322 doi:10.1681/ASN.2020040509; Ouyang L, Gong Y, Zhu Y, Gong J. Association of acute kidney injury with the severity and mortality of SARS-CoV-2 infection: A meta-analysis. Am J Emerg Med. 2021;43:149–157. PMID: 33046323 doi:10.1016/j.ajem.2020.08.089; Gabarre P, Dumas G, Dupont T, Darmon M, Azoulay E, Zafrani L. Acute kidney injury in critically ill patients with COVID-19. Intensive Care Med. 2020;46(7):1339–1348. PMID: 32533197 doi:10.1007/s00134-020-06153-9; Wang K, Chen W, Zhou Y-S, Lian J-Q, Zhang Z, Du P, et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. BioRxiv. The preprint server for biology. 2021. doi:10.1101/2020.03.14.988345 Available at: https://www.biorxiv.org/content/10.1101/2020.03.14.988345v1.full [Accessed 11 Jul 2023]; Vinayagam S, Sattu K. SARS-CoV-2 and coagulation disorders in different organs. Life Sci. 2020;260:118431. PMID: 32946915 doi:10.1016/j.lfs.2020.118431; Faour WH, Choaib A, Issa E, Choueiry FE, Shbaklo K, Alhajj M, et al. Mechanisms of COVID-19-induced kidney injury and current pharmacotherapies. Inflamm Res. 2022;71(1):39–56. PMID: 34802072 doi:10.1007/s00011-021-01520-8; Gaudino M, Chikwe J, Hameed I, Robinson NB, Fremes SE, Ruel M. Response of cardiac surgery units to COVID-19: an internationally-based quantitative survey. Circulation. 2020;142(3):300–302. PMID: 32392425 doi:10.1161/CIRCULATIONAHA.120.047865; Gupta AK, Leslie A, Hewitt JN, Kovoor JG, Ovenden CD, Edwards S, et al. Cardiac surgery on patients with COVID-19 : a systematic review and meta-analysis. ANZ J Surg. 2022;92(5):1007–1014. PMID: 35373439 doi:10.1111/ans.17667; Hu J, Chen R, Liu S, Yu X, Zou J, Ding X. Global incidence and outcomes of adult patients with acute kidney injury after cardiac surgery : a systematic review and meta-analysis. J Cardiothorac Vasc Anesth. 2016;30(1):82–89. PMID: 26482484 doi:10.1053/j.jvca.2015.06.017; Vandenberghe W, Gevaert S, Kellum JA, Bagshaw SM, Peperstraete H, Herck I, et al. Acute kidney injury in cardiorenal syndrome type 1 patients : a systematic review and meta-analysis. Cardiorenal Med. 2016;6(2):116–128. PMID: 26989397 doi:10.1159/000442300; Yu Y, Li C, Zhu S, Jin L, Hu Y, Ling X, et al. Diagnosis, pathophysiology and preventive strategies for cardiac surgery-associated acute kidney injury : a narrative review. Eur J Med Res. 2023;28(1):45. PMID: 36694233 doi:10.1186/s40001-023-00990-2; Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции. (COVID-19). Версия 16 (18. 08. 2022). URL: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/060/193/original/%D0%92%D0%9C%D0%A0_COVID-19_V16.pdf [Дата обращения 13 мая 2024 г.]; Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Suppl. 2012;2(1Suppl):4–138.; Nadim MK, Forni LG, Mehta RL, Connor MJ Jr, Liu KD, Ostermann M, et al COVID-19-associated acute kidney injury: consensus report of the 25 th Acute Disease Quality Initiative (ADQI) Workgroup. Nat Rev Nephrol. 2020;16(12):747–764. PMID: 33060844 doi:10.1038/s41581-020-00356-5; Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–829. PMID: 3928249; Nashef SA, Roques F, Michel F, Gauducheau E. European system for cardiac operative risk evaluation. Europ J Cardiothorac Surg. 1999;16(1):9–13. PMID: 10456395 doi:10.1016/S1010-7940(99)00134-7; Moosdorf R. Cardiac surgery during the COVID-19 pandemic. Herz. 2023;48(3):223–225. PMID: 37097474 doi:10.1007/s00059-023-05175-5; Kaplan EF, Strobel RJ, Young AM, Wisniewski AM, Ahmad RM, Mehaffey JH, et al. Cardiac Surgery Outcomes During the COVID-19 Pandemic Worsened Across All Socioeconomic Statuses. Ann Thorac Surg. 2023;115(6):1511–1518. PMID: 36696937 doi:10.1016/j.athoracsur.2022.12.042; Kellum J.A., Till OV, Mulligan G Targeting acute kidney injury in COVID-19. Nephrol Dial Transplant. 2020;35(10):1652–1662. PMID: 33022712 doi:10.1093/ndt/gfaa231; Geetha D, Kronbichler A, Rutter M, Bajpai D, Menez S, Weissenbacher A, et al. Impact of the COVID-19 pandemic on the kidney community: lessons learned and future directions. Nat Rev Nephrol. 2022;18(11):724–737. PMID: 36002770 doi:10.1038/s41581-022-00618-4; Lumlertgul N, Pirondini L, Cooney E, Kok W, Gregson J, Camporota L, et al. Acute kidney injury prevalence, progression and long-term outcomes in critically ill patients with COVID-19: a cohort study. Ann Intensive Care. 2021;11(1):123. PMID: 34357478 doi:10.1186/s13613-021-00914-5; Bagshaw SM, Wald R, Adhikari NKJ, Bellomo R, da Costa BR, Dreyfuss D, et al. Timing of Initiation of Renal-Replacement Therapy in Acute Kidney Injury. N Engl J Med. 2020;383(3):240–251. PMID: 32668114 doi:10.1056/NEJMoa2000741; Gaudry S, Hajage D, Martin-Lefevre L, Lebbah S, Louis G, Moschietto S, et al. Comparison of two delayed strategies for renal replacement therapy initiation for severe acute kidney injury (AKIKI 2): a multicentre, open-label, randomised, controlled trial. Lancet. 2021;397(10281):1293–1300. PMID: 33812488 doi:10.1016/S0140-6736(21)00350-0; Pan HC, Chen YY, Tsai IJ, Shiao CC, Huang TM, Chan CK, et al. Accelerated versus standard initiation of renal replacement therapy for critically ill patients with acute kidney injury : a systematic review and meta-analysis of RCT studies. Crit Care. 2021;25(1):5. PMID: 33402204 doi:10.1186/s13054-020-03434-z; Luo S, Yang L, Wang C, Liu C, Li D. [Clinical observation of 6 severe COVID-19 patients treated with plasma exchange or tocilizumab]. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020;49(2):227–231. [Article in Chinese] PMID: 32391669 doi:10.3785/j.issn.1008-9292.2020.03.06; Gluck WL, Callahan SP, Brevetta RA, Stenbit AE, Smith WM, Martin JC, Blenda AV, Arce S, Edenfield WJ. Efficacy of therapeutic plasma exchange in the treatment of penn class 3 and 4 cytokine release syndrome complicating COVID-19. Respir Med. 2020;175:106188. PMID: 33190086 doi:10.1016/j.rmed.2020.106188; Faqihi F, Alharthy A, Abdulaziz S, Balhamar A, Alomari A, AlAseri Z, et al. Therapeutic plasma exchange in patients with life-threatening COVID-19: a randomised controlled clinical trial. Int J Antimicrob Agents. 2021;57(5):106334. PMID: 33838224 doi:10.1016/j.ijantimicag.2021.106334; Wei S, Zhang Y, Zhai K, Li J, Li M, Yang J, et al. CytoSorb in patients with coronavirus disease 2019: A rapid evidence review and meta-analysis. Front Immunol. 2023;14:1067214. PMID: 36798138 doi:10.3389/fimmu.2023.1067214; Becker S, Lang H, Barbosa CV, Tian Z, Melk A, Schmidt BMW. Efficacy of CytoSorb® : a systematic review and meta-analysis. Crit Care. 2023;27(1):215. PMID: 37259160 doi:10.1186/s13054-023-04492-9; https://www.jnmp.ru/jour/article/view/1878

  9. 9
    Academic Journal

    Contributors: The study had no sponsorship, Исследование не имеет спонсорской поддержки

