Εμφανίζονται 1 - 20 Αποτελέσματα από 36 για την αναζήτηση '"ЖИЗНЕСПОСОБНОСТЬ КЛЕТОК"', χρόνος αναζήτησης: 0,84δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
    Academic Journal

    Πηγή: Mìžnarodnij Endokrinologìčnij Žurnal, Vol 13, Iss 3, Pp 178-183 (2017)
    INTERNATIONAL JOURNAL OF ENDOCRINOLOGY; Том 13, № 3 (2017); 178-183
    Международный эндокринологический журнал-Mìžnarodnij endokrinologìčnij žurnal; Том 13, № 3 (2017); 178-183
    Міжнародний ендокринологічний журнал-Mìžnarodnij endokrinologìčnij žurnal; Том 13, № 3 (2017); 178-183

    Περιγραφή αρχείου: application/pdf

  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
    Academic Journal
  9. 9
    Academic Journal

    Πηγή: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; № 1 (2016); 117-123 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; № 1 (2016); 117-123 ; 2524-2415 ; 1561-2430 ; undefined

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestifm.belnauka.by/jour/article/view/17/18; The side effects of phototherapy for neonatal jaundice: what do we know? What should we do? / T. Xiong [et al.] // Eur J. Pediatr. – 2011. – Vol. 170. – P. 1247–1255.; Сенсибилизирующее действие Z,Z-билирубина IXa и его фотопродуктов на ферменты в модельных растворах / В. Ю. Плавский [и др.] // Журн. прикладной спектроскопии. – 2008. – Т. 75, № 3. – С. 383–394.; Bilirubin phototoxicity to human cells by green light phototherapy in vitro / F. Böhm [et al.] // Photochem. Photobiol. – 1995. – Vol. 62, N 6. – P. 980–983.; Long-term hazards of neonatal blue-light phototherapy / J. Oláh [et al.] // Brit J. Dermatol. – 2013. – Vol. 169, N 2. – P. 243–249.; Apoptosis in the small intestine of neonatal rat using blue light-emitting diode devices and conventional halogen-quartz devices in phototherapy / K. Tanaka [et al.] // Pediatr Surg Int. – 2008. – Vol. 24. – P. 837–842.; Effect of phototherapy on blood endothelin and nitric oxide levels: clinical significance in preterm infants / G. S. Liu [et al.] // World J. Pediatr. – 2008. – Vol. 4. – P. 31–35.; Plavskii, V. Yu. Bilirubin: Chemistry, Regulation and Disorder // V. Yu Plavskii; ed. J. F. Novotny, F. Sedlacek. – New York: Nova Science Publishers Inc., 2012. – P. 1–65.; Maisels, M. J. Phototherapy for neonatal jaundice / M. J. Maisels, A. F. McDonagh // N. Engl. J. Med. – 2008. – Vol. 358, N 9. – P. 920–928.; Stokowski, L. A. Fundamentals of phototherapy for neonatal jaundice / L. A. Stokowski // Adv. Neonatal Care. – 2006. – N 6. – P. 303–312.; Плавский, В. Ю. Фототерапевтические системы для лечения гипербилирубинемии новорожденных детей / В. Ю. Плавский, А. И. Третьякова, Г. Р. Мостовникова // Опт. журн. – 2014. – Т. 81, № 6. – С. 51–62.; Пути повышения эффективности фототерапевтических технологий лечения гипербилирубинемии новорожденных в свете современных представлений о биофизических механизмах фотоконверсии билирубина / В. Ю. Плавский [и др.] // Инновационные технологии в медицине. – 2014. – Т. 2, № 1. – С. 84–98.; Landen, G. L. On the role of singlet oxygen in the self-sensitized photo-oxygenation of bilirubin and its pyrromethenone models / G. L. Landen, Y. T. Park, D. A. Lightner // Tetrahedron. – 1983. – Vol. 39, N 11. – P. 1893–1907.; Mosmann, T. Rapid colorimetric assay for cellular growth and survivals: application to proliferation and cytotoxity assay / T. Mosmann // J. Immunol Methods. – 1983. – Vol. 65. – P. 55–63.; Cytotoxicity of bilirubin for human fibroblasts and rat astrocytes in culture: effect of the ratio of bilirubin to serum albumin / L. Chuniaud [et al.] // Clin. Chim. Acta. – 1996. – Vol. 256 – P. 103–114.; Brito, M. A. Bilirubin toxicity to human erythrocytes: A review / M. A. Brito, R. F. M. Silva, D. Brites // Clin. Chim. Acta. – 2006. – Vol. 374. – P. 46–56.; Спектрально-флуоресцентные и поляризационные характеристики Z,Z-билирубина IXa / В. Ю. Плавский [и др.] // Журн. прикладной спектроскопии. – 2007. – Т. 74, № 1. – С. 108–118.; Мышкин, А. Е. Фотохимия билирубина. Успехи химии / А. Е. Мышкин, В. Н. Сахаров. – 1982. – Т. 51, № 1. – С. 72–91.; Phosphorescence of bilirubin and efficiency of bilirubin-sensitized generation of singlet oxygen / V. Yu. Plavskii [et al.] // 37th Meeting of the American Society for Photobiology, San Diego, California, June 14–19, 2014. Program and Abstract. – [S. l.], 2014 – P. 82.; https://vestifm.belnauka.by/jour/article/view/17; undefined

