Showing 1 - 20 results of 28 for search '"ЗЕРКАЛЬНОЕ ОТРАЖЕНИЕ"', query time: 0.81s Refine Results
  1. 1
  2. 2
    Academic Journal

    Source: Alternative Energy and Ecology (ISJAEE); № 2 (2025); 27-37 ; Альтернативная энергетика и экология (ISJAEE); № 2 (2025); 27-37 ; 1608-8298

    File Description: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/2599/2116; Zhang Lei. Discussion on the design method of two-reflection multi-plane mirror concentrated solar photovoltaic system // Hefei University of Technology, 2009.; Fthenakis V. M., Kim H. C., Alsema E. Emissions from photovoltaic life cycles // Environmental science & technology, 2008, 42(6): 2168-2174.; Fthenakis V. M., Kim H. C. Photovoltaics: Life-cycle analyses // Solar Energy, 2011, 85(8): 1609-1628.; Peng J., Lu L., Yang H. Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems // Renewable and sustainable energy reviews, 2013, 19: 255-274.; Zou Jiaying. Design and research of multi-mirror concentrated solar photovoltaic system // Hefei University of Technology, 2013.; Wang Jianping, Zhang Lei. Discussion on the design method of two-reflection multi-mirror solar condenser // Energy Technology, 2009 (3):5.; Zamani H., Moghiman M., Kianifar A. Optimization of the parabolic mirror position in a solar cooker using the response surface method (RSM) // Renewable Energy, 2015, 81: 753-759.; Chen Nuofu, Bai Yiming. Concentrated photovoltaic system // Physics, 2007, 36(11): 862-868.; De Feo G., Forni M., Petito F. et al. Life cycle assessment and economic analysis of a low concentrating photovoltaic system // Environmental technology, 2016, 37(19): 2473-2482.; Sheng Fei. Research on key technologies of high efficiency concentrated solar cells and photovoltaic systems // Hubei University of Technology, 2015.; Pu Shaoxuan, Xia Chaofeng. Optical design of full-plane mirror reflecting solar condenser // Journal of Agricultural Engineering, 2011, 27(12): 282-285.; Yusuf A., Garcia D. A. Energy, exergy, economic, and environmental (4E) analysesofbifacialconcentratedthermoelectric-photovoltaicsystems // Energy, 2023, 282: 128921.; Lu Jiaqi, Zhang Ning, Yin Peng, etc. Research progress on the optical design type of solar photovoltaic condenser // Laser & Optoelectronics Progress, 2019, 56(23): 230002.; Jia Fuyun, Ma Mianjun, Sun Yanjie, etc. Optical design and optical efficiency of cylindrical Fresnel solar condenser lens // China Space Science and Technology, 2002, 22(6): 1-5.; Zhang Qian. Theoretical analysis and experimental research of linear Fresnel reflective solar condenser // University of Science and Technology of China, 2013.; Zhang Ming, Huang Liangfu, Luo Chongtai, An Dongliang, Sun Yanjie, Wang Duoshu, Guo Juntao. Design and optical efficiency of flat Fresnel lens for space use // Optoelectronic Engineering, 2001(05):18-21.; Korotkov V. V., Yavnov et al., Mitsura D. I. Solar collectors with a parabolic trough. A sustainable and efficient energy source // Bulletin of Science, 2024, 2(6 (75)): 2233-2240.; Bachhav C. Y., Sonawwanay P. D. Study on design and performance enhancement of Fresnel lens solar concentrator // Materials Today: Proceedings, 2022, 56: 2873-2879.; Zhang Yao. Optimized design of solar condenser mirror structure // University of Electronic Science and Technology, 2016.; Xu Hongyu, Xu Cheng, Wu Lining, Yang Yongping. Design and performance analysis of secondary reflector multi-dish solar concentrator // Acta Energiae Solaris Sinica, 2022, 43(10): 126-132.; Sadchikov N. A., Andreeva A. V. Linear Fresnel lenses with reduced chromatic aberration for space solar panels // Letters to the Journal of Technical Physics, 2023, 49(23): 59-61.; Pokotilov V. V., Rutkovsky M. A. Using solar energy to improve the energy efficiency of residential buildings: a reference guide // Minsk: UNDP/GEF, Department for Energy Efficiency of the State Standard of the Republic of Belarus. Belarus, 2015.; Sun Gang, Weng Ningquan, and Xiao Liming. Analysis on the statistical characteristics of atmospheric refractive index structure constant Cn~2 height distribution // Journal of Atmospheric and Environmental Optics, 2011, 6(02): 83-88.; Li P. J., Liu T. X., Qin Y. L. et al. Design and performance investigation of modified dual reflector parabolic trough collector with double planar mirrors // Science China Technological Sciences, 2024, 67(3): 902-918.; He Y. L., Wang K., Qiu Y. et al. Review of the solar flux distribution in concentrated solar power: Nonuniform features, challenges, and solutions // Applied Thermal Engineering, 2019, 149: 448-474.; Sun Gang, Weng Ningquan, Xiao Liming, Ma Chengsheng. Distribution characteristics and analysis of atmospheric refractive index structure constant in different regions // High Power Laser and Particle Beams, 2005(04):485-490.; Li S., Xu J., Lou J. et al. Mirror Surface Assessment in Solar Power Applications by 2-D Coded Light //iEEE Transactions on Instrumentation and Measurement, 2019, 69(6): 3555-3565.; Zhang Kun, Luo Tao, Wang Fei-Fei, Sun Gang, Liu Qing, Qing Chun, Li Xuebin, Weng Ningquan, Zhu Wen-Yue. Influence of low clouds on atmospheric refractive index structure constant based on radiosonde data. Acta Phys. Sin., 2022, 71(8): 089202.; Marszałek K., Winkowski P., Jaglarz J. Optical properties of the Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings // Materials Science-Poland, 2014, 32: 80-87.; Kumar V. S. R. S. P., Kumar M., Kumari N. et al. Fabrication of Al2O3/SiO2 multilayer reflective filters with excellent uniformity for demanding optical interference filters // Materials research express, 2019, 6 (6): 066410.; Zeng T., Zhu M., Chai Y. et al. Dichroic laser mirrors with mixture layers and sandwich-like-structure interfaces // Photonics Research, 2021, 9(2): 229-236.; Wan L., Yang J., Liu X. et al. Enhanced antireflective and laser damage resistance of refractive-index gradient SiO2 nanostructured films at 1064 nm // Polish Journal of Chemical Technology, 2024, 26(2).; Gottschalk H., Saadi M. Shape gradients for the failure probability of a mechanic component under cyclic loading: a discrete adjoint approach // Computational Mechanics, 2019, 64: 895-915.; Martínez-Pañeda E., Deshpande V. S., Niordson C. F. et al. The role of plastic strain gradients in the crack growth resistance of metals // Journal of the Mechanics and Physics of Solids, 2019, 126: 136-150.; Shishvan S. S., Assadpour-asl S., Martinez-Paneda E. A mechanism-based gradient damage model for metallic fracture // Engineering Fracture Mechanics, 2021, 255: 107927.; Che Shuping. Research on the optical and heat collection properties of linear Fresnel reflection system // Shandong: Shandong University, 2012.; Qu Lixin. Environmental adaptability design of space mirror assembly // Photoelectric engineering, 2016, 43(5): 41-46.; Apostoleris H., Stefancich M., Chiesa M. Tracking-integrated systems for concentrating photovoltaics // Nature Energy, 2016, 1(4): 1-8.; Díaz-Báñez J. M., Higes-López J. M., PérezCutiño M. A. et al. Optimal energy collection with rotational movement constraints in concentrated solar power plants // European Journal of Operational Research, 2024, 317(2): 631-642.; Lorilla F. M. A., Barroca R. Challenges and recent developments in solar tracking strategies for concentrated solar parabolic dish //indones. J. Electr. Eng. Comput. Sci, 2022, 26(3): 1368-1378.; https://www.isjaee.com/jour/article/view/2599

