Εμφανίζονται 1 - 20 Αποτελέσματα από 224 για την αναζήτηση '"ДОМЕСТИКАЦИЯ"', χρόνος αναζήτησης: 1,02δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
    Academic Journal

    Συγγραφείς: Duygu Özakın

    Πηγή: Volume: 6, Issue: 1 94-109
    Uluslararası Dil Edebiyat ve Kültür Araştırmaları Dergisi
    International Journal Of Language Literature And Culture Researches
    Международный Журнал По Лингвистический Литературных и Культурных Исследований

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: https://dergipark.org.tr/tr/pub/udekad/issue/78586/1269215

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
    Academic Journal

    Συνεισφορές: This work was supported by the Russian Science Foundation, project 21-44-04405. The breeding of experimental animals in the Shared Access Center for Gene Pools of Fur and Farm Animals, Institute of Cytology and Genetics, was supported by State Budgeted Project FWNR- 2022- 0019. The authors are grateful to V.V. Ivaykin, A.V. Vladimirova, I.V. Pivovarova, T.I. Semenova, V.I. Vladimirova, T.V. Konovalova, and all the staff of the Shared Access Center for assistance in the study. They also acknowledge the significant contribution of the reviewers to manuscript improvement

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 27, № 6 (2023); 651-661 ; Вавиловский журнал генетики и селекции; Том 27, № 6 (2023); 651-661 ; 2500-3259 ; 10.18699/VJGB-23-65