  10. 10
    Academic Journal

    Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; № 2 (2016); 3-7 ; Вестник Московского университета. Серия 16. Биология; № 2 (2016); 3-7 ; 0137-0952

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/318/303; Khokhlov A.N., Morgunova G.V. On the constructing of survival curves for cultured cells in cytogerontological experiments: a brief note with three hierarchy diagrams // Moscow Univ. Biol. Sci. Bull. 2015. Vol. 70. N 2. P. 67–71.; Khokhlov A.N., Klebanov A.A., Karmushakov A.F., Shilovsky G.A., Nasonov M.M., Morgunova G.V. Testing of geroprotectors in experiments on cell cultures: choosing the correct model system // Moscow Univ. Biol. Sci. Bull. 2014. Vol. 69. N 1. P. 10–14.; Vilenchik M.M., Khokhlov A.N., Grinberg K.N. Study of spontaneous DNA lesions and DNA repair in human diploid fibroblasts aged in vitro and in vivo // Studia biophysica. 1981. Vol. 85. N 1. P. 53–54.; Khokhlov A.N. Stationary cell cultures as a tool for gerontological studies // Ann. N.Y. Acad. Sci. 1992. Vol. 663. P. 475–476.; Akimov S.S., Khokhlov A.N. Study of “stationary phase aging” of cultured cells under various types of proliferation restriction // Ann. N.Y. Acad. Sci. 1998. Vol. 854. P. 520.; Khokhlov A.N. Cell proliferation restriction: is it the primary cause of aging? // Ann. N.Y. Acad. Sci. 1998. Vol. 854. P. 519.; Khokhlov A.N. Does aging need its own program, or is the program of development quite sufficient for it? Stationary cell cultures as a tool to search for anti-aging factors // Curr. Aging Sci. 2013. Vol. 6. N 1. P. 14–20.; Khokhlov A.N. From Carrel to Hayflick and back, or what we got from the 100-year cytogerontological studies // Biophysics. 2010. Vol. 55. N 5. P. 859–864.; Khokhlov A.N., Wei L., Li Y., He J. Teaching cytogerontology in Russia and China // Adv. Gerontol. 2012. Vol. 25. N 3. P. 513–516.; Khokhlov A.N. Impairment of regeneration in aging: appropriateness or stochastics? // Biogerontology. 2013. Vol. 14. N 6. P. 703–708.; Khokhlov A.N. Decline in regeneration during aging: appropriateness or stochastics? // Russ. J. Dev. Biol. 2013. Vol. 44. N 6. P. 336–341.; Khokhlov A.N. On the immortal hydra. Again // Moscow Univ. Biol. Sci. Bull. 2014. Vol. 69. N 4. P. 153–157.; Hayflick L. Entropy explains aging, genetic determinism explains longevity, and undefined terminology explains misunderstanding both // PLoS Genet. 2007. Vol. 3. N 12. e220.; Khokhlov A.N. Does aging need an own program or the existing development program is more than enough? // Russ. J. Gen. Chem. 2010. Vol. 80. N 7. P. 1507–1513.; Khokhlov A.N. What will happen to molecular and cellular biomarkers of aging in case its program is canceled (provided such a program does exist)? // Adv. Gerontol. 2014. Vol. 4. N 2. P. 150–154.; Hayflick L. The cell biology of aging // J. Invest. Dermatol. 1979. Vol. 73. N 1. P. 8–14.; Hayflick L. Aging under glass // Mutation Research/ DNAging. 1991. Vol. 256. N 2–6. P. 69–80.; Cristofalo V.J., Allen R.G., Pignolo R.J., Martin B.G., Beck J.C. Relationship between donor age and the replicative lifespan of human cells in culture: A reevaluation // Proc. Natl. Acad. Sci. USA. 1998. Vol. 95. N 18. P. 10614–10619.; Mikhelson V.M., Gamaley I.A. Telomere shortening is a sole mechanism of aging in mammals // Curr. Aging Sci. 2012. Vol. 5. N 3. P. 203–208.; Khokhlov A.N., Prokhorov L.Yu., Ivanov A.S., Archakov A.I. Effects of cholesterol- or 7-ketocholesterolcontaining liposomes on colony-forming ability of cultured cells // FEBS Lett. 1991. Vol. 290. N 1-2. P. 171–172.; Есипов Д.