Εμφανίζονται 1 - 20 Αποτελέσματα από 110 για την αναζήτηση '"ДНК-ДИАГНОСТИКА"', χρόνος αναζήτησης: 0,73δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: The study was carried out according to the state assignment of the Ministry of Science and Higher Education of the Russian Federation for the Research Centre for Medical Genetics., Работа выполнена в рамках государственного задания Минобрнауки России для ФГБНУ МГНЦ.

    Πηγή: Medical Genetics; Том 23, № 12 (2024); 44-57 ; Медицинская генетика; Том 23, № 12 (2024); 44-57 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2586/1838; Mackay D.J.G., Gazdagh G., Monk D. et al. Multi-locus imprinting disturbance (MLID): interim joint statement for clinical and molecular diagnosis. Clin Epigenet. 2024; 16: 99. https://doi.org/10.1186/s13148-024-01713-y.; Elbracht M., Binder G., Hiort O., et al. Clinical spectrum and management of imprinting disorders. Medizinische Genetik. 2020;32(4):321-334. https://doi.org/10.1515/medgen-2020-2044.; Khatib H., Zaitoun I., Kim ES. Comparative analysis of sequence characteristics of imprinted genes in human, mouse, and cattle. Mamm Genome. 2007; 18: 538–547. https://doi.org/10.1007/s00335-007-9039-z/; Stelzer Y., Sagi I., Yanuka O., et al. The noncoding RNA IPW regulates the imprinted DLK1-DIO3 locus in an induced pluripotent stem cell model of Prader-Willi syndrome. Nat Genet. 2014;46(6):551-7. doi:10.1038/ng.2968.; Eggermann T., Yapici E., Bliek J. et al. Trans-acting genetic variants causing multilocus imprinting disturbance (MLID): common mechanisms and consequences. Clin Epigenet. 2022;14:41. doi:10.1186/s13148-022-01259-x.; Sazhenova E.A., Lebedev I.N. Epigenetic mosaicism in genomic imprinting disorders. Russian Journal of Genetics. 2019;55(10):1196-1207. Doi:10.1134/S1022795419100119.; Zaletaev D.V., Nemtsova M.V., Strelnikov V.V. Epigenetic Regulation Disturbances on Gene Expression in Imprinting Diseases. Molecular Biology. 2022;56(1):1-28. doi:10.1134/S0026893321050149.; Bilo L., Ochoa E., Lee S. et al. Molecular characterisation of 36 multilocus imprinting disturbance (MLID) patients: a comprehensive approach. Clin Epigenet. 2023; 15: 35. https://doi.org/10.1186/s13148-023-01453-5.; Javadi A., Shamaei M,. Mohammadi Ziazi L., et al. Qualification study of two genomic DNA extraction methods in different clinical samples. Tanaffos. 2014;13(4):41-47.; Moelans C.B., Atanesyan L., Savola S.P., van Diest P.J. Methylation-Specific Multiplex Ligation-Dependent Probe Amplification (MS-MLPA). Methods Mol Biol. 2018;1708:537-549. doi:10.1007/978-1-4939-7481-8_27.; Brioude F., Kalish J., Mussa A. et al. Clinical and molecular diagnosis, screening and management of Beckwith–Wiedemann syndrome: an international consensus statement. Nat Rev Endocrinol. 2018; 14: 229–249. https://doi.org/10.1038/nrendo.2017.166.; Williams C.A., Beaudet A.L., Clayton-Smith J., et al. Angelman syndrome 2005: updated consensus for diagnostic criteria. Am J Med Genet A. 2006;140(5):413-8. doi:10.1002/ajmg.a.31074.; Wakeling E.L., Brioude F., Lokulo-Sodipe O., et al. Diagnosis and management of Silver-Russell syndrome: first international consensus statement. Nat Rev Endocrinol. 2017;13(2):105-124. doi:10.1038/nrendo.2016.138.; Hokken-Koelega A.C., van der Steen M., Boguszewski M.C. et al. International consensus guideline on small for gestational age: etiology and management from infancy to early adulthood. Endocrine Reviews. 2023;44(3):539–565. doi:10.1210/endrev/bnad002.; Ioannides Y., Lokulo-Sodipe K., Mackay D.J., et al. Temple syndrome: improving the recognition of an underdiagnosed chromosome 14 imprinting disorder: an analysis of 51 published cases. J Med Genet. 2014;51(8):495-501. doi:10.1136/jmedgenet-2014-102396.; Prasasya R., Grotheer K.V., Siracusa L.D., Bartolomei M.S. Temple syndrome and Kagami-Ogata syndrome: clinical presentations, genotypes, models and mechanisms. Hum Mol Genet. 2020;29(R1):R107-R116. doi:10.1093/hmg/ddaa133.; Gillessen-Kaesbach G., Albrecht B., Eggermann T., et al. Molecular and clinical studies in 8 patients with Temple syndrome. Clin Genet. 2018;93(6):1179-1188. doi:10.1111/cge.13244.; Eggermann T., Kraft F., Kloth K., et al. Heterogeneous phenotypes in families with duplications of the paternal allele within the imprinting center 1 (H19/IGF2:TSS-DMR) in 11p15.5. Clin Genet. 2020;98(4):418-419. doi:10.1111/cge.13820.; Greeley S.A.W, Polak M., Njølstad P.R. et al. ISPAD Clinical Practice Consensus Guidelines 2022: The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes. 2022;23(8):1188-1211. doi:10.1111/pedi.13426 (19).; Docherty L.E., Kabwama S., Lehmann A., et al. Clinical presentation of 6q24 transient neonatal diabetes mellitus (6q24 TNDM) and genotype-phenotype correlation in an international cohort of patients. Diabetologia. 2013;56(4):758-62. doi:10.1007/s00125-013-2832-1.; Mackay D.J., Callaway J.L., Marks S.M., et al. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat Genet. 2008;40(8):949-51. doi:10.1038/ng.187.; Зубкова Н.А., Колодкина А.А., Макрецкая Н.А., и др. Клиническая и молекулярно-генетическая характеристика 3 семейных случаев гонадотропинзависимого преждевременного полового развития, обусловленного мутациями в гене MKRN3. Проблемы Эндокринологии. 2021;67(3):55-61. https://doi.org/10.14341/probl12745; Eggermann T. Human Reproduction and Disturbed Genomic Imprinting. Genes (Basel). 2024;15(2):163. doi:10.3390/genes15020163.