    Source: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 12, № 4 (2023); 552-567 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 12, № 4 (2023); 552-567 ; 2541-8017 ; 2223-9022

    File Description: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/1718/1353; https://www.jnmp.ru/jour/article/view/1718/1413; Monard С, Rimmelé T, Ronco C. Extracorporeal Blood Purification Therapies for Sepsis. Blood Purif. 2019;47 Suppl 3:1–14. PMID: 30974444 doi:10.1159/000499520; Putzu A, Schorer R, Lopez-Delgado JC, Cassina T, Landoni G. Blood Purification and Mortality in Sepsis and Septic Shock a Systematic Review and Metaanalysis of Randomized Trials. Anesthesiology. 2019;131(3):580–593. PMID: 31246600 doi:10.1097/ALN.0000000000002820; Girardot T, Schneider A, Rimmelé T. Blood Purification Techniques for Sepsis and Septic AKI. Semin Nephrol. 2019;39(5):505–514. PMID: 31514914 doi:10.1016/j.semnephrol.2019.06.010; Snow TAC, Littlewood S, Corredor C, Singer M, Arulkumaran N. Effect of Extracorporeal Blood Purification on Mortality in Sepsis: A Meta-Analysis and Trial Sequential Analysis. Blood Purif. 2021;50(4–5):462-472. PMID: 33113533 doi:10.1159/000510982; Romagnoli S, Ricci Z, Ronco C. CRRT for sepsis-induced acute kidney injury. Curr Opin Crit Care. 2018;24(6):483–492. PMID: 30239411 doi:10.1097/MCC.0000000000000544; Payen DM, Guilhot J, Launey Y, Lukaszewicz AC, Kaaki M, Veber B, et al. Early Use of Polymyxin B Hemoperfusion in Patients with Septic Shock Due to Peritonitis: a Multicenter Randomized Control Trial/. Intensive Care Med. 2015;41(6):975–984. PMID: 25862039 doi:10.1007/s00134-015-3751-z; Dellinger RP, Bagshaw SM, Antonelli M, Foster DM, Klein DJ, Marshall JC, et al. Effect of Targeted Polymyxin B Hemoperfusion on 28-Day Mortality in Patients with Septic Shock and Elevated Endotoxin Level: The EUPHRATES Randomized Clinical Trial. JAMA. 2018;320(14):1455–1463. PMID: 30304428 doi:10.1001/jama.2018.14618; Klein DJ, Foster D, Walker PM, Bagshaw SM, Mekonnen H, Antonelli M. Polymyxin B hemoperfusion in endotoxemic septic shock patients without extreme endotoxemia: a post hoc analysis of the EUPHRATES trial. Intensive Care Med. 2018;44(12):2205–2212. PMID: 30470853 doi:10.1007/s00134-018-5463-7; Zhang L, Feng Y, Fu P. Blood purification for sepsis: an overview. Precis Clin Med. 2021;4(1):45–55. PMID: 35693122 doi:10.1093/pcmedi/pbab005; Seeliger B, Stahl K, David S. Extracorporeal techniques for blood purification in sepsis: an update. Internist (Berl). 2020;61(10):1010–1016. (In German) PMID: 32897403 doi:10.1007/s00108-020-00862-5; Jarczak D, Kluge S, Nierhaus A. Sepsis-Pathophysiology and Therapeutic Concepts. Front Med (Lausanne). 2021;8:628302. PMID:34055825 doi:10.3389/fmed.2021.628302; Martin-Loeches I, Nunnally ME, Hellman J, Lat I, Martin GS, Jog S, et al. Surviving Sepsis Campaign: Research Opportunities for Infection and Blood Purification Therapies. Crit Care Explor. 2021;3(9):e0511. PMID: 34514420 doi:10.1097/CCE.0000000000000511; Linder MM, Wacha H, Feldmann U, Wesch G, Streifensand RA, Gundlach E. [The Mannheim peritonitis index. An instrument for the intraoperative prognosis of peritonitis]. Chirurg. 1987;58(2):84–92. PMID: 3568820; Charlson ME, Pompei P, Ales KL, McKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chron Dis. 1987;40(5):373–383. PMID: 3558716 doi:10.1016/0021-9681(87)90171-8; Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801–810. PMID: 26903338 doi:10.1001/jama.2016.0287; Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Available at: https://kdigo.org/wp-content/uploads/2016/10/KDIGO-2012-AKI-Guideline-English.pdf [Accessed Jul 06, 2023]; Triantafilou M, Triantafilou K. Sepsis: molecular mechanisms underlying lipopolysaccharide recognition. Expert Rev Mol Med. 2004;6(4):1–18. PMID: 14987416 doi:10.1017/S1462399404007409; Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369(9):840–851. PMID: 23984731 doi:10.1056/NEJMra1208623; Moriyama К, Nishida О. Targeting Cytokines, Pathogen-Associated Molecular Patterns, and Damage-Associated Molecular Patterns in Sepsis via Blood Purification. Int J Mol Sci. 2021;22(16):8882. PMID: 34445610 doi:10.3390/ijms22168882; Ронко К., Пиччинни П., Рознер М.Г. (ред.) Эндотоксемия и эндотоксический шок. патогенез, диагностика и лечение : пер. с англ. Москва: Издатель И.Б. Балабанов; 2012.; Булава Г.В., Рей С.И., Бердников Г.А., Никитина О.В., Шабанов А. К., Боровкова Н.В., и др. Использование селективной гемосорбции липополисахаридов в комплексном лечении сепсиса. Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». 2020;9(2):201–209. doi:10.23934/2223-9022-2020-9-2-201-209; https://www.jnmp.ru/jour/article/view/1718

  10. 10
    Academic Journal

    Source: Siberian Journal of Clinical and Experimental Medicine; Том 39, № 2 (2024); 190-194 ; Сибирский журнал клинической и экспериментальной медицины; Том 39, № 2 (2024); 190-194 ; 2713-265X ; 2713-2927

    File Description: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/2323/975; Hennessey B., Sabatovicz N.Jr., Del Trigo M. Acute ischaemic mitral valve regurgitation. J. Clin. Med. 2022;11(19):5526. DOI:10.3390/jcm11195526.; Báez-Ferrer N., Izquierdo-Gómez M.M., Marí-López B., Montoto-López J., Duque-Gómez A., García-Niebla J. et al. Clinical manifestations, diagnosis, and treatment of ischemic mitral regurgitation: a review. J. Thorac. Dis. 2018;10(12):6969–6986. DOI:10.21037/jtd.2018.10.64.; Сапельников О.В., Латыпов Р.С., Акчурин Р.С. Современный подход к лечению ишемической митральной недостаточности. Кардиология и сердечно-сосудистая хирургия. 2015;8(3):64–69. DOI:10.17116/kardio20158364-69.; Журавлева Л.В., Лопина Н.А., Кузнецов И.В., Лопин Д.А., Крамаренко И.А., Суманова И.А. Острый отрыв хорды задней створки митрального клапана у пациентки пожилого возраста с артериальной гипертензией и ишемической болезнью сердца. Сердце і судини. 2015;(4):16–21.; Estévez-Loureiro R., Tavares Da Silva M., Baz-Alonso J.A., Caneiro-Queija B., Barreiro-Pérez M., Calvo-Iglesias F. et al. Percutaneous mitral valve repair in patients developing severe mitral regurgitation early after an acute myocardial infarction: A review. Front. Cardiovasc. Med. 2022;9:987122. DOI:10.3389/fcvm.2022.987122.; Mentias A., Raza M.Q., Barakat A.F., Hill E., Youssef D., Krishnaswamy A. et al. Prognostic significance of ischemic mitral regurgitation on outcomes in acute ST-elevation myocardial infarction managed by primary percutaneous coronary intervention. Am. J. Cardiol. 2017;119(1):20–26. DOI:10.1016/j.amj-card.2016.09.00.; Otto C., Bonow R.; eds. Valvular heart disease: A Companion to Braunwald’s Heart Disease. 4th edition. Saunders Elsevier; 2014:494.; Акчурин Р.С., Комлев А.Е., Сапельников О.В., Латыпов Р.С. Приобретенные пороки сердца. Хирургическое лечение митральных пороков сердца. В кн.: Руководство по кардиологии; под ред. акад. Е.И. Чазова. Т. 4. Заболевания сердечно-сосудистой системы. М.: Практика; 2014;259–284.; Корней С.М. Сравнение методов хирургической коррекции функциональной митральной недостаточности ишемического генеза. Сердце. 2011;10:1(57):86–92.; Министерство здравоохранения Российской Федерации. Острый инфаркт миокарда с подъемом сегмента ST электрокардиограммы. Клинические рекомендации, 2020. URL: https://cr.minzdrav.gov.ru/schema/157_4 (02.05.2023); https://www.sibjcem.ru/jour/article/view/2323

  11. 11
    Academic Journal

    Contributors: Авторы заявляют об отсутствии финансирования исследования.

