Εμφανίζονται 1 - 14 Αποτελέσματα από 14 για την αναζήτηση '"ЗАЛИШКОВА ДОВГОВіЧНіСТЬ"', χρόνος αναζήτησης: 0,58δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal
  5. 5
  6. 6
    Academic Journal

    Συγγραφείς: Stadnyk, М. М., Didukh, I. V.

    Πηγή: Scientific Bulletin of UNFU; Том 27 № 9 (2017): Науковий вісник НЛТУ України; 73-77 ; Научный вестник НЛТУ Украины; Том 27 № 9 (2017): Научный Вестник НЛТУ Украины; 73-77 ; Scientific Bulletin of UNFU; Vol 27 No 9 (2017): Scientific Bulletin of UNFU; 73-77 ; 2519-2477 ; 1994-7836 ; 10.15421/402709

  7. 7
  8. 8
  9. 9
  10. 10
    Academic Journal

    Συνεισφορές: Тернопільський національний технічний університет імені Івана Пулюя, Тернопіль, Україна, Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine

    Θέμα γεωγραφικό: Тернопіль, Ternopil

    Περιγραφή αρχείου: 5-13

    Relation: Вісник Тернопільського національного технічного університету, 2 (98), 2020; Scientific Journal of the Ternopil National Technical University, 2 (98), 2020; https://doi.org/10.33108/visnyk_tntu2017.04.007; https://doi.org/10.1016/B978-0-12-803581-8.10084-0; https://doi.org/10.3221/IGF-ESIS.39.15; https://doi.org/10.1520/STP511-EB; https://doi.org/10.15407/mfint.42.01.0069; https://doi.org/10.1115/1.3656900; https://doi.org/10.1016/j.crme.2016.04.002; https://doi.org/10.33108/visnyk_tntu2018.04.007; https://doi.org/10.1080/01621459.1954.10501232; https://doi.org/10.1016/0013-7944(85)90117-1; 1. Yasniy P. et al. Calculation of constructive parameters of SMA damper. Sci. J. TNTU. 2017. Vol. 88, No. 4. P. 7–15. https://doi.org/10.33108/visnyk_tntu2017.04.007; 2. O’Brien B., Weafer F. M., Bruzzi M. S. Shape Memory Alloys for Use in Medicine. Comprehensive Biomaterials II / ed. Ducheyne P. Oxford: Elsevier, 2017. P. 50–78. https://doi.org/10.1016/B978-0-12-803581-8.10084-0; 3. Krejsa M. et al. Probabilistic prediction of fatigue damage based on linear fracture mechanics. Frat. ed Integrità Strutt. 2017. Vol. 11. No. 39. P. 43–159. https://doi.org/10.3221/IGF-ESIS.39.15; 4. HELLER R. A. Probabilistic Aspects of Fatigue, STP-511, American Society for Testing and Materials, Philadelphia. 1972. 203 p. https://doi.org/10.1520/STP511-EB; 5. Shatskyi I. P., Perepichka V. V., Ropyak L. Y. On the Influence of Facing on Strength of Solids with Surface Defects. Met. Noveishie Tekhnol. 2020. Vol. 42. No. 1. P. 69–76. https://doi.org/10.15407/mfint.42.01.0069; 6. Paris P., Erdogan F. A Critical Analysis of Crack Propagation Laws. J. Basic Eng. ASME, 1963. Vol. 85. No. 4. P. 528–533. https://doi.org/10.1115/1.3656900; 7. Madsen H. O., Krenk S., Lind N. C. Methods of structural safety, Prentice-Hall Inc., Englewood Cliffs, New Jersey. 1986. 407 p.; 8. Yasniy O. P., Lapusta Y. Effect of the defect initial shape on the fatigue lifetime of a continuous casting machine roll. Comptes Rendus Mécanique. 2016. Vol. 344. No. 8. P. 596–602. https://doi.org/10.1016/j.crme.2016.04.002; 9. Iasnii V. et al. Experimental study of pseudoelastic NiTi alloy under cyclic loading. Sci. J. TNTU. 2018. Vol. 92. No. 4. P. 7–12. https://doi.org/10.33108/visnyk_tntu2018.04.007; 11. Wu S.-X. Shape change of surface crack during fatigue growth. Eng. Fract. Mech. 1985. Vol. 22. No. 5. P. 897–913. https://doi.org/10.1016/0013-7944(85)90117-1; 12. Nishitani N., Chen D. Stress Intensity Factor for a Semi-Elliptic Surface Crack in a Shaft under Tension. Trans. Japan Soc. Mech. Eng. Ser. A. 1984. Vol. 50. No. 453. P. 1077–1082.; 2. O’Brien B., Weafer F. M., Bruzzi M. S. Shape Memory Alloys for Use in Medicine. Comprehensive Biomaterials II, ed. Ducheyne P. Oxford: Elsevier, 2017. P. 50–78. https://doi.org/10.1016/B978-0-12-803581-8.10084-0; Prediction of SMA residual lifetime taking into account mechanical properties under constant amplitude loading / Petro Yasniy, Oleksandr Dyvdyk, Volodymyr Iasnii, Oleh Yasniy // Visnyk TNTU. — Tern. : TNTU, 2020. — Vol 98. — No 2. — P. 5–13.; http://elartu.tntu.edu.ua/handle/lib/32721; https://doi.org/10.33108/visnyk_tntu2020.02.005

