Showing 1 - 20 results of 285 for search '"ДОКСОРУБИЦИН"', query time: 3.73s Refine Results
  1. 1
  2. 2
  3. 3
    Academic Journal

    Contributors: The work was supported by the Be- larusian Republican Foundation for Fundamental Research of the Republic of Belarus and the Ministry of Innova- tive Development of the Republic of Uzbekistan (2021– 2023, Belarusian-Uzbek scientific and technical project, № X21UZBG-020)., Работа выполнена при поддержке Белорусского республиканского фонда фундаментальных исследований Республики Беларусь и Министерства инновационного развития Республики Узбекистан (2021–2023 гг., Белорусско-Узбекский научно-технический проект, № Х21УЗБГ-020).

    Source: Proceedings of the National Academy of Sciences of Belarus, Chemical Series; Том 61, № 1 (2025); 30-40 ; Известия Национальной академии наук Беларуси. Серия химических наук; Том 61, № 1 (2025); 30-40 ; 2524-2342 ; 1561-8331 ; 10.29235/1561-8331-2025-61-1

    File Description: application/pdf

    Relation: https://vestichem.belnauka.by/jour/article/view/935/763; Doxorubicin-loaded oligonucleotide conjugated gold nanoparticles: A promising in vivo drug delivery system for colorectal cancer therapy / C.-S. Lee, H. Kim, J. Yu, [et al.] // European Journal of Medicinal Chemistry. – 2017. – Vol. 142. – P. 416–423. https://doi.org/10.1016/j.ejmech.2017.08.063; Multifunctional selenium nanoparticles as carriers of HSP70 siRNA to induce apoptosis of HepG2 cells / B. Zhu, Z. Lin, M. Zhao [et al.] // International Journal of Nanomedicine. – 2016. – Vol. 11. – P. 3065–3076. https://doi.org/10.2147/ijn.s109822; Doxorubicin-loaded functionalized selenium nanoparticles for enhanced antitumor efficacy in cervical carcinoma therapy / Y. Xia, M. Xiao, M. Zhao [et al.] // Materials Science and Engineering: C. – 2020. – Vol. 106. – P. 110100. https://doi.org/10.1016/j.msec.2019.110100; Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells / C. H. Ramamurthy, K. S. Sampath, P. Arunkumar [et al.] // Bioprocess and Biosystems Engineering. – 2013. – Vol. 36, № 8. – P. 1131–1139. https://doi.org/10.1007/s00449-012-0867-1; Chitosan – dextran phosphate carbamate hydrogels for locally controlled co-delivery of doxorubicin and indomethacin: From computation study to in vivo pharmacokinetics / S. O. Solomevich, U. E. Aharodnikau, E. I. Dmitruk [et al.] // International Journal of Biological Macromolecules. – 2023. – Vol. 228. – P. 273–285. https://doi.org/10.1016/j.ijbiomac.2022.12.243; Tacar, O. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems / O. Tacar, P. Sriamornsak, C. R. Dass // J Pharm Pharmacol. – 2013. – Vol. 65, № 2. – P. 157–170. https://doi.org/10.1111/j.2042-7158.2012.01567.x; Ozben, T. Mechanisms and strategies to overcome multiple drug resistance in cancer / T. Ozben // FEBS Letters. – 2006. – Vol. 580, № 12. – P. 2903–2909. https://doi.org/10.1016/j.febslet.2006.02.020; Curcumin loaded selenium nanoparticles synergize the anticancer potential of doxorubicin contained in self-assembled, cell receptor targeted nanoparticles / M. Kumari, M. P. Purohit, S. Patnaik [et al.] // European Journal of Pharmaceutics and Biopharmaceutics. – 2018. – Vol. 130. – P. 185–199. https://doi.org/10.1016/j.ejpb.2018.06.030; Synthesis of Selenium Nanoparticles Stabilized with Sodium Carboxymethylcellulose for Preparation of a Long-Acting Form of Prospidine / K. E. Yunusov, A. A.Sarymsakov, F. M. Turakulov [et al.] // Russian Journal of Applied Chemistry. – 2021. – Vol. 94, № 9. – P. 1259–1266. https://doi.org/10.1134/s1070427221090081; Biodegradable pH-sensitive prospidine-loaded dextran phosphate based hydrogels for local tumor therapy / S. O. Solomevich, P. M. Bychkovsky, T. L. Yurkshtovich [et al.] // Carbohydrate Polymers. – 2019. – Vol. 226. – P. 115308. https://doi.org/10.1016/j.carbpol.2019.115308; Millimeter-sized chitosan/dextran phosphate capsules and calcium/dextran phosphate beads for regulating prospidine release / S. O. Solomevich, A. V. Cherkasova, D. A. Salamevich [et al.] // Materials Letters. – 2021. – Vol. 293. – P. 129720. https://doi.org/10.1016/j.matlet.2021.129720; Biodegradable polyelectrolyte complexes of chitosan and partially crosslinked dextran phosphate with potential for biomedical applications / S. O. Solomevich, E. I. Dmitruk, P. M. Bychkovsky [et al.] // International Journal of Biological Macromolecules. – 2021. – Vol. 169. – P. 500–512. https://doi.org/10.1016/j.ijbiomac.2020.12.200; Development of new phosphated cellulose for application as an efficient biomaterial for the incorporation/release of amitriptyline / R. D. S. Bezerra, A. I. S. Morais, J. A. Osajima [et al.] // International Journal of Biological Macromolecules. – 2016. – Vol. 86. – P. 362–375. https://doi.org/10.1016/j.ijbiomac.2016.01.063; Characterization of H3PO4/HNO3–NANO2 oxidized bacterial cellulose and its usage as a carrier for the controlled release of cephalexin / S. O. Solomevich, E. I. Dmitruk, U. E. Aharodnikau [et al.] // Cellulose. – 2021. – Vol. 28, № 14. – P. 9425–9439. https://doi.org/10.1007/s10570-021-04130-z; Bisht, N. Selenium nanoparticles: a review on synthesis and biomedical applications / N. Bisht, P. Phalswal, P. K. Khanna // Materials Advances – 2022. – Vol. 3, № 3. – P. 1415–1431. https://doi.org/10.1039/D1MA00639H; Петров, А. В. Высокоинтенсивный ультразвук как инструмент воздействия на наноструктурные системы в биомедицинских технологиях / А. В. Петров // Вестник Тамбовского государственного технического университета. – 2018. – Т. 24, № 4. – С. 727–738. https://doi.org/10.17277/vestnik.2018.04.p; Effect of ultrasound on size, morphology, stability and antioxidant activity of selenium nanoparticles dispersed by a hyper-branched polysaccharide from Lignosus rhinocerotis / W. Cai, T. Hu, A. M. Bakry [et al.] // Ultrasonics Sonochemistry. – 2018. – Vol. 42. – P. 823–831. https://doi.org/10.1016/j.ultsonch.2017.12.022; Ultrasonic degradation of aqueous dextran: effect of initial molecular weight and concentration / Q. Zou, Y. Pu, Z. Han [et al.] // Carbohydrate Polymers. – 2012. – Vol. 90, № 1. – P. 447–451. https://doi.org/10.1016/j.carbpol.2012.05.064; Разработка состава и технологии мягкой лекарственной формы производного нитрофурана / А. В. Беляцкая, И. М. Кашликова, И. И. Краснюк [и др.] // Вестник Воронежского государственного университета. Серия: Химия. Биология. Фармация. – 2020. – № 1. – С. 50–58.; Fabrication of oxidized bacterial cellulose by nitrogen dioxide in chloroform/cyclohexane as a highly loaded drug carrier for sustained release of cisplatin / S. O. Solomevich, E. I. Dmitruk, P. M. Bychkovsky [et al.] // Carbohydrate Polymers. – 2020. – Vol. 248. – P. 116745. https://doi.org/10.1016/j.carbpol.2020.116745; https://vestichem.belnauka.by/jour/article/view/935

  4. 4
  5. 5
  6. 6
    Academic Journal

    Contributors: The study was carried out with the support of the Russian Science Foundation (RSF) (grant No. 20-15-00001) and was performed as a part of Russia Strategic Academic Leadership Program (“Priority-2030”) of Kazan (Volga Region) Federal University, Исследование выполнено при поддержке Российского научного фонда (грант № 20-15-00001) и проведено в рамках Программы стратегического академического лидерства ФГАОУ ВО «Казанский (Приволжский) федеральный университет» («Приоритет-2030»)

    Source: Advances in Molecular Oncology; Vol 11, No 2 (2024); 130-146 ; Успехи молекулярной онкологии; Vol 11, No 2 (2024); 130-146 ; 2413-3787 ; 2313-805X

    File Description: application/pdf

  7. 7
    Academic Journal

    Contributors: The work was carried out with financial support from the Russian Science Foundation (grant No. 22-24-00212, https://www.rscf.ru/project/2224-00212/?CODE=22-24-00212), Работа выполнена при финансовой поддержке Российского научного фонда (грант № 22-24-00212, https://www.rscf.ru/project/22-24-00212/?CODE=22-24-00212)

    Source: Advances in Molecular Oncology; Vol 11, No 1 (2024); 90-98 ; Успехи молекулярной онкологии; Vol 11, No 1 (2024); 90-98 ; 2413-3787 ; 2313-805X

    File Description: application/pdf

  8. 8
    Academic Journal

    Contributors: The study was conducted on an initiative basis., Исследование проводилось на инициативной основе.

    Source: Drug development & registration; Том 13, № 1 (2024); 190-199 ; Разработка и регистрация лекарственных средств; Том 13, № 1 (2024); 190-199 ; 2658-5049 ; 2305-2066