    Source: Complex Issues of Cardiovascular Diseases; Том 13, № 4S (2024); 284-289 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 13, № 4S (2024); 284-289 ; 2587-9537 ; 2306-1278

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1575/993; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1575/1860; Kutty S., Danford D.A., Diller G.P., Tutarel O. Contemporary management and outcomes in congenitally corrected transposition of the great arteries. Heart. 2018;104(14):1148-1155. doi:10.1136/heartjnl-2016-311032; LoBasso M., Schneider J., Sanchez-Pinto L.N., Del Castillo S., Kim G., Flynn A., Sethna C.B. Acute kidney injury and kidney recovery after cardiopulmonary bypass in children. Pediatr. Nephrol. 2022;37(3):659-665. doi:10.1007/s00467-021-05179-5; Van den Eynde J., Delpire B., Jacquemyn X., Pardi I., Rotbi H., Gewillig M., Kutty S., Mekahli D. Risk factors for acute kidney injury after pediatric cardiac surgery: a meta-analysis. Pediatr. Nephrol. 2022;37(3):509-519. doi:10.1007/s00467-021-05297-0; Ивкин А. А., Корнелюк Р. А., Борисенко Д. В., Нохрин А. В., Шукевич Д. Л. Искусственное кровообращение без компонентов донорской крови при операции на сердце у ребенка весом 8 килограмм: клинический случай. Патология кровообращения и кардиохирургия. 2018; 22(2): 63-67 doi:10.21688-1681-3472-2018-2-63-67; Mah K.E., Hao S., Sutherland S.M., Kwiatkowski D.M., Axelrod D.M., Almond C.S., Krawczeski C.D., Shin A.Y. Fluid overload independent of acute kidney injury predicts poor outcomes in neonates following congenital heart surgery. Pediatr. Nephrol. 2018;33(3):511-520. doi:10.1007/s00467-017-3818-x; Kwiatkowski D.M., Krawczeski C.D. Acute kidney injury and fluid overload in infants and children after cardiac surgery. Pediatr. Nephrol. 2017;32(9):1509-1517. doi:10.1007/s00467-017-3643-2; Foote H.P., Hornik C.P., Hill K.D., Rotta A.T., Chamberlain R., Thompson E.J. A systematic review of the evidence supporting post-operative diuretic use following cardiopulmonary bypass in children with Congenital Heart Disease. Cardiol. Young. 2021;31(5):699-706. doi:10.1017/S1047951121001451; Kwiatkowski D.M., Goldstein S.L., Cooper D.S., Nelson D.P., Morales D.L., Krawczeski C.D. Peritoneal Dialysis vs Furosemide for Prevention of Fluid Overload in Infants After Cardiac Surgery: A Randomized Clinical Trial. JAMA Pediatr. 2017;171(4):357-364. doi:10.1001/jamapediatrics.2016.4538; Liu L., Zhang L., Liu G.J., Fu P. Peritoneal dialysis for acute kidney injury. Cochrane Database Syst. Rev. 2017;12(12):CD011457. doi:10.1002/14651858.CD011457.pub2; Pettit K.A., Schreiter N.A., Lushaj E.B., Hermsen J.L., Wilhelm M., Mahon A.C.R., Nelson K.L., DeGrave J.J., Marka N., Anagnostopoulos P.V. Prophylactic Peritoneal Drainage is Associated with Improved Fluid Output after Congenital Heart Surgery. Pediatr. Cardiol. 2020;41(8):1704-1713. doi:10.1007/s00246-020-02431-x.

  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
    Academic Journal

    Source: Russian Journal of Transplantology and Artificial Organs; Том 26, № 1 (2024); 125-129 ; Вестник трансплантологии и искусственных органов; Том 26, № 1 (2024); 125-129 ; 1995-1191

    File Description: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1721/1570; https://journal.transpl.ru/vtio/article/view/1721/1634; Готье СВ, Хомяков СМ. Донорство и трансплантация органов в Российской Федерации в 2022 году. XV сообщение регистра Российского трансплантологического общества. Вестник трансплантологии и искусственных органов. 2023; 25 (3): 8–30. doi:10.15825/1995-1191-20233-8-30.; Sars B, van der Sande FM, Kooman JP. Intradialytic hypotension: mechanisms and outcome. Blood Purif. 2020; 49: 158–167. doi:10.1159/000503776.; McIntyre CW, Burton JO, Selby NM, Leccisotti L, Korsheed S, Baker CS et al. Hemodialysis-induced cardiac dysfunction is associated with an acute reduction in global and segmental myocardial blood flow. Clin J Am Soc Nephrol. 2008; 3: 19–26. doi:10.2215/CJN.03170707.; Dasselaar JJ, Slart RHJA, Knip M, Pruim J, Tio RA, McIntyre CW et al. Hemodialysis is associated with a pronounced fall in myocardial perfusion. Nephrol Dial Transplant. 2009; 24: 604–610. doi:10.1093/ndt/gfn501.; Pizzarelli F, Cerrai T, Dattolo P, Ferro G. On-line haemodiafiltration with and without acetate. Nephrol Dial Transplant. 2006; 21: 1648–51. doi:10.1093/ndt/gfk093.; Petitclerc T, Diab R, Le Roy F, Mercadal L, Hmida J. Acetate-free hemodialysis: what does it mean? Nephrol Ther. 2011; 2: 92–98. doi:10.1016/j.nephro.2010.10.008.; Tessitore N, Santoro A, Panzetta GO, Wizemann V, Perez-Garcia R, Ara JM et al. Acetate-Free Biofiltration Reduces Intradialytic Hypotension: A European Multicenter Randomized Controlled Trial. Blood Purif. 2012; 34: 354–363. doi:10.1159/000346293.; Duranti E. Acetate-free hemodialysis: a feasibility study on a technical alternative to bicarbonate dialysis. Blood Purif. 2004; 22 (5): 446–452. doi:10.1159/000080728.; Apter C, Seigneuric B, Darres A, Longlune N, Kamar N, Cointault O et al. Acetate-Free Biofiltration Versus Online Acetate-Free Hemodiafiltration in Patients at High Risk of Hemodialysis Intolerance. Kidney Int Rep. 2022; 7: 1108–1111. doi:10.1016/j.ekir.2022.01.1056.; Unarokov ZM, Mukhoedova TV, Shuvaeva OV. Comparison of Sustained Low-Efficiency Dialysis With AcetateFree and Acetate-Containing Bicarbonate Dialysate in Unstable Patients. Artif Organs. 2014; 38 (10): 883–888. doi:10.1111/aor.12251.; https://journal.transpl.ru/vtio/article/view/1721

  18. 18
    Academic Journal

    Contributors: The authors express their deepest gratitude for the help in implementing the technology in practice to all employees of Intensive Care Unit № 4 for Emergency Detoxification of the Research Clinical Center of Anesthesiology and Intensive Care, Pavlov University, Авторский коллектив выражает благодарность за помощь в реализации технологии на практике всем сотрудникам отделения реанимации и интенсивной терапии № 4 для экстренной детоксикации Научно-клинического центра анестезиологии и реаниматологии Первого Санкт-Петербургского государственного университета им. акад. И. П. Павлова

    Source: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 20, № 3 (2023); 67-74 ; Вестник анестезиологии и реаниматологии; Том 20, № 3 (2023); 67-74 ; 2541-8653 ; 2078-5658