  2. 2
    Academic Journal

    Συνεισφορές: The study was conducted without sponsorship., Исследование проводилось без спонсорской поддержки.

    Πηγή: Medical Genetics; Том 24, № 9 (2025); 29-31 ; Медицинская генетика; Том 24, № 9 (2025); 29-31 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/3166/2026; Zvereff V.V., Faruki H., Edwards M., et al. Cystic fibrosis carrier screening in a North American population. Genetics in Medicine. 2014;16(7): 539–546.; Mogayzel P.J., Naureckas E.T., Robinson K.A. Cystic fibrosis pulmonary guidelines. Chronic medications for maintenance of lung health. The American Journal of Respiratory and Critical Care Medicine. 2013;187(7): 680-689.; Муковисцидоз. Издание 2-е., переработанное и дополненное (под редакцией Н.Ю. Каширской, Н.И. Капранова и Е.И. Кондратьевой). М.: ИД «МЕДПРАКТИКА-М», 2021, 680 с.; Регистр пациентов с муковисцидозом в Российской Федерации. 2022 год. / под ред. Воронковой А.Ю., Амелиной Е.Л., Каширской Н.Ю. и др. М.: ИД «МЕДПРАКТИКА-М», 2024, 68 с.

  3. 3
  4. 4
    Academic Journal

    Συνεισφορές: State budget financing., Государственное бюджетное финансирование.

    Πηγή: Neuromuscular Diseases; Том 13, № 1 (2023); 33-43 ; Нервно-мышечные болезни; Том 13, № 1 (2023); 33-43 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2023-13-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://nmb.abvpress.ru/jour/article/view/524/341; Arora H. Duchenne muscular dystrophy: still an incurable disease. Neurol Ind 2019;67(3):717–23. DOI:10.4103/0028-3886.263203; Sinha R., Sarkar S., Khaitan T., Dutta S. Duchenne muscular dystrophy: case report and review. J Family Med Prim Care 2017;6(3):654. DOI:10.4103/2249-4863.222015; Duan D., Goemans N., Takeda S. et al. Duchenne muscular dystrophy. Nat Rev Dis Primers 2021;7(1):13. DOI:10.1038/s41572-021-00248-3; Waldrop M.A., Flanigan K.M. Update in Duchenne and Becker muscular dystrophy. Cur Opin Neurol 2019;32(5):722–7. DOI:10.1097/WCO.0000000000000739; Iskandar K., Dwianingsih E.K., Pratiwi L. et al. The analysis of DMD gene deletions by multiplex PCR in Indonesian DMD/BMD patients: the era of personalized medicine. BMC Res Notes 2019;12(1):704. DOI:10.1186/s13104-019-4730-1; Blake D.J., Weir A., Newey S.E., Davies K.E. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 2002;82(2):291–329. DOI:10.1152/physrev.00028.2001; Koenig M., Hoffman E.P., Bertelson C.J. et al. Complete cloning of the duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 1987;50(3):509–17. DOI:10.1016/0092-8674(87)90504-6; Chamberlain J.R., Chamberlain J.S. Progress toward gene therapy for Duchenne muscular dystrophy. Mol Ther 2017;25(5):1125–31. DOI:10.1016/j.ymthe.2017.02.019; Beggs A.H., Kunkel L.M. Improved diagnosis of Duchenne/ Becker muscular dystrophy. J Clin Invest 1990;85(3):613–9. DOI:10.1172/JCI114482; Falzarano M., Scotton C., Passarelli C., Ferlini A. Duchenne muscular dystrophy: from diagnosis to therapy. Molecules 2015;20(10):18168–84. DOI:10.3390/molecules201018168; Hu X.Y., Ray P.N., Murphy E.G. et al. Duplicational mutation at the Duchenne muscular dystrophy locus: its frequency, distribution, origin, and phenotypegenotype correlation. Am J Hum Genet 1990;46(4):682–95.; Wizard® Genomic DNA Purification Kit. Available at: https://worldwide.promega.com/-/media/files/resources/protcards/wizard-genomic-dna-purification-kit-quick-protocol.pdf?rev=4cc2e14ff84c4281a97eb50b32755c33&sc_lang=en.; MRC Holland: Confidence in Copy Number Determination. Available at: https://www.mrcholland.com.; Fratter C., Dalgleish R., Allen S.K. et al. EMQN best practice guidelines for genetic testing in dystrophinopathies. Eur J Hum Genet 2020;28(9):1141–59. DOI:10.1038/s41431-020-0643-7; Sequence Variant Nomenclature. Available at: http://varnomen.hgvs.org.; NGSData. Available at: https://new.fips.ru/registers-doc-view/fips_servlet?DB=EVM&DocNumber=2021614055&TypeFile=html.; Рыжкова О.П., Кардымон О.Л., Прохорчук Е.Б. и др. Руководство по интерпретации данных последовательности ДНК человека, полученных методами массового параллельного секвенирования (MPS) (редакция 2018, версия 2). Медицинская генетика 2019;18(2):3–24. DOI:10.25557/2073-7998.2019.02.3-2318; Schwartz M., Dunø M. Improved molecular diagnosis of dystrophin gene mutations using the multiplex ligation-dependent probe amplification method. Genet Test 2004;8(4):361–7. DOI:10.1089/gte.2004.8.361; Ji X., Zhang J., Xu Y. et al. MLPA application in clinical diagnosis of DMD/BMD in Shanghai: MLPA application in clinical diagnosis of DMB/BMD. J Clin Lab Anal 2015;29(5):405–11. DOI:10.1002/jcla.21787; Flanigan K.M., Dunn D.M., von Niederhausern A. et al. Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. Hum Mutat 2009;30(12):1657–66. DOI:10.1002/humu.21114; Bladen C.L., Salgado D., Monges S. et al. The TREAT-NMD DMD Global Database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum Mut 2015;36(4):395–402. DOI:10.1002/humu.22758; Kong X., Zhong X., Liu L. et al. Genetic analysis of 1051 Chinese families with Duchenne/Becker muscular dystrophy. BMC Med Genet 2019;20(1):139–45. DOI:10.1186/s12881-019-0873-0; Neri M., Rossi R., Trabanelli C. et al. The genetic landscape of dystrophin mutations in Italy: a nationwide study. Front Genet 2020;11:131. DOI:10.3389/fgene.2020.00131; Okubo M., Minami N., Goto K. et al. Genetic diagnosis of Duchenne/Becker muscular dystrophy using next-generation sequencing: validation analysis of DMD mutations. J Hum Genet 2016;61(6):483–9. DOI:10.1038/jhg.2016.7; Bushby K., Lynn S., Straub T. Collaborating to bring new therapies to the patient – the TREAT-NMD model. Acta Myol 2009;28(1):12–5.; Dunnen J.T., Beggs A.H. Multiplex PCR for identifying DMD gene deletions. Curr Protoc Hum Genet 2006;49(1). DOI:10.1002/0471142905.hg0903s49; Giliberto F., Ferreiro V., Massot F. et al. Prenatal diagnosis of Duchenne/Becker muscular dystrophy by short tandem repeat segregation analysis in argentine families: DMD molecular prenatal diagnosis. Muscle Nerve 2011;43(4):510–17. DOI:10.1002/mus.21904; Sun C., Shen L., Zhang Z., Xie X. Therapeutic strategies for Duchenne muscular dystrophy: an update. Genes 2020;11(8):837.https://nmb.abvpress.ru/jour/editor/submissionEngCit/524 DOI:10.3390/genes11080837; Takeshima Y., Yagi M., Okizuka Y. et al. Mutation spectrum of the dystrophin gene in 442 Duchenne/Becker muscular dystrophy cases from one Japanese referral center. J Hum Genet 2010;55(6):379–88. DOI:10.1038/jhg.2010.49; Zamani G., Bereshneh A.H., Malamiri A.R. et al. The first comprehensive cohort of the Duchenne muscular dystrophy in Iranian population: mutation spectrum of 314 patients and identifying two novel nonsense mutations. J Mol Neurosci 2020;70(10):1565–73. DOI:10.1007/s12031-020-01594-9; https://nmb.abvpress.ru/jour/article/view/524