    File Description: application/pdf

    Relation: https://www.pharmjournal.ru/jour/article/view/1720/1236; https://www.pharmjournal.ru/jour/article/downloadSuppFile/1720/2062; Di Marco A., Cassinelli G., Arcamone F. The discovery of daunorubicin. Cancer treatment reports. 1981;65(4):3–8.; Tan C., Tasaka H., Yu K. P., Murphy M. L., Karnofsky D. A. Daunomycin, an antitumor antibiotic, in the treatment of neoplastic disease. Clinical evaluation with special reference to childhood leukemia. Cancer. 1967;20(3):333–353. DOI:10.1002/1097-0142(1967)20:33.0.co;2-k.; Arcamone F., Cassinelli G., Fantini G., Grein A., Orezzi P., Pol C., Spalla C. Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S. peucetius var. caesius. Biotechnology and Bioengineering. 1969;11(6):1101–1110. DOI:10.1002/bit.260110607.; Chaulin A. M., Duplyakov D. V. Arrhythmogenic effects of doxorubicin. Complex Issues of Cardiovascular Diseases. 2020;9(3):69–80. DOI:10.17802/2306-1278-2020-9-3-69-80.; Yang F., Kemp C. J., Henikoff S. Doxorubicin Enhances Nucleosome Turnover around Promoters. Current Biology. 2013;23(9):782–787. DOI:10.1016/j.cub.2013.03.043.; Von Hoff D. D. Risk Factors for Doxorubicin-lnduced Congestive Heart Failure. Annals of Internal Medicine. 1979;91(5):710. DOI:10.7326/0003-4819-91-5-710.; Swain S. M., Whaley F. S., Ewer M. S. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97(11):2869–2879. DOI:10.1002/cncr.11407.; Cardinale D., Colombo A., Bacchiani G., Tedeschi I., Meroni C. A., Veglia F., Civelli M., Lamantia G., Colombo N., Curigliano G., Fiorentini C., Cipolla C. M. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131(22):1981–1988. DOI:10.1161/CIRCULATIONAHA.114.013777.; Cardinale D., Sandri M. T., Martinoni A., Borghini E., Civelli M., Lamantia G., Cinieri S., Martinelli G., Fiorentini C., Cipolla C. M. Myocardial injury revealed by plasma troponin I in breast cancer treated with high-dose chemotherapy. Annals of Oncology. 2002;13(5):710–715. DOI:10.1093/annonc/mdf170.; Thavendiranathan P., Poulin F., Lim K. D., Plana J. C., Woo A., Marwick T. H. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. Journal of the American College of Cardiology. 2014;63(25 Pt. A):2751–2768. DOI:10.1016/j.jacc.2014.01.073.; Linschoten M., Teske A. J., Cramer M. J., van der Wall E., Asselbergs F. W. Chemotherapy-Related Cardiac Dysfunction: A Systematic Review of Genetic Variants Modulating Individual Risk. Circulation: Genomic and Precision Medicine. 2018;11(1):e001753. DOI:10.1161/CIRCGEN.117.001753.; Miller K. D., Nogueira L., Mariotto A. B., Rowland J. H., Yabroff K. R., Alfano C. M., Jemal A., Kramer J. L., Siegel R. L. Cancer treatment and survivorship statistics, 2019. CA: A Cancer Journal for Clinicians. 2019;69(5):363–385. DOI:10.3322/caac.21565.; Billingham M. E., Mason J. W., Bristow M. R., Daniels J. R. Anthracycline cardiomyopathy monitored by morphologic changes. Cancer treatment reports. 1978;62(6):865–872.; Bristow M. R., Mason J. W., Billingham M. E., Daniels J. R. Doxorubicin cardiomyopathy: evaluation by phonocardiography, endomyocardial biopsy, and cardiac catheterization. Annals of Internal Medicine. 1978;88(2):168–175. DOI:10.7326/0003-4819-88-2-168.; Ewer S. M., Ewer M. S. Cardiotoxicity profile of trastuzumab. Drug Safety. 2008;31(6):459–467. DOI:10.2165/00002018-200831060-00002.; Ferrans V. J. Overview of cardiac pathology in relation to anthracycline cardiotoxicity. Cancer treatment reports. 1978;62(6):955–961.; Shan K., Lincoff A. M., Young J. B. Anthracycline-induced cardiotoxicity. Annals of Internal Medicine. 1996;125(1):47–58. DOI:10.7326/0003-4819-125-1-199607010-00008.; Berry G. J., Jorden M. Pathology of radiation and anthracycline cardiotoxicity. Pediatric Blood & Cancer. 2005;44(7):630–637. DOI:10.1002/pbc.20346.; Šimůnek T., Štěrba M., Popelová O., Adamcová M., Hrdina R., Geršl V. Anthracycline-induced cardiotoxicity: Overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacological Reports. 2009;61(1):154–171. DOI:10.1016/S1734-1140(09)70018-0.; Xu X., Persson H. L., Richardson D. R. Molecular Pharmacology of the Interaction of Anthracyclines with Iron. Molecular Pharmacology. 2005;68(2):261–271. DOI:10.1124/mol.105.013383.; Doroshow J. H., Davies K. J. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. Journal of Biological Chemistry. 1986;261(7):3068–3074. DOI:10.1016/s0021-9258(17)35747-2.; Winterbourn C. C. Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicology Letters. 1995;82–83:969–974. DOI:10.1016/0378-4274(95)03532-X.; Keizer H. G., Pinedo H. M., Schuurhuis G. J., Joenje H. Doxorubicin (adriamycin): a critical review of free radical-dependent mechanisms of cytotoxicity. Pharmacology & Therapeutics. 1990;47(2):219–231. DOI:10.1016/0163-7258(90)90088-j.; Myers C. E., Gianni L., Simone C. B., Klecker R., Greene R. Oxidative destruction of erythrocyte ghost membranes catalyzed by the doxorubicin-iron complex. Biochemistry. 1982;21(8):1707–1712. DOI:10.1021/bi00537a001.; Minotti G., Recalcati S., Mordente A., Liberi G., Calafiore A. M., Mancuso C., Preziosi P., Cairo G. The secondary alcohol metabolite of doxorubicin irreversibly inactivates aconitase/iron regulatory protein-1 in cytosolic fractions from human myocardium. The FASEB Journal. 1998;12(7):541–552. DOI:10.1096/fasebj.12.7.541.; Bugger H., Guzman C., Zechner C., Palmeri M., Russell K. S., Russell R. R. Uncoupling protein downregulation in doxorubicin-induced heart failure improves mitochondrial coupling but increases reactive oxygen species generation. Cancer Chemotherapy and Pharmacology. 2011;67(6):1381–1388. DOI:10.1007/s00280-010-1441-7.; Wu X.-Y., Luo A.-Y., Zhou Y.-R., Ren J.-H. N-acetylcysteine reduces oxidative stress, nuclear factor-κB activity and cardiomyocyte apoptosis in heart failure. Molecular Medicine Reports. 2014;10(2):615–624. DOI:10.3892/mmr.2014.2292.; Van Dalen E. C., Caron H. N., Dickinson H. O., Kremer L. C. M. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database of Systematic Reviews. 2011. DOI:10.1002/14651858.CD003917.pub4.; Jo S.-H., Kim L. S., Kim S.-A., Kim H.-S., Han S.-J., Park W. J., Choi Y. J. Evaluation of Short-Term Use of N-Acetylcysteine as a Strategy for Prevention of Anthracycline-Induced Cardiomyopathy: EPOCH Trial – A Prospective Randomized Study. Korean Circulation Journal. 2013;43(3):174–181. DOI:10.4070/kcj.2013.43.3.174.; Hasinoff B. B., Patel D., Wu X. The oral iron chelator ICL670A (deferasirox) does not protect myocytes against doxorubicin. Free Radical Biology and Medicine. 2003;35(11):1469–1479. DOI:10.1016/j.freeradbiomed.2003.08.005.; Popelová O., Sterba M., Simůnek T., Mazurová Y., Guncová I., Hroch M., Adamcová M., Geršl V. Deferiprone does not protect against chronic anthracycline cardiotoxicity in vivo. Journal of Pharmacology and Experimental Therapeutics. 2008;326(1):259–269. DOI:10.1124/jpet.108.137604.; Elihu N., Anandasbapathy S., Frishman W. H. Chelation therapy in cardiovascular disease: ethylenediaminetetraacetic acid, deferoxamine, and dexrazoxane. The Journal of Clinical Pharmacology. 1998;38(2):101–105. DOI:10.1002/j.1552-4604.1998.tb04397.x.; Giordano F. J. Oxygen, oxidative stress, hypoxia, and heart failure. Journal of Clinical Investigation. 2005;115(3):500–508. DOI:10.1172/JCI200524408.; Goormaghtigh E., Chatelain P., Caspers J., Ruysschaert J. M. Evidence of a complex between adriamycin derivatives and cardiolipin: Possible role in cardiotoxicity. Biochemical Pharmacology. 1980;29(21):3003–3010. DOI:10.1016/0006-2952(80)90050-7.; Childs A. C., Phaneuf S. L., Dirks A. J., Phillips T., Leeuwenburgh C. Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2:Bax ratio. Cancer Research. 2002;62(16):4592–4598.; Ichikawa Y., Ghanefar M., Bayeva M., Wu R., Khechaduri A., Naga Prasad S. V., Mutharasan R. K., Naik T. J., Ardehali H. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. Journal of Clinical Investigation. 2014;124(2):617–630. DOI:10.1172/JCI72931.; Tewey K. M., Rowe T. C., Yang L., Halligan B. D., Liu L. F. Adriamycin-Induced DNA Damage Mediated by Mammalian DNA Topoisomerase II. Science. 1984;226(4673):466–468. DOI:10.1126/science.6093249.; Wang J. C. Cellular roles of DNA topoisomerases: a molecular perspective. Nature Reviews Molecular Cell Biology. 2002;3(6):430–440. DOI:10.1038/nrm831.; Zhang S., Liu X., Bawa-Khalfe T., Lu L.-S., Lyu Y. L., Liu L. F., Yeh E. T. H. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine. 2012;18(11):1639–1642. DOI:10.1038/nm.2919.; Vavrova A., Jansova H., Mackova E., Machacek M., Haskova P., Tichotova L., Sterba M., Simunek T. Catalytic inhibitors of topoisomerase II differently modulate the toxicity of anthracyclines in cardiac and cancer cells. PloS One. 2013;8(10):e76676. DOI:10.1371/journal.pone.0076676.; Classen S., Olland S., Berger J. M. Structure of the topoisomerase II ATPase region and its mechanism of inhibition by the chemotherapeutic agent ICRF-187. Proceedings of the National Academy of Sciences. 2003;100(19):10629–10634. DOI:10.1073/pnas.1832879100.; Khiati S., Dalla Rosa I., Sourbier C., Ma X., Rao V. A., Neckers L. M., Zhang H., Pommier Y. Mitochondrial Topoisomerase I (Top1mt) Is a Novel Limiting Factor of Doxorubicin Cardiotoxicity. Clinical Cancer Research. 2014;20(18):4873–4881. DOI:10.1158/1078-0432.CCR-13-3373.; Lebrecht D., Kokkori A., Ketelsen U. P., Setzer B., Walker U. A. Tissue-specific mtDNA lesions and radical-associated mitochondrial dysfunction in human hearts exposed to doxorubicin. The Journal of Pathology. 2005;207(4):436–444. DOI:10.1002/path.1863.; Lebrecht D., Setzer B., Ketelsen U. P., Haberstroh J., Walker U. A. Time-Dependent and Tissue-Specific Accumulation of mtDNA and Respiratory Chain Defects in Chronic Doxorubicin Cardiomyopathy. Circulation. 2003;108(19):2423–2429. DOI:10.1161/01.CIR.0000093196.59829.DF.; Yin J., Guo J., Zhang Q., Cui L., Zhang L., Zhang T., Zhao J., Li J., Middleton A., Carmichael P. L., Peng S. Doxorubicin-induced mitophagy and mitochondrial damage is associated with dysregulation of the PINK1/parkin pathway. Toxicology in Vitro. 2018;51:1–10. DOI:10.1016/j.tiv.2018.05.001.; Vega R. B., Horton J. L., Kelly D. P. Maintaining ancient organelles. Mitochondrial biogenesis and maturation. Circulation Research. 2015;116(11):1820–1834. DOI:10.1161/CIRCRESAHA.116.305420.; Kruiswijk F., Labuschagne C. F., Vousden K. H. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nature Reviews Molecular Cell Biology. 2015;16(7):393–405. DOI:10.1038/nrm4007.; Zhuang J., Ma W., Lago C. U., Hwang P. M. Metabolic regulation of oxygen and redox homeostasis by p53: lessons from evolutionary biology? Free Radical Biology and Medicine. 2012;53(6):1279–1285. DOI:10.1016/j.freeradbiomed.2012.07.026.; Hoshino A., Mita Y., Okawa Y., Ariyoshi M., Iwai-Kanai E., Ueyama T., Ikeda K., Ogata T., Matoba S. Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nature Communications. 2013;4(1):2308. DOI:10.1038/ncomms3308.; Dhingra R., Margulets V., Chowdhury S. R., Thliveris J., Jassal D., Fernyhough P., Dorn G. W., Kirshenbaum L. A. Bnip3 mediates doxorubicin-induced cardiac myocyte necrosis and mortality through changes in mitochondrial signaling. Proceedings of the National Academy of Sciences. 