  11. 11
    Academic Journal

    Συνεισφορές: Тернопільський національний технічний університет імені Івана Пулюя, Тернопіль, Україна, Державне підприємство «Антонов», Київ, Україна, Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine, Company Antonov, Kiev, Ukraine

    Θέμα γεωγραφικό: Тернопіль, Ternopil

    Περιγραφή αρχείου: 5-16

    Relation: Вісник тернопільського національного технічного університету, 3 (99), 2020; Scientific journal of the Ternopil national technical university, 3 (99), 2020; https://doi.org/10.1046/j.1460-2695.1998.00430.x; https://doi.org/10.1016/j.ijfatigue.2014.05.002; https://doi.org/10.1016/j.ijfatigue.2016.10.030; https://doi.org/10.1111/j.1460-2695.2011.01616.x; https://doi.org/10.1007/s11003-015-9796-x; https://doi.org/10.1016/j.engfailanal.2009.08.002; https://doi.org/10.1016/j.cja.2015.05.006; https://doi.org/10.1007/s12666-016-0865-0; https://doi.org/10.1111/ffe.12257; https://doi.org/10.33108/visnyk_tntu2017.04.035; https://doi.org/10.33108/visnyk_tntu2018.02.092; 1. Ball D., Lowry D. R. Experimental investigation on the effects of cold expansion of fastener holes. Fatigue Fract. Eng. Mater. Struct. Blackwell Publishing Ltd. 1998. № 1 (21). P. 17–34. https://doi.org/10.1046/j.1460-2695.1998.00430.x; 2. Warner J. J., Clark P. N., Hoeppner D. W. Cold expansion effects on cracked fastener holes under constant amplitude and spectrum loading in the 2024-T351 aluminum alloy. Int. J. Fatigue. 2014. Vol. 68. P. 209–216. https://doi.org/10.1016/j.ijfatigue.2014.05.002; 3. Wang Y. Investigation on fatigue performance of cold expansion holes of 6061-T6 aluminum alloy. Int. J. Fatigue. 2017. Vol. 95. P. 216–228. https://doi.org/10.1016/j.ijfatigue.2016.10.030; 4. Houghton S. J., Campbell S. K. Identifying the residual stress field developed by hole cold expansion using finite element analysis. Fatigue Fract. Eng. Mater. Struct. Blackwell Publ. Ltd. 2012. № 1 (35). P. 74–83. https://doi.org/10.1111/j.1460-2695.2011.01616.x; 5. Yasnii P., Glado S., Skochylyas V. Formation of residual stresses in plates with functional holes after mandrelling. Mater. Sci. 2015. № 6 (50). P. 877–881. https://doi.org/10.1007/s11003-015-9796-x; 6. Gopalakrishna H., Narasimha Murthy H., Krishna M. Cold expansion of holes and resulting fatigue life enhancement and residual stresses in Al 2024 T3 alloy – An experimental study. Eng. Fail. Anal. 2010. № 2 (17). P. 361–368. https://doi.org/10.1016/j.engfailanal.2009.08.002; 7. Elajrami M., Melouk H. Effect of double cold expansion on the fatigue life of rivet hole. Int. J. Mining, Metall. Mech. Eng. 2013. № 2 (1). P. 111–113.; 8. Yordan T., Duncheva G. Device and tool for cold expansion of fastener holes: pat. US8915114 B2 USA. 2014. P. 1–6.; 9. Pasta S., Mariotti G. Effect of residual stresses and their redistribution on the fatigue crack growth in cold- worked holes. Int. Conf. CRACK PATHS (CP 2009). 2009. P. 895–902.; 11. Ясній П. В., Дивдик О. В., Ясній В. П. «Інструмент із сплаву з пам’яттю форми для зміцнення отворів в пластинах»: пат. 132422 Україна МПК B24B 39/00, Бюл. № 4. 