    File Description: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/817/641; Бахтиярова К. С., Папоян А. О., Алексеев А. В. и др. Ранние изменения клинико-лабораторных показателей у пациентов, умерших от COVID-19 // Вестник анестезиологии и реаниматологии. – 2022. – Т. 19, № 5. – С. 55–62. Doi:10.21292/2078-5658-2022-19-5-55-62.; Ладожская-Гапеенко Е. Е., Храпов К. Н., Полушин Ю. С., Шлык И. В., Вартанова И. В. и др. Оценка состояния микроциркуляции у больных с тяжелым течением COVID-19 методом капилляроскопии ногтевого ложа // Вестник анестезиологии и реаниматологии. ‒ 2021. ‒ Т. 18, № 1. ‒ C. 27–36. Doi:10.21292/2078-5658-2021-18-1-27-36.; Некрасова Л. А., Нестерова О. Ю., Самоходская Л. М., Семина Е. В., Камалов А. А. Взаимосвязь белков системы фибринолиза с тяжестью течения COVID-19. Обзор актуальных клинических данных и перспективных терапевтических стратегий // Кардиологический вестник. – 2022. – Т. 7, № 3. – С. 29–38. Doi:10.17116/Cardiobulletin20221703129.; Полушин Ю. С., Акмалова Р. В., Бовкун И. В., Соколов Д. В., Шлык И. В., Гаврилова Е. Г., Паршин Е. В. Острая дисфункция почек у больных новой коронавирусной инфекцией // Вестник анестезиологии и реаниматологии. ‒ 2021. – Т. – 18, № 3. – С. 7–14. Doi:10.21292/2078-5658-2021-18-3-7-14.; Полушин Ю. С., Акмалова Р. В., Соколов Д. В., Бовкун И. В., Гаврилова Е. Г. и др. Изменение уровня некоторых цитокинов при использовании гемофильтрации с сорбцией у пациентов с COVID-19 // Вестник анестезиологии и реаниматологии. ‒ 2021. – Т. – 18, № 2. – С. 31–39. Doi:10.21292/2078-5658-2021-18-2-31-39.; Самородов А. В., Золотухин К. Н., Заболотский Д. В., Александрович Ю. С., Баширова Л. И. Особенности тромбоэластографического профиля пациентов с COVID-19 в условиях ОРИТ // Вестник анестезиологии и реаниматологии. – 2020. – Т. 17, № 6. – С. 39–44. Doi:10.21292/2078-5658-2020-17-6-39-44.; Сироткина О. В., Улитина А. С., Кулабухова Д. Г. и др. Корреляция лабораторных маркеров активации системы гемостаза с концентрацией и размером внеклеточных микрочастиц плазмы крови у пациентов с COVID-19 // Ученые записки СПбГМУ им. акад. И. П. Павлова. – 2022. – Т. 29, № 1. – С. 28–36. Doi:10.24884/1607-4181-2022-29-1-28-36.; Biswas I., Khan G. A. Coagulation disorders in COVID-19: role of toll-like receptors // J Inflamm Res. – 2020. – Vol. 29, № 13. – P. 823–828. Doi:10.2147/JIR.S271768.; Chen N., Zhou M., Dong X. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study // Lancet. ‒ 2020. ‒ № 395. ‒ Р. 507–513. Doi:10.1016/S0140-67362030211-7.; Lai C., Shih T., Ko W. et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges // Int. J. Antimicrob. Agents. ‒ 2020. ‒ № 55. ‒ Р. 105924. Doi:10.1016/j.ijantimicag.2020.105924.; Lehmann A., Prosch H., Zehetmayer S., Gysan M. R. et al. Impact of persistent D-dimer elevation following recovery from COVID-19 // PLoS One. 2021. – Vol. 16, № 10. – e0258351. Doi:10.1371/journal.pone.0258351.; Levi M., Iba T. COVID-19 coagulopathy: is it disseminated intravascular coagulation? // Intern Emerg Med. – 2021. – Vol. 16, № 2. – P. 309–312. Doi:10.1007/s11739-020-02601-y.; Marvi T. K., Stubblefield W. B., Tillman B. F. et al. Serial thromboelastography and the development of venous thromboembolism in critically ill patients with COVID-19 // Crit Care Explor. – 2022. – Vol. 4, № 1. – e0618. Doi:10.1097/CCE.0000000000000618.; Nagashima S., Mendes M. C., Camargo Martins A. P. et al. Endothelial dysfunction and thrombosis in patients with COVID-19-brief report // Arterioscler Thromb Vasc Biol. – 2020. – Vol. 40, № 10. – P. 2404–2407. Doi:10.1161/ATVBAHA.120.314860.; Pine A. B., Meizlish M. L., Goshua G. et al. Circulating markers of angiogenesis and endotheliopathy in COVID-19 // Pulmonary Circulation. – 2020. – Vol. 10, № 4. – 2045894020966547. Doi:10.1177/2045894020966547.; Rostami M., Mansouritorghabeh H. D-dimer level in COVID-19 infection: a systematic review // Expert Rev Hematol. – 2020. – Vol. 13, № 11. – P. 1265–1275. Doi:10.1080/17474086.2020.1831383.; Shankaralingappa A., Tummidi S., Arun Babu T. Diagnostic value of platelet indices in COVID 19 infection: a case-control study from a single tertiary care center // Egypt J Intern Med. – 2022. – Vol. 34, № 1. – P. 35. Doi:10.1186/s43162-022-00123-x.; Schutte T., Thijs A., Smulders Y. M. Never ignore extremely elevated D-dimer levels: they are specific for serious illness // Neth J Med. – 2016. – Vol. 74, № 10. – P. 443–448. PMID: 27966438.; Van der Poll T., de Jonge E., ten Cate an H. Cytokines as regulators of coagulation // Madame Curie Bioscience Database. – Austin (TX): Landes Bioscience. – 2000–2013. URL: www.ncbi.nlm.nih.gov/books/NBK6207.; Wright F. L., Vogler T. O., Moore E. E. et al. Fibrinolysis shutdown correlation with thromboembolic events in severe COVID-19 Infection // J. Am. Coll. Surg. ‒ 2020. ‒ Vol. 231, № 2. ‒ Р. 193–203. Doi:10.1016/j.jamcollsurg.2020.05.007.; Zuo Y., Warnock M., Harbaugh A. et al. Plasma tissue plasminogen activator and plasminogen activator inhibitor-1 in hospitalized COVID-19 patients // Sci Rep. – 2021. – Vol. 11. – P. 1580. Doi:10.1038/s41598-020-80010-z.

  19. 19
    Academic Journal

    Source: General Reanimatology; Том 18, № 3 (2022); 59-68 ; Общая реаниматология; Том 18, № 3 (2022); 59-68 ; 2411-7110 ; 1813-9779

