Showing 1 - 2 results of 2 for search '"Е. А. Простакишина"', query time: 0.44s Refine Results
  1. 1
    Academic Journal

    Contributors: The work was carried out with the financial support of the Russian Science Foundation (grant No. 23-75-01157), Работа выполнена при финансовой поддержке Российского научного фонда (грант № 23-75-01157)

    Source: Head and Neck Tumors (HNT); Том 13, № 4 (2023); 92-100 ; Опухоли головы и шеи; Том 13, № 4 (2023); 92-100 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2023-13-4

    File Description: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/941/610; Wu K., Jiang Y., Zhou W. et al. Long noncoding RNA RC3H2 facilitates cell proliferation and invasion by targeting microRNA-101-3p/EZH2 axis in OSCC. Mol Ther Nucleic Acids 2020;20: 97–110. DOI:10.1016/j.omtn.2020.02.006; Bray F., Ferlay J., Soerjomataram I. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6): 394–424. DOI:10.3322/caac.21492; Zanoni D.K., Montero P.H., Migliacci J.C. et al. Survival outcomes after treatment of cancer of the oral cavity (1985–2015). Oral Oncol 2019;90:115–21. DOI:10.1016/j.oraloncology.2019.02.001; Weckx A., Riekert M., Grandoch A. et al. Time to recurrence and patient survival in recurrent oral squamous cell carcinoma. Oral Oncol 2019;94:8–13. DOI:10.1016/j.oraloncology.2019.05.002; Safi A.F., Kauke M., Grandoch A. et al. Analysis of clinicopathological risk factors for locoregional recurrence of oral squamous cell carcinoma – retrospective analysis of 517 patients. J Craniomaxillofac Surg 2017;45(10):1749–53. DOI:10.1016/j.jcms.2017.07.012; Bugshan A., Farooq I. Oral squamous cell carcinoma: metastasis, potentially associated malignant disorders, etiology and recent advancements in diagnosis. F1000Res 2020;9:229. DOI:10.12688/f1000research.22941.1; Kleverov M., Zenkova D., Kamenev V. et al. Phantasus: web-application for visual and interactive gene expression analysis. BioRxiv 2022;12. DOI:10.1101/2022.12.10.519861; Arriaga J.M., Bravo A.I., Mordoh J., Bianchini M. Metallothionein 1G promotes the differentiation of HT-29 human colorectal cancer cells. Oncol Rep 2017;37(5):2633–51. DOI:10.3892/or.2017.5547; Zhang M., Chai Y.D., Brumbaugh J. et al. Oral cancer cells may rewire alternative metabolic pathways to survive from siRNA silencing of metabolic enzymes. BMC Cancer 2014;14:223. DOI:10.1186/1471-2407-14-223; Kontsekova S., Polcicova K., Takacova M., Pastorekova S. Endosialin: molecular and functional links to tumor angiogenesis. Neoplasma 2016;63(2):183–92. DOI:10.4149/202_15090N474; Rettig W.J., Garin-Chesa P., Healey J.H. et al. Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer. Proc Natl Acad Sci USA 1992;89(22):10832–6. DOI:10.1073/pnas.89.22.10832; St Croix B., Rago C., Velculescu V. et al. Genes expressed in human tumor endothelium. Science 2000;289(5482):1197–202. DOI:10.1126/science.289.5482.1197; Zhao X.T., Zhu Y., Zhou J.F. et al. Development of a novel 7 immune-related genes prognostic model for oral cancer: A study based on TCGA database. Oral Oncol 2021;112:105088. DOI:10.1016/j.oraloncology.2020.105088; Hedlund M., Ng E., Varki A., Varki NM. Alpha 2-6-Linked sialic acids on N-glycans modulate carcinoma differentiation in vivo. Cancer Res 2008;68(2):388–94. DOI:10.1158/0008-5472.CAN-07-1340; Nakano