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3937/1751; Amrein I. Adult hippocampal neurogenesis in natural populations of mammals. Cold Spring Harb. Perspect. Biol. 2015;7(5):a021295. DOI:10.1101/cshperspect.a021295.; Amrein I., Slomianka L. A morphologically distinct granule cell type in the dentate gyrus of the red fox correlates with adult hippocampal neurogenesis. Brain Res. 2010;1328:12-24. DOI:10.1016/j.brainres.2010.02.075.; Andersen C.L., Jensen J.L., Ørntoft T.F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64: 5245-5250. DOI:10.1158/0008-5472.CAN-04-0496.; Belyaev D.K. Destabilizing selection as a factor in domestication. J. Hered. 1979;70(5):301-308. DOI:10.1093/oxfordjournals.jhered.a109263.; Bonhomme D., Minni A.M., Alfos S., Roux P., Richard E., Higueret P., Moisan M.P., Pallet V., Touyarot K. Vitamin A status regulates glucocorticoid availability in Wistar rats: consequences on cognitive functions and hippocampal neurogenesis? Front. Behav. Neurosci. 2014;8:20. DOI:10.3389/fnbeh.2014.00020.; Bremner J.D., McCaffery P. The neurobiology of retinoic acid in affective disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2008;32(2):315-331. DOI:10.1016/j.pnpbp.2007.07.001.; Cai L., Li R., Zhou J.N. Chronic all-trans retinoic acid administration induces CRF over-expression accompanied by AVP up-regulation and multiple CRF-controlling receptors disturbance in the hypothalamus of rats. Brain Res. 2015;1601:1-7. DOI:10.1016/j.brainres.2014.12.054.; Cembrowski M.S., Wang L., Sugino K., Shields B.C., Spruston N. Hipposeq: a comprehensive RNA-seq database of gene expression in hippocampal principal neurons. eLife. 2016;5:e14997. DOI:10.7554/eLife.14997.001.; Corradini B.R., Iamashita P., Tampellini E., Farfel J.M., Grinberg L.T., Moreira-Filho C.A. Complex network-driven view of genomic mechanisms underlying Parkinson’s disease: analyses in dorsal motor vagal nucleus, locus coeruleus, and substantia nigra. BioMed Res. Int. 2014;2014:543673. DOI:10.1155/2014/543673.; Croston R., Branch C.L., Kozlovsky D.Y., Roth T.C., LaDage L.D., Freas C.A., Pravosudov V.V. Potential mechanisms driving population variation in spatial memory and the hippocampus in foodcaching chickadees. Integr. Comp. Biol. 2015;55(3):354-371. DOI:10.1093/icb/icv029.; de Kloet E.R., Otte C., Kumsta R., Kok L., Hillegers M.H.J., Hasselmann H., Kliegel D., Joëls M. Stress and depression: a crucial role of the mineralocorticoid receptor. J. Neuroendocrinol. 2016;28(8). DOI:10.1111/jne.12379.; de Martino M.U., Alesci S., Chrousos G.P., Kino T. Interaction of the glucocorticoid receptor and the chicken ovalbumin upstream promoter‐transcription factor II (COUP‐TFII): implications for the actions of glucocorticoids on glucose, lipoprotein, and xenobiotic metabolism. Ann. N. Y. Acad. Sci. 2004;1024:72-85. DOI:10.1196/annals.1321.006.; Deupree J.D., Reed A.L., Bylund D.B. Differential effects of the tricyclic antidepressant desipramine on the density of adrenergic receptors in juvenile and adult rats. J. Pharmacol. Exp. Ther. 2007;321(2): 770-776. DOI:10.1124/jpet.106.118935.; Doze V.A., Handel E.M., Jensen K.A., Darsie B., Luger E.J., Haselton J.R., Talbot J.N., Rorabaugh B.R. α1A- and α1B-adrenergic receptors differentially modulate antidepressant-like behavior in the mouse. Brain Res. 2009;1285:148-157. DOI:10.1016/j.brainres.2009.06.035.; Doze V.A., Papay R.S., Goldenstein B.L., Gupta M.K., Collette K.M., Nelson B.W., Lyons M.J., Davis B.A., Luger E.J., Wood S.G., Haselton J.R., Simpson P.C., Perez D.M. Long-term α1A-adrenergic receptor stimulation improves synaptic plasticity, cognitive function, mood, and longevity. Mol. Pharmacol. 2011;80(4):747-758. DOI:10.1124/mol.111.073734.; Elia J., Capasso M., Zaheer Z., Lantieri F., Ambrosini P., Berrettini W., Devoto M., Hakonarson H. Candidate gene analysis in an on-going genome-wide association study of attention-deficit hyperactivity disorder: suggestive association signals in ADRA1A. Psychiatr. Genet. 