    File Description: application/pdf

    Relation: https://www.reanimatology.com/rmt/article/view/2379/1761; https://www.reanimatology.com/rmt/article/view/2379/1762; Saverymuthu A., Teo R., Zain J.M., Cheah S.K., Yusof A.M., Rahman R.A. Acute kidney injury following rhabdomyolysis in critically ill patients. J Crit Care Med (Targu Mures). 2021; 7 (4): 267–271. DOI:10.2478/jccm-2021-0025. PMID: 34934816.; Flynn Makic M.B. Rhabdomyolysis: recognizing risks. J Perianesth Nurs. 2019; 34 (6): 1282–1283. DOI:10.1016/j.jopan.2019.08.001. PMID: 31619324.; Kim H.W., Kim S., Ohn J.H., Kim N-H, Lee J., Kim E.S., Lim Y., Cho J.H., Park H.S., Ryu J., Kim S.W. Role of bicarbonate and volume therapy in the prevention of acute kidney injury in rhabdomyolysis: a retrospective propensity score-matched cohort study. Kidney Res Clin Pract. 2021 Dec 2. Online ahead of print. DOI:10.23876/j.krcp.21.093. PMID: 34974654.; Riccardi J., Fredericks C.J., Callcut R.A. Trauma and COVID-induced severe rhabdomyolysis. Am Surg. 2022; 88 (5): 1003–1005. DOI:10.1177/00031348211063569. PMID: 34957839.; Stahl K., Rastelli E., Schoser B. A systematic review on the definition of rhabdomyolysis. J Neurol. 2020; 267 (4): 877–882. DOI:10.1007/s00415-019-09185-4. PMID: 30617905.; Albaba I., Chopra A., Al-Tarbsheh A.H., Feustel P.J., Mustafa M., Oweis J., Parimi S,A., Santelises Robledo F.M., Mehta S. Incidence, risk factors, and outcomes of rhabdomyolysis in hospitalized patients with COVID-19 infection. Cureus. 2021; 13 (11): e19802. DOI:10.7759/cureus.19802. PMID: 34956789.; Paternostro C., Gopp L., Tomschik M., Krenn M., Weng R., Bointner K., Jäger F., Zulehner G., Rath J., Berger T., Zimprich F., Cetin H. Incidence and clinical spectrum of rhabdomyolysis in general neurology: a retrospective cohort study. Neuromuscul Disord. 2021; 31 (12): 1227–1234. DOI:10.1016/j.nmd.2021.09.012. PMID: 34711480.; Parish L.P., Cutshall T., Duhart B. Acute kidney injury and rhabdomyolysis due to ticagrelor and rosuvastatin. Nurse Pract. 2021; 46 (11): 12–16. DOI:10.1097/01.NPR.0000794540.96561.51. PMID: 34695045.; Somagutta M.R., Pagad S., Sridharan S., Nanthakumaran S., Arnold A.A., May V., Malik B.H. Role of bicarbonates and mannitol in rhabdomyolysis: a comprehensive review. Cureus. 2020; 12 (8): e9742. DOI:10.7759/cureus.9742. PMID: 32944457.; Osborn H., Grossman D., Kochhar S., Kanukuntla A., Kata P., Cheriyath P. A rare case of delayed onset multi-drug interaction resulting in rhabdomyolysis in a 66-year-old male. Cureus. 2021; 13 (11): e20035. DOI:10.7759/cureus.20035. PMID: 34987920.; Maheshwari M., Athiraman H. «Speedballing» to severe rhabdomyolysis and hemodialysis in a 27-year-old male. Cureus. 2021; 13 (12): e20667. DOI:10.7759/cureus.20667. PMID: 34976547.; Kodikara P., Walker R., Wilson S. Renal physiology and kidney injury during intense (CrossFit®) exercise. Intern Med J. 2021 Dec 22. Online ahead of print. DOI:10.1111/imj.15667. PMID: 34935262.; Wilson M.T., Reeder B.J. The peroxidatic activities of myoglobin and hemoglobin, their pathological consequences and possible medical interventions. Mol Aspects Med. 2022; 84: 101045. DOI:10.1016/j.mam.2021.101045. PMID: 34654576.; Sawhney J.S., Kasotakis G., Goldenberg A., Abramson S., Dodgion C., Patel N., Khan M., Como J.J. Management of rhabdomyolysis: a practice management guideline from the Eastern Association for the Surgery of Trauma. Am J Surg. 2021; S0002-9610 (21)00681-4. DOI:10.1016/j.amjsurg.2021.11.022. PMID: 34836603.; Hui W.F., Hon K.L., Lun K.S., Leung K.K.Y., Cheung W.L., Leung A.K.C. Successful treatment of rhabdomyolysis-associated acute kidney injury with haemoadsorption and continuous renal replacement therapy. Case Rep Pediatr. 2021; 2021: 2148024. DOI:10.1155/2021/2148024. PMID: 34646583.; Long B., Koyfman A., Gottlieb M. An evidence-based narrative review of the emergency department evaluation and management of rhabdomyolysis. Am J Emerg Med. 2019; 37 (3): 518–523. DOI:10.1016/j.ajem.2018.12.061. PMID: 30630682.; Lee G.X., Duong D.K. Rhabdomyolysis: evidence-based management in the emergency department. Emerg Med Pract. 2020; 22 (12): 1–20. PMID: 33211443.; Gupta N., Nusbaum J. Points & pearls: rhabdomyolysis: evidencebased management in the emergency department. Emerg Med Pract. 2020; 22 (Suppl 12): 1–2. PMID: 33259708.; Long B., Targonsky E., Koyfman A. Just the facts: diagnosis and management of rhabdomyolysis. CJEM. 2020; 22 (6): 745–748. DOI:10.1017/cem.2020.37. PMID: 32390586.; Ankawi G., Xie Y., Yang B., Xie Y., Xie P., Ronco C. What have we learned about the use of cytosorb adsorption columns? Blood Purif. 2019; 48 (3): 196–202. DOI:10.1159/000500013. PMID: 31039564.; Жарский С.Л., Слободянюк О.Н., Слободянюк С.Н. Рабдомиолиз, связанный с физической нагрузкой у лиц молодого возраста. Клиническая медицина. 2013; 3: 62–65.; Bagley W.H., Yang H., Shah K.H. Rhabdomyolysis. Intern Emerg Med. 2007; 2 (3): 210–218. DOI:10.1007/s11739-007-0060-8. PMID: 17909702.; Chavez L.O, Leon M., Einav S., Varon J. Beyond muscle destruction: a systematic review of rhabdomyolysis for clinical practice. Crit Care. 2016; 20 (1): 135. DOI:10.1186/s13054-016-1314-5. PMID: 27301374.; Bosch X., Poch E., Grau J.M. Rhabdomyolysis and acute kidney injury. N. Engl. J. Med. 2009; 361 (1): 62-72. DOI:10.1056/NEJMra0801327. PMID: 19571284.; Taxbro K., Kahlow H., Wulcan H., Fornarve A. Rhabdomyolysis and acute kidney injury in severe COVID-19 infection. BMJ Case Rep. 2020; 13 (9): 237616. DOI:10.1136/bcr-2020-237616. PMID: 32878841.; Warren J.D., Blumbergs P.C., Thompson P.D. Rhabdomyolysis: a review. Muscle Nerve. 2002: 332–347. DOI:10.1002/mus.10053. PMID: 11870710.; Panizo N., Rubio-Navarro A., Amaro-Villalobos J.M. Egido J., Moreno J.A. Molecular mechanisms and novel therapeutic approaches to rhabdomyolysis-induced acute kidney injury. Kidney Blood Press. Res. 2015; 40 (5): 520–532. DOI:10.1159/000368528. PMID: 26512883.; Petejova N., Martinek A. Acute kidney injury due to rhabdomyolysis and renal replacement therapy: a critical review. Crit. Care. 2014; 18 (3): 224. DOI:10.1186/cc13897. PMID: 25043142.; Kwiatkowska M., Chomicka I., Malyszko J. Rhabdomyoisis — induced acute kidney injury — an underestimated problem. Wiad. Lek. 2020; 73 (11): 2543–2548. PMID: 33454698.; Oshima Y. Characteristics of drug-associated rhabdomyolysis: analysis of 8,610 cases reported to the U.S. Food and Drug Administration. Intern. Med. 2011; 50 (8): 845–853. DOI:10.2169/internalmedicine.50.4484. PMID: 21498932.; Debelmas A., Benchetrit D., Galanaud D., Khonsari R.H. Case 251: nontraumatic drug-associated rhabdomyolysis of head and neck muscles. Radiology. 