  5. 5
    Academic Journal

    Πηγή: Medical Genetics; Том 22, № 12 (2023); 33-44 ; Медицинская генетика; Том 22, № 12 (2023); 33-44 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2385/1757; Monk D., Mackay D.J.G., Eggermann T. et al. Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat Rev Genet. 2019;20:235–248. doi:10.1038/s41576-0180092-0; Eggermann T., Perez de Nanclares G., Maher E.R. et al. Imprinting disorders: a group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci. Clin Epigenet. 2015;7:123. doi:10.1186/s13148-015-0143-8; Elbracht M., Mackay D., Begemann M., Kagan K.O., Eggermann T. Disturbed genomic imprinting and its relevance for human reproduction: causes and clinical consequences. Hum Reprod Update. 2020;26(2):197-213. doi:10.1093/humupd/dmz045; Prawitt D., Haaf T. Basics and disturbances of genomic imprinting. Medizinische Genetik. 2020;32(4): 297-304. doi:10.1515/ medgen-2020-2042; Anvar Z., Chakchouk I., Demond H., Sharif M., Kelsey G., Van den Veyver I.B. DNA Methylation Dynamics in the Female Germline and Maternal-Effect Mutations That Disrupt Genomic Imprinting. Genes (Basel). 2021;12(8):1214. doi:10.3390/genes12081214; Krzyzewska I.M., Alders M., Maas S.M. et al. Genome-wide methylation profiling of Beckwith-Wiedemann syndrome patients without molecular confirmation after routine diagnostics. Clin Epigenetics. 2019;11(1):53. doi:10.1186/s13148-019-0649-6; Sazhenova E.A., Skryabin N.A., Sukhanova N.N., Lebedev I.N. Multilocus epimutations of imprintome in the pathology of human embryo development. Molecular Biology. 2012;46:183-191. doi:10.1134/S0026893312010207; Sazhenova E.A., Lebedev I.N. Epigenetic mosaicism in genomic imprinting disorders. Russian Journal of Genetics. 2019;55:1196-1207. doi:10.1134/S1022795419100119; Khatib H., Zaitoun I., Kim E.S. Comparative analysis of sequence characteristics of imprinted genes in human, mouse, and cattle. Mamm Genome. 2007;18:538–547. doi:10.1007/s00335-007-9039-z; Soellner L., Begemann M., Mackay D.J. et al. Recent Advances in Imprinting Disorders. Clin Genet. 2017;91(1):3-13. doi:10.1111/ cge.12827; Stelzer Y., Sagi I., Yanuka O., Eiges R., Benvenisty N. The noncoding RNA IPW regulates the imprinted DLK1-DIO3 locus in an induced pluripotent stem cell model of Prader-Willi syndrome. Nat Genet. 2014;46(6):551-557. doi:10.1038/ng.2968; Eggermann T., Davies J.H., Tauber M., van den Akker E., HokkenKoelega A., Johansson G., Netchine I. Growth Restriction and Genomic Imprinting-Overlapping Phenotypes Support the Concept of an Imprinting Network. Genes. 2021;12:585. doi:10.3390/ genes12040585; Girardot M., Cavaillé J., Feil R. Small regulatory RNAs controlled by genomic imprinting and their contribution to human disease. Epigenetics. 2012;7(12):1341-1348. doi:10.4161/epi.22884; Elbracht M., Binder G., Hiort O., Kiewert C., Kratz C., Eggermann T. Clinical spectrum and management of imprinting disorders. Medizinische Genetik. 2020;32(4):321-334. doi:10.1515/ medgen-2020-2044; Bruce S. Genomic and epigenetic investigations of Silver-Russell syndrome and growth restriction. Doctoral Theses. 2009. http://hdl. handle.net/10616/38303; Eggermann T., Yapici E., Bliek J. et al. Trans-acting genetic variants causing multilocus imprinting disturbance (MLID): common mechanisms and consequences. Clin Epigenet. 2022;14:41. doi:10.1186/s13148-022-01259-x; Zaletaev D.V., Nemtsova M.V., Strelnikov V.V. Epigenetic Regulation Disturbances on Gene Expression in Imprinting Diseases. Molecular Biology. 2022;56(1):1-28. doi:10.1134/S0026893321050149; Mackay D., Bliek J., Kagami M. et al. First step towards a consensus strategy for multi-locus diagnostic testing of imprinting disorders. Clin Epigenetics. 2022;14(1):143. doi:10.1186/s13148-022-01358-9; Soellner L, Monk D, Rezwan FI, Begemann M, Mackay D, Eggermann T. Congenital imprinting disorders: Application of multilocus and high throughput methods to decipher new pathomechanisms and improve their management. Mol Cell Probes. 2015;29(5):282-290. doi:10.1016/j.mcp.2015.05.003; Bilo L., Ochoa E., Lee S. et al. Molecular characterisation of 36 multilocus imprinting disturbance (MLID) patients: a comprehensive approach. Clin Epigenet. 2023;15:35. doi:10.1186/s13148-02301453-5; Solovova O.A., Chernykh V.B. Genetics of Oocyte Maturation Defects and Early Embryo Development Arrest. Genes (Basel). 2022;13(11):1920. doi:10.3390/genes13111920; Begemann M., Rezwan F.I., Beygo J. et al. Maternal variants in NLRP and other maternal effect proteins are associated with multilocus imprinting disturbance in offspring. J Med Genet. 2018 Jul;55(7):497504. doi:10.1136/jmedgenet-2017-105190; Docherty L., Rezwan F., Poole R. et al. Mutations in NLRP5 are associated with reproductive wastage and multilocus imprinting disorders in humans. Nat Commun. 2015;6:8086. doi:10.1038/ ncomms9086; Monk D., Sanchez-Delgado M., Fisher R. NLRPs, the subcortical maternal complex and genomic imprinting. Reproduction. 2017;154(6):R161-R170. doi:10.1530/REP-17-0465; Demond H., Anvar Z., Jahromi B.N., Sparago A., Verma A., Davari M., et al.; A KHDC3L mutation resulting in recurrent hydatidiform mole causes genome-wide DNA methylation loss in oocytes and persistent imprinting defects post-fertilisation. Genome Med. 2019;11(1):84. doi:10.1186/s13073-019-0694-y; Pignata L., Cecere F., Verma A. et al. Novel genetic variants of KHDC3L and other members of the subcortical maternal complex associated with Beckwith-Wiedemann syndrome or Pseudohypoparathyroidism 1B and multi-locus imprinting disturbances. Clin Epigenetics. 