2009;19(3):134-141. DOI:10.1097/YPG.0b013e32832a5043.; Floriou-Servou A., von Ziegler L., Stalder L., Sturman O., Privitera M., Rassi A., Cremonesi A., Thöny B., Bohacek J. Distinct proteomic, transcriptomic, and epigenetic stress responses in dorsal and ventral hippocampus. Biol. Psychiatry. 2018;84(7):531-541. DOI:10.1016/j.biopsych.2018.02.003.; Fuentealba P., Klausberger T., Karayannis T., Suen W.Y., Huck J., Tomioka R., Rockland K., Capogna M., Studer M., Morales M., Somogyi P. Expression of COUP-TFII nuclear receptor in restricted GABAergic neuronal populations in the adult rat hippocampus. J. Neurosci. 2010;30(5):1595-1609. DOI:10.1523/JNEUROSCI.4199-09.2010.; Garcia A., Steiner B., Kronenberg G., Bick-Sander A., Kempermann G. Age-dependent expression of glucocorticoid- and mineralocorticoid receptors on neural precursor cell populations in the adult murine hippocampus. Aging Cell. 2004;3(4):363-371. DOI:10.1111/j.14749728.2004.00130.x.; Gass P., Kretz O., Wolfer D.P., Berger S., Tronche F., Reichardt H.M., Kellendonk C., Lipp H.P., Schmid W., Schütz G. Genetic disruption of mineralocorticoid receptor leads to impaired neurogenesis and granule cell degeneration in the hippocampus of adult mice. EMBO Rep. 2000;1(5):447-451. DOI:10.1093/embo-reports/kvd088.; Gil-Ibáñez P., Bernal J., Morte B. Thyroid hormone regulation of gene expression in primary cerebrocortical cells: role of thyroid hormone receptor subtypes and interactions with retinoic acid and glucocorticoids. PLoS One. 2014;9(3):e91692. DOI:10.1371/journal.pone.0091692.; Gulyaeva N.V. Functional neurochemistry of the ventral and dorsal hippocampus: stress, depression, dementia and remote hippocampal damage. Neurochem. Res. 2019;44:1306-1322. DOI:10.1007/s11064-018-2662-0.; Gupta M.K., Papay R.S., Jurgens C.W.D., Gaivin R.J., Shi T., Doze V.A., Perez D.M. α1-Adrenergic receptors regulate neurogenesis and gliogenesis. Mol. Pharmacol. 2009;76(2):314-326. DOI:10.1124/mol.109.057307.; Haddjeri-Hopkins A., Tapia M., Ramirez-Franco J., Tell F., MarquezePouey B., Amalric M., Goaillard J.M. Refining the identity and role of Kv4 channels in mouse substantia nigra dopaminergic neurons. eNeuro. 2021;8(4):ENEURO.0207-21.2021. DOI:10.1523/ENEURO.0207-21.2021.; Harris A.P., Holmes M.C., De Kloet E.R., Chapman K.E., Seckl J.R. Mineralocorticoid and glucocorticoid receptor balance in control of HPA axis and behaviour. Psychoneuroendocrinol. 2013;38(5): 648-658. DOI:10.1016/j.psyneuen.2012.08.007.; Hélène R., Julie B., Aloïs L., Marie-Pierre M., Véronique P., Anabelle R., Jean-Benoît C. Retinoids and glucocorticoids have opposite effects on actin cytoskeleton rearrangement in hippocampal HT22 cells. Int. J. Biochem. Cell Biol. 2016;71:102-110. DOI:10.1016/j.biocel.2015.12.014.; Hu P., Wang Y., Liu J., Meng F.T., Qi X.R., Chen L., van Dam A.M., Joëls M., Lucassen P.J., Zhou J.N. Chronic retinoic acid treatment suppresses adult hippocampal neurogenesis, in close correlation with depressive-like behavior. Hippocampus. 2016;26(7):911-923. DOI:10.1002/hipo.22574.; Hu P., van Dam A.M., Wang Y., Lucassen P.J., Zhou J.N. Retinoic acid and depressive disorders: evidence and possible neurobiological mechanisms. Neurosci. Biobehav. Rev. 2020;112:376-391. DOI:10.1016/j.neubiorev.2020.02.013.; Huang S., Slomianka L., Farmer A.J., Kharlamova A.V., Gulevich R.G., Herbeck Yu.E., Trut L.N., Wolfer D.P., Amrein I. Selection for tameness, a key behavioral trait of domestication, increases adult hippocampal neurogenesis in foxes. Hippocampus. 