2014;111(51):E5537–E5544. DOI:10.1073/pnas.1414665111.; Fang X., Wang H., Han D., Xie E., Yang X., Wei J., Gu S., Gao F., Zhu N., Yin X., Cheng Q., Zhang P., Dai W., Chen J., Yang F., Yang H.-T., Linkermann A., Gu W., Min J., Wang F. Ferroptosis as a target for protection against cardiomyopathy. Proceedings of the National Academy of Sciences. 2019;116(7):2672–2680. DOI:10.1073/pnas.1821022116.; Zhu W., Soonpaa M. H., Chen H., Shen W., Payne R. M., Liechty E. A., Caldwell R. L., Shou W., Field L. J. Acute doxorubicin cardiotoxicity is associated with p53-induced inhibition of the mammalian target of rapamycin pathway. Circulation. 2009;119(1):99–106. DOI:10.1161/CIRCULATIONAHA.108.799700.; Zhu W., Zhang W., Shou W., Field L. J. P53 inhibition exacerbates late-stage anthracycline cardiotoxicity. Cardiovascular Research. 2014;103(1):81–89. DOI:10.1093/cvr/cvu118.; Nithipongvanitch R., Ittarat W., Velez J. M., Zhao R., St. Clair D. K., Oberley T. D. Evidence for p53 as Guardian of the Cardiomyocyte Mitochondrial Genome Following Acute Adriamycin Treatment. Journal of Histochemistry & Cytochemistry. 2007;55(6):629–639. DOI:10.1369/jhc.6A7146.2007.; Saleme B., Gurtu V., Zhang Y., Kinnaird A., Boukouris A. E., Gopal K., Ussher J. R., Sutendra G. Tissue-specific regulation of p53 by PKM2 is redox dependent and provides a therapeutic target for anthracycline-induced cardiotoxicity. Science Translational Medicine. 2019;11(478):eaau8866. DOI:10.1126/scitranslmed.aau8866.; Sala V., Li M., Ghigo A. New avenues in cardio-oncology. Aging. 2019;11(4):1075–1076. DOI:10.18632/aging.101817.; Sawyer D. B., Zuppinger C., Miller T. A., Eppenberger H. M., Suter T. M. Modulation of Anthracycline-Induced Myofibrillar Disarray in Rat Ventricular Myocytes by Neuregulin-1β and Anti-erbB2: Potential Mechanism for Trastuzumab-Induced Cardiotoxicity. Circulation. 2002;105(13):1551–1554. DOI:10.1161/01.CIR.0000013839.41224.1C.; Granzier H. L., Labeit S. The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circulation Research. 2004;94(3):284–295. DOI:10.1161/01.RES.0000117769.88862.F8.; Ali M. A. M., Cho W. J., Hudson B., Kassiri Z., Granzier H., Schulz R. Titin is a Target of Matrix Metalloproteinase-2: Implications in Myocardial Ischemia/Reperfusion Injury. Circulation. 2010;122(20):2039–2047. DOI:10.1161/CIRCULATIONAHA.109.930222.; Lim C. C., Zuppinger C., Guo X., Kuster G. M., Helmes M., Eppenberger H. M., Suter T. M., Liao R., Sawyer D. B. Anthracyclines Induce Calpain-dependent Titin Proteolysis and Necrosis in Cardiomyocytes. Journal of Biological Chemistry. 2004;279(9):8290–8299. DOI:10.1074/jbc.M308033200.; Sala V., Della Sala A., Hirsch E., Ghigo A. Signaling Pathways Underlying Anthracycline Cardiotoxicity. Antioxidants & Redox Signaling. 2020;32(15):1098–1114. DOI:10.1089/ars.2020.8019.; Galvez A. S., Diwan A., Odley A. M., Hahn H. S., Osinska H., Melendez J. G., Robbins J., Lynch R. A., Marreez Y., Dorn G. W. Cardiomyocyte degeneration with calpain deficiency reveals a critical role in protein homeostasis. Circulation Research. 2007;100(7):1071–1078. DOI:10.1161/01.RES.0000261938.28365.11.; Taneike M., Mizote I., Morita T., Watanabe T., Hikoso S., Yamaguchi O., Takeda T. , Oka T., Tamai T., Oyabu J., Murakawa T., Nakayama H., Nishida K., Takeda J., Mochizuki N., Komuro I., Otsu K. Calpain protects the heart from hemodynamic stress. Journal of Biological Chemistry. 2011;286(37):32170–32177. DOI:10.1074/jbc.M111.248088.; Wang Y., Zheng D., Wei M., Ma J., Yu Y., Chen R., Lacefield J. C., Xu H., Peng T. Over-expression of calpastatin aggravates cardiotoxicity induced by doxorubicin. Cardiovascular Research. 2013;98(3):381–390. DOI:10.1093/cvr/cvt048.; Chan B. Y. H., Roczkowsky A., Moser N., Poirier M., Hughes B. G., Ilarraza R., Schulz R. Doxorubicin induces de novo expression of N-terminal-truncated matrix metalloproteinase-2 in cardiac myocytes. Canadian Journal of Physiology and Pharmacology. 2018;96(12):1238–1245. DOI:10.1139/cjpp-2018-0275.; Doucet A., Overall C. Protease proteomics: Revealing protease in vivo functions using systems biology approaches. Molecular Aspects of Medicine. 2008;29(5):339–358. DOI:10.1016/j.mam.2008.04.003.; McCawley L. J., Matrisian L. M. Matrix metalloproteinases: they’re not just for matrix anymore! Current Opinion in Cell Biology. 2001;13(5):534–540. DOI:10.1016/s0955-0674(00)00248-9.; Gao C. Q., Sawicki G., Suarez-Pinzon W. L., Csont T., Wozniak M., Ferdinandy P., Schulz R. Matrix metalloproteinase-2 mediates cytokine-induced myocardial contractile dysfunction. Cardiovascular Research. 2003;57(2):426–433. DOI:10.1016/s0008-6363(02)00719-8.; Wang W., Schulze C. J., Suarez-Pinzon W. L., Dyck J. R. B., Sawicki G., Schulz R. Intracellular Action of Matrix Metalloproteinase-2 Accounts for Acute Myocardial Ischemia and Reperfusion Injury. Circulation. 2002;106(12):1543–1549. DOI:10.1161/01.CIR.0000028818.33488.7B.; Sawicki G., Leon H., Sawicka J., Sariahmetoglu M., Schulze C. J., Scott P. G., Szczesna-Cordary D., Schulz R. Degradation of Myosin Light Chain in Isolated Rat Hearts Subjected to Ischemia-Reperfusion Injury: A New Intracellular Target for Matrix Metalloproteinase-2. Circulation. 2005;112(4):544–552. DOI:10.1161/CIRCULATIONAHA.104.531616.; Sung M. M., Schulz C. G., Wang W., Sawicki G., Bautista-López N. L., Schulz R. Matrix metalloproteinase-2 degrades the cytoskeletal protein α-actinin in peroxynitrite mediated myocardial injury. Journal of Molecular and Cellular Cardiology. 2007;43(4):429–436. DOI:10.1016/j.yjmcc.2007.07.055.; Bergman M. R., Teerlink J. R., Mahimkar R., Li L., Zhu B. Q., Nguyen A., Dahi S., Karliner J. S., Lovett D. H. Cardiac matrix metalloproteinase-2 expression independently induces marked ventricular remodeling and systolic dysfunction. American Journal of Physiology-Heart and Circulatory Physiology. 2007;292(4):H1847–H1860. DOI:10.1152/ajpheart.00434.2006.; Chan B. Y. H., Roczkowsky A., Cho W. J., Poirier M., Sergi C., Keschrumrus V., Churko J. M., Granzier H., Schulz R. MMP inhibitors attenuate doxorubicin cardiotoxicity by preventing intracellular and extracellular matrix remodelling. Cardiovascular Research. 2021;117(1):188–200. DOI:10.1093/cvr/cvaa017.; Tanihata J., Nishioka N., Inoue T., Bando K., Minamisawa S. Urinary Titin Is Increased in Patients After Cardiac Surgery. Frontiers in Cardiovascular Medicine. 2019;6. DOI:10.3389/fcvm.2019.00007.; Zhang T., Zhang Y., Cui M., Jin L., Wang Y., Lv F., Liu Y., Zheng W., Shang H., Zhang J., Zhang M., Wu H., Guo J., Zhang X., Hu X., Cao C.-M., Xiao R.-P. CaMKII is a RIP3 substrate mediating ischemiaand oxidative stress-induced myocardial necroptosis. Nature Medicine. 2016;22(2):175–182. DOI:10.1038/nm.4017.; Meng L., Lin H., Zhang J., Lin N., Sun Z., Gao F., Luo H., Ni T., Luo W., Chi J., Guo H. Doxorubicin induces cardiomyocyte pyroptosis via the TINCR-mediated posttranscriptional stabilization of NLR family pyrin domain containing 3. Journal of Molecular and Cellular Cardiology. 2019;136:15–26. DOI:10.1016/j.yjmcc.2019.08.009.; Zheng X., Zhong T., Ma Y., Wan X., Qin A., Yao B., Zou H., Song Y., Yin D. Bnip3 mediates doxorubicin-induced cardiomyocyte pyroptosis via caspase-3/GSDME. Life Sciences. 2020;242:117186. DOI:10.1016/j.lfs.2019.117186.; Arola O. J., Saraste A., Pulkki K., Kallajoki M., Parvinen M., Voipio-Pulkki L. M. Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Research. 2000;60(7):1789–1792.; Bartlett J. J., Trivedi P. C., Pulinilkunnil T. Autophagic dysregulation in doxorubicin cardiomyopathy. Journal of Molecular and Cellular Cardiology. 2017;104:1–8. DOI:10.1016/j.yjmcc.2017.01.007.; Koleini N., Kardami E. Autophagy and mitophagy in the context of doxorubicin-induced cardiotoxicity. Oncotarget. 2017;8(28):46663–46680. DOI:10.18632/oncotarget.16944.; Li M., Russo M., Pirozzi F., Tocchetti C. G., Ghigo A. Autophagy and cancer therapy cardiotoxicity: From molecular mechanisms to therapeutic opportunities. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research. 2020;1867(3):118493. DOI:10.1016/j.bbamcr.2019.06.007.; Xiao B., Hong L., Cai X., Mei S., Zhang P., Shao L. The true colors of autophagy in doxorubicin-induced cardiotoxicity. Oncology Letters. 2019;18(3):2165–2172. DOI:10.3892/ol.2019.10576.; Bartlett J. J., Trivedi P. C., Yeung P., Kienesberger P. C., Pulinilkunnil T. Doxorubicin impairs cardiomyocyte viability by suppressing transcription factor EB expression and disrupting autophagy. Biochemical Journal. 2016;473(21):3769–3789. DOI:10.1042/BCJ20160385.; Li D. L., Wang Z. V., Ding G., Tan W., Luo X., Criollo A., Xie M., Jiang N., May H., Kyrychenko V., Schneider J. W., Gillette T. G., Hill J. A. Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification. Circulation. 2016;133(17):1668–1687. DOI:10.1161/CIRCULATIONAHA.115.017443.; Li M., Sala V., De Santis M. C., Cimino J., Cappello P., Pianca N., Di Bona A., Margaria J. P., Martini M., Lazzarini E., Pirozzi F., Rossi L., Franco I., Bornbaum J., Heger J., Rohrbach S., Perino A., Tocchetti C. G., Lima B. H. F., Teixeira M. M., Porporato P. E., Schulz R., Angelini A., Sandri M., Ameri P., Sciarretta S., Lima-Júnior R. C. P., Mongillo M., Zaglia T., Morello F., Novelli F., Hirsch E., Ghigo A. Phosphoinositide 3-Kinase Gamma Inhibition Protects From Anthracycline Cardiotoxicity and Reduces Tumor Growth. Circulation. 2018;138(7):696–711. DOI:10.1161/CIRCULATIONAHA.117.030352.; Ejiri J., Inoue N., Kobayashi S., Shiraki R., Otsui K., Honjo T., Takahashi M., Ohashi Y., Ichikawa S., Terashima M., Mori T., Awano K., Shinke T., Shite J., Hirata K.-I., Yokozaki H., Kawashima S., Yokoyama M. Possible role of brain-derived neurotrophic factor in the pathogenesis of coronary artery disease. Circulation. 2005;112(14):2114–2120. DOI:10.1161/CIRCULATIONAHA.104.476903.; Meloni M., Caporali A., Graiani G., Lagrasta C., Katare R., Van Linthout S., Spillmann F., Campesi I., Madeddu P., Quaini F., Emanueli C. Nerve growth factor promotes cardiac repair following myocardial infarction. Circulation Research. 2010;106(7):1275–1284. DOI:10.1161/CIRCRESAHA.109.210088.; Liao D., Zhang C., Liu N., Cao L., Wang C., Feng Q., Yao D., Long M., Jiang P. Involvement of neurotrophic signaling in doxorubicin-induced cardiotoxicity. Experimental and Therapeutic Medicine. 2020;19(2):1129–1135. DOI:10.3892/etm.2019.8276.; Hang P., Zhao J., Sun L., Li M., Han Y., Du Z., Li Y. Brain-derived neurotrophic factor attenuates doxorubicin-induced cardiac dysfunction through activating Akt signalling in rats. Journal of Cellular and Molecular Medicine. 2017;21(4):685–696. DOI:10.1111/jcmm.13012.; Zhao J., Du J., Pan Y., Chen T., Zhao L., Zhu Y., Chen Y., Zheng Y., Liu Y., Sun L., Hang P., Du Z. Activation of cardiac TrkB receptor by its small molecular agonist 7,8-dihydroxyflavone inhibits doxorubicin-induced cardiotoxicity via enhancing mitochondrial oxidative phosphorylation. Free Radical Biology and Medicine. 2019;130:557–567. DOI:10.1016/j.freeradbiomed.2018.11.024.; https://www.pharmjournal.ru/jour/article/view/1720