M., Saldanha R., Göbel A. et al. Identification of glycan structure alterations on cell membrane proteins in desoxyepothilone B resistant leukemia cells. Mol Cell Proteomics 2011;10(11):M111.009001. DOI:10.1074/mcp.M111.009001; Liang L., Xu J., Wang M. et al. LncRNA HCP5 promotes follicular thyroid carcinoma progression via miRNAs sponge. Cell Death Dis 2018;9(3):372. DOI:10.1038/s41419-018-0382-7; Agrawal P., Fontanals-Cirera B., Sokolova E. et al. A systems biology approach identifies FUT8 as a driver of melanoma metastasis. Cancer Cell 2017;31(6):804–19.e7. DOI:10.1016/j.ccell.2017.05.007; Wu T., Jiao Z., Li Y. et al. HPRT1 Promotes chemoresistance in oral squamous cell carcinoma via activating MMP1/PI3K/Akt signaling pathway. Cancers (Basel) 2022;14(4):855. DOI:10.3390/cancers14040855; Ye H., Zheng Z., Song Y. et al. Metabolism-related bioinformatics analysis reveals that HPRT1 Facilitates the progression of oral squamous cell carcinoma in vitro. J Oncol 2022;2022:7453185. DOI:10.1155/2022/7453185; Guo Q., Zhang Q., Lu L., Xu Y. Long noncoding RNA RUSC1-AS1 promotes tumorigenesis in cervical cancer by acting as a competing endogenous RNA of microRNA-744 and conse-quently increasing Bcl-2 expression. Cell Cycle 2020;19(10):1222–35. DOI:10.1080/15384101.2020.1749468; Zou D., Lou J., Ke J. et al. Integrative expression quantitative trait locus-based analysis of colorectal cancer identified a functional polymorphism regulating SLC22A5 expression. Eur J Cancer 2018;93:1–9. DOI:10.1016/j.ejca.2018.01.065; Yang Y., Wu J., Yu X. et al. SLC34A2 promotes cancer proliferation and cell cycle progression by targeting TMPRSS3 in colorectal cancer. Pathol Res Pract 2022;229:153706. DOI:10.1016/j.prp.2021.153706; Zhang H.X., Liu O.S., Deng C. et al. Genome-wide gene expression profiling of tongue squamous cell carcinoma by RNA-seq. Clin Oral Investig 2018;22(1):209–16. DOI:10.1007/s00784-017-2101-7; Almhöjd U., Cevik-Aras H., Karlsson N. et al. Stimulated saliva composition in patients with cancer of the head and neck region. BMC Oral Health 2021;21(1):509. DOI:10.1186/s12903-021-01872-x; Ghantous Y., Bahouth Z., Abu El-Naaj I. Clinical and genetic signatures of local recurrence in oral squamous cell carcinoma. Arch Oral Biol 2018;95:141–8. DOI:10.1016/j.archoralbio.2018.07.018; Jadhav K.B., Gupta N. Clinicopathological prognostic implicators of oral squamous cell carcinoma: need to understand and revise. N Am J Med Sci 2013;5(12):671–9. URL: https://www.researchgate.net/publication/259632012_Clinicopathological_Prognostic_Implicators_of_Oral_Squamous_Cell_Carcinoma_Need_to_Understand_and_Revise; Milflores-Flores L., Millán-Pérez L., Santos-López G. et al. Characterization of P1 promoter activity of the beta-galactoside alpha2,6-sialyltransferase I gene (siat 1) in cervical and hepatic cancer cell lines. J Biosci 2012;37(2):259–67. DOI:10.1007/s12038-012-9194-6; McGreal E.P., Ikewaki N., Akatsu H. et al. Human C1qRp is identical with CD93 and the mNI-11 antigen but does not bind C1q. J Immunol 2002;168(10):5222–32. DOI:10.4049/jimmunol.168.10.5222; https://ogsh.abvpress.ru/jour/article/view/941

  2. 2
    Academic Journal

    Contributors: The work was supported by the Russian Science Foundation grant No. 22-25-00435., Работа выполнена при поддержке гранта РНФ №22-25-00435.