2015;25(8):963-975. DOI:10.1002/hipo.22420.; Jacobs L.F., Gaulin S.J., Sherry D.F., Hoffman G.E. Evolution of spatial cognition: sex-specific patterns of spatial behavior predict hippocampal size. Proc. Natl. Acad. Sci. USA. 1990;87(16):6349-6352. DOI:10.1073/pnas.87.16.6349.; Jacobs L.F., Spencer W.D. Natural space-use patterns and hippocampal size in kangaroo rats. Brain Behav. Evol. 1994;44(3):125-132. DOI:10.1159/000113584.; Jinno S., Kosaka T. Stereological estimation of numerical densities of glutamatergic principal neurons in the mouse hippocampus. Hippocampus. 2010;20(7):829-840. DOI:10.1002/hipo.20685.; Kanatsou S., Fearey B.C., Kuil L.E., Lucassen P.J., Harris A.P., Seckl J.R., Krugers H., Joels M. Overexpression of mineralocorticoid receptors partially prevents chronic stress-induced reductions in hippocampal memory and structural plasticity. PLoS One. 2015; 10(11):e0142012. DOI:10.1371/journal.pone.0142012.; Kanatsou S., Karst H., Kortesidou D., van den Akker R.A., den Blaauwen J., Harris A.P., Seckl J.R., Krugers H.J., Joels M. Overexpression of mineralocorticoid receptors in the mouse forebrain partly alleviates the effects of chronic early life stress on spatial memory, neurogenesis and synaptic function in the dentate gyrus. Front. Cell. Neurosci. 2017;11:132. DOI:10.3389/fncel.2017.00132.; Kane M.A., Folias A.E., Wang C., Napoli J.L. Ethanol elevates physiological all-trans-retinoic acid levels in select loci through altering retinoid metabolism in multiple loci: a potential mechanism of ethanol toxicity. FASEB J. 2010;24(3):823-832. DOI:10.1096/fj.09-141572.; Kang P., Rogalska J., Walker C.A., Burke M., Seckl J.R., Macleod M.R., Lai M. Injury-induced mineralocorticoid receptor expression involves differential promoter usage: a novel role for the rat MRβ variant. Mol. Cell. Endocrinol. 2009;305(1-2):56-62. DOI:10.1016/j.mce.2009.02.008.; Kukekova A.V., Johnson J.L., Xiang X., Feng S., Liu S., Rando H.M., Kharlamova A.V., Herbeck Yu., Serdyukova N.A., Xiong Z., Beklemischeva V., Koepfli K.-P., Gulevich R.G., Vladimirova A.V., Hekman J.P., Perelman P.L., Graphodatsky A.S., O’Brien S.J., Wang X., Clark A.G., Acland G.A., Trut L.N., Zhang G. Red fox genome assembly identifies genomic regions associated with tame and aggressive behaviours. Nat. Ecol. Evol. 2018;2(9):1479-1491. DOI:10.1038/s41559-018-0611-6.; Kvichansky A.A., Volobueva M.N., Manolova A.O., Bolshakov A.P., Gulyaeva N.V. Neonatal proinflammatory stress alters the expression of genes of corticosteroid receptors in the rat hippocampus: septo-temporal differences. Neurochem. J. 2017;11(3):255-258. DOI:10.1134/S1819712417030059.; Lai M., Horsburgh K., Bae S.E., Carter R.N., Stenvers D.J., Fowler J.H., Yau J.L., Gomez-Sanchez C.E., Holmes M.C., Kenyon C.J., Seckl J.R., Macleod M.R. Forebrain mineralocorticoid receptor overexpression enhances memory, reduces anxiety and attenuates neuronal loss in cerebral ischaemia. Eur. J. Neurosci. 2007;25(6): 1832-1842. DOI:10.1111/j.1460-9568.2007.05427.x.; Le Menuet D., Lombès M. The neuronal mineralocorticoid receptor: from cell survival to neurogenesis. Steroids. 2014;91:11-19. DOI:10.1016/j.steroids.2014.05.018.; Lee A.-R., Kim J.-H., Cho E., Kim M., Park M. Dorsal and ventral hippocampus differentiate in functional pathways and differentially associate with neurological disease-related genes during postnatal development. Front. Mol. Neurosci. 2017;10:331. DOI:10.3389/fnmol.2017.00331.; Levone B.R., Cryan J.F., O’Leary O.F. Role of adult hippocampal neurogenesis in stress resilience. Neurobiol. Stress. 2015;1:147-155. DOI:10.1016/j.ynstr.2014.11.003.; Lewis A.S., Pittenger S.T., Mineur Y.S., Stout D., Smith P.H., Picciotto M.R. Bidirectional regulation of aggression in mice by hippocampal alpha-7 nicotinic acetylcholine receptors. Neuropsychopharmacology. 2018;43(6):1267-1275. DOI:10.1038/npp.2017.276.; Lipp H.P. Evolutionary shaping of adult hippocampal neurogenesis in mammals-cognitive gain or developmental priming of personality traits? Front. Neurosci. 