2018; 286 (3): 1088–1092. DOI:10.1148/radiol.2018152594. PMID: 29461948.; Nelson D.A., Deuster P.A., Carter R., Hill O.T., Woolcott V.L., Kurina L.M. Sickle cell trait, rhabdomyolysis, and mortality among U.S. army soldiers. N. Engl. J. Med. 2016; 375 (5): 435–442. DOI:10.1056/NEJMoa1516257. PMID: 27518662.; Gordon W.T., Talbot M., Shero J.C., Osier C.J., Johnson A.E., Balsamo L.H., Stockinger Z.T. Acute extremity compartment syndrome and the role of fasciotomy in extremity war wounds. Mil Med. 2018; 183 (suppl_2): 108–111. DOI:10.1093/milmed/usy084. PMID: 30189076.; Rawson E.S., Clarkson P.M., Tarnopolsky M.A. Perspectives on exertional rhabdomyolysis. Sports Med. 2017; 47: 33–49. DOI:10.1007/s40279-017-0689-z. PMID: 28332112.; Meyer M., Sundaram S., Schafhalter-Zoppoth I. Exertional and crossfit-induced rhabdomyolysis. Clin J Sport Med. 2018; 28 (6): 92–94. DOI:10.1097/JSM.0000000000000480. PMID: 28727638.; Fernandes P.M., Davenport R.J. How to do it: investigate exertional rhabdomyolysis (or not). Pract Neurol. 2019; 19 (1): 43–48. DOI:10.1136/practneurol-2018-002008. PMID: 30305378.; Kaur H., Katyal N., Yelam A. Kumar K., Srivastava H., Govindarajan R. Malignant hyperthermia. Mo Med. 2019; 116 (2): 154–159. PMID: 31040503.; Yang C.W., Li S., Dong Y., Paliwal N., Wang Y. Epidemiology and the impact of acute kidney injury on outcomes in patients with rhabdomyolysis. J Clin Med. 2021; 10 (9): 1950. DOI:10.3390/jcm10091950. PMID: 34062839.; Хорошилов С.Е., Никулин А.В. Патогенез, диагностика и эфферентное лечение рабдомиолиза, осложненного острой почечной недостаточностью. Тверской медицинский журнал. 2017; 5: 45–51. eLIBRARY ID: 30022440.; Tehrani P. P., Malek H. Early detection of rhabdomyolysis-induced acute kidney injury through machine learning approaches. Arch Acad Emerg Med. 2021; 9 (1): 29. DOI:10.22037/aaem.v9i1.1059. PMID: 34027424.; Baeza-Trinidad R., Brea-Hernando A., Morera-Rodriguez S., BritoDiaz Y., Sanchez-Hernandez S., El Bikri L., Ramalle-Gomara E., Garcia-Alvarez J.L. Creatinine as predictor value of mortality and acute kidney injury in rhabdomyolysis. Intern Med J. 2015; 45 (11): 1173–1178. DOI:10.1111/imj.12815. PMID: 26010490.; Michelsen J., Cordtz J., Liboriussen L., Behzadi M.T., Ibsen M., Damholt M.B., Møller M.H., Wiis J. Prevention of rhabdomyolysis‐induced acute kidney injury — A DASAIM/DSIT clinical practice guideline. Acta Anaesthesiol Scand. 2019; 63 (5): 576–586. DOI:10.1111/aas.13308. PMID: 30644084.; Holt S., Moore K. Pathogenesis of renal failure in rhabdomyolysis: the role of myoglobin. Exp Nephrol. 2000; 8 (2): 72–76. DOI:10.1159/000020651. PMID: 10729745.; Kasaoka S., Todani M., Kaneko T., Kawamura Y., Oda Y., Tsuruta R., Maekawa T. Peak value of blood myoglobin predicts acute renal failure induced by rhabdomyolysis. J Crit Care. 2010; 25 (4): 601–604. DOI:10.1016/j.jcrc.2010.04.002. PMID: 20537502.; Zorova L.D., Pevzner I.B., Chupyrkina A.A., Zorov S.D., Silachev D.N., Plotnikov E.Y., Zorov D.B. The role of myoglobin degradation in nephrotoxicity after rhabdomyolysis. Chem Biol Interact. 2016; 256: 64–70. DOI:10.1016/j.cbi.2016.06.020. PMID: 27329933.; Ahmed M., Frederickson J., Khan K., Bashir K. Rhabdomyolysis after total abdominal hysterectomy requiring urgent hemodialysis due to hyperkalemia. Cureus. 2021; 13 (4): 14757. DOI:10.7759/cureus.14757. PMID: 34084681.; Chavez L.O., Leon M., Einav S., Varon J. Beyond muscle destruction: a systematic review of rhabdomyolysis for clinical practice. Crit Care. 2016; 20 (1): 135. DOI:10.1186/s13054-016-1314-5. PMID: 27301374.; Buitendag J.J.P., Patel M.Q., Variawa S., Fichardt J., Mostert B., Goliath A., Clarke D.L., Oosthuizen G.V. Venous bicarbonate and creatine kinase as diagnostic and prognostic tools in the setting of acute traumatic rhabdomyolysis. S Afr Med J. 2021; 111 (4): 333–337. DOI:10.7196/SAMJ.2021.v111i4.14915. PMID: 33944766.; Ahmad S., Anees M., Elahi I., Fazal-E-Mateen. Rhabdomyolysis leading to acute kidney injury. J Coll Physicians Surg Pak. 2021; 31 (2): 235–237.DOI:10.29271/jcpsp.2021.02.235. PMID: 33645199.; Vanholder R., Sükrü Sever M., Lameire N. Kidney problems in disaster situations. Nephrol Ther. 2021; 17S: S27-36. DOI:10.1016/j.nephro.2020.02.009. PMID: 33910695.; Ronco C. Extracorporeal therapies in acute rhabdomyolysis and myoglobin clearance. Crit Care. 2005; 9 (2): 141–142. DOI:10.1186/cc3055. PMID: 15774064.; Donati G., Cappuccilli M., Di Filippo F., Nicoletti S., Ruggeri M., Scrivo A., Angeletti A., La Manna G. The use of supra-hemodiafiltration in traumatic rhabdomyolysis and acute kidney injury: a case report. Case Rep Nephrol Dial. 2021; 11 (1): 26–35. DOI:10.1159/000507424. PMID: 33708797.; Guzman N., Podoll A.S., Bell C.S., Finkel K.W. Myoglobin removal using high-volume high-flux hemofiltration in patients with oliguric acute kidney injury. Blood Purif. 2013; 36 (2): 107–111. DOI:10.1159/000354727. PMID: 24080745.; Masakane I., Sakurai K. Current approaches to middle molecule removal: room for innovation. Nephrol Dial Transplant. 2018; 33 (3): iii12–iii21. DOI:10.1093/ndt/gfy224. PMID: 30281129.; Heyne N., Guthoff M., Krieger J., Haap M., Häring H-U. High cut-off renal replacement therapy for removal of myoglobin in severe rhabdomyolysis and acute kidney injury: a case series. Nephron Clin Pract. 2012; 121 (3–4): 159–164. DOI:10.1159/000343564. PMID: 23327834.; Naka T., Jones D., Baldwin I., Fealy N., Bates S., Goehl H., Morgera S., Neumayer H.H., Bellomo R. Myoglobin clearance by super highflux hemofiltration in a case of severe rhabdomyolysis: a case report. Crit Care. 2005; 9 (2): R90–95. DOI:10.1186/cc3034. PMID: 15774055.; Zhang L., Kang Y., Fu P., Cao Y., Shi Y., Liu F., Hu Z., Su B, Tang W., Qin W. Myoglobin clearance by continuous venous-venous haemofiltration in rhabdomyolysis with acute kidney injury: a case series. Injury. 