    Source: Siberian journal of oncology; Том 21, № 6 (2022); 68-80 ; Сибирский онкологический журнал; Том 21, № 6 (2022); 68-80 ; 2312-3168 ; 1814-4861

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2376/1055; Goldszmid R.S., Dzutsev A., Trinchieri G. Host immune response to infection and cancer: unexpected commonalities. Cell Host Microbe. 2014; 15(3): 295–305. doi:10.1016/j.chom.2014.02.003.; Olingy C.E., Dinh H.Q., Hedrick C.C. Monocyte heterogeneity and functions in cancer. J Leukoc Biol. 2019; 106(2): 309–22. doi:10.1002/JLB.4RI0818-311R.; Saqib U., Sarkar S., Suk K., Mohammad O., Baig M.S., Savai R. Phytochemicals as modulators of M1-M2 macrophages in infammation. Oncotarget. 2018; 9(25): 17937–50. doi:10.18632/oncotarget.24788.; Larionova I., Tuguzbaeva G., Ponomaryova A., Stakheyeva M., Cherdyntseva N., Pavlov V., Choinzonov E., Kzhyshkowska J. Tumor-Associated Macrophages in Human Breast, Colorectal, Lung, Ovarian and Prostate Cancers. Front Oncol. 2020; 10. doi:10.3389/fonc.2020.566511.; Ma W.T., Gao F., Gu K., Chen D.K. The Role of Monocytes and Macrophages in Autoimmune Diseases: A Comprehensive Review. Front Immunol. 2019; 10: 1140. doi:10.3389/fmmu.2019.01140.; Ziegler-Heitbrock L., Ancuta P., Crowe S., Dalod M., Grau V., Hart D.N., Leenen P.J., Liu Y.J., MacPherson G., Randolph G.J., Scherberich J., Schmitz J., Shortman K., Sozzani S., Strobl H., Zembala M., Austyn J.M., Lutz M.B. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010; 116(16): 74–80. doi:10.1182/blood-2010-02-258558.; Kiss M., Caro A.A., Raes G., Laoui D. Systemic Reprogramming of Monocytes in Cancer. Front Oncol. 2020; 10: 1399. doi:10.3389/fonc.2020.01399.; Poschke I., Mougiakakos D., Hansson J., Masucci G.V., Kiessling R. Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res. 2010; 70(11): 4335–45. doi:10.1158/0008-5472.CAN-09-3767.; Hamm A., Prenen H., Van Delm W., Di Matteo M., Wenes M., Delamarre E., Schmidt T., Weitz J., Sarmiento R., Dezi A., Gasparini G., Rothé F., Schmitz R., D’Hoore A., Iserentant H., Hendlisz A., Mazzone M. Tumour-educated circulating monocytes are powerful candidate biomarkers for diagnosis and disease follow-up of colorectal cancer. Gut. 2016; 65(6): 990–1000. doi:10.1136/gutjnl-2014-308988.; Cormican S., Griffn M.D. Human Monocyte Subset Distinctions and Function: Insights From Gene Expression Analysis. Front Immunol. 2020; 11: 1070. doi:10.3389/fmmu.2020.01070.; Reuter J.A., Spacek D.V., Snyder M.P. High-throughput sequencing technologies. Mol Cell. 2015; 58(4): 586–97. doi:10.1016/j.molcel.2015.05.004.; Chen S., Chai X., Wu X. Bioinformatical analysis of the key differentially expressed genes and associations with immune cell infltration in development of endometriosis. BMC Genom Data. 2022; 23(1): 20. doi:10.1186/s12863-022-01036-y.; Kzhyshkowska J., Gudima A., Moganti K., Gratchev A., Orekhov A. Perspectives for Monocyte/Macrophage-Based Diagnostics of Chronic Inflammation. Transfus Med Hemother. 2016; 43(2): 66–77. doi:10.1159/000444943.; Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013; 29(1): 15–21. doi:10.1093/bioinformatics/bts635.; Hartley S.W., Mullikin J.C. QoRTs: a comprehensive toolset for quality control and data processing of RNA-Seq experiments. BMC Bioinformatics. 