2017;11:420. DOI:10.3389/fnins.2017.00420.; Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods. 2001;25(4):402-408. DOI:10.1006/meth.2001.1262.; Lowe A., Dalton M., Sidhu K., Sachdev P., Reynolds B., Valenzuela M. Neurogenesis and precursor cell differences in the dorsal and ventral adult canine hippocampus. Neurosci. Lett. 2015;593:107-113. DOI:10.1016/j.neulet.2015.03.017.; Maggio N., Segal M. Differential modulation of long-term depression by acute stress in the rat dorsal and ventral hippocampus. J. Neurosci. 2009;29(27):8633-8638. DOI:10.1523/JNEUROSCI.1901-09.2009.; Medina A., Seasholtz A.F., Sharma V., Burke S., Bunney W., Jr., Myers R.M., Schatzberg A., Akil H., Watson S.J. Glucocorticoid and mineralocorticoid receptor expression in the human hippocampus in major depressive disorder. J. Psychiatr. Research. 2013;47(3): 307-314. DOI:10.1016/j.jpsychires.2012.11.002.; Ming G., Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 2011;70(4):687702. DOI:10.1016/j.neuron.2011.05.001.; Mishra S., Kelly K.K., Rumian N.L., Siegenthaler J.A. Retinoic acid is required for neural stem and progenitor cell proliferation in the adult hippocampus. Stem Cell Rep. 2018;10(6):1705-1720. DOI:10.1016/j.stemcr.2018.04.024.; O’Leary O.F., Cryan J.F. A ventral view on antidepressant action: roles for adult hippocampal neurogenesis along the dorsoventral axis. Trends Pharmacol. Sci. 2014;35(12):675-687. DOI:10.1016/j.tips.2014.09.011.; O’Rourke T., Boeckx C. Glutamate receptors in domestication and modern human evolution. Neurosci. Biobehav. Rev. 2020;108:341357. DOI:10.1016/j.neubiorev.2019.10.004.; Oskina I.N., Herbeck Yu.E., Shikhevich S.G., Plyusnina I.Z., Gulevich R.G. Alterations in the hypothalamus-pituitary-adrenal and immune systems during selection of animals for tame behavior. Infor matsionnyy Vestnik VOGiS = The Herald of Vavilov Society for Geneticists and Breeders. 2008;12(1/2):39-49. (in Russian); Ovchinnikov V.Yu., Antonov E.V., Vasilyev G.V., Shihevich S.G., Shepeleva D.V., Herbeck Yu.E. Hippocampal glucocorticoid receptor and microRNA gene expression and serum cortisol concentration in foxes selected for behavior toward humans. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018; 22(2):230-234. DOI:10.18699/VJ18.352. (in Russian); Pendleton A.L., Shen F., Taravella A.M., Emery S., Veeramah K.R., Boyko A.R., Kidd J.M. Comparison of village dog and wolf genomes highlights the role of the neural crest in dog domestication. BMC Biol. 2018;16(1):e64. DOI:10.1186/s12915-018-0535-2.; Pörtl D., Jung C. Is dog domestication due to epigenetic modulation in brain? Dog Behav. 2017;3(2):21-32. DOI:10.4454/db.v3i2.55.; Prasolova L.A., Gerbek Yu.E., Gulevich R.G., Shikhevich S.G., Konoshenko M.Y., Kozhemyakina R.V., Oskina I.N., Plyusnina I.Z. The effects of prolonged selection for behavior on the stress response and activity of the reproductive system of male grey rats (Rattus norvegicus). Russ. J. Genet. 2014;50(8):846-852. DOI:10.1134/S1022795414080031.; Price E.O. Animal Domestication and Behavior. Oxford; New York: Oxford Univ. Press, 2002.; Ratka A., Sutanto W., Bloemers M., de Kloet E.R. On the role of brain mineralocorticoid (type I) and glucocorticoid (type II) receptors in neuroendocrine regulation. Neuroendocrinology. 1989;50(2):117123. DOI:10.1159/000125210.; Rehkämper G., Frahm H.D., Cnotka J. Mosaic evolution and adaptive brain component alteration under domestication seen on the background of evolutionary theory. Brain Behav. Evol. 2008;71(2):115126. DOI:10.1159/000111458.; Rozeboom A.M., Akil H., Seasholtz A.F. Mineralocorticoid receptor overexpression in forebrain decreases anxiety-like behavior and alters the stress response in mice. Proc. Natl. Acad. Sci. USA. 2007; 104(11):4688-4693. DOI:10.1073/pnas.0606067104.; Saaltink D.J., Vreugdenhil E. Stress, glucocorticoid receptors, and adult neurogenesis: a balance between excitation and inhibition? Cell. Mol. Life Sci. 2014;71:2499-2515. DOI:10.1007/s00018-014-1568-5.; Sklepkovych B.O., Montevecchi W.A. Food availability and food hoarding behaviour by red and arctic foxes. Arctic. 