2022;14(1):71. doi:10.1186/s13148022-01292-w; Eggermann T., Kadgien G., Begemann M., Elbracht M. Biallelic PADI6 variants cause multilocus imprinting disturbances and miscarriages in the same family. Eur J Hum Genet. 2021;29(4):575580. doi:10.1038/s41431-020-00762-0; Geoffron S., Abi Habib W., Chantot-Bastaraud S. et al. Chromosome 14q32.2 Imprinted Region Disruption as an Alternative Molecular Diagnosis of Silver-Russell Syndrome. J Clin Endocrinol Metab. 2018;103(7):2436-2446. doi:10.1210/jc.2017-02152; Eggermann T. Maternal Effect Mutations: A Novel Cause for Human Reproductive Failure. Geburtshilfe Frauenheilkd. 2021;81(7):780788. doi:10.1055/a-1396-4390; Boonen S.E., Mackay D.J., Hahnemann J.M. et al. Transient neonatal diabetes, ZFP57, and hypomethylation of multiple imprinted loci: a detailed follow-up. Diabetes Care. 2013;36(3):505-12. doi:10.2337/ dc12-0700; Monteagudo-Sánchez A., Hernandez Mora J.R., Simon C. et al. The role of ZFP57 and additional KRAB-zinc finger proteins in the maintenance of human imprinted methylation and multi-locus imprinting disturbances. Nucleic Acids Res. 2020;48(20):11394-11407. doi:10.1093/nar/gkaa837; Kagami M., Hara-Isono K., Matsubara K. et al. ZNF445: a homozygous truncating variant in a patient with Temple syndrome and multilocus imprinting disturbance. Clin Epigenetics. 2021;13(1):119. doi:10.1186/s13148-021-01106-5; Kim J.D., Kim H., Ekram M.B., Yu S., Faulk C., Kim J. Rex1/Zfp42 as an epigenetic regulator for genomic imprinting. Human molecular genetics. 2011;20(7):1353-1362. doi:10.1093/hmg/ddr017; Fontana L., Bedeschi M.F., Maitz S. et al. Characterization of multilocus imprinting disturbances and underlying genetic defects in patients with chromosome 11p15.5 related imprinting disorders. Epigenetics. 2018;13(9):897-909. doi:10.1080/15592294.2018.1514230; Sanchez-Delgado M., Riccio A., Eggermann T. et al. Causes and Consequences of Multi-Locus Imprinting Disturbances in Humans. Trends Genet. 2016;32(7):444-455. doi:10.1016/j.tig.2016.05.001; Brioude F., Kalish J., Mussa A. et al. Clinical and molecular diagnosis, screening and management of Beckwith–Wiedemann syndrome: an international consensus statement. Nat Rev Endocrinol. 2018;14:229– 249. doi:10.1038/nrendo.2017.166; Williams C.A., Beaudet A.L., Clayton-Smith J. et al. Angelman syndrome 2005: updated consensus for diagnostic criteria. Am J Med Genet A. 2006;140(5):413-418. doi:10.1002/ajmg.a.31074; Wakeling E.L., Brioude F., Lokulo-Sodipe O. et al. Diagnosis and management of Silver-Russell syndrome: first international consensus statement. Nat Rev Endocrinol. 2017;13(2):105-124. doi:10.1038/ nrendo.2016.138; Hokken-Koelega A.C., van der Steen M., Boguszewski M.C. et al. International consensus guideline on small for gestational age: etiology and management from infancy to early adulthood. Endocrine Reviews. 2023;44(3):539–565. doi:10.1210/endrev/bnad002; Greeley S.A.W, Polak M., Njølstad P.R. et al. ISPAD Clinical Practice Consensus Guidelines 2022: The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes. 2022;23(8):1188-1211. doi:10.1111/pedi.13426; Mantovani G., Bastepe M., Monk D. et al. Recommendations for Diagnosis and Treatment of Pseudohypoparathyroidism and Related Disorders: An Updated Practical Tool for Physicians and Patients. Horm Res Paediatr. 2020;93(3):182-196. doi:10.1159/000508985; Mackay D.J., Eggermann T., Buiting K. et al. Multilocus methylation defects in imprinting disorders. Biomol Concepts. 2015;6(1):47-57. doi:10.1515/bmc-2014-0037; Baple E.L., Poole R.L., Mansour S. et al. An atypical case of hypomethylation at multiple imprinted loci. Eur J Hum Genet. 2011;19(3):360-362. doi:10.1038/ejhg.2010.218; Bens S., Kolarova J., Beygo J. et al. Phenotypic spectrum and extent of DNA methylation defects associated with multilocus imprinting disturbances. Epigenomics. 2016;8(6):801-816. doi:10.2217/epi-2016-0007; Grosvenor S.E., Davies J.H., Lever M., Sillibourne J., Mackay D.J.G., Temple I.K. A patient with multilocus imprinting disturbance involving hypomethylation at 11p15 and 14q32, and phenotypic features of Beckwith-Wiedemann and Temple syndromes. Am J Med Genet A. 2022;188(6):1896-1903. doi:10.1002/ajmg.a.62717; Bakker B., Sonneveld L.J., Woltering M.C., Bikker H., Kant S.G. A girl with Beckwith-Wiedemann syndrome and pseudohypoparathyroidism type 1B due to multiple imprinting defects. The Journal of Clinical Endocrinology & Metabolism. 2015;100(11):3963-3966. doi:10.1210/jc.2015-2260; Sano S., Matsubara K., Nagasaki K. et al. Beckwith-Wiedemann syndrome and pseudohypoparathyroidism type Ib in a patient with multilocus imprinting disturbance: a female-dominant phenomenon? J Hum Genet. 2016;61(8):765-769. doi:10.1038/jhg.2016.45; Eggermann T., Brioude F., Russo S. et al. Prenatal molecular testing for Beckwith-Wiedemann and Silver-Russell syndromes: a challenge for molecular analysis and genetic counseling. European journal of human genetics. 2016;24(6):784-793. doi:10.1038/ejhg.2015.224; Dufke A., Eggermann T., Kagan K.O., Hoopmann M., Elbracht M. Prenatal testing for Imprinting Disorders: A clinical perspective. Prenat Diagn. 2023;43(8):983-992. doi:10.1002/pd.6400; Eggermann T. Prenatal Detection of Uniparental Disomies (UPD): Intended and Incidental Finding in the Era of Next Generation Genomics. Genes (Basel). 2020;11(12):1454. doi:10.3390/ genes11121454; Hu J., Zhang Y., Yang Y., Wang L., Sun Y., Dong M. Case report: Prenatal diagnosis of Kagami-Ogata syndrome in a Chinese family. Front Genet. 2022;13:959666. doi:10.3389/fgene.2022.959666