  9. 9
    Academic Journal

    Source: Drug development & registration; Том 13, № 3 (2024); 208-218 ; Разработка и регистрация лекарственных средств; Том 13, № 3 (2024); 208-218 ; 2658-5049 ; 2305-2066

    File Description: application/pdf

    Relation: https://www.pharmjournal.ru/jour/article/view/1913/1312; https://www.pharmjournal.ru/jour/article/downloadSuppFile/1913/2426; Andreev D. A., Balakin E. I., Samoilov A. S., Pustovoit V. I. The Role of Doxorubicin in the Formation of Cardiotoxicity – Generally Accepted Statement. Part I. Prevalence and Mechanisms of Formation (Review). Drug development & registration. 2024;13(1):190–199. (In Russ.) DOI:10.33380/2305-2066-2024-13-1-1508.; Wallace K. B., Sardão V. A., Oliveira P. J. Mitochondrial Determinants of Doxorubicin-Induced Cardiomyopathy. Circulation Research. 2020;126(7):926–941. DOI:10.1161/CIRCRESAHA.119.314681.; Lefrak E. A., Pitha J., Rosenheim S., Gottlieb J. A. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer. 1973;32(2):302–314. DOI:10.1002/1097-0142(197308)32:23.0.co;2-2.; Swain S. M., Whaley F. S., Ewer M. S. Congestive heart failure in patients treated with doxorubicin. Cancer. 2003;97(11):2869–2879. DOI:10.1002/cncr.11407.; Arai M., Yoguchi A., Takizawa T., Yokoyama T., Kanda T., Kurabayashi M., Nagai R. Mechanism of doxorubicin-induced inhibition of sarcoplasmic reticulum Ca 2+ -ATPase gene transcription. Circulation Research. 2000;86(1):8–14. DOI:10.1161/01.res.86.1.8.; Steinherz L. J., Steinherz P. G., Tan C. T., Heller G., Murphy M. L. Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA. 1991;266(12):1672–1677.; Maksjutov N. F., Murtazin A. A., Balakin E. I., Pustovoit V. I. Using machine learning approaches and omics technologies for assessment of human functional state. Modern Issues of Biomedicine. 2022;6(3). (In Russ.) DOI:10.51871/2588-0500_2022_06_03_14.; Cardinale D., Colombo A., Bacchiani G., Tedeschi I., Meroni C. A., Veglia F., Civelli M., Lamantia G., Colombo N., Curigliano G., Fiorentini C., Cipolla C. M. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131(22):1981–1988. DOI:10.1161/CIRCULATIONAHA.114.013777.; Pustovoit V. I., Balakin E. I., Maksjutov N. F., Murtazin A. A., Samoylov A. S. Change in the functional status of extreme athletes in response to adverse environmental conditions. Human sport medicine. 2022;22(S2):22–29. DOI:10.14529/hsm22s203.; Jordan J. H., Castellino S. M., Meléndez G. C., Klepin H. D., Ellis L. R., Lamar Z., Vasu S., Kitzman D. W., Ntim W. O., Brubaker P. H., Reichek N., D’Agostino R. B., Hundley W. G. Left Ventricular Mass Change After Anthracycline Chemotherapy. Circulation: Heart Failure. 2018;11(7):e004560. DOI:10.1161/CIRCHEARTFAILURE.117.004560.; Willis M. S., Parry T. L., Brown D. I., Mota R. I., Huang W., Beak J. Y., Sola M., Zhou C., Hicks S. T., Caughey M. C., D’Agostino R. B., Jordan J., Hundley W. G., Jensen B. C. Doxorubicin Exposure Causes Subacute Cardiac Atrophy Dependent on the Striated Muscle-Specific Ubiquitin Ligase MuRF1. Circulation: Heart Failure. 2019;12(3):e005234. DOI:10.1161/CIRCHEARTFAILURE.118.005234.; Kajihara H., Yokozaki H., Yamahara M., Kadomoto Y., Tahara E. Anthracycline induced myocardial damage: An analysis of 16 autopsy cases. Pathology – Research and Practice. 1986;181(4):434–441. DOI:10.1016/S0344-0338(86)80079-6.; Prezioso L., Tanzi S., Galaverna F., Frati C., Testa B., Savi M., Graiani G., Lagrasta C., Cavalli S., Galati S., Madeddu D., Rizzini E., Ferraro F., Musso E., Stilli D., Urbanek K., Piegari E., De Angelis A., Maseri A., Rossi F., Quaini E., Quaini F. Cancer Treatment-Induced Cardiotoxicity: a Cardiac Stem Cell Disease? Cardiovascular & Hematological Agents in Medicinal Chemistry. 2010;8(1):55–75. DOI:10.2174/187152510790796165.; Bearzi C., Rota M., Hosoda T., Tillmanns J., Nascimbene A., De Angelis A., Yasuzawa-Amano S., Trofimova I., Siggins R. W., LeCapitaine N., Cascapera S., Beltrami A. P., D'Alessandro D. A., Zias E., Quaini F., Urbanek K., Michler R. E., Bolli R., Kajstura J., Leri A., Anversa P. Human cardiac stem cells. Proceedings of the National Academy of Sciences. 2007;104(35):14068–14073. DOI:10.1073/pnas.0706760104.; Beltrami A. P., Barlucchi L., Torella D., Baker M., Limana F., Chimenti S., Kasahara H., Rota M., Musso E., Urbanek K., Leri A., Kajstura J., Nadal-Ginard B., Anversa P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114(6):763–776. DOI:10.1016/s0092-8674(03)00687-1.; Pfister O., Mouquet F., Jain M., Summer R., Helmes M., Fine A., Colucci W. S., Liao R. CD31 – but Not CD31 + cardiac side population cells exhibit functional cardiomyogenic differentiation. Circulation Research. 2005;97(1):52–61. DOI:10.1161/01.RES.0000173297.53793.fa.; Smith R. R., Barile L., Cho H. C., Leppo M. K., Hare J. M., Messina E., Giacomello A., Abraham M. R., Marbán E. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 2007;115(7):896–908. DOI:10.1161/CIRCULATIONAHA.106.655209.; Cesselli D., Beltrami A. P., D’Aurizio F., Marcon P., Bergamin N., Toffoletto B., Pandolfi M., Puppato E., Marino L., Signore S., Livi U., Verardo R., Piazza S., Marchionni L., Fiorini C., Schneider C., Hosoda T., Rota M., Kajstura J., Anversa P., Beltrami C. A., Leri A. Effects of age and heart failure on human cardiac stem cell function. The American Journal of Pathology. 2011;179(1):349–366. DOI:10.1016/j.ajpath.2011.03.036.; Chimenti C., Kajstura J., Torella D., Urbanek K., Heleniak H., Colussi C., Di Meglio F., Nadal-Ginard B., Frustaci A., Leri A., Maseri A., Anversa P. Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circulation Research. 2003;93(7):604–613. DOI:10.1161/01.RES.0000093985.76901.AF.; Rota M., LeCapitaine N., Hosoda T., Boni A., De Angelis A., Padin-Iruegas M. E., Esposito G., Vitale S., Urbanek K., Casarsa C., Giorgio M., Lüscher T. F., Pelicci P. G., Anversa P., Leri A., Kajstura J. Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66 shc gene. Circulation Research. 2006;99(1):42–52. DOI:10.1161/01.RES.0000231289.63468.08.; Rupp S., Bauer J., von Gerlach S., Fichtlscherer S., Zeiher A. M., Dimmeler S., Schranz D. Pressure overload leads to an increase of cardiac resident stem cells. Basic Research in Cardiology. 2012;107(2):252. DOI:10.1007/s00395-012-0252-x.; Urbanek K., Torella D., Sheikh F., De Angelis A., Nurzynska D., Silvestri F., Beltrami C. A., Bussani R., Beltrami A. P., Quaini F., Bolli R., Leri A., Kajstura J., Anversa P. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proceedings of the National Academy of Sciences. 2005;102(24):8692–8697. DOI:10.1073/pnas.0500169102.; Avolio E., Gianfranceschi G., Cesselli D., Caragnano A., Athanasakis E., Katare R., Meloni M., Palma A., Barchiesi A., Vascotto C., Toffoletto B., Mazzega E., Finato N., Aresu G., Livi U., Emanueli C., Scoles G., Beltrami C. A., Madeddu P., Beltrami A. P. Ex vivo molecular rejuvenation improves the therapeutic activity of senescent human cardiac stem cells in a mouse model of myocardial infarction. Stem Cells. 2014;32(9):2373–2385. DOI:10.1002/stem.1728.; Kajstura J., Gurusamy N., Ogórek B., Goichberg P., Clavo-Rondon C., Hosoda T., D'Amario D., Bardelli S., Beltrami A. P., Cesselli D., Bussani R., del Monte F., Quaini F., Rota M., Beltrami C. A., Buchholz B. A., Leri A., Anversa P. Myocyte Turnover in the Aging Human Heart. Circulation Research. 2010;107(11):1374–1386. DOI:10.1161/CIRCRESAHA.110.231498.; Huang C., Zhang X., Ramil J. M., Rikka S., Kim L., Lee Y., Gude N. A., Thistlethwaite P. A., Sussman M. A., Gottlieb R. A., Gustafsson Å. B. Juvenile exposure to anthracyclines impairs cardiac progenitor cell function and vascularization resulting in greater susceptibility to stress-induced myocardial injury in adult mice. Circulation. 2010;121(5):675–683. DOI:10.1161/CIRCULATIONAHA.109.902221.; De Angelis A., Piegari E., Cappetta D., Marino L., Filippelli A., Berrino L., Ferreira-Martins J., Zheng H., Hosoda T., Rota M., Urbanek K., Kajstura J., Leri A., Rossi F., Anversa P. Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation. 2010;121(2):276–292. DOI:10.1161/CIRCULATIONAHA.109.895771.; Piegari E., De Angelis A., Cappetta D., Russo R., Esposito G., Costantino S., Graiani G., Frati C., Prezioso L., Berrino L., Urbanek K., Quaini F., Rossi F. Doxorubicin induces senescence and impairs function of human cardiac progenitor cells. Basic Research in Cardiology. 2013;108(2):334. DOI:10.1007/s00395-013-0334-4.; De Angelis A., Piegari E., Cappetta D., Russo R., Esposito G., Ciuffreda L. P., Ferraiolo F. A. V., Frati C., Fagnoni F., Berrino L., Quaini F., Rossi F., Urbanek K. SIRT1 activation rescues doxorubicin-induced loss of functional competence of human cardiac progenitor cells. International Journal of Cardiology. 2015;189:30–44. DOI:10.1016/j.ijcard.2015.03.438.; Linke A., Müller P., Nurzynska D., Casarsa C., Torella D., Nascimbene A., Castaldo C., Cascapera S., Böhm M., Quaini F., Urbanek K., Leri A., Hintze T. H., Kajstura J., Anversa P. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proceedings of the National Academy of Sciences. 2005;102(25):8966–8971. DOI:10.1073/pnas.0502678102.; Torella D., Rota M., Nurzynska D., Musso E., Monsen A., Shiraishi I., Zias E., Walsh K., Rosenzweig A., Sussman M. A., Urbanek K., Nadal-Ginard B., Kajstura J., Anversa P., Leri A. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circulation Research. 2004;94(4):514–524. DOI:10.1161/01.RES.0000117306.10142.50.; Urbanek K., Rota M., Cascapera S., Bearzi C., Nascimbene A., De Angelis A., Hosoda T., Chimenti S., Baker M., Limana F., Nurzynska D., Torella D., Rotatori F., Rastaldo R., Musso E., Quaini F., Leri A., Kajstura J., Anversa P. Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circulation Research. 2005;97(7):663–673. DOI:10.1161/01.RES.0000183733.53101.11.; Powell E. M., Mars W. M., Levitt P. Hepatocyte Growth Factor/Scatter Factor Is a Motogen for Interneurons Migrating from the Ventral to Dorsal Telencephalon. Neuron. 2001;30(1):79–89. DOI:10.1016/S0896-6273(01)00264-1.; Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120(4):513–522. DOI:10.1016/j.cell.2005.02.003.; Beauséjour C. M., Krtolica A., Galimi F., Narita M., Lowe S. W., Yaswen P., Campisi J. Reversal of human cellular senescence: roles of the p53 and p16 pathways. The EMBO Journal. 2003;22(16):4212–4222. DOI:10.1093/emboj/cdg417.; Takai H., Smogorzewska A., de Lange T. DNA damage foci at dysfunctional telomeres. Current Biology. 2003;13(17):1549–1556. DOI:10.1016/s0960-9822(03)00542-6.; Ali M. K., Ewer M. S., Gibbs H. R., Swafford J., Graff K. L. Late doxorubicin-associated cardiotoxicity in children. Cancer. 1994;74(1):182–188. DOI:10.1002/1097-0142(19940701)74:13.0.co;2-2.; Chen M. H., Colan S. D., Diller L. Cardiovascular disease: cause of morbidity and mortality in adult survivors of childhood cancers. Circulation Research. 2011;108(5):619–628. DOI:10.1161/CIRCRESAHA.110.224519.; Pai V. B., Nahata M. C. Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Safety. 2000;22(4):263–302. DOI:10.2165/00002018-200022040-00002.; Kuwahara F., Kai H., Tokuda K., Kai M., Takeshita A., Egashira K., Imaizumi T. Transforming growth Factor-β function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation. 2002;106(1):130–135. DOI:10.1161/01.cir.0000020689.12472.e0.; Krstić J., Trivanović D., Mojsilović S., Santibanez J. F. Transforming Growth Factor-Beta and Oxidative Stress Interplay: Implications in Tumorigenesis and Cancer Progression. Oxidative Medicine and Cellular Longevity. 2015;2015:654594. DOI:10.1155/2015/654594.; Li A.-H., Liu P. P., Villarreal F. J., Garcia R. A. Dynamic changes in myocardial matrix and relevance to disease: translational perspectives. Circulation Research. 2014;114(5):916–927. DOI:10.1161/CIRCRESAHA.114.302819.; Cappetta D., Esposito G., Piegari E., Russo R., Ciuffreda L. P., Rivellino A., Berrino L., Rossi F., De Angelis A., Urbanek K. SIRT1 activation attenuates diastolic dysfunction by reducing cardiac fibrosis in a model of anthracycline cardiomyopathy. International Journal of Cardiology. 