2019.; 12. Fu Y. Cold expansion technology of connection holes in aircraft structures: A review and prospect. Chinese J. Aeronaut. 2015. № 4 (28). P. 961–973. https://doi.org/10.1016/j.cja.2015.05.006; 13. Elagrami M. Effect of double cold expansion on the fatigue life of rivet hole. Int. J. Mining, Metall. Mech. Eng. 2013. № 2 (1). P. 2320–4060.; 14. Panaskar N. J., Sharma A. Combined Cold Expansion and Friction Stir Processing of Fastener Holes in Aluminum Alloy Al-2014-T6. Trans. Indian Inst. Met. 2017. № 1 (70). P. 107–114. https://doi.org/10.1007/s12666-016-0865-0; 15. Simmons Gary G. Fatigue Enhancement of Undersized, Drilled Crack-Arrest Holes By Fatigue. Diss. degree Dr. Philos. thesis. Civil, Environ. Archit. Eng. Grad. Fac. Univ. Kansas. 213AD. 497 p.; 16. Vallieres G., Duquesnay D. L. Fatigue life of cold-expanded fastener holes with interference – fit fasteners at short edge margins. Fatigue Fract. Eng. Mater. Struct. 2015. № 5 (38). P. 574–582. https://doi.org/10.1111/ffe.12257; 17. Novikov A. Interrelation and kinetics of matersals fatigue damage under strain- and stress-control loading modes. Scientific Journal of TNTU. 2017. № 4 (88). P. 35–48. https://doi.org/10.33108/visnyk_tntu2017.04.035; 18. Pidgurskyi I. Analysis of stress intensity factors obtained with the fem for surface semielliptical cracks in the zones of structural stress concentrators. Scientific Journal of TNTU. 2018. № 2 (90). P. 92–104. https://doi.org/10.33108/visnyk_tntu2018.02.092; 19. ASTM E 647-00. E 647 – 00 Standard. Standard Test Method for Measurement of Fatigue Crack Growth Rates. 2001. Vol. 3. P. 43.; 20. Newman J. C., Raju I. S. Stress-intensity factor equations for cracks in three-dimensional finite bodies subjected to tension and bending loads. Hampton: 1984.; 21. Тимошенко А., Пиманов В., Бабак А., Коробко Е. Исследование процесса дорнования отверстий в листовых заготовках из алюминиевого сплава Д16Чт. Вісник НТУУ «КПІ». Машинобудування. Збірник наукових праць. 2015. № 3 (75). С. 144–150.; 1. Ball D., Lowry D. R. Experimental investigation on the effects of cold expansion of fastener holes. Fatigue Fract. Eng. Mater. Struct. Blackwell Publishing Ltd., 1998, Vol. 21. No 1. P. 17–34. https://doi.org/10.1046/j.1460-2695.1998.00430.x; 2. Warner J. J., Clark P. N., Hoeppner D. W. Cold expansion effects on cracked fastener holes under constant amplitude and spectrum loading in the 2024-T351 aluminum alloy. Int. J. Fatigue. 2014, Vol. 68. P. 209–216. https://doi.org/10.1016/j.ijfatigue.2014.05.002; 3. Wang Y. Investigation on fatigue performance of cold expansion holes of 6061-T6 aluminum alloy. Int. J. Fatigue. 2017, Vol. 95. P. 216–228. https://doi.org/10.1016/j.ijfatigue.2016.10.030; 4. Houghton S. J., Campbell S. K. Identifying the residual stress field developed by hole cold expansion using finite element analysis. Fatigue Fract. Eng. Mater. Struct. Blackwell Publ. Ltd. 2012, Vol. 35. No 1. P. 74–83. https://doi.org/10.1111/j.1460-2695.2011.01616.x; 5. Yasnii P., Glado S., Skochylyas V. Formation of residual stresses in plates with functional holes after mandrelling. Mater. Sci. 2015, Vol. 50. No 6. P. 