  6. 6
  7. 7
  8. 8
  9. 9
    Academic Journal

    Πηγή: Medical Genetics; Том 21, № 10 (2022); 65-68 ; Медицинская генетика; Том 21, № 10 (2022); 65-68 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2174/1641; Jeong T.D., Cho S.Y., Kim M.W., Huh J. Significant allelic dropout phenomenon of oncomine BRCA research assay on Ion torrent S5. Clinical Chemistry and Laboratory Medicine. 2019; 57(6):e124-e127. doi:10.1515/cclm-2018-0674; Blais J., Lavoie S.B., Giroux S., Bussières J., Lindsay C., Dionne J., Laroche M., Giguère Y., Rousseau F. Risk of misdiagnosis due to allele dropout and false-positive PCR artifacts in molecular diagnostics analysis of 30,769 genotypes. J Mol Diagn. 2015; 17(5):505-14. doi:10.1016/j.jmoldx.2015.04.004; Wang C., Schroeder K.B., Rosenberg N.A. A maximum-likelihood method to correct for allelic dropout in microsatellite data with no replicate genotypes. Genetics. 2012; 192(2):651-69. doi:10.1534/genetics.112.139519; Martins E. M., Vilarinho L., Esteves S., Lopes-Marques M., Amorim A., Azevedo L. Consequences of primer binding-sites polymorphisms on genotyping practice. Open J. Genet. 2011; 1:15-17. doi:10.4236/ojgen.2011.12004; Lam C.W., Mak C.M. Allele dropout caused by a non-primer-site SNV affecting PCR amplification - A call for next-generation primer design algorithm. Clinica Chimica Acta. 2013; 421:208-12. doi:10.1016/j.cca.2013.03.014