2016;205:99–110. DOI:10.1016/j.ijcard.2015.12.008.; Urbanek K., Cesselli D., Rota M., Nascimbene A., De Angelis A., Hosoda T., Bearzi C., Boni A., Bolli R., Kajstura J., Anversa P., Leri A. Stem cell niches in the adult mouse heart. Proceedings of the National Academy of Sciences. 2006;103(24):9226–9231. DOI:10.1073/pnas.0600635103.; Ramkisoensing A. A., de Vries A. A. F., Atsma D. E., Schalij M. J., Pijnappels D. A. Interaction between myofibroblasts and stem cells in the fibrotic heart: balancing between deterioration and regeneration. Cardiovascular Research. 2014;102(2):224–231. DOI:10.1093/cvr/cvu047.; Soultati A., Mountzios G., Avgerinou C., Papaxoinis G., Pectasides D., Dimopoulos M.-A., Papadimitriou C. Endothelial vascular toxicity from chemotherapeutic agents: Preclinical evidence and clinical implications. Cancer Treatment Reviews. 2012;38(5):473–483. DOI:10.1016/j.ctrv.2011.09.002.; Bielak-Zmijewska A., Wnuk M., Przybylska D., Grabowska W., Lewinska A., Alster O., Korwek Z., Cmoch A., Myszka A., Pikula S., Mosieniak G., Sikora E. A comparison of replicative senescence and doxorubicin-induced premature senescence of vascular smooth muscle cells isolated from human aorta. Biogerontology. 2014;15(1):47–64. DOI:10.1007/s10522-013-9477-9.; Murata T., Yamawaki H., Hori M., Sato K., Ozaki H., Karaki H. Chronic vascular toxicity of doxorubicin in an organ-cultured artery. British Journal of Pharmacology. 2001;132(7):1365–1373. DOI:10.1038/sj.bjp.0703959.; Urbich C., Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circulation Research. 2004;95(4):343–353. DOI:10.1161/01.RES.0000137877.89448.78.; Rafii S., Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nature Medicine. 2003;9(6):702–712. DOI:10.1038/nm0603-702.; Hamed S., Barshack I., Luboshits G., Wexler D., Deutsch V., Keren G., George J. Erythropoietin improves myocardial performance in doxorubicin-induced cardiomyopathy. European Heart Journal. 2006;27(15):1876–1883. DOI:10.1093/eurheartj/ehl044.; Takahashi T., Kalka C., Masuda H., Chen D., Silver M., Kearney M., Magner M., Isner J. M., Asahara T. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature Medicine. 1999;5(4):434–438. DOI:10.1038/7434.; Hill J. M., Zalos G., Halcox J. P. J., Schenke W. H., Waclawiw M. A., Quyyumi A. A., Finkel T. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. New England Journal of Medicine. 2003;348(7):593–600. DOI:10.1056/NEJMoa022287.; Maejima Y., Adachi S., Ito H., Hirao K., Isobe M. Induction of premature senescence in cardiomyocytes by doxorubicin as a novel mechanism of myocardial damage. Aging Cell. 2008;7(2):125–136. DOI:10.1111/j.1474-9726.2007.00358.x.; Spallarossa P., Altieri P., Barisione C., Passalacqua M., Aloi C., Fugazza G., Frassoni F., Podestà M., Canepa M., Ghigliotti G., Brunelli C. p38 MAPK and JNK antagonistically control senescence and cytoplasmic p16INK4A expression in doxorubicin-treated endothelial progenitor cells. PLoS ONE. 2010;5(12):e15583. DOI:10.1371/journal.pone.0015583.; Wada T., Stepniak E., Hui L., Leibbrandt A., Katada T., Nishina H., Wagner E. F., Penninger J. M. Antagonistic control of cell fates by JNK and p38-MAPK signaling. Cell Death & Differentiation. 2008;15(1):89–93. DOI:10.1038/sj.cdd.4402222.; Spallarossa P., Altieri P., Pronzato P., Aloi C., Ghigliotti G., Barsotti A., Brunelli C. Sublethal doses of an anti-erbB2 antibody leads to death by apoptosis in cardiomyocytes sensitized by low prosenescent doses of epirubicin: the protective role of dexrazoxane. Journal of Pharmacology and Experimental Therapeutics. 2010;332(1):87–96. DOI:10.1124/jpet.109.159525.; Yasuda K., Park H.-C., Ratliff B., Addabbo F., Hatzopoulos A. K., Chander P., Goligorsky M. S. Adriamycin nephropathy: a failure of endothelial progenitor cell-induced repair. The American Journal of Pathology. 2010;176(4):1685–1695. DOI:10.2353/ajpath.2010.091071.; Moore M. A. S., Hattori K., Heissig B., Shieh J.-H., Dias S., Crystal R. G., Rafii S. Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1. Annals of the New York Academy of Sciences. 2001;938(1):36–47. DOI:10.1111/j.1749-6632.2001.tb03572.x.; McNiece I. K., Briddell R. A., Hartley C. A., Smith K. A., Andrews R. G. Stem cell factor enhances in vivo effects of granulocyte colony stimulating factor for stimulating mobilization of peripheral blood progenitor cells. STEM CELLS. 1993;11(S2):36–41. DOI:10.1002/stem.5530110807.; Quaini F., Urbanek K., Beltrami A. P., Finato N., Beltrami C. A., Nadal-Ginard B., Kajstura J., Leri A., Anversa P. Chimerism of the transplanted heart. New England Journal of Medicine. 2002;346(1):5–15. DOI:10.1056/NEJMoa012081.; Thiele J., Varus E., Wickenhauser C., Kvasnicka H. M., Metz K. A., Beelen D. W. Regeneration of heart muscle tissue: quantification of chimeric cardiomyocytes and endothelial cells following transplantation. Histol Histopathol. 2004;19(1):201–209. DOI:10.14670/HH-19.201.; Fukuhara S., Tomita S., Nakatani T., Ohtsu Y., Ishida M., Yutani C., Kitamura S. G-CSF promotes bone marrow cells to migrate into infarcted mice heart, and differentiate into cardiomyocytes. Cell Transplantation. 2004;13(7–8):741–748. DOI:10.3727/000000004783983486.; Tomita S., Ishida M., Nakatani T., Fukuhara S., Hisashi Y., Ohtsu Y., Suga M., Yutani C., Yagihara T., Yamada K., Kitamura S. Bone marrow is a source of regenerated cardiomyocytes in doxorubicin-induced cardiomyopathy and granulocyte colony-stimulating factor enhances migration of bone marrow cells and attenuates cardiotoxicity of doxorubicin under electron microscopy. The Journal of Heart and Lung Transplantation. 2004;23(5):577–584. DOI:10.1016/j.healun.2003.06.001.; Urbanek K., Frati C., Graiani G., Madeddu D., Falco A., Cavalli S., Lorusso B., Gervasi A., Prezioso L., Savi M., Ferraro F., Galaverna F., Rossetti P., Lagrasta C., Re F., Quaini E., Rossi F., Angelis A., Quaini F. Cardioprotection by Targeting the Pool of Resident and Extracardiac Progenitors. Current Drug Targets. 2015;16(8):884–894. DOI:10.2174/1389450116666150126105002.; Yang F., Chen H., Liu Y., Yin K., Wang Y., Li X., Wang G., Wang S., Tan X., Xu C., Lu Y., Cai B. Doxorubicin caused apoptosis of mesenchymal stem cells via p38, JNK and p53 pathway. Cellular Physiology and Biochemistry. 2013;32(4):1072–1082. DOI:10.1159/000354507.; Oliveira M. S., Carvalho J. L., De Angelis Campos A. C., Gomes D. A., de Goes A. M., Melo M. M. Doxorubicin has in vivo toxicological effects on ex vivo cultured mesenchymal stem cells. Toxicology Letters. 2014;224(3):380–386. DOI:10.1016/j.toxlet.2013.11.023.; Lipshultz S. E., Lipsitz S. R., Sallan S. E., Dalton V. M., Mone S. M., Gelber R. D., Colan S. D. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. Journal of Clinical Oncology. 2005;23(12):2629–2636. DOI:10.1200/JCO.2005.12.121.; Legha S. S., Benjamin R. S., Mackay B., Yap H. Y., Wallace S., Ewer M., Blumenschein G. R., Freireich E. J. Adriamycin therapy by continuous intravenous infusion in patients with metastatic breast cancer. Cancer. 1982;49(9):1762–1766. DOI:10.1002/1097-0142(19820501)49:93.0.co;2-q.; Batist G. Cardiac safety of liposomal anthracyclines. Cardiovascular Toxicology. 2007;7(2):72–74. DOI:10.1007/s12012-007-0014-4.; Van Dalen E. C., Michiels E. M. C., Caron H. N., Kremer L. C. M. Different anthracycline derivates for reducing cardiotoxicity in cancer patients. Cochrane Database of Systematic Reviews. 2010;(3):CD005006. DOI:10.1002/14651858.CD005006.pub3.; Lipshultz S. E., Scully R. E., Lipsitz S. R., Sallan S. E., Silverman L. B., Miller T. L., Barry E. V., Asselin B. L., Athale U., Clavell L. A., Larsen E., Moghrabi A., Samson Y., Michon B., Schorin M. A., Cohen H. J., Neuberg D. S., Orav E. J., Colan S. D. Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: long-term follow-up of a prospective, randomised, multicentre trial. The Lancet Oncology. 2010;11(10):950–961. DOI:10.1016/S1470-2045(10)70204-7.; Speyer J. L., Green M. D., Zeleniuch-Jacquotte A., Wernz J. C., Rey M., Sanger J., Kramer E., Ferrans V., Hochster H., Meyers M. ICRF-187 permits longer treatment with doxorubicin in women with breast cancer. Journal of Clinical Oncology. 1992;10(1):117–127. DOI:10.1200/JCO.1992.10.1.117.; Hochster H. S. Clinical pharmacology of dexrazoxane. Seminars in Oncology. 1998;25(4 Suppl 10):37–42.; Lyu Y. L., Kerrigan J. E., Lin C.-P., Azarova A. M., Tsai Y.-C., Ban Y., Liu L. F. Topoisomerase IIβ–Mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Research. 2007;67(18):8839–8846. DOI:10.1158/0008-5472.CAN-07-1649.; Ladas E. J., Jacobson J. S., Kennedy D. D., Teel K., Fleischauer A., Kelly K. M. Antioxidants and cancer therapy: a systematic review. Journal of Clinical Oncology. 2004;22(3):517–528. DOI:10.1200/JCO.2004.03.086.; Kalay N., Basar E., Ozdogru I., Er O., Cetinkaya Y., Dogan A., Oguzhan A., Eryol N. K., Topsakal R., Ergin A., Inanc T. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. Journal of the American College of Cardiology. 2006;48(11):2258–2262. DOI:10.1016/j.jacc.2006.07.052.; Kaya M. G., Ozkan M., Gunebakmaz O., Akkaya H., Kaya E. G., Akpek M., Kalay N., Dikilitas M., Yarlioglues M., Karaca H., Berk V., Ardic I., Ergin A., Lam Y. Y. Protective effects of nebivolol against anthracycline-induced cardiomyopathy: a randomized control study. International Journal of Cardiology. 2013;167(5):2306–2310. DOI:10.1016/j.ijcard.2012.06.023.; Spallarossa P., Garibaldi S., Altieri P., Fabbi P., Manca V., Nasti S., Rossettin P., Ghigliotti G., Ballestrero A., Patrone F. Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. Journal of Molecular and Cellular Cardiology. 2004;37(4):837–846. DOI:10.1016/j.yjmcc.2004.05.024.; Mason R. P., Kalinowski L., Jacob R. F., Jacoby A. M., Malinski T. Nebivolol reduces nitroxidative stress and restores nitric oxide bioavailability in endothelium of black Americans. Circulation. 2005;112(24):3795–3801. DOI:10.1161/CIRCULATIONAHA.105.556233.; Singal P., Li T., Kumar D., Danelisen I., Iliskovic N. Adriamycin-induced heart failure: mechanism and modulation. Molecular and Cellular Biochemistry. 2000;207(1–2):77–86. DOI:10.1023/a:1007094214460.; Ascensão A., Magalhães J., Soares J. M. C., Ferreira R., Neuparth M. J., Marques F., Oliveira P. J., Duarte J. A. Moderate endurance training prevents doxorubicin-induced in vivo mitochondriopathy and reduces the development of cardiac apoptosis. American Journal of Physiology-Heart and Circulatory Physiology. 2005;289(2):H722–H731. DOI:10.1152/ajpheart.01249.2004.; Foote K., Reinhold J., Yu E. P. K., Figg N. L., Finigan A., Murphy M. P., Bennett M. R. Restoring mitochondrial DNA copy number preserves mitochondrial function and delays vascular aging in mice. Aging Cell. 2018;17(4):e12773. DOI:10.1111/acel.12773.; Yue P., Jing S., Liu L., Ma F., Zhang Y., Wang C., Duan H., Zhou K., Hua Y., Wu G., Li Y. Association between mitochondrial DNA copy number and cardiovascular disease: Current evidence based on a systematic review and meta-analysis. PLOS ONE. 2018;13(11):e0206003. DOI:10.1371/journal.pone.0206003.; Pustovoit V. I. Database of methods for complex nutritional-metabolic correction of the functional state of an athlete’s body under extreme loads. RF patent for invention. Patent RUS № RU 2022622848. 11.11.2022. Available at: https://istina.msu.ru/patents/510751941/ Accessed: 29.01.2024.; Pustovoit V. I., Balakin E. I., Khan A. V., Murtazin A. A., Maksjutov N. F., Merkulova P. S., Kubyshev K. A. The combination of traditional cardiorespiratory markers during treadmill testing "to failure" in athletes, depending on professional activity. Sports medicine: research and practice. 2022;12(3):51–59. (In Russ.) DOI:10.47529/2223-2524.2022.3.5.; https://www.pharmjournal.ru/jour/article/view/1913