  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Source: Alternative Energy and Ecology (ISJAEE); № 7-8 (2016); 12-18 ; Альтернативная энергетика и экология (ISJAEE); № 7-8 (2016); 12-18 ; 1608-8298

    File Description: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/324/317; Техническое описание спектрофотометра «SPECORD-200». Tehničeskoe opisanie spektrofotometra «SPECORD-200» (in Russ.).; Bird R.E., Hulsrom R.L., Lewis R.I. Terrestial Solar Spectral data Sets // Solar Energy. 1983. Vol. 30, No 6. P. 563–573.; Никитин Б.А., В.А. Гусаров. Анализ стандартного спектра наземного солнечного излучения интенсивностью 1000 Вт/м² и оценка на его основе ожидаемых характеристик кремниевых фотоэлектрических преобразователей // Автономная энергетика. М.: НПО Квант, 2008–2009. № 24. С. 50–60. Nikitin B.A., Gusarov V.A. Analiz standartnogo spektra nazemnogo solnečnogo izlučeniâ intensivnost’û 1000 Vt/m² i ocenka na ego osnove ožidaemyh harakteristik kremnievyh fotoèlektričeskih preobrazovatelej. Avtonomnaâ ènergetika, Moscow: NPO Kvant Publ., 2008–2009, no. 24, pp. 50–60 (in Russ.).; https://www.isjaee.com/jour/article/view/324

  7. 7
  8. 8
  9. 9
  10. 10
    Academic Journal

    Contributors: Томский государственный университет Радиофизический факультет Кафедра радиофизики

    Source: Известия высших учебных заведений. Физика. 2015. Т. 58, № 8. С. 40-44

    File Description: application/pdf

  11. 11
  12. 12
  13. 13
    Academic Journal

    Contributors: Томский государственный университет Радиофизический факультет Кафедра оптико-электронных систем и дистанционного зондирования, Томский государственный университет Радиофизический факультет Научные подразделения РФФ

    Source: Оптика атмосферы и океана. 2012. Т. 25, № 5. С. 403-411

    File Description: application/pdf

  14. 14
  15. 15
    Academic Journal

    Contributors: Томский государственный университет Радиофизический факультет Кафедра радиофизики

    Source: Известия высших учебных заведений. Физика. 2015. Т. 58, № 8. С. 40-44

    File Description: application/pdf

  16. 16
    Academic Journal

    Contributors: Томский государственный университет Радиофизический факультет Кафедра оптико-электронных систем и дистанционного зондирования, Томский государственный университет Радиофизический факультет Научные подразделения РФФ

    Source: Оптика атмосферы и океана. 2012. Т. 25, № 5. С. 403-411

    File Description: application/pdf

  17. 17
  18. 18
  19. 19
  20. 20