2012; 43 (5): 619–623. DOI:10.1016/j.injury.2010.08.031. PMID: 20843513.; Weidhase L., Haussig E., Haussig S., Kaiser T., de Fallois J., Petros S. Middle molecule clearance with high cut-off dialyzer versus highflux dialyzer using continuous veno-venous hemodialysis with regional citrate anticoagulation: a prospective randomized controlled trial. PLoS One. 2019; 14 (4): 0215823. DOI:10.1371/journal.pone.0215823. PMID: 31026303.; Бельских А.Н., Захаров М.В., Марухов А.В., Корольков О.А. Сравнение эффективности методов экстракорпоральной детоксикации при лечении постнагрузочного рабдомиолиза, осложненного острым почечным повреждением. Военно-медицинский журнал. 2019; 340 (6): 49–54. DOI:10.17816/RMMJ81896.; Premru V., Kovač J., Buturović-Ponikvar J., Ponikvar R. Some kinetic considerations in high cut-off hemodiafiltration for acute myoglobinuric renal failure. Ther Apher Dial. 2013: 17 (4): 396–401. DOI:10.1111/1744-9987.12085. PMID: 23931878.; Albert C., Haase M., Bellomo R., Mertens P.R. High cut-off and highflux membrane haemodialysis in a patient with rhabdomyolysisassociated acute kidney injury. Crit Care Resusc. 2012; 14 (2): 159–162. PMID: 22697626.; Weidhase L., de Fallois J., Haußig E., Kaiser T., Mende M., Petros S. Myoglobin clearance with continuous veno-venous hemodialysis using high cutoff dialyzer versus continuous veno-venous hemodiafiltration using high-flux dialyzer: a prospective randomized controlled trial. Crit Care. 2020; 24 (1): 644. DOI:10.1186/s13054020-03366-8. PMID: 33176824.; Gubensek J., Persic V., Jerman A., Premru V. Extracorporeal myoglobin removal in severe rhabdomyolysis with high cut-off membranes-intermittent dialysis achieves much greater clearances than continuous methods. Crit Care. 2021; 25 (1): 97. DOI:10.1186/s13054-021-03531-7. PMID: 3375039.; Конева О.А., Руденко М.Ю., Ганич Э.С. Случай успешного раннего применения плазмафереза при рабдомиолизе. Нефрология и диализ. 2001; 3 (2): 197.; Завертайло Л.Л., Мальков О.А. Случай успешного лечения синдрома позиционного сдавления, осложнившегося паренхиматозной ОПН, сочетанным применением эфферентных методик НПЗП и плазмафереза (клиническое наблюдение). Интенсивная терапия. 2005; 1: 3–9.; Swaroop R., Zabaneh R., Parimoo N. Plasmapheresis in a patient with rhabdomyolysis: a case report. Cases J. 2009; 2: 8138. DOI:10.4076/1757-1626-2-8138. PMID: 19918458.; Теплова Н.Н. Рабдомиолиз в клинической практике. Вятский медицинский вестник. 2016; 52 (4): 37–45. eLIBRARY ID: 28789214.; Szczepiorkowski Z.M., Winters J.L., Bandarenko N., Kim H.C., Linenberger M.L., Marques M.B., Sarode R., Schwartz J., Weinstein R., Shaz B.H. Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the Apheresis Applications Committee of the American Society for Apheresis. J Clin Apher. 2010; 25 (3): 83–177. DOI:10.1002/jca.20240. PMID: 20568098.; Yang K.C., Fang C.C., Su T.C., Lee Y.T. Treatment of fibrate-induced rhabdomyolysis with plasma exchange in ESRD. Am J Kidney Dis. 2005; 45 (3): 57–60. DOI:10.1053/j.ajkd.2004.12.003. PMID: 15754265.; Федорова А.А., Кутепов Д.Е., Зубарев А.В., Пасечник И.Н., Хабарина Н.В. Рабдомиолиз: что нового в диагностике и лечении? Кремлевская медицина. Клинический вестник. 2020; 2: 102–109. DOI:10.26269/4n94-0746.; Ogawa T., Yoshino H., Sasaki Y., Kanayama Y., Sano T., Kogure Y., Kanozawa K., Hasegawa H. Our approaches to selective plasma exchange. Contrib Nephrol. 2018; 196: 194–199. DOI:10.1159/000485722. PMID: 30041227.; Taniguchi K., Miyahara T. EVACURETM — membrane plasma separator with unique permeability properties. Med Sci Digest. 2002; 28 (6): 29–33.; Li M., Xue J., Liu J., Kuang D., Gu Y., Lin S. Efficacy of cytokine removal by plasmadiafiltration using a selective plasma separator: in vitro sepsis model. Ther Apher Dial. 2011; 15 (1): 98–108. DOI:10.1111/j.1744-9987.2010.00850.x. PMID: 21272259.; Tan E.X., Wang M.X., Pang J., Lee G.H. Plasma exchange in patients with acute and acute-on-chronic liver failure: a systematic review. World J Gastroenterol. 2020; 26 (2): 219–245. DOI:10.3748/wjg.v26.i2.219. PMID: 31988586.; Bonavia A., Groff A., Karamchandani K., Singbartl K. Clinical utility of extracorporeal cytokine hemoadsorption therapy: a literature review. Blood Purif. 2018; 46 (4): 337–349.DOI:10.1159/000492379. PMID: 30176653.; Poli E.C., Rimmelé T., Schneider A.G. Hemoadsorption with CytoSorb®. Intensive Care Med. 2019; 45 (2): 236–239. DOI:10.1007/s00134-018-5464-6. PMID: 30446798.; Zuccari S., Damiani E., Domizi R., Scorcella C., D’Arezzo M., Carsetti A., Pantanetti S., Vannicola S., Casarotta E., Ranghino A., Donati A., Adrario E. Changes in cytokines, haemodynamics and microcirculation in patients with sepsis/septic shock undergoing continuous renal replacement therapy and blood purification with CytoSorb. Blood Purif. 2020; 49 (1–2): 107–113. DOI:10.1159/000502540. PMID: 31434083.; Dilken O., Ince C., van der Hoven B., Thijsse S., Ormskerk P., de Geus H.R.H. Successful reduction of creatine kinase and myoglobin levels in severe rhabdomyolysis using extracorporeal blood purification (CytoSorb®). Blood Purif. 2020; 49 (6): 743–747. DOI:10.1159/000505899. PMID: 32114569.; Padiyar S., Deokar A., Birajdar S., Walawalkar A., Doshi H. Cytosorb for management of acute kidney injury due to rhabdomyolysis in a child. Indian Pediatr. 2019; 56 (11): 974–976. PMID: 31729332.; Lang C.N., Sommer M.J., Neukamm M.A., Staudacher D.L., Supady A., Bode C., Duerschmied D., Lother A. Use of the CytoSorb adsorption device in MDMA intoxication: a first-in-man application and in vitro study. Intensive Care Med Exp. 2020; 8 (1): 21. DOI:10.1186/s40635-020-00313-3. PMID: 32542550.; Scharf C., Liebchen U., Paal M., Irlbeck M., Zoller M., Schroeder I. Blood purification with a cytokine adsorber for the elimination of myoglobin in critically ill patients with severe rhabdomyolysis. Crit. Care. 2021; 25 (1): 41. DOI:10.1186/s13054-021-03468-x. PMID: 33509234.; https://www.reanimatology.com/rmt/article/view/2379