  10. 10
    Academic Journal

    Contributors: The study was carried out with the support of a comprehensive program of fundamental scientific research of the SB RAS within the framework of the fundamental theme of the Research Institute of Complex Problems of Cardiovascular Diseases No. 0419-2022-0001., Исследование выполнено при поддержке комплексной программы фундаментальных научных исследований СО РАН в рамках фундаментальной темы НИИ КПССЗ № 0419-2022-0001 «Молекулярные, клеточные и биомеханические механизмы патогенеза сердечно-сосудистых заболеваний в разработке новых методов лечения заболеваний сердечно-сосудистой системы на основе персонифицированной фармакотерапии, внедрения малоинвазивных медицинских изделий, биоматериалов и тканеинженерных имплантатов».

    Source: Siberian Journal of Clinical and Experimental Medicine; Том 39, № 4 (2024); 171-179 ; Сибирский журнал клинической и экспериментальной медицины; Том 39, № 4 (2024); 171-179 ; 2713-265X ; 2713-2927

    File Description: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/2254/1033; Argun M., Üzüm K., Sönmez M.F., Özyurt A., Derya K., Çilenk K.T. et al. Cardioprotective effect of metformin against doxorubicin cardiotoxicity in rats. Anatol. J. Cardiol. 2016;16(4):234. DOI:10.5152/akd.2015.6185.; Guo R., Hua Y., Ren J., Bornfeldt K.E., Nair S. Cardiomyocyte-specific disruption of Cathepsin K protects against doxorubicin-induced cardiotoxicity. Cell Death Dis. 2018;9(6):692. DOI:10.1038/s41419-018-0727-2.; Anghel N., Herman H., Balta C., Rosu M., Stan M.S., Nita D. et al. Acute cardiotoxicity induced by doxorubicin in right ventricle is associated with increase of oxidative stress and apoptosis in rats. Histol. Histopathol. 2018;33(4):365. DOI:10.14670/hh-11-932.; Yu Q., Li Q., Na R., Li X., Liu B., Meng L. et al. Impact of repeated intravenous bone marrow mesenchymal stem cells infusion on myocardial collagen network remodeling in a rat model of doxorubicin-induced dilated cardiomyopathy. Mol. Cell Biochem. 2014;387(1–2):279–285. DOI:10.1007/s11010-013-1894-1.; Hajra S., Patra A.R., Basu A., Bhattacharya S. Prevention of doxorubicin (DOX)-induced genotoxicity and cardiotoxicity: Effect of plant derived small molecule indole-3-carbinol (I3C) on oxidative stress and inflammation. Biomed. Pharmacother. 2018;101:228–243. DOI:10.1016/j.biopha.2018.02.088.; Jain A.K., Pandey A.K. In vivo micronucleus assay in mouse bone marrow methods. Mol. Biol. 2019;2031:135–146. DOI:10.1007/978-1-4939-9646-9_7.; Christidi E., Brunham L.R. Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death Dis. 2021;12(4):339. DOI:10.1038/s41419-021-03614-x.; Boriollo M.F.G., Alves V.E., Silva T.A., Silva J.J., Barros G.B.S. Dias C.T.S. et al. Decrease of the DXR-induced genotoxicity and nongenotoxic effects of Theobroma cacao revealed by micronucleus assay. Braz. J. Biol. 2021;81(2):268–277. DOI:10.1590/1519-6984.223687.; Mukhamadiyarov R.A., Bogdanov L.A., Glushkova T.V., Shishkova D.K., Kostyunin A.E., Koshelev V.A. et al. EMbedding and backscattered scanning electron microscopy: a detailed protocol for the whole-specimen, high-resolution analysis of cardiovascular tissues. Front. Cardiovasc. Med. 2021;8:739549. DOI:10.3389/fcvm.2021.739549.; Robert J. Long-term and short-term models for studying anthracycline cardiotoxicity and protectors. Cardiovasc. Toxicol. 2007;7:135–139. DOI:10.1007/s12012-007-0022-4.; Kalender Y., Yel M., Kalender S. Doxorubicin hepatotoxicity and hepatic free radical metabolism in rats. The effects of vitamin E and catechin. Toxicology. 2005;209(1):39–45. DOI:10.1016/j.tox.2004.12.003.; Ivanová M., Dovinová I., Okruhlicová L., Tribulová N., Simončíková P., Barteková M. et al. Chronic cardiotoxicity of doxorubicin involves activation of myocardial and circulating matrix metalloproteinases in rats. Acta Pharmacol. Sin. 2012; 33(4):459–469. DOI:10.1038/aps.2011.194.; Chen P.Y., Hou C.W., Shibu M.A., Day C.H., Pai P., Liu Z.R. et al. Protective effect of Co-enzyme Q10 on doxorubicin-induced cardiomyopathy of rat hearts. Environ. Toxicol. 2017;32(2):679–689. DOI:10.1002/tox.22270.; Henderson K.A., Borders R.B., Ross J.B., Abdulalil A., Gibbs S., Skowronek A.J. et al. Integration of cardiac energetics, function and histology from isolated rat hearts perfused with doxorubicin and doxorubicin-ol; a model for use in drug safety evaluations. J. Pharmacol. Toxicol. Methods. 2018;94(2):54–63. DOI:10.1016/j.vascn.2018.08.004.; Подъячева Е.Ю., Шмакова Т.В., Андреева Д.Д., Торопов Р.И., Чебуркин Ю.В., Данильчук М.С. и др. Профиль молекулярных маркеров фиброза у крыс при воздействии различных доз доксорубицина. Журнал эволюционной биохимии и физиологии. 2023;59(2):121– 130. DOI:10.31857/S0044452923020043.; Liao H.E., Shibu M.A., Kuo W.W., Pai P.Y., Ho T.J., Kuo C.H. et al. Deep sea minerals prolong life span of streptozotocin-induced diabetic rats by compensatory augmentation of the IGF-I-survival signaling and inhibition of apoptosis. Environ. Toxicol. 2016;31(7):769–781. DOI:10.1002/tox.22086.; Nakashima M., Nakamura K., Nishihara T., Ichikawa K., Nakayama R., Takaya Y. et al. Association between cardiovascular disease and liver disease, from a clinically pragmatic perspective as a cardiologist. Nutrients. 202315(3):748. DOI:10.3390/nu15030748.; Asanov M.A., Shishkova D.K., Poddubnyak A.O., Sinicky M.Yu., Sinickaya A.V., Khutornaya M.V., et al. Dose-response assessment of mitomycin C genotoxic effect on ApoE knockout mice. J. Evol. Biochem. Physiol. 2023;59(5):1693–1699. DOI:10.1134/S0022093023050198.; Yang F., Teves S.S., Kemp C.J., Henikoff S. Doxorubicin, DNA torsion, and chromatin dynamics. Biochim. Biophys. Acta. 2014;1845:84–89. DOI:10.1016/j.bbcan.2013.12.002.; Ефимов В.А., Федюнин С.В. Кросс-сшитые нуклеиновые кислоты: получение, структура и биологическая роль. Успехи биологической химии. 2010;50:259–302. Efimov V.A., Fediunin S.V. Cross-linked nucleic acids: production, structure and biological role Uspekhi biologicheskoi khimii. 2010;50:259–302. (In Russ.). DOI:10.1073/pnas.1821022116.; Rymer J.A., Rao S.V. Anemia and coronary artery disease: pathophysiology, prognosis, and treatment. Coron. Artery Dis. 2018;29(2):161–167. DOI:10.1097/MCA.0000000000000598.; https://www.sibjcem.ru/jour/article/view/2254