  10. 10
    Academic Journal

    Πηγή: Medical Genetics; Том 21, № 9 (2022); 22-27 ; Медицинская генетика; Том 21, № 9 (2022); 22-27 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2142/1609; Регистр больных муковисцидозом в Российской Федерации. 2018 год. Под редакцией Е.Л. Амелиной, Н.Ю. Каширской, Е.И. Кондратьевой, С.А. Красовского, М.А. Стариновой, А.Ю. Воронковой.- М.: ИД «МЕДПРАКТИКА-М», 2020, 68 с.; Butnariu L.I., Țarcă E., Cojocaru E., Rusu C., Moisă Ș.M., Leon Constantin M.M., Gorduza E.V., Trandafir L.M. Genetic Modifying Factors of Cystic Fibrosis Phenotype: A Challenge for Modern Medicine J. Clin. Med. 2021, 10(24), 5821; https://doi.org/10.3390/jcm10245821; Муковисцидоз. Издание 2-е., переработанное и дополненное (под редакцией Н.Ю.Каширской, Н.И.Капранова и Е.И.Кондратьевой). - М.: ИД «МЕДПРАКТИКА-М», 2021, 680 с.; Капранов Н.И., Каширская Н.Ю., Ашерова И.К., Кондратьева Е.И., Шерман В.Д. Исторические и современные аспекты муковисцидоза в России. Педиатрическая фармакология. 2013;10(6):53-60. https://doi.org/10.15690/pf.v10i6.896; Национальный консенсус (2 -е издание) «Муковисцидоз: определение, диагностические критерии, терапия»2018/ Под редакцией Е.И. Кондратьевой, Н.Ю. Каширской, Н.И. Капранова - М.: ООО «Компания БОРГЕС»., 2018, 356 с.; Капранов Н.И., Каширская Н.Ю. Муковисцидоз. Современные достижения и актуальные проблемы. Методические рекомендации. Издание 3-е, переработанное и дополненное. М.: ООО «4ТЕ Арт»; 2008. 124 с.; Толстова В.Д., Каширская Н.Ю., Капранов Н.И. Массовый скрининг новорожденных на муковисцидоз в России. Фарматека. 2008;1:38-43; Wainwright C.E., Elborn J.S., Ramsey B.W., Marigowda G., Huang X., Cipolli M., Colombo C., Davies J.C., De Boeck K., Flume P.A., Konstan M.W., McColley S.A., McCoy K., McKone E.F., Munck A., Ratjen F., Rowe S.M., Waltz D., Boyle M.P.; TRAFFIC Study Group; TRANSPORT Study Group. Lumacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del CFTR. N Engl J Med. 2015;373(3):220-31. doi:10.1056/NEJMoa1409547.; Shaw M., Khan U., Clancy J.P., Donaldson S.H., Sagel S.D., Rowe S.M., Ratjen F. Changes in LCI in F508del/F508del patients treated with lumacaftor/ivacaftor: Results from the prospect study. J Cyst Fibros. 2020;19(6):931-933. doi:10.1016/j.jcf.2020.05.010.; Chevalier B., Hinzpeter A. The influence of CFTR complex alleles on precision therapy of cystic fibrosis. J Cyst Fibros. 2020;19(Suppl 1):S15-S18. DOI:10.1016/j.jcf.2019.12.008; Baatallah N., Bitam S., Martin N., et al. Cis variants identified in F508del complex alleles modulate CFTR channel rescue by small molecules. Hum Mutat. 2018; 39:506-14. DOI:10.1002/humu.23389; Кондратьева Е.И., Амелина Е.Л., Чернуха М.Ю., и др. Обзор клинических рекомендаций «Кистозный фиброз (муковисцидоз)» 2020. Пульмонология. 2021; 31(2):135-146. DOI:10.18093/0869-0189-2021-31-2-135-146; Амелина Е.Л., Ефремова А.С., Мельяновская Ю.Л., и др. Использование функциональных тестов для оценки остаточной активности канала CFTR и индивидуального подбора эффективных CFTR-модуляторов для лечения пациентов с муковисцидозом с «мягким» и «тяжёлым» генетическими вариантами. Пульмонология. 2021;31(2):167-176; Ефремова А.С., Мельяновская Ю.Л., Булатенко Н.В., и др. Описание редких аллелей гена CFTR при муковисцидозе с помощью функциональных тестов и форсколинового теста на ректальных органоидах. Пульмонология. 2021;31(2):178-188; Куцев С.И., Ижевская В.Л., Кондратьева Е.И. Таргетная терапия при муковисцидозе. Пульмонология. 2021; 31(2): 226-236. DOI:10.18093/0869-0189-2021-31-2-226-236

  11. 11
  12. 12
  13. 13
    Academic Journal

    Συνεισφορές: The study was carried out within the framework of state Funding «Analysis of clinical and genetic polymorphism of disabled monogenic diseases in children to predict their course and identify molecular targets for optimizing treatment» АААА-А18-118051790107-2, Исследование проведено в рамках финансирования госзадания «Анализ клинико-генетического полиморфизма инвалидизирующих моногенных заболеваний у детей для прогнозирования их течения и определения молекулярных мишеней для оптимизации лечения» АААА-А18-118051790107-2