2015; 16(1): 224. doi:10.1186/s12859-015-0670-5.; Xie Z., Bailey A., Kuleshov M.V., Clarke D.J.B., Evangelista J.E., Jenkins S.L., Lachmann A., Wojciechowicz M.L., Kropiwnicki E., Jagodnik K.M., Jeon M., Ma’ayan A. Gene Set Knowledge Discovery with Enrichr Curr Protoc. 2021; 1(3): 90. doi:10.1002/cpz1.90.; Szklarczyk D., Gable A.L., Nastou K.C., Lyon D., Kirsch R., Pyysalo S., Doncheva N.T., Legeay M., Fang T., Bork P., Jensen L.J., von Mering C. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measure ment sets. Nucleic Acids Res. 2021; 49(D1): 605-12. doi:10.1093/nar/gkaa1074. Erratum in: Nucleic Acids Res. 2021; 49(18): 10800.; Zenkova D. K.V., Sablina R., Artyomov M., Sergushichev A. Phantasus: visual and interactive gene expression analysis. 2018. doi:10.18129/B9.bioc.phantasus.; Noy R., Pollard J.W. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014; 41(1): 49–61. doi:10.1016/j.immuni.2014.06.010. Erratum in: Immunity. 2014; 41(5): 866.; Cassetta L., Fragkogianni S., Sims A.H., Swierczak A., Forrester L.M., Zhang H., Soong D.Y.H., Cotechini T., Anur P., Lin E.Y., Fidanza A., LopezYrigoyen M., Millar M.R., Urman A., Ai Z., Spellman P.T., Hwang E.S., Dixon J.M., Wiechmann L., Coussens L.M., Smith H.O., Pollard J.W. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specifc Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell. 2019; 35(4): 588–602. doi:10.1016/j.ccell.2019.02.009.; Ramos R.N., Rodriguez C., Hubert M., Ardin M., Treilleux I., Ries C.H., Lavergne E., Chabaud S., Colombe A., Trédan O., Guedes H.G., Laginha F., Richer W., Piaggio E., Barbuto J.A.M., Caux C., MénétrierCaux C., Bendriss-Vermare N. CD163+ tumor-associated macrophage accumulation in breast cancer patients refects both local diferentiation signals and systemic skewing of monocytes. Clin Transl Immunology. 2020; 9(2): 1108. doi:10.1002/cti2.1108.; Patysheva M., Larionova I., Stakheyeva M., Grigoryeva E., Iamshchikov P., Tarabanovskaya N., Weiss C., Kardashova J., Frolova A., Rakina M., Prostakishina E., Zhuikova L., Cherdyntseva N., Kzhyshkowska J. Efect of Early-Stage Human Breast Carcinoma on Monocyte Programming. Front Oncol. 2022; 11. doi:10.3389/fonc.2021.800235.; Sanford D.E., Belt B.A., Panni R.Z., Mayer A., Deshpande A.D., Carpenter D., Mitchem J.B., Plambeck-Suess S.M., Worley L.A., Goetz B.D., Wang-Gillam A., Eberlein T.J., Denardo D.G., Goedegebuure S.P., Linehan D.C. Infammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis. Clin Cancer Res. 2013; 19(13): 3404–15. doi:10.1158/1078-0432.CCR-13-0525.; Pan Y.C., Jia Z.F., Cao D.H., Wu Y.H., Jiang J., Wen S.M., Zhao D., Zhang S.L., Cao X.Y. Preoperative lymphocyte-to-monocyte ratio (LMR) could independently predict overall survival of resectable gastric cancer patients. Medicine (Baltimore). 2018; 97(52). doi:10.1097/MD.0000000000013896.; Lu C., Zhou L., Ouyang J., Yang H. Prognostic value of lymphocyte-to-monocyte ratio in ovarian cancer: A meta-analysis. Medicine (Baltimore). 2019; 98(24). doi:10.1097/MD.0000000000015876.; Hayashi T., Fujita K., Tanigawa G., Kawashima A., Nagahara A., Ujike T., Uemura M., Takao T., Yamaguchi S., Nonomura N. Serum monocyte fraction of white blood cells is increased in patients with high Gleason score prostate cancer. Oncotarget. 2017; 8(21): 35255–61. doi:10.18632/oncotarget.13052.; Rakina M.A. Kazakova E.O., Sudarskikh T.S., Bezgodova N.V., Villert A.B., Kolomiets L.A., Larionova I.V. Giant foam-like macrophages in advanced ovarian cancer. Siberian Journal of Oncology. 