  11. 11
    Academic Journal

    Contributors: Исследование выполнено при поддержке комплексной программы фундаментальных научных исследований СО РАН в рамках фундаментальной темы НИИ КПССЗ № 0419-2022-0001 «Молекулярные, клеточные и биомеханические механизмы патогенеза сердечно-сосудистых заболеваний в разработке новых методов лечения заболеваний сердечно-сосудистой системы на основе персонифицированной фармакотерапии, внедрения малоинвазивных медицинских изделий, биоматериалов и тканеинженерных имплантатов».

    Source: Complex Issues of Cardiovascular Diseases; Том 13, № 4S (2024); 97-106 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 13, № 4S (2024); 97-106 ; 2587-9537 ; 2306-1278

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1542/977; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1542/1799; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1542/1800; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1542/1801; Alexander Y., Osto E., Schmidt-Trucksäss A., Shechter M., Trifunovic D., Duncker D.J., Aboyans V., Bäck M., Badimon L., Cosentino F., De Carlo M., Dorobantu M., Harrison D.G., Guzik T.J., Hoefer I., Morris P.D., Norata G.D., Suades R., Taddei S., Vilahur G., Waltenberger J., Weber C., Wilkinson F., Bochaton-Piallat M.L., Evans P.C. Endothelial function in cardiovascular medicine: a consensus paper of the European Society of Cardiology Working Groups on Atherosclerosis and Vascular Biology, Aorta and Peripheral Vascular Diseases, Coronary Pathophysiology and Microcirculation, and Thrombosis. Cardiovasc Res. 2021;117(1):29-42. doi:10.1093/cvr/cvaa085.; Gao Y., Galis Z. S. Exploring the Role of Endothelial Cell Resilience in Cardiovascular Health and Disease. Arteriosclerosis, thrombosis, and vascular biology. 2021;41(1):179–185. doi:10.1161/ATVBAHA.120.314346; Podyacheva E., Danilchuk M., Toropova Y. Molecular mechanisms of endothelial remodeling under doxorubicin treatment. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023; 162: 114576. doi:10.1016/j.biopha.2023.114576; Feng J., Wu Y. Endothelial-to-Mesenchymal Transition: Potential Target of Doxorubicin-Induced Cardiotoxicity. Am J Cardiovasc Drugs. 2023; 23: 231–246. doi:10.1007/s40256-023-00573-w; Clayton Z. S., Brunt V. E., Hutton D. A., VanDongen N. S., D'Alessandro A., Reisz J. A., Ziemba B. P., Seals D. R. Doxorubicin-Induced Oxidative Stress and Endothelial Dysfunction in Conduit Arteries Is Prevented by Mitochondrial-Specific Antioxidant Treatment. JACC. CardioOncology. 2020; 2(3); 475–488. doi:10.1016/j.jaccao.2020.06.010; Bosman M., Favere K., Neutel C. H. G., Jacobs G., De Meyer G. R. Y., Martinet W., Van Craenenbroeck E. M., Guns P. D. F. Doxorubicin induces arterial stiffness: A comprehensive in vivo and ex vivo evaluation of vascular toxicity in mice. Toxicology letters. 2021; 346: 23–33. doi:10.1016/j.toxlet.2021.04.015; He H., Wang L., Qiao Y., Zhou Q., Li H., Chen S., Yin D., Huang Q., He M. Doxorubicin Induces Endotheliotoxicity and Mitochondrial Dysfunction via ROS/eNOS/NO Pathway. Front Pharmacol. 2020;10:1531. doi:10.3389/fphar.2019.01531.; Galán-Arriola C., Vílchez-Tschischke J.P., Lobo M., López G.J., de Molina-Iracheta A., Pérez-Martínez C., Villena-Gutiérrez R., Macías Á., Díaz-Rengifo I.A., Oliver E., Fuster V., Sánchez-González J., Ibanez B. Coronary microcirculation damage in anthracycline cardiotoxicity. Cardiovasc Res. 2022; 118(2):531-541. doi:10.1093/cvr/cvab053.; Kutikhin A. G., Shishkova D. K., Velikanova E. A., Sinitsky M. Y., Sinitskaya A. V., Markova V. E. Endothelial dysfunction in the context of blood–brain barrier modeling. Journal of Evolutionary Biochemistry and Physiology. 2022; 58(3): 781-806.; Bosman M., Krüger D., Van Assche C., Boen H., Neutel C., Favere K., Franssen C., Martinet W., Roth L., De Meyer G. R. Y., Cillero-Pastor B., Delru, L., Heggermont W., Van Craenenbroeck E. M., Guns P. J. Doxorubicin-induced cardiovascular toxicity: a longitudinal evaluation of functional and molecular markers. Cardiovascular research. 2023; 119(15): 2579–2590. doi:10.1093/cvr/cvad136; Fu H.Y., Sanada S., Matsuzaki T., Liao Y., Okuda K., Yama-to M., Tsuchida S., Araki R., Asano Y., Asanuma H., Asa-kura M., French B.A., Sakata Y., Kitakaze M., Minamino T. Chemical endoplasmic reticulum chaperone alle-viates doxorubicin-induced cardiac dysfunction. CircRes. 2016; 118: 798–809. doi:10.1161/CIRCRESAHA.115.307604?; Songbo M., Lang H., Xinyong C., Bin X., Ping Z., Liang S. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicology letters. 2019; 307:41–48. doi:10.1016/j.toxlet.2019.02.013; Pan J.A., Tang Y., Yu J.Y., Zhang H., Zhang J.F., Wang C.Q.,Gu J. miR-146a attenuates apoptosis and modu-lates autophagy by targeting TAF9b/P53 pathway indoxorubicin-induced cardiotoxicity. Cell Death Dis . 2019; 10:1–15. doi:10.1038/s41419-019-19 01-x; Barachini S., Ghelardoni S., Varga Z. V., Mehanna R. A., Montt-Guevara M. M., Ferdinandy P., Madonna R. Antineoplastic drugs inducing cardiac and vascular toxicity–An update. Vascular Pharmacology.2023; 153: 107223. doi:10.1016/j.vph.2023.107223; Crocco M., d'Annunzio G., La Valle A., Piccolo G., Chiarenza D. S., Bigatti C., Molteni M., Milanaccio C., Garrè M. L., Di Iorgi N., Maghnie M. (2021). Endothelial Dysfunction in Childhood Cancer Survivors: A Narrative Review. Life (Basel, Switzerland). 2021; 12(1): 45. doi:10.3390/life12010045; O'Riordan E., Chen J., Brodsky S.V., Smirnova I., Li H., Goligorsky M.S. Endothelial cell dysfunction: the syndrome in making. Kidney Int. 2005; 67(5): 1654–1658. doi:10.1111/j.1523-1755.2005.00256.x; Chen P.Y., Qin L., Baeyens N., Li G., Afolabi T., Budatha M., Tellides G., Schwartz M.A., Simons M. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J Clin Invest. 2015; 125(12): 4514–4528. doi:10.1172/JCI82719; Cahill P.A., Redmond E.M. Vascular endothelium – Gatekeeper of vessel health. Atherosclerosis. 2016; 248:97–109. doi:10.1016/j.atherosclerosis.2016.03.007; Sinitsky M.Y., Sinitskaya A.V., Khutornaya M.V., Asanov M.A., Shishkova D.K., Poddubnyak A.O., Ponasenko A.V. Genotoxic Stress As a Trigger of Endothelial Dysfunction in Wistar Rats: a Molecular Genetic Study. Journal of Evolutionary Biochemistry and Physiology. 2024; 60 (2): 768-779. doi:10.1134/S00220930240202; Jackson A.O., Zhang J., Jiang Z., Yin K. Endothelial-to-mesenchymal transition: A noveltherapeutic target for cardiovascular diseases. Trends Cardiovasc Med.2017; 27(6): 383–393.doi:10.1016/j.tcm.2017.03.003; Davies P.F., Civelek M., Fang Y., Fleming I. The atherosusceptible endothelium: endothelial phenotypes in complex haemodynamic shear stress regions in vivo. Cardiovasc Res. 2013; 99: 315–327. doi:10.1093/cvr/cvt101

  12. 12
  13. 13
  14. 14
  15. 15
    Academic Journal

    Source: Clinical pharmacy; Vol. 24 No. 4 (2020); 47-54
    Клиническая фармация; Том 24 № 4 (2020); 47-54
    Клінічна фармація; Том 24 № 4 (2020); 47-54
    Клінічна фармація; Том 24, № 4 (2020); 47-54
    Clinical pharmacy; Том 24, № 4 (2020); 47-54
    Клиническая фармация; Том 24, № 4 (2020); 47-54

    File Description: application/pdf

  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
    Academic Journal

    Contributors: The study was carried out with the support of the Russian Science Foundation (grant No. 21-75-00014) and was performed as a part of Russia Strategic Academic Leadership Program (PRIORITY-2030) of Kazan Federal University of Ministry of Health., Исследование выполнено при поддержке Российского научного фонда (грант № 21-75-00014) и в рамках Программы стратегического академического лидерства Казанского (Приволжского) федерального университета (ПРИОРИТЕТ-2030).