1996;49(3): 228-234. DOI:10.14430/arctic1199.; Sonnenberg B.R., Branch C.L., Pitera A.M., Bridge E., Pravosudov V.V. Natural selection and spatial cognition in wild food-caching mountain chickadees. Curr. Biol. 2019;29(4):670-676. DOI:10.1016/j.cub.2019.01.006.; Stoney P.N., McCaffery P. A vitamin on the mind: new discoveries on control of the brain by vitamin A. World Rev. Nutr. Diet. 2016;115: 98-108. DOI:10.1159/000442076.; Stoney P.N., Fragoso Y.D., Saeed R.B., Ashton A., Goodman T., Simons C., Gomaa M.S., Sementilli A., Sementilli L., Ross A.W., Morgan P.J., McCaffery P.J. Expression of the retinoic acid catabolic enzyme CYP26B1 in the human brain to maintain signaling homeostasis. Brain Struct. Funct. 2016;221:3315-3326. DOI:10.1007/s00429-015-1102-z.; Theofanopoulou C., Gastaldon S., O’Rourke T., Samuels B.D., Messner A., Martins P.T., Delogu F., Alamri S., Boeckx C. Self-domestication in Homo sapiens: insights from comparative genomics. PloS One. 2017;12(10):e0185306. DOI:10.1371/journal.pone.0185306.; Todorov O.S., Weisbecker V., Gilissen E., Zilles K., De Sousa A.A. Primate hippocampus size and organization are predicted by sociality but not diet. Proc. Royal Soc. B. 2019;286(1914):20191712. DOI:10.1098/rspb.2019.1712.; Trut L.N., Plyusnina I.Z., Oskina I.N. An experiment on fox domestication and debatable issues of evolution of the dog. Russ. J. Genet. 2004;40(6):644-655. DOI:10.1023/B:RUGE.0000033312.92773.c1.; Trut L., Oskina I., Kharlamova A. Animal evolution during domestication: the domesticated fox as a model. BioEssays. 2009;31(3):349360. DOI:10.1002/bies.200800070.; Trut L.N., Kharlamova A.V., Pilipenko A.S., Herbeck Yu.E. The fox domestication experiment and dog evolution: A view based on modern molecular, genetic, and archaeological data. Russ. J. Genet. 2021; 57(7):778-794. DOI:10.1134/S1022795421070140.; Truvé K., Parris T.Z., Vizlin-Hodzic D., Salmela S., Berger E., Ågren H., Funa K. Identification of candidate genetic variants and altered protein expression in neural stem and mature neural cells support altered microtubule function to be an essential component in bipolar disorder. Transl. Psychiatry. 2020;10(1):e390. DOI:10.1038/s41398-020-01056-1.; Tzakis N., Holahan M.R. Social memory and the role of the hippocampal CA2 region. Front. Behav. Neurosci. 2019;13:233. DOI:10.3389/fnbeh.2019.00233.; Veenema A.H., Neumann I.D. Neurobiological mechanisms of aggression and stress coping: a comparative study in mouse and rat selection lines. Brain Behav. Evol. 2007;70(4):274-285. DOI:10.1159/000105491.; Veenema A.H., Meijer O.C., de Kloet E.R., Koolhaas J.M. Genetic selection for coping style predicts stressor susceptibility. J. Neuroendocrinol. 2003;15:256-267. DOI:10.1046/j.1365-2826.2003.00986.x.; Vogel J.W., La Joie R., Grothe M.J., Diaz-Papkovich A., Doyle A., Vachon-Presseau E., Lepage C., Vos de Wael R., Thomas R.A., Iturria-Medina Y., Bernhardt B., Rabinovici G.D., Evans A.C. A molecular gradient along the longitudinal axis of the human hippocampus informs large-scale behavioral systems. Nat. Commun. 2020;11(1):960. DOI:10.1038/s41467-020-14518-3.; Weaver I.C.G., Cervoni N., Champagne F.A., D’Alessio A.C., Sharma S., Seckl J.R., Dymov S., Szyf M., Meaney M.J. Epigenetic programming by maternal behavior. Nat. Neurosci. 2004;7:847-854. DOI:10.1038/nn1276.; Xiao F., Zhang X., Ni P., Yu H., Gao Q., Li M., Huo P., Wei Z., Wang S., Zhang Y., Zhao R., Li A., Li Z., Li Yu., Cheng H., Du L., Ren S., Yu Q., Liu Ya., Zhao Yu. Voltage-dependent potassium channel Kv4.2 alleviates the ischemic stroke impairments through activating neurogenesis. Neurochem. Int. 2021;50:e105155. DOI:10.1016/j.neuint.2021.105155.; Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012;13:134. DOI:10.1186/1471-2105-13-134.; https://vavilov.elpub.ru/jour/article/view/3937