    Πηγή: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 66, № 1 (2021); 22-30 ; Российский вестник перинатологии и педиатрии; Том 66, № 1 (2021); 22-30 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2021-66-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1334/1044; Beighton P., De Paepe A., Steinmann B., Tsipouras P., Wenstrup R.J. Ehlers–Danlos syndromes: revised nosology, Villefranche, 1997. Ehlers–Danlos National Foundation (USA) and Ehlers–Danlos Support Group (UK). Am J Med Genet 1998; 77(1): 31–37. DOI:10.1002/(sici)10968628(19980428)77:13.0.co;2-o; Malfait F., Francomano C., Byers P., Belmont J., Berglund B., Black J. et al. The 2017 international classification of the Ehlers–Danlos syndromes. Am J Med Genet C Semin Med Genet 2017; 175(1): 8–26. DOI:10.1002/ajmg.c.31552; Ritelli M., Venturini M., Cinquina V., Chiarelli N., Colombi M. Multisystemic manifestations in a cohort of 75 classical Ehlers–Danlos syndrome patients: natural history and nosological perspectives. Orphanet J Rare Dis 2020; 15(1): 197. DOI:10.1186/s13023-020-01470-0; Steinmann B., Royce P.M., Superti-Furga A. The Ehlers-Danlos syndrome. In: Connective tissue and its heritable disorders: molecular genetics and medicals aspects. P.M. Royce, B. Steinmann (eds). New York: Wiley-Liss, 2002; 351–407.; Ritelli M., Dordoni C., Venturini M., Chiarelli N., Quinzani S., Traversa M. et al. Clinical and molecular characterization of 40 patients with classic Ehlers-Danlos syndrome: Identification of 18 COL5A1 and 2 COL5A2 novel mutations. Orphanet J Rare Dis 2013; 8: 58. DOI:10.1186/1750-1172-8-58; Sun M., Chen S., Adams S.M., Florer J.B., Liu H., Kao W.W.Y. et al. Collagen V is a dominant regulator of collagen fibrillogenesis: Dysfunctional regulation of structure and function in a corneal-stroma-specific Col5a1-null mouse model. J Cell Sci 2011; 124: 4096–4105. DOI:10.1242/jcs.091363; Chiarelli N., Ritelli M., Zoppi N., Colombi M. Cellular and Molecular Mechanisms in the Pathogenesis of Classical, Vascular, and Hypermobile Ehlers–Danlos Syndromes. Genes (Basel) 2019; 10(8): 609. DOI:10.3390/genes10080609; Colombi M., Dordoni C., Venturini M., Zanca A., Calzavara-Pinton P., Ritelli M. Delineation of Ehlers–Danlos syndrome phenotype due to the c.934C>T, p.(Arg312Cys) mutation in COL1A1: Report on a three-generation family without cardiovascular events, and literature review. Am J Med Genet Part A 2017; 173: 524–530. DOI:10.1002/ajmg.a.38035; Data base ClinVar. 2020. https://www.ncbi.nlm.nih.gov/clinvar/?term=COL1A2%5Bgene%5D; Colombi M., Dordoni C., Cinquina V., Venturini M., Ritelli M. A classical Ehlers–Danlos syndrome family with incomplete presentation diagnosed by molecular testing. Eur J Med Genet 2018; 61(1): 17–20. DOI:10.1016/j.ejmg.2017.10.005; Angwin C., Brady A.F., Colombi M., Ferguson D.J.P., Pollitt R., Pope F.M. et al. Absence of Collagen Flowers on Electron Microscopy and Identification of (Likely) Pathogenic COL5A1 Variants in Two Patients. Genes (Basel) 2019; 10(10): 762. DOI:10.3390/genes10100762; Germain D.P. Ehlers–Danlos syndrome type IV. Orphanet J Rare Dis 2007; 2:32. DOI:10.1186/1750-1172-2-32; Eagleton M.J. Arterial complications of vascular Ehlers– Danlos syndrome. J Vasc Surg 2016; 64(6): 1869–1880. DOI:10.1016/j.jvs.2016.06.120; Papagiannis J. Sudden death due to aortic pathology. Cardiol Young 2017; 27(S1): S36–S42. DOI:10.1017/S1047951116002213; Shields L.B.E., Rolf C.M., Davis G.J., Hunsaker J.C. Sudden and unexpected death in three cases of Ehlers–Danlos syndrome type IV. Case Reports. J Forensic Sci 2010; 55(6): 1641–5. DOI:10.1111/j.1556-4029.2010.01521.x; Park K.Y., Gill K.G., Kohler J.E. Intestinal Perforation in Children as an Important Differential Diagnosis of Vascular Ehlers–Danlos Syndrome. Am J Case Rep 2019; 20: 1057–1062. DOI:10.12659/AJCR.917245; Lu Y., Zhang S., Wang Y., Ren X., Han J. Molecular mechanisms and clinical manifestations of rare genetic disorders associated with type I collagen. Intractable Rare Dis Res 2019; 8(2): 98–107. DOI:10.5582/irdr.2019.01064; Colige A., Nuytinck L., Hausser I., van Essen A.J., Thiry M. et al. Novel types of mutation responsible for the dermatosparactic type of Ehlers–Danlos syndrome (Type VIIC) and common polymorphisms in the ADAMTS2 gene. J Invest Dermatol 2004; 123(4): 656–663. DOI:10.1111/j.0022202X.2004.23406.x; Van Damme T., Colige A., Syx D., Giunta C., Lindert U., Rohrbach