    Source: Advances in Molecular Oncology; Том 10, № 3 (2023); 59-71 ; Успехи молекулярной онкологии; Том 10, № 3 (2023); 59-71 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2023-10-3

    File Description: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/571/312; Parker A.L., Kavallaris M., McCarroll J.A. Microtubules and their role in cellular stress in cancer. Front Oncol 2014;4:1–19. DOI:10.3389/fonc.2014.00153; Dumontet C., Jordan M.A. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 2010;9(10): 790–803. DOI:10.1038/nrd3253; Gigant B., Wang C., Ravelli R.B. et al. Structural basis for the regulation of tubulin by vinblastine. Nature 2005;435(7041):519–22. DOI:10.1038/nature03566; Ravelli R.B., Gigant G., Curmi B. et al. Insight into tubulin regulation from a complex with colchicine and a stathminlike domain. Nature 2004;428(6979):198–202. DOI:10.1038/nature02393; Yang J., Wang Y., Wang T. et al. Pironetin reacts covalently with cysteine-316 of α-tubulin to destabilize microtubule. Nat Commun 2016;7:12103. DOI:10.1038/ncomms12103; Prota A.E., Setter J., Waight A.B. et al. Pironetin binds covalently to αCys316 and perturbs a major loop and helix of α-tubulin to inhibit microtubule formation. J Mol Biol 2016;428(15):2981–8. DOI:10.1016/j.jmb.2016.06.023; Steinmetz M.O., Prota A.E. Microtubule-targeting agents: strategies to hijack the cytoskeleton. Trends Cell Biol 2018;28(10):776–92. DOI:10.1016/j.tcb.2018.05.001; Fanale D., Bronte G., Passiglia F. et al. Stabilizing versus destabilizing the microtubules: a double-edge sword for an effective cancer treatment option? Anal Cell Pathol 2015;2015:690916. DOI:10.1155/2015/690916; Mooberry S.L., Tien G., Hernandez A.H. et al. Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stabilizing agents. Cancer Res 1999;59(3):653–60.; West L.M., Northcote P.T., Battershill C.N., Peloruside A. A potent cytotoxic macrolide isolated from the New Zealand marine sponge Mycale sp. J Org Chem 2000;65(2):445–9. DOI:10.1021/jo991296y; Prota A.E., Bargsten K., Northcote P.T. et al. Structural basis of microtubule stabilization by laulimalide and peloruside A. Angew Chem Int Ed Engl 2014;53(6):1621–5. DOI:10.1002/anie.201307749; Munshi N., Jeay S., Li Y. et al. ARQ 197, a novel and selective inhibitor of the human c-met receptor tyrosine kinase with antitumor activity. Mol Cancer Ther 2010;9(6):1544–53. DOI:10.1158/1535-7163.MCT-09-1173; Katayama R., Aoyama A., Yamori T. et al. Cytotoxic activity of tivantinib (ARQ 197) is not due solely to c-MET inhibition. Cancer Res 2013;73(10):3087–96. DOI:10.1158/0008-5472.CAN-12-3256; Aoyama A., Katayama R., Oh-Hara T. et al. Tivantinib (ARQ 197) exhibits antitumor activity by directly interacting with tubulin and overcomes ABC transporter-mediated drug resistance. Mol Cancer Ther 2014;13(12):2978–90. DOI:10.1158/1535-7163.MCT-14-0462; Gumireddy K., Reddy M.V.R., Cosenza S.C. et al. ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell 2005;7:275–86. DOI:10.1016/j.ccr.2005.02.009; Jost M., Chen Y., Gilbert L.A. et al. Combined CRISPRi/a-based chemical genetic screens reveal that rigosertib is a microtubuledestabilizing agent. Mol Cell 2017;68(1):210–23. DOI:10.1016/j.molcel.2017.09.012; Park H., Hong S., Hong S. Nocodazole is a high-affinity ligand for the cancer-related kinases ABL, c-KIT, BRAF, and MEK. Chem Med Chem 2012;7(1):53–6. DOI:10.1002/cmdc.201100410; Guo X., Zhang X., Li Y. et al. Nocodazole increases the ERK activity to enhance MKP-1 expression which inhibits p38 activation induced by TNF-α. Mol Cell Biochem 2012;364(1–2):373–80. DOI:10.1007/s11010-012-1239-5; Tanabe K. Microtubule depolymerization by kinase inhibitors: unexpected findings of dual inhibitors. Int J Mol Sci 2017;18(12):2508. DOI:10.3390/ijms18122508; Ramirez-Rios S., Michallet S., Peris L. et al. A new quantitative cell-based assay reveals unexpected microtubule stabilizing activity of certain kinase inhibitors, clinically approved or in the process of approval. Front Pharmacol 2020;11:543. DOI:10.3389/fphar.2020.00543; Krishna R., Mayer L.D. Multidrug resistance (MDR) in cancer: mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 2000;11(4):265–83. DOI:10.1016/S0928-0987(00)00114-7; Mechetner E., Kyshtoobayeva A., Zonis S. et al. Levels of multidrug resistance (MDR1) P-glycoprotein expressing by human breast cancer correlate with in vitro resistance to taxol and doxorubicin. Clin Cancer Res 1998;4(2):389–98.; Kavallaris M., Kuo D.Y., Burkhart C.A. et al. Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Investig 1997;100(5):1282– 93. DOI:10.1172/JCI119642; Kavallaris M. Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 2010;10(3):194–204. DOI:10.1038/nrc2803; Зыкова С.С., Бойчук С.В., Галембикова А.Р. и др. 3-гидрокси-1,5-диарил-4-пивалоил-2,5-дигидро-2-пирролоны нарушают процессы митоза и индуцируют гибель опухолевых клеток in vitro. Цитология 2014;56:439–42.; Boichuk S., Galembikova A., Zykova S. et al. Ethyl-2-aminopyrrole-3-carboxylates are novel potent anticancer agents that affect tubulin polymerization, induce G2/M cell-cycle arrest, and effectively inhibit soft tissue cancer cell growth in vitro. Anti-Cancer Drugs 2016;27(7):620–34. DOI:10.1097/CAD.0000000000000372; Boichuk S., Galembikova A., Dunaev P. et al. Ethyl-2-aminopyrrole-3-carboxylates are active against imatinib-resistant gastrointestinal stromal tumors in vitro and in vivo. Anti-Cancer Drugs 2019;30(5):475–84. DOI:10.1097/CAD.0000000000000753; Carta D., Bortolozzi R., Sturlese M. et al. Synthesis, structureactivity relationships and biological evaluation of 7-phenyl-pyrroloquinolinone 3-amide derivatives as potent antimitotic agents. Eur J Med Chem 2017;127:643–60. DOI:10.1016/j.ejmech.2016.10.026; Brindisi M., Ulivieri C., Alfano G. et al. Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents. Eur J Med Chem 2019;162:290–320. DOI:10.1016/j.ejmech.2018.11.004; Boichuk S., Galembikova A., Syuzov K. et al. The design, synthesis, and biological activities of pyrrole-based carboxamides: the novel tubulin inhibitors targeting the colchicine-binding site. Molecules 2021;26(19):5780. DOI:10.3390/molecules26195780; Boichuk S., Galembikova A., Sitenkov A. et al. Establishment and characterization of a triple negative basal-like breast cancer cell line with multi-drug resistance. Oncol Lett 2017;14(4):5039–45. DOI:10.3892/ol.2017.6795; Zykova S., Kizimova I., Syutkina A. et al. Synthesis and cytostatic activity of (E)-ethyl-2-amino-5-(3,3-dimethyl-4-oxobutyliden-4oxo-1-(2-phenylaminobenzamido)-4,5-dihydro-1Hpyrrol-3carboxylate. Pharm Chem J 2020;53:895–8. DOI:10.1007/s11094020-02096-z; Boichuk S., Bikinieva F., Valeeva E. et al. Establishment and characterization of multi-drug resistant p53-negative osteosarcoma SaOS-2 subline. Diagnostics 2023;13:2646. DOI:10.3390/diagnostics13162646; Boichuk S., Dunaev P., Mustafin I. et al. Infigratinib (BGJ 398), a pan-FGFR inhibitor, targets P-glycoprotein and increases chemotherapeutic-induced mortality of multidrug-resistant tumor cells. Biomedicines 2022;10(3):601. DOI:10.3390/biomedicines10030601; Distefano M., Scambia G., Ferlini C. et al. Antitumor activity of paclitaxel (taxol) analogues on MDR-positive human cancer cells. Anticancer Drug Des 1998;13(5):489–99.; Pirol Ş.C., Çalışkan B., Durmaz I. et al. Synthesis and preliminary mechanistic evaluation of 5-(p-tolyl)-1-(quinolin-2-yl)pyrazole-3carboxylic acid amides with potent anti-proliferative activity on human cancer cell lines. Eur J Med Chem 2014;87:140–9. DOI:10.1016/j.ejmech.2014.09.056; Ke J., Lu Q., Wang X. et al. Discovery of 4,5-dihydro-1Hthieno[2’,3’:2,3]thiepino [4,5-c]pyrazole-3-carboxamide derivatives as the potential epidermal growth factor receptors for tyrosine kinase inhibitors. Molecules 2018;23:1980. DOI:10.3390/molecules23081980; Lin T., Li J., Liu L. et al. Design, synthesis, and biological evaluation of 4-benzoylamino-1H-pyrazole-3-carboxamide derivatives as potent CDK2 inhibitors. Eur J Med Chem 2021;215:113281. DOI:10.1016/j.ejmech.2021.113281; Yasuda Y., Arakawa T., Nawata Y. et al. Design, synthesis, and structure-activity relationships of 1-ethylpyrazole-3-carboxamide compounds as novel hypoxia-inducible factor (HIF)-1 inhibitors. Bioorg Med Chem 2015;23(8):1776–87. DOI:10.1016/j.bmc.2015.02.038; Gul H.I., Mete E., Eren S.E. et al. Designing, synthesis and bioactivities of 4-[3-(4-hydroxyphenyl)-5-aryl-4,5-dihydropyrazol-1-yl]benzenesulfonamides. J Enzyme Inhib Med Chem 2017;32(1):169–75. DOI:10.1080/14756366.2016.1243536; Gul H.I., Yamali C., Bulbuller M. et al. Anticancer effects of new dibenzenesulfonamides by inducing apoptosis and autophagy pathways and their carbonic anhydrase inhibitory effects on hCA I, hCA II, hCA IX, hCA XII isoenzymes. Bioorg Chem 2018;78: 290–7. DOI:10.1016/j.bioorg.2018.03.027; Gul H.I., Yamali C., Sakagami H. et al. New anticancer drug candidates sulfonamides as selective hCA IX or hCA XII inhibitors. Bioorg Chem 2018;77:411–9. DOI:10.1016/j.bioorg.2018.01.021; Yamali C., Sakagami H., Uesawa Y. et al. Comprehensive study on potent and selective carbonic anhydrase inhibitors: synthesis, bioactivities and molecular modelling studies of 4-(3-(2-arylidenehydrazine-1-carbonyl)-5-(thiophen-2-yl)-1Hpyrazole-1-yl) benzenesulfonamides. Eur J Med Chem 2021;217:113351. DOI:10.1016/j.ejmech.2021.113351; Mooberry S.L., Weiderhold K.N., Dakshanamurthy S. et al. Identification and characterization of a new tubulin-binding tetrasubstituted brominated pyrrole. Mol Pharmacol 2007;72(1):132–40. DOI:10.1124/mol.107.034876; Da C., Telang N., Barelli P. et al. Pyrrole-based antitubulin agents: two distinct binding modalities are predicted for C-2 analogues in the colchicine site. ACS Med Chem Lett 2012;3(1):53–7. DOI:10.1021/ml200217u; Romagnoli R., Oliva P., Salvador M.K. et al. A facile synthesis of diary l pyrroles led to the discovery of potent colchicine site antimitotic agents. Eur J Med Chem 2021;214:113229. DOI:10.1016/j.ejmech.2021.113229; https://umo.abvpress.ru/jour/article/view/571