877–881. https://doi.org/10.1007/s11003-015-9796-x; 6. Gopalakrishna H., Narasimha Murthy H., Krishna M. Cold expansion of holes and resulting fatigue life enhancement and residual stresses in Al 2024 T3 alloy – An experimental study. Eng. Fail. Anal. 2010, Vol. 17. No 2. P. 361–368. https://doi.org/10.1016/j.engfailanal.2009.08.002; 7. Elajrami M., Melouk H. Effect of double cold expansion on the fatigue life of rivet hole. Int. J. Mining, Metall. Mech. Eng. 2013, Vol. 1. No 2. P. 111–113.; 8. Yordan T., Duncheva G. Device and tool for cold expansion of fastener holes: pat. US8915114 B2 USA. 2014, P. 1–6.; 9. Pasta S., Mariotti G. Effect of residual stresses and their redistribution on the fatigue crack growth in cold- worked holes. Int. Conf. CRACK PATHS. 2009. P. 895–902.; 11. Yasniy P. V., Dyvdyk O. V., Yasniy V. P. “Instrument iz splavu z pam"yattyu formy dlya zmitsnennya otvoriv v plastynakh” Pat. 132422 Ukrayina MPK B24B 39/00; byul. No 4. 2019. [Іn Ukrainian].; 12. Fu Y. Cold expansion technology of connection holes in aircraft structures: A review and prospect. Chinese J. Aeronaut. 2015, Vol. 28. No 4. P. 961–973. https://doi.org/10.1016/j.cja.2015.05.006; 13. Elagrami M. Effect of double cold expansion on the fatigue life of rivet hole. Int. J. Mining, Metall. Mech. Eng. 2013, Vol. 1. No 2. P. 2320–4060.; 14. Panaskar N. J., Sharma A. Combined Cold Expansion and Friction Stir Processing of Fastener Holes in Aluminum Alloy Al-2014-T6. Trans. Indian Inst. Met. 2017, Vol. 70. No 1. P. 107–114. https://doi.org/10.1007/s12666-016-0865-0; 15. Simmons Gary G. Fatigue Enhancement of Undersized, Drilled Crack-Arrest Holes By Fatigue. Diss. degree Dr. Philos. thesis. Civil, Environ. Archit. Eng. Grad. Fac. Univ. Kansas. 213AD, 497 p.; 16. Vallieres G., Duquesnay D. L. Fatigue life of cold-expanded fastener holes with interference – fit fasteners at short edge margins. Fatigue Fract. Eng. Mater. Struct. 2015, Vol. 38. No 5. P. 574–582. https://doi.org/10.1111/ffe.12257; 17. Novikov A. Interrelation and kinetics of matersals fatigue damage under strain- and stress-control loading modes. Scientific Journal of TNTU (Tern.). 2017. Vol. 88. No 4. P. 35–48. https://doi.org/10.33108/visnyk_tntu2017.04.035; 18. Pidgurskyi I. Analysis of stress intensity factors obtained with the fem for surface semielliptical cracks in the zones of structural stress concentrators. Scientific Journal of TNTU (Tern). 2018. Vol. 90. No 2. P. 92–104. https://doi.org/10.33108/visnyk_tntu2018.02.092; 21. Tymoshenko A., Pymanov V., Babak A., Korobko E. Yssledovanye protsessa dornovanyya otverstyy v lystovykh zahotovkakh yz alyumynyevoho splava D16chT. Visnyk NTUU “KPI”. Mashynobuduvannya zbirnyk naukovykh prats'. 2015, Vol. 75. No 3. P. 144–150. [Іn Ukrainian].; Fatigue crack growth in aluminum alloy from cold expanded hole with preexisting crack / Petro Yasniy, Oleksandr Dyvdyk, Oleksander Semenets, Volodymyr Iasnii, Andrii Antonov // Scientific Journal of TNTU. — Tern. : TNTU, 2020. — Vol 99. — No 3. — P. 5–16.; http://elartu.tntu.edu.ua/handle/lib/33365; https://doi.org/10.33108/visnyk_tntu2020.03.005