M. et al. Expanding the clinical and mutational spectrum of the Ehlers–Danlos syndrome, dermatosparaxis type. Genet Med 2016; 18(9): 882–891. DOI:10.1038/gim.2015.188.; Rincón-Sánchez A.R., Arce I.E., Tostado-Rabago E.A., Vargas A., Padilla-Gómez L.A., Bolaños A. et al. Ehlers-Danlos Syndrome Type VIIC: A Mexican Case Report. Case Rep Dermatol 2012; 4(1): 104–113. DOI:10.1159/000338277; Colige A., Sieron A.L., Li S.W., Schwarze U., Petty E., Wertelecki W. et al. Human Ehlers–Danlos syndrome type VII C and bovine dermatosparaxis are caused by mutations in the procollagen I N-proteinase gene. Am J Hum Genet 1999; 65(2): 308–317. DOI:10.1086/302504; Rohrbach M., Vandersteen A., Yiş U., Serdaroglu G., Ataman E., Chopra M. et al. Phenotypic variability of the kyphoscoliotic type of Ehlers–Danlos syndrome (EDS VIA): clinical, molecular and biochemical delineation. Orphanet J Rare Dis 2011; 6: 46. DOI:10.1186/1750-1172-6-46; Giunta C., Baumann M., Fauth C., Lindert U., Abdalla E.M., Brady A.F. et al. A cohort of 17 patients with kyphoscoliotic Ehlers–Danlos syndrome caused by biallelic mutations in FKBP14: expansion of the clinical and mutational spectrum and description of the natural history. Genet Med 2018; 20(1): 42–54. DOI:10.1038/gim.2017.70; Micale L., Guarnieri V., Augello B., Palumbo O., Agolini E., Sofia V.M. et al. Novel TNXB Variants in Two Italian Patients with Classical-Like Ehlers–Danlos Syndrome. Genes (Basel). 2019; 10(12): 967. DOI:10.3390/genes10120967; Ritelli M., Cinquina V., Venturini M., Pezzaioli L., Formenti A.M., Chiarelli N., Colombi M. Expanding the Clinical and Mutational Spectrum of Recessive AEBP1-Related Classical-Like Ehlers–Danlos Syndrome. Genes (Basel) 2019; 10: 135. DOI:10.3390/genes10020135; Bristow J., Carey W., Egging D., Schalkwijk J. Tenascin-X, collagen, elastin, and the Ehlers–Danlos syndrome. Am J Med Genet 2005; 139: 24–30. DOI:10.1002/ajmg.c.30071; Alazami A.M., Al-Qattan S.M., Faqeih E., Alhashem A., Alshammari M., Alzahrani F. et al. Expanding the clinical and genetic heterogeneity disorders of connective tissue. Hum Genet 2016; 135: 525–540. DOI:10.1007/s00439-0161660-z; Lautrup C.K., Teik K.W., Unzaki A., Mizumoto S., Syx D., Sin H.H. et al. Delineation of musculocontractural Ehlers– Danlos Syndrome caused by dermatan sulfate epimerase deficiency. Mol Genet Genomic Med 2020; 8(5): e1197. DOI:10.1002/mgg3.1197; Caraffi S.G., Maini I., Ivanovski I., Pollazzon M., Giangiobbe S., Valli M. et al. Severe Peripheral Joint Laxity is a Distinctive Clinical Feature of Spondylodysplastic-Ehlers–Danlos Syndrome (EDS)–B4GALT7 and Spondylodysplastic-EDS-B3GALT6. Genes (Basel) 2019; 10(10): 799. DOI:10.3390/genes10100799; Kumps C., Campos-Xavier B., Hilhorst-Hofstee Y., Marcelis C., Kraenzlin M., Fleischer N. et al. The Connective Tissue Disorder Associated with Recessive Variants in the SLC39A13 Zinc Transporter Gene (Spondylo-Dysplastic Ehlers–Danlos Syndrome Type 3): Insights from Four Novel Patients and Follow-Up on Two Original Cases. Genes (Basel) 2020; 11(4): 420. DOI:10.3390/genes11040420; Mohassel P., Liewluck T., Hu Y., Ezzo D., Ogata T., Saade D. et al. Dominant collagen XII mutations cause a distal myopathy. Ann Clin Transl Neurol 2019; 6(10): 1980–1988. DOI:10.1002/acn3.50882; Chiquet M., Birk D.E., Bonnemann C.G., Koch M. Collagen XII: protecting bone and muscle integrity by organizing collagen fibrils. Int J Biochem Cell Biol 2014; 53: 51–54. DOI:10.1016/j.biocel.2014.04.020; Kapferer-Seebacher I., Pepin M., Werner R., Aitman T.J., Nordgren A., Stoiber H. et al. Periodontal Ehlers–Danlos Syndrome Is Caused by Mutations in C1R and C1S, which Encode Subcomponents C1r and C1s of Complement. Am J Hum Genet 2016; 99(5): 1005–1014. DOI:10.1016/j. ajhg.2016.08.019; Wan Q., Tang J., Han Y., Xiao Q., Deng Y. Brittle cornea syndrome: a case report and review of the literature. BMC Ophthalmol 2018; 18: 252. DOI:10.1186/s12886-018-0903-2; Eleiwa T., Raheem M., Patel N.A., Berrocal A.M., Grajewski A., Shousha M.A. Case Series of Brittle Cornea Syndrome. Case Rep Ophthalmol Med 2020; 2020: 4381273. DOI:10.1155/2020/4381273; Castori M. Ehlers–Danlos syndrome, hypermobility type: an underdiagnosed hereditary connective tissue disorder with mucocutaneous, articular, and systemic manifestations. ISRN Dermatol 2012; 2012: 751768. DOI:10.5402/2012/751768; Gazit Y., Jacob G., Grahame R. Ehlers–Danlos Syndrome-Hypermobility Type