2022; 21(2): 45–54. doi:10.21294/1814-4861-2022-21-2-45-54.; Fedorov A.A., Ermak N.A., Gerashchenko T.S., Topolnitskii E.B., Shefer N.A., Rodionov E.O., Stakheyeva M.N. Polarization of macrophages: mechanisms, markers and factors of induction. Siberian Journal of Oncology. 2022; 21(4): 124–36. doi:10.21294/1814-4861-2022-21-4-124-136.; Jeong H., Hwang I., Kang S.H., Shin H.C., Kwon S.Y. TumorAssociated Macrophages as Potential Prognostic Biomarkers of Invasive Breast Cancer. J Breast Cancer. 2019; 22(1): 38–51. doi:10.4048/jbc.2019.22.e5.; Tiainen S., Tumelius R., Rilla K., Hämäläinen K., Tammi M., Tammi R., Kosma V.M., Oikari S., Auvinen P. High numbers of macrophages, especially M2-like (CD163-positive), correlate with hyaluronan accumulation and poor outcome in breast cancer. Histopathology. 2015; 66(6): 873–83. doi:10.1111/his.12607.; Miyasato Y., Shiota T., Ohnishi K., Pan C., Yano H., Horlad H., Yamamoto Y., Yamamoto-Ibusuki M., Iwase H., Takeya M., Komohara Y. High density of CD204-positive macrophages predicts worse clinical prognosis in patients with breast cancer. Cancer Sci. 2017; 108(8): 1693–700. doi:10.1111/cas.13287.; Ge Z., Ding S. The Crosstalk Between Tumor-Associated Macrophages (TAMs) and Tumor Cells and the Corresponding Targeted Therapy. Front Oncol. 2020; 10. doi:10.3389/fonc.2020.590941.; Chen Y., Song Y., Du W., Gong L., Chang H., Zou Z. Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci. 2019; 26(1): 78. doi:10.1186/s12929-019-0568-z.; Norton K.A., Jin K., Popel A.S. Modeling triple-negative breast cancer heterogeneity: Efects of stromal macrophages, fbroblasts and tumor vasculature. J Theor Biol. 2018; 452: 56–68. doi:10.1016/j.jtbi.2018.05.003.; Eue I., Pietz B., Storck J., Klempt M., Sorg C. Transendothelial migration of 27E10+ human monocytes. Int Immunol. 2000; 12(11): 1593–604. doi:10.1093/intimm/12.11.1593.; Viemann D., Strey A., Janning A., Jurk K., Klimmek K., Vogl T., Hirono K., Ichida F., Foell D., Kehrel B., Gerke V., Sorg C., Roth J. Myeloid-related proteins 8 and 14 induce a specifc infammatory response in human microvascular endothelial cells. Blood. 2005; 105(7): 2955–62. doi:10.1182/blood-2004-07-2520.; Simkhes Yu.V., Karpov S.M., Baturin V.A., Vyshlova A. Role of s100 protein in the pathogenesis of pain syndromes. Neurology, Neuropsychiatry, Psychosomatics. 2016; 8(4): 62–4. doi: doi.org/10.14412/2074-2711-2016-4-62-64.; Kim J.H., Oh S.H., Kim E.J., Park S.J., Hong S.P., Cheon J.H., Kim T.I., Kim W.H. The role of myofbroblasts in upregulation of S100A8 and S100A9 and the diferentiation of myeloid cells in the colorectal cancer microenvironment. Biochem Biophys Res Commun. 2012; 423(1): 60–6. doi:10.1016/j.bbrc.2012.05.081.; Fox J.M., Kausar F., Day A., Osborne M., Hussain K., Mueller A., Lin J., Tsuchiya T., Kanegasaki S., Pease J.E. CXCL4/Platelet Factor 4 is an agonist of CCR1 and drives human monocyte migration. Scientifc reports. 2018; 8(1): 9466. doi:10.1038/s41598-018-27710-9.; Schioppa T., Sozio F., Barbazza I., Scutera S., Bosisio D., Sozzani S., Del Prete A. Molecular Basis for CCRL2 Regulation of Leukocyte Migration. Front Cell Dev Biol. 2020; 8. doi:10.3389/fcell.2020.615031.; Jayasingam S.D., Citartan M., Thang T.H., Mat Zin A.A., Ang K.C., Ch’ng E.S. Evaluating the Polarization of Tumor-Associated Macrophages Into M1 and M2 Phenotypes in Human Cancer Tissue: Technicalities and Challenges in Routine Clinical Practice. Front Oncol. 