С., Горбачева Т.А., Хайруллина Г.А., Клебанов А.А., Нгуен Тхи Нгок Ту, Хохлов А.Н. Изучение накопления 8-оксо-2’-дезоксигуанозина в ДНК при “стационарном старении” культивируемых клеток // Усп. геронтол. 2008. Т. 21. № 3. С. 485–487.; Khokhlov A.N. Cytogerontology at the beginning of the third millennium: from “correlative” to “gist” models // Russ. J. Dev. Biol. 2003. Vol. 34. N 5. P. 321–326.; Khokhlov A. N. The cell kinetics model for determination of organism biological age and for geroprotectors or geropromoters studies // Biomarkers of aging: expression and regulation. Proceeding / Ed. by F. Licastro and C.M. Caldarera. Bologna: CLUEB, 1992. P. 209–216.; Nyström T. Aging in bacteria // Curr. Opin. Microbiol. 2002. Vol. 5. N 6. P. 596–601.; Aging research in yeast: Subcell. Biochem. Vol. 57 / Eds. M. Breitenbach, S.M. Jazwinski, and P. Laun. Springer Netherlands, 2012. 368 pp.; Khokhlov A.N. Which aging in yeast is “true”? // Moscow Univ. Biol. Sci. Bull. 2016. Vol. 71. N 1. P. 11–13.; Ушаков В.Л., Гусев М.В., Хохлов А.Н. Имеет ли смысл изучать механизмы старения на сине-зеленых водорослях? Критический обзор, часть 1 // Вестн. Моск. ун-та. Сер. 16. Биология. 1992. № 1. С. 3–15.; Хохлов А.Н., Ушаков В.Л., Капитанов А.Б., Наджарян Т.Л. Влияние геропротектора хлоргидрата 2-этил-6-метил-3-оксипиридина на пролиферацию клеток Acholeplasma laidlawii // Докл. АН СССР. 1984. Т. 274. № 4. С. 930–933.; Kapitanov A.B., Aksenov M.Y. Ageing of procaryotes. Acholeplasma laidlawii as an object for cell ageing studies: a brief note // Mech. Ageing Dev. 1990. Vol. 54. N 3. P. 249–258.; Powers R.W. III, Kaeberlein M., Caldwell S.D., Kennedy B.K., Fields S. Extension of chronological life span in yeast by decreased TOR pathway signaling // Genes Dev. 2006. Vol. 20. N 2. P. 174–184.; Alvers A.L., Wood M.S., Hu D., Kaywell A.C., Dunn W.A. Jr., Aris J.P. Autophagy is required for extension of yeast chronological life span by rapamycin // Autophagy. 2009. Vol. 5. N 6. P. 847–849.; Harrison D.E., Strong R., Sharp Z.D., Nelson J.F., Astle C.M., Flurkey K., Nadon N.L., Wilkinson J.E., Frenkel K., Carter C.S., Pahor M., Javors M.A., Fernandez E., Miller R.A. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice // Nature. 2009. Vol. 460. N 7253. P. 392–395.; Miller R.A., Harrison D.E., Astle C.M. et al. Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction // Aging Cell. 2014. Vol. 13. N 3. P. 468–477.; Bjedov I., Toivonen J.M., Kerr F., Slack C., Jacobson J., Foley A., Partridge L. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster // Cell Metab. 2010. Vol. 11. N 1. P. 35–46.; Rubinsztein D.C., Mariño G., Kroemer G. Autophagy and aging // Cell. 2011. Vol. 146. N 5. P. 682–695.; Blagosklonny M.V. Aging and immortality: quasiprogrammed senescence and its pharmacologic inhibition // Cell Cycle. 2006. Vol. 5. N 18. P. 2087–2102.; Neff F., Flores-Dominguez D., Ryan D.P. et al. Rapamycin extends murine lifespan but has limited effects on aging // J. Clin. Invest. 2013. Vol. 123. N 8. P. 3272–3291.; Alayev A., Berger S.M., Kramer M.Y., Schwartz N.S., Holz M.K. The combination of rapamycin and resveratrol blocks autophagy and induces apoptosis in breast cancer cells // J. Cell Biochem. 2015. Vol. 116. N 3. P. 450–457.