  20. 20
    Academic Journal

    Source: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 20, № 1 (2023); 6-16 ; Вестник анестезиологии и реаниматологии; Том 20, № 1 (2023); 6-16 ; 2541-8653 ; 2078-5658

    File Description: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/756/611; Методические рекомендации по проведению сравнительной клинико-экономической оценки лекарственного препарата (новая редакция) / Утверждены приказом ФГБУ «ЦЭККМП» Минздрава России от 29.12.2018 № 242-од, [Электронный ресурс]. URL: https://clck.ru/GqdJz (дата обращения: 28.07.2022).; Патерностер Д., Наги А. Иммуномодуляция, иммуностимуляция и экстракорпоральная гемокоррекция при сепсисе: возможности применения данных технологий в кардиохирургии // Вестн. анестезиологии и реаниматологии. - 2019. - Т. 16, № 2. - С. 96-106. Doi:10.21292/2078-5658-2019-16-2-96-106.; Полушин Ю. С., Древаль Р. О., Заботина А. Н. Клинико-экономическая оценка терапии острого повреждения почек при сепсисе продолжительными комбинированными методами заместительной почечной терапии // Вестн. анестезиологии и реаниматологии. -2021. - Т. 18, № 5. - С. 7-20. Doi:10.21292/2078-5658-2021-18-5-7-20.; Полушин Ю. С., Соколов Д. В., Белоусов Д. Ю., Чеберда А. Е. Фармакоэкономическая оценка интермиттирующей и продолжительной заместительной почечной терапии // Вестн. анестезиологии и реаниматологии. - 2017. - Т. 14, № 6. - С. 6-20. Doi:10.21292/2078-5658-2017-14-6-6-20.; Рубцов М. С., Шукевич Д. Л. Современные экстракорпоральные методы лечения критических состояний, обусловленных системным воспалительным ответом // Анестезиология и реаниматология. - 2019. - № 4. -С. 20-30. Doi:10.17116/anaesthesiology201904120.; Сепсис: классификация, клинико-диагностическая концепция и лечение / Под ред. акад. РАН Б. Р. Гельфанда. - 4-е изд. - М.: Медицинское информационное агентство, 2017. - 408 с. ISBN: 978-5-8948-1988-4.; Ягудина Р. И., Абдрашитова Г. Т., Серпик В. Г. и др. Экономическое бремя хронической болезни почек в Российской Федерации // Фармакоэкономика: теория и практика. - 2014. - Т. 2, № 4. - С. 34-39. Doi:10.30809/phe.4.2014.5.; Ягудина Р. И., Абдрашитова Г. Т., Серпик В. Г. Фармакоэкономический анализ оказания медицинской помощи больным с хронической болезнью почек, нуждающимся в проведении заместительной почечной терапии методами перитонеального диализа и гемодиализа в условиях Российского здравоохранения // Фармакоэкономика: теория и практика. - 2015. - Т. 3, № 3. - С. 103-110. Doi: Doi:10.30809/phe.3.2015.2; Abdollahi M., Chelkeba L., Ahmadi A. et al. Early goal-directed therapy reduces mortality in adult patients with severe sepsis and septic shock: Systematic review and meta-analysis // Indian J Crit Care Med. - 2015. - Vol. 19, № 7. - P. 401-11. Doi:10.4103/0972-5229.160281.; Bagshaw S. M., Uchino S., Bellomo R. et al. Beginning and ending supportive therapy for the kidney (BEST Kidney) investigators. Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes // Clin J Am Soc Nephrol. - 2007. Vol. 2, № 3. - P. 431-9. Doi:10.2215/CJN.03681106.; Beltran-Garda J., Osca-Verdegal R., Pallardo F V et al. Sepsis and coronavirus disease 2019: common features and anti-inflammatory therapeutic approaches // Crit Care Med. - 2020. - Vol. 48, № 12. - P. 1841-1844. Doi:10.1097/CCM.0000000000004625.; Bottiroli, M., Monti, G., Pinciroli, R. et al. Prevalence and clinical significance of early high endotoxin activity in septic shock: an observational study // Journal of Critical Care. - 2017. - № 41. - P. 124-129. Doi:10.1016/j.jcrc.2017.04.030.; Case J., Khan S., Khalid R. et al. Epidemiology of acute kidney injury in the intensive care unit // Crit Care Res Pract. - 2013. - № 2013. - P. 479730. Doi:10.1155/2013/479730.; Dellinger R. P., Bagshaw S. M., Antonelli M. et al. Effect of targeted polymyxin b hemoperfusion on 28-day mortality in patients with septic shock and elevated endotoxin level: The EUPHRATES randomized clinical trial // JAMA. - 2018. - Vol. 320, № 14. - P. 1455-1463. Doi:10.1001/jama.2018.14618.; Dupuis C., Bouadma L., Ruckly S. et al. Sepsis and septic shock in France: incidences, outcomes and costs of care // Ann Intensive Care. - 2020. - Vol. 10, № 1. P. 145. Doi:10.1186/s13613-020-00760-x.; Evans L., Rhodes A., Alhazzani W. et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021 // Crit Care Med. - 2021. - Vol. 49, № 11. P. e1063-e1143. Doi:10.1097/CCM.0000000000005337.; Gemmell L., Docking R., Black E. Renal replacement therapy in critical care // BJA Education. - 2017. - № 17. - P. 88-93. Doi:10.1093/bjaed/mkw070.; Gotts J. E., Matthay M. A. Sepsis: pathophysiology and clinical management // BMJ. - 2016. - № 353. - P. i1585. Doi:10.1136/bmj.i1585.; Hoste E. A., Bagshaw S. M., Bellomo R. et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study // Intensive Care Med. - 2015. - Vol. 41, № 8. - P. 1411-1423. Doi:10.1007/s00134-015-3934-7.; Incidence of severe sepsis and septic shock in German intensive care units: the prospective, multicentre INSEP study // Intensive Care Med. - 2016. - Vol. 42, № 12. - P. 1980-1989. Doi:10.1007/s00134-016-4504-3.; Kim J., Kim K., Lee H. et al. Epidemiology of sepsis in Korea: a population-based study of incidence, mortality, cost and risk factors for death in sepsis // Clin. Experim. Emerg. Med. - 2019. - Vol. 6, № 1. - P. 49-63. Doi:10.15441/ceem.18.007.; Klein D. J ., Foster D., Walker P. M. et al. Polymyxin B hemoperfusion in endotoxemic septic shock patients without extreme endotoxemia: a post hoc analysis of the EUPHRATES trial // Intens. Care Med. - 2018. - Vol. 44, № 12. - P. 2205-2212. Doi:10.1007/s00134-018-5463-7.; Lai T. S., Wang C. Y., Pan S. C. et al. Risk of developing severe sepsis after acute kidney injury: a population-based cohort study // Crit Care. - 2013. -Vol. 17, № 5. - P. R231. Doi:10.1186/cc13054.; Lipcsey M., Tenhunen J., Pischke S. E. et al. Endotoxin removal in septic shock with the alteco LPS adsorber was safe but showed no benefit compared to placebo in the double-blind randomized controlled trial-the asset study // Shock. -2020. - Vol. 54, № 2. - P. 224-231. Doi:10.1097/SHK.0000000000001503.; 25. Lipcsey M., Tenhunen J., Sjolin J. et al. Abdominal septic shock - endotoxin adsorption treatment (ASSET) - endotoxin removal in abdominal and urogenital septic shock with the Alteco® LPS Adsorber: study protocol for a double-blinded, randomized placebo-controlled trial // Trials. - 2016. -Vol. 17, № 1. - P. 587. Doi:10.1186/s13063-016-1723-4.; Marik P. E. Don't miss the diagnosis of sepsis! // Crit Care. - 2014. - Vol. 18, № 5. - P. 1-3. Doi:10.1186/s13054-014-0529-6.; Mat-Nor M. B., Ralib A., Abdulah N. Z. et al. The diagnostic ability of procalcitonin and interleukin-6 to differentiate infectious from noninfectious systemic inflammatory response syndrome and to predict mortality // Journal of critical care. - 2016. - № 33. - P. 245-251. Doi:10.1016/j.jcrc.2016.01.002.; Mayr F. B. Infection rate and acute organ dysfunction risk as explanations for racial differences in severe sepsis // JAMA. - 2010. - Vol. 303, № 24. -P. 2495-503. Doi:10.1001/jama.2010.851.; Monard C., Rimmele T., Ronco C. Extracorporeal blood purification therapies for sepsis // Blood Purif. - 2019. - № 47 Suppl 3. - P. 1-14. Doi:10.1159/000499520.; Paoli C. J., Reynolds M. A., Sinha M. et al. Epidemiology and costs of sepsis in the united states - an analysis based on timing of diagnosis and severity level // Crit. Care Med. - 2018. - Vol. 46, № 12. - P. 1889-1897. Doi:10.1097/CCM.0000000000003342.; Rudd K. E., Johnson S. C., Agesa K. M. et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the global burden of disease study // Lancet. - 2020. -Vol. 395, № 10219. - P. 200-211. Doi:10.1016/S0140-6736(19)32989-7.; Schoenfelder T., Chen X., Bleb H. H. Effects of continuous and intermittent renal replacement therapies among adult patients with acute kidney injury // GMS Health Technology Assessment. - 2017. - № 13. - doc 01. Doi:10.3205/hta000127.; Snow T. A. C., Littlewood S., Corredor C. et al. Effect of extracorporeal blood purification on mortality in sepsis: a meta-analysis and trial sequential analysis // Blood Purif. - 2021. - Vol. 50, № 4-5. - P. 462-472. Doi:10.3205/hta000127.; Tiru B., DiNino E. K., Orenstein A. et al. The economic and humanistic burden of severe sepsis // Pharmacoeconomics. - 2015. - Vol. 33, № 9. -P. 925-937. Doi:10.1007/s40273-015-0282-y.; Torio C. M., Moore B. J. National inpatient hospital costs: the most expensive conditions by payer, 2013: Statistical Brief #204 Rockville (MD): agency for healthcare research and quality (US), 2016. [Электронный ресурс]. URL: https://www.ncbi.nlm.nih.gov/books/NBK368492/ (дата обращения: 09.02.2023).; Wald R., Shariff S. Z., Adhikari N. K. J. et al. The association between renal replacement therapy modality and long-term outcomes among critically ill adults with acute kidney injury // Crit. Care Med. - 2014. - Vol. 4, № 42. -P. 868-77. Doi:10.1159/000499589.; Ye Z., Wang Y., Ge L. et al. Comparing renal replacement therapy modalities in critically ill patients with acute kidney injury: a systematic review and network meta-analysis // Crit Care Explor. - 2021. - Vol. 3, № 5. P. e0399. Doi:10.1097/CCE.0000000000000399.; Zhou F., Peng Z., Murugan R. et al. Blood purification and mortality in sepsis // Crit. Care Med. - 2013. - Vol. 41, № 9. Doi:10.1097/CCM.0b013e31828cf412.