2020; 9: 1512. doi:10.3389/fonc.2019.01512.; Fontana M.F., Baccarella A., Pancholi N., Pufall M.A., Herbert D.R., Kim C.C. JUNB is a key transcriptional modulator of macrophage activation. J Immunol. 2015; 194(1): 177–86. doi:10.4049/jimmunol.1401595.; Hamada M., Tsunakawa Y., Jeon H., Yadav M.K., Takahashi S. Role of MafB in macrophages. Exp Anim. 2020; 69(1): 1–10. doi:10.1538/expanim.19-0076.; Rigo A., Gottardi M., Zamò A., Mauri P., Bonifacio M., Krampera M., Damiani E., Pizzolo G., Vinante F. Macrophages may promote cancer growth via a GM-CSF/HB-EGF paracrine loop that is enhanced by CXCL12. Mol Cancer. 2010; 9: 273. doi:10.1186/1476-4598-9-273.; Vlaicu P., Mertins P., Mayr T., Widschwendter P., Ataseven B., Högel B., Eiermann W., Knyazev P., Ullrich A. Monocytes/macrophages support mammary tumor invasivity by co-secreting lineage-specifc EGFR ligands and a STAT3 activator. BMC Cancer. 2013; 13: 197. doi:10.1186/1471-2407-13-197.; Ongusaha P.P., Kwak J.C., Zwible A.J., Macip S., Higashiyama S., Taniguchi N., Fang L., Lee S.W. HB-EGF is a potent inducer of tumor growth and angiogenesis. Cancer Res. 2004; 64(15): 5283–90. doi:10.1158/0008-5472.CAN-04-0925.; Carroll M.J., Kapur A., Felder M., Patankar M.S., Kreeger P.K. M2 macrophages induce ovarian cancer cell proliferation via a heparin binding epidermal growth factor/matrix metalloproteinase 9 intercellular feedback loop. Oncotarget. 2016; 7(52): 86608–20. doi:10.18632/oncotarget.13474.; Yonemitsu K., Miyasato Y., Shiota T., Shinchi Y., Fujiwara Y., Hosaka S., Yamamoto Y., Komohara Y. Soluble Factors Involved in Cancer Cell-Macrophage Interaction Promote Breast Cancer Growth. Anticancer Res. 2021; 41(9): 4249–58. doi:10.21873/anticanres.15229.; Yu X., Zhang Q., Zhang X., Han Q., Li H., Mao Y., Wang X., Guo H., Irwin D.M., Niu G., Tan H. Exosomes from Macrophages Exposed to Apoptotic Breast Cancer Cells Promote Breast Cancer Proliferation and Metastasis. J Cancer. 2019; 10(13): 2892–2906. doi:10.7150/jca.31241.; Wu D.M., Wen X., Han X.R., Wang S., Wang Y.J., Shen M., Fan S.H., Zhang Z.F., Shan Q., Li M.Q., Hu B., Lu J., Chen G.Q., Zheng Y.L. Bone Marrow Mesenchymal Stem Cell-Derived Exosomal MicroRNA-126 -3p Inhibits Pancreatic Cancer Development by Targeting ADAM9. Mol Ther Nucleic Acids. 2019; 16: 229–45. doi:10.1016/j.omtn.2019.02.022. Retraction in: Mol Ther Nucleic Acids. 2022; 29: 617.; Zhao K., Wang Z., Hackert T., Pitzer C., Zöller M. Tspan8 and Tspan8/CD151 knockout mice unravel the contribution of tumor and host exosomes to tumor progression. J Exp Clin Cancer Res. 2018; 37(1): 312. doi:10.1186/s13046-018-0961-6.; Xiao D., Dong Z., Zhen L., Xia G., Huang X., Wang T., Guo H., Yang B., Xu C., Wu W., Zhao X., Xu H. Combined Exosomal GPC1, CD82, and Serum CA19-9 as Multiplex Targets: A Specifc, Sensitive, and Reproducible Detection Panel for the Diagnosis of Pancreatic Cancer. Mol Cancer Res. 2020; 18(2): 300–10. doi:10.1158/1541-7786.MCR-19-0588.; Yunusova N.V., Zambalova E.A., Patysheva M.R., Kolegova E.S., Afanas’ev S.G., Cheremisina O.V., Grigor’eva A.E., Tamkovich S.N., Kondakova I.V. Exosomal Protease Cargo as Prognostic Biomarker in Colorectal Cancer. Asian Pac J Cancer Prev. 2021; 22(3): 861–9. doi:10.31557/APJCP.2021.22.3.861.; https://www.siboncoj.ru/jour/article/view/2376