  17. 17
    Academic Journal

    Συνεισφορές: Russian Science Foundation grant No. 20-14-00140 supported this study. The authors are thankful to the multi-access Center “Bioinformatics” for the use of computational resources as supported by Russian government project FWNR-2022-0020 and the Russian Federal Science and Technology Program for the Development of Genetic Technologies.

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 26, № 8 (2022); 798­-805 ; Вавиловский журнал генетики и селекции; Том 26, № 8 (2022); 798­-805 ; 2500-3259 ; 10.18699/VJGB-22-86

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3581/1672; Arkova O., Kuznetsov N., Fedorova O., Savinkova L. A real­time study of the interaction of TBP with a TATA box­containing duplex identical to an ancestral or minor allele of human gene LEP or TPI. J. Biomol. Struct. Dyn. 2017;35(14):3070-3081. DOI 10.1080/07391102.2016.1241190.; Auble D.T. The dynamic personality of TATA­binding protein. Trends Biochem. Sci. 2009;34(2):49-52. DOI 10.1016/j.tibs.2008.10.008.; Benson D.A., Clark K., Karsch­Mizrachi I., Lipman D.J., Ostell J., Sayers E.W. GenBank. Nucleic Acids Res. 2015;43(Database issue):D30-D35. DOI 10.1093/nar/gku1216.; Berg O.G., von Hippel P.H. Selection of DNA binding sites by regulatory proteins. Statistical­mechanical theory and application to operators and promoters. J. Mol. Biol. 1987;193(4):723­750. DOI 10.1016/0022-2836(87)90354-8.; Bucher P. Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J. Mol. Biol. 1990;212(4):563-578. DOI 10.1016/00222836(90)90223­9.; Cavazza A., Mattarozzi M., Franzoni A., Careri M. A spotlight on analytical prospects in food allergens: From emerging allergens and novel foods to bioplastics and plant­based sustainable food contact materials. Food Chem. 2022;388:132951. DOI 10.1016/j.foodchem. 2022.132951.; Choukrallah M.A., Kobi D., Martianov I., Pijnappel W.W., Mischerikow N., Ye T., Heck A.J., Timmers H.T., Davidson I. Interconversion between active and inactive TATA­binding protein transcription complexes in the mouse genome. Nucleic Acids Res. 2012;40(4): 1446-1459. DOI 10.1093/nar/gkr802.; Coleman R.A., Pugh B.F. Evidence for functional binding and stable sliding of the TATA binding protein on nonspecific DNA. J. Biol. Chem. 1995;270(23):13850-13859. DOI 10.1074/jbc.270.23.13850.; Delgadillo R.F., Whittington J.E., Parkhurst L.K., Parkhurst L.J. The TATA­binding protein core domain in solution variably bends TATA sequences via a three­step binding mechanism. Biochemistry. 2009; 48(8):1801-1809. DOI 10.1021/bi8018724.; Drachkova I., Savinkova L., Arshinova T., Ponomarenko M., Peltek S., Kolchanov N. The mechanism by which TATA­box polymorphisms associated with human hereditary diseases influence interactions with the TATA­binding protein. Hum. Mutat. 2014;35(5):601­608. DOI 10.1002/humu.22535.; Fire A., Samuels M., Sharp P.A. Interactions between RNA polymerase II, factors, and template leading to accurate transcription. J. Biol. Chem. 1984;259(4):2509-2516. DOI 10.1016/S0021-9258(17)43382­5.; Flatters D., Lavery R. Sequence­dependent dynamics of TATA­Box binding sites. Biophys. J. 1998;75(1):372-381. DOI 10.1016/S00063495(98)77521­6.; Hahn S., Buratowski S., Sharp P.A., Guarente L. Yeast TATA­binding protein TFIID binds to TATA elements with both consensus and nonconsensus DNA sequences. Proc. Natl. Acad. Sci. USA. 1989; 86(15):5718-5722. DOI 10.1073/pnas.86.15.5718.; Hong L., Pan M., Xie X., Liu K., Yang J., Wang S., Wang S. Aptamerbased fluorescent biosensor for the rapid and sensitive detection of allergens in food matrices. Foods. 