  12. 12
    Academic Journal

    Συνεισφορές: Тернопільський національний технічний університет імені Івана Пулюя

    Θέμα γεωγραφικό: Тернопіль, Ternopil

    Περιγραφή αρχείου: 220-224

    Relation: Матеріали IV міжнародної науково-технічної конференції „Пошкодження матеріалів під час експлуатації, методи його діагностування і прогнозування“; 1. Zerbst, U. Fracture mechanics in railway applications – an overview [Text] / U. Zerbst, K. Maedler, H. Hintze // Fracture Mechanics. – 2005. – Vol. 72. – P. 163-194.; 2. Smith, R. A. A brief historical overview of the fatigue of railway axles [Text] / R. A. Smith, S. Hillniansen // Proceedings of Institute of Mechanical Engineering. Part F: Journal of Rail and Rapid Transit. – 2004. – Vol. 218. – P. 267-277.; 3. Gerdun, V. Failures of bearings and axles in railway freight wagons [Text] / V. Gerdun, T. Sedmak, V. Sinkovec, I. Kovse, B. Cene // Engineering Failure Analysis. – 2007. – Vol. 14. – P. 884-894.; 4. Hirakawa, R. The analysis and prevention of failure in railway axles [Text] / R. Hirakawa, K. Toyama, M. Kubota // International Journal of Fatigue. – 1998. – Vol. 20. – P. 135-144.; 5. Gravier, N. Predicting the life of railway vehicle axles [Text] / N. Gravier, J-J. Viet, A. Leluan // Proceedings of the 12th International Wheelset Congress (Quigdao, China, 21-25 September 1998). – Quigdao, 1998. – P. 133-146.; 6. Причины образования дефектов на поверхности железнодорожных осей [Текст] / Г. В. Левченко [и др.] // Теория и практика металлургии. – 2012. –№ 5-6. – С. 97-101.; 7. Качество поверхности железнодорожных осей [Текст] / Г. В. Левченко [и др.] // Металлургическая и горнорудная промышленность. – 2013. – № 1. – С. 48-52.; 8. Криворучко, В. Н. Система автоматического неразрушающего контроля осей колёсных пар вагонов – оптимальное решение от отечественного производителя [Текст] / В. Н. Криворучко, А. В. Джаганян, А. В. Дидык // Доповіді 9-ої конф. «Неруйнівній контроль», 2007. – С. 37-41.; 9. Цомук, С. Р. Новые технологии и средства ультразвукового контроля колесных пар вагонов [Текст] / С. Р. Цомук // Вагонный парк. – 2011. – № 8. – С. 46-49.; 11. Справочник по коэффициентам интенсивности напряжений [Текст]. В 2 т. Т. 1 / Под ред. Ю. Мураками; [пер. с англ.] – М. : Мир, 1990. – 448 с.; 12. ASTM E647-13ae1. Standard test method for measurement of fatigue crack growth rates [Text] – West Conshohocken : ASTM International, 2013. – 43 p.; 13. Sorochak, A. Cyclic fracture toughness of railway axle and mechanisms of its fatigue fracture [Text] / A. Sorochak, P. Maruschak, O. Prentkovskis // Transport and Telecommunication. – Vol. 16, No. 2. – 2015. – P. 158-166.; 14. Maruschak, P. Effect of Load Ratio on Fatigue Failure Micromechanisms of Railway Axle Steel [Text] / P. Maruschak, A. Sorochak, S. Panin // Applied Mechanics and Materials. – Vol. 770. – 