  11. 11
    Academic Journal

    Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; № 1 (2014); 13-18 ; Вестник Московского университета. Серия 16. Биология; № 1 (2014); 13-18 ; 0137-0952 ; 10.1234/XXXX-XXXX-2014-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/77/79; Hayflick L. Progress in cytogerontology // Mech. Ageing Dev. 1979. Vol. 9. N 5—6. P. 393—408.; Хохлов А.Н. Пролиферация и старение // Итоги науки и техники ВИНИТИ АН СССР, серия “Общие проблемы физико-химической биологии”. Т. 9. М.: ВИНИТИ, 1988. 176 с.; Хохлов А.Н. Итоги и перспективы цитогеронтологических исследований на современном этапе // Цитология. 2002. Т. 44. № 12. С. 1143—1148.; Khokhlov A.N. Cytogerontology at the beginning of the third millennium: from “correlative” to “gist” models // Russ. J. Dev. Biol. 2003. Vol. 34. N 5. P. 321—326.; Хохлов А.Н. Геронтологические исследования на клеточных культурах: от организма к клетке и обратно // Пробл. старения и долголетия. 2008. Т. 17. № 4. С. 451—456.; Хохлов А.Н. Тестирование геропротекторов в экспериментах на клеточных культурах: за и против // Пробл. старения и долголетия. 2009. Т. 18. № 1. С. 32—36.; Khokhlov A.N. Does aging need its own program, or is the program of development quite sufficient for it? Stationary cell cultures as a tool to search for anti-aging factors // Curr. Aging Sci. 2013. Vol. 6. N 1. P. 14—20.; Hayflick L., Moorhead P.S. The serial cultivation of human diploid cell strains // Exp. Cell Res. 1961. Vol. 25. N 3. P. 585—621.; Hayflick L. The limited in vitro lifetime of human diploid cell strains // Exp. Cell Res. 1965. Vol. 37. N 3. P. 614—636.; Rattan S.I.S. “Just a fellow who did his job.”, an interview with Leonard Hayflick // Biogerontology. 2000. Vol. 1. N 1. P. 79—87.; Campisi J. Cellular senescence: putting the paradoxes in perspective // Curr. Opin. Genet. Dev. 2011. Vol. 21. N 1. P. 107—112.; Sikora E., Arendt T., Bennett M., Narita M. Impact of cellular senescence signature on ageing research // Ageing Res. Rev. 2011. Vol. 10. N 1. P. 146—152.; Campisi J. Aging, cellular senescence, and cancer // Annu. Rev. Physiol. 2013. Vol. 75. P. 685—705.; Оловников А.М. Редумера как недостающее звено в понимании старения человека // Клин. геронтол. 2005. Т. 11. № 1. С. 50—69.; Olovnikov A.M. Hypothesis: lifespan is regulated by chronomere DNA of the hypothalamus // J. Alzheimer’s Dis. 2007. Vol. 11. N 2. P. 241—252.; Olovnikov A.M. Role of paragenome in development // Russ. J. Dev. Biol. 2007. Vol. 38. N 2. P. 104—123.; Khokhlov A.N. Does aging need an own program or the existing development program is more than enough? // Russ. J. Gen. Chem. 2010. Vol. 80. N 7. P. 1507—1513.; Khokhlov A.N. From Carrel to Hayflick and back, or what we got from the 100-year cytogerontological studies // Biophysics. 2010. Vol. 55. N 5. P. 859—864.; Macieira-Coelho A. Cell division and aging of the organism // Biogerontology. 