2021;10(11):2598. DOI 10.3390/foods10112598. IUPAC­IUB Commission on Biochemical Nomenclature (CBN). Abbreviations and symbols for nucleic acids, polynucleotides and their constituents. Recommendations 1970. Biochem. J. 1970;120(3): 449-454. DOI 10.1042/bj1200449.; Martianov I., Viville S., Davidson I. RNA polymerase II transcription in murine cells lacking the TATA binding protein. Science. 2002; 298(5595):1036-1039. DOI 10.1126/science.1076327.; Mogno I., Vallania F., Mitra R.D., Cohen B.A. TATA is a modular component of synthetic promoters. Genome Res. 2010;20(10):13911397. DOI 10.1101/gr.106732.110.; Muller F., Lakatos L., Dantonel J., Strahle U., Tora L. TBP is not universally required for zygotic RNA polymerase II transcription in zebrafish. Curr. Biol. 2001;11(4):282-287. DOI 10.1016/s0960-9822(01)00076­8.; Ponomarenko P., Chadaeva I., Rasskazov D.A., Sharypova E., Kashina E.V., Drachkova I., Zhechev D., Ponomarenko M.P., Savinkova L.K., Kolchanov N. Candidate SNP markers of familial and sporadic Alzheimer’s diseases are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters. Front. Aging Neurosci. 2017;9:231. DOI 10.3389/fnagi.2017.00231.; Ponomarenko P.M., Ponomarenko M.P., Drachkova I.A., Lysova M.V., Arshinova T.V., Savinkova L.K., Kolchanov N.A. Prediction of the affinity of the TATA-binding protein to TATA boxes with single nucleotide polymorphisms. Mol. Biol. (Moscow). 2009; 43(3):472­479. DOI 10.1134/S0026893309030157.; Ponomarenko P., Savinkova L., Drachkova I., Lysova M., Arshinova T., Ponomarenko M., Kolchanov N. A step-by-step model of TBP/TATA box binding allows predicting human hereditary diseases by single nucleotide polymorphism. Dokl. Biochem. Biophys. 2008;419:8892. DOI 10.1134/S1607672908020117.; Prescott S.L., Logan A.C., Bristow J., Rozzi R., Moodie R., Redvers N., Haahtela T., Warber S., Poland B., Hancock T., Berman B. Exiting the anthropocene: achieving personal and planetary health in the 21st century. Allergy. 2022;77(12):3498-3512. DOI 10.1111/all.15419.; Rasskazov D., Chadaeva I., Sharypova E., Zolotareva K., Khandaev B., Ponomarenko P., Podkolodnyy N., Tverdokhleb N., Vishnevsky O., Bogomolov A., Podkolodnaya O., Savinkova L., Zemlyanskaya E.; Golubyatnikov V., Kolchanov N., Ponomarenko M. Plant_SNP_ TATA_Z­tester: a Web service that unequivocally estimates the impact of proximal promoter mutations on plant gene expression. Int. J. Mol. Sci. 2022;23(15):8684. DOI 10.3390/ijms23158684.; Rhee H., Pugh B. Genome­wide structure and organization of eukaryotic pre­initiation complexes. Nature. 2012;483(7389):295­301. DOI 10.1038/nature10799.; Savinkova L., Drachkova I., Arshinova T., Ponomarenko P., Ponomarenko M., Kolchanov N. An experimental verification of the predicted effects of promoter TATA-box polymorphisms associated with human diseases on interactions between the TATA boxes and TATA­binding protein. PLoS One. 2013;8(2):e54626. DOI 10.1371/journal.pone.0054626.; Savinkova L.K., Ponomarenko M.P., Ponomarenko P.M., Drachkova I.A., Lysova M.V., Arshinova T.V., Kolchanov N.A. TATA box polymorphisms in human gene promoters and associated hereditary pathologies. Biochemistry (Moscow). 2009;74(2):117­129. DOI 10.1134/s0006297909020011.; Wang Y., Weng J., Zhu C., Ai R., Zhou J., Wang C., Chen Q., Fu L. Allergenicity assessment and allergen profile analysis of different Chinese wheat cultivars. World Allergy Organ. J. 2021;14(7):100559. DOI 10.1016/j.waojou.2021.100559.; https://vavilov.elpub.ru/jour/article/view/3581

  18. 18
    Conference

    Συγγραφείς: Сафина, Л. М.

    Συνεισφορές: Кобенко, Юрий Викторович

    Περιγραφή αρχείου: application/pdf

    Relation: Язык. Общество. Образование : сборник научных трудов III Международной научно-практической конференции "Лингвистические и культурологические аспекты современного инженерного образования", Томск, 10-12 ноября 2022 г.; http://earchive.tpu.ru/handle/11683/74241

    Διαθεσιμότητα: http://earchive.tpu.ru/handle/11683/74241

  19. 19
  20. 20