2015. – P. 209-215.; 15. Yasniy, O. Assessment of lifetime of railway axle [Text] / O. Yasniy, Y. Lapusta, Y. Pyndus, A. Sorochak, V. Yasniy // International Journal of Fatigue. – Vol. 50. – 2013. – P. 40-46.; 1. Zerbst, U. Fracture mechanics in railway applications – an overview [Text], U. Zerbst, K. Maedler, H. Hintze, Fracture Mechanics. – 2005. – Vol. 72. – P. 163-194.; 2. Smith, R. A. A brief historical overview of the fatigue of railway axles [Text], R. A. Smith, S. Hillniansen, Proceedings of Institute of Mechanical Engineering. Part F: Journal of Rail and Rapid Transit. – 2004. – Vol. 218. – P. 267-277.; 3. Gerdun, V. Failures of bearings and axles in railway freight wagons [Text], V. Gerdun, T. Sedmak, V. Sinkovec, I. Kovse, B. Cene, Engineering Failure Analysis. – 2007. – Vol. 14. – P. 884-894.; 4. Hirakawa, R. The analysis and prevention of failure in railway axles [Text], R. Hirakawa, K. Toyama, M. Kubota, International Journal of Fatigue. – 1998. – Vol. 20. – P. 135-144.; 5. Gravier, N. Predicting the life of railway vehicle axles [Text], N. Gravier, J-J. Viet, A. Leluan, Proceedings of the 12th International Wheelset Congress (Quigdao, China, 21-25 September 1998). – Quigdao, 1998. – P. 133-146.; 6. Prichiny obrazovaniia defektov na poverkhnosti zheleznodorozhnykh osei [Text], H. V. Levchenko [and other], Teoriia i praktika metallurhii. – 2012. –No 5-6. – P. 97-101.; 7. Kachestvo poverkhnosti zheleznodorozhnykh osei [Text], H. V. Levchenko [and other], Metallurhicheskaia i hornorudnaia promyshlennost. – 2013. – No 1. – P. 48-52.; 8. Kryvoruchko, V. N. Systema avtomatycheskoho nerazrushaiushcheho kontrolia osei kolesnykh par vahonov – optymalnoe reshenye ot otechestvennoho proyzvodytelia [Text], V. N. Kryvoruchko, A. V. Dzhahanian, A. V. Dydyk, Dopovidi 9-oi konf. "Neruinivnii kontrol", 2007. – P. 37-41.; 9. Tsomuk, S. R. Novye tekhnolohii i sredstva ultrazvukovoho kontrolia kolesnykh par vahonov [Text], S. R. Tsomuk, Vahonnyi park. – 2011. – No 8. – P. 46-49.; 11. Spravochnik po koeffitsientam intensivnosti napriazhenii [Text]. V 2 t. V. 1, ed. Iu. Murakami; [transl. from English] – M. : Mir, 1990. – 448 p.; 13. Sorochak, A. Cyclic fracture toughness of railway axle and mechanisms of its fatigue fracture [Text], A. Sorochak, P. Maruschak, O. Prentkovskis, Transport and Telecommunication. – Vol. 16, No. 2. – 2015. – P. 158-166.; 14. Maruschak, P. Effect of Load Ratio on Fatigue Failure Micromechanisms of Railway Axle Steel [Text], P. Maruschak, A. Sorochak, S. Panin, Applied Mechanics and Materials. – Vol. 770. – 2015. – P. 209-215.; 15. Yasniy, O. Assessment of lifetime of railway axle [Text], O. Yasniy, Y. Lapusta, Y. Pyndus, A. Sorochak, V. Yasniy, International Journal of Fatigue. – Vol. 50. – 2013. – P. 40-46.; http://elartu.tntu.edu.ua/handle/123456789/6000

  13. 13
  14. 14