2011. Vol. 12. N 6. P. 503—515.; Khokhlov A.N., Wei L., Li Y., He J. Teaching cytogerontology in Russia and China // Adv. Gerontol. 2012. Vol. 25. N 3. P. 513—516.; Wei L., Li Y., He J., Khokhlov A.N. Teaching the cell biology of aging at the Harbin Institute of Technology and Moscow State University // Moscow Univ. Biol. Sci. Bull. 2012. Vol. 67. N 1. P. 13—16.; Оловников А.М. Принцип маргинотомии в матричном синтезе полинуклеотидов // Докл. АН СССР. 1971. Т. 201. № 6. С. 1496—1499.; Olovnikov A.M. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon // J. Theor. Biol. 1973. Vol. 41. N 1. P. 181—190.; Olovnikov A.M. Telomeres, telomerase, and aging: origin of the theory // Exp. Gerontol. 1996. Vol. 31. N 4. P. 443—448.; Mikhelson V.M. Replicative mosaicism might explain the seeming contradictions in the telomere theory of aging // Mech. Ageing Dev. 2001. Vol. 122. N 13. P. 1361—1365.; Vilenchik M.M., Khokhlov A.N., Grinberg K.N. Study of spontaneous DNA lesions and DNA repair in human diploid fibroblasts aged in vitro and in vivo // Studia biophysica. 1981. Vol. 85. N 1. P. 53—54.; Khokhlov A.N. Stationary cell cultures as a tool for gerontological studies // Ann. N.Y. Acad. Sci. 1992. Vol. 663. P. 475—476.; Khokhlov A.N. Cell proliferation restriction: is it the primary cause of aging? // Ann. N.Y. Acad. Sci. 1998. Vol. 854. P. 519.; Akimov S.S., Khokhlov A.N. Study of “stationary phase aging” of cultured cells under various types of proliferation restriction // Ann. N.Y. Acad. Sci. 1998. Vol. 854. P. 520.; Alinkina E.S., Vorobyova A.K., Misharina T.A., Fatkullina L.D., Burlakova E.B., Khokhlov A.N. Cytogerontological studies of biological activity of oregano essential oil // Moscow Univ. Biol. Sci. Bull. 2012. Vol. 67. N 2. P. 52—57.; Yablonskaya O.I., Ryndina T.S., Voeikov V.L., Khokhlov A.N. A paradoxical effect of hydrated C60-fullerene at an ultralow concentration on the viability and aging of cultured Chinese hamster cells // Moscow Univ. Biol. Sci. Bull. 2013. Vol. 68. N 2. P. 63—68.; Kapitanov A.B., Aksenov M.Y. Ageing of procaryotes. Acholeplasma laidlawii as an object for cell ageing studies: a brief note // Mech. Ageing Dev. 1990. Vol. 54. N 3. P. 249—258.; Хохлов А.Н., Ушаков В.Л., Капитанов А.Б., Наджарян Т.Л. Влияние геропротектора хлоргидрата 2-этил-6-метил-3-оксипиридина на пролиферацию клеток Acholeplasma laidlawii // Докл. АН СССР. 1984. Т. 274. № 4. С. 930—933.; Khokhlov A.N. Can cancer cells age? Stationary cell culture approach to the problem solution // Visualizing of senescent cells in vitro and in vivo. Programme and abstracts. Warsaw, Poland, 15—16 December 2012. Warsaw, 2012. P. 48—49.; Khokhlov A.N., Prokhorov L.Yu., Ivanov A.S., Archakov A.I. Effects of cholesterol- or 7-ketocholesterol-containing liposomes on colony-forming ability of cultured cells // FEBS Lett. 1991. Vol. 290. N 1—2. P. 171—172.; Maier A.B., Maier I.L., van Heemst D., Westendorp R.G.J. Colony formation and colony size do not reflect the onset of replicative senescence in human fibroblasts // J. Gerontol. A Biol. Sci. Med. Sci. 2008. Vol. 63. N 7. P. 655—659.; Хохлов А.Н., Чиркова Е.Ю., Наджарян Т.Л. Деградация ДНК в покоящихся культивируемых клетках китайского хомячка // Цитология. 1984. Т. 26. № 8. С. 965—968.; Хохлов А.Н., Чиркова Е.Ю., Чеботарев А.Н. Изменения уровня сестринских хроматидных обменов в культивируемых клетках китайского хомячка при ограничении их пролиферации // Цитология и генетика. 1985. Т. 19. № 2. С. 90—92.; Khokhlov A.N., Chirkova E.Yu., Gorin A.I. Strengthening of the DNA-protein complex during stationary phase aging of cell cultures // Bull. Exp. Biol. Med. 1986. Vol. 101. N 4. P. 437—440.; Хохлов А.Н., Чиркова Е.Ю., Чеботарев А.Н. Изменения уровня сестринских хроматидных обменов в культивируемых клетках китайского хомячка при ограничении их пролиферации. Дополнительные исследования // Цитология и генетика. 1987. Т. 21. № 3. С. 186—190.; Хохлов А.Н., Кирнос М.Д., Ванюшин Б.Ф. Уровень метилирования ДНК и “стационарное старение” культивируемых клеток // Изв. АН СССР. Сер. биол. 1988. № 3. С. 476—478.; Prokhorov L.Yu., Petushkova N.A., Khokhlov A.N. Cytochrome P-450 and “stationary phase aging” of cultured cells // Age. 1994. Vol. 17. N 4. P. 162.; Shram S.I., Shilovskii G.A., Khokhlov A.N. Poly(ADP-ribose)-polymerase-1 and aging: experimental study of possible relationship on stationary cell cultures // Bull. Exp. Biol. Med. 2006. Vol. 141. N 5. P. 628—632.; Есипов Д.С., Горбачева Т.А., Хайруллина Г.А., Клебанов А.А., Нгуен Тхи Нгок Ту, Хохлов А.Н. Изучение накопления 8-оксо-2ў-дезоксигуанозина в ДНК при “стационарном старении” культивируемых клеток // Усп. геронтол. 2008. Т. 21. № 3. С. 485—487.; Vladimirova I.V., Shilovsky G.A., Khokhlov A.N., Shram S.I. “Age-related” changes of the poly(ADP-ribosyl)ation system in cultured Сhinese hamster cells // Visualizing of senescent cells in vitro and in vivo. Programme and abstracts. Warsaw, Poland, 15—16 December 2012. Warsaw, 2012. P. 108—109.; Khokhlov A.N. Evolutionary cytogerontology as a new branch of experimental gerontology // Age. 1994. Vol. 17. N 4. P. 159.; Khokhlov A. N. The cell kinetics model for determination of organism biological age and for geroprotectors or geropromoters studies // Biomarkers of aging: expression and regulation. Proceeding / Eds. F. Licastro, C.M. Caldarera. Bologna: CLUEB, 1992. P. 209—216.; Carrel A. Artificial activation of the growth in vitro of connective tissue // J. Exp. Med. 1912. Vol. 17. N 1. P. 14—19.; Carrel A. Contributions to the study of the mechanism of the growth of connective tissue // J. Exp. Med. 1913. Vol. 18. N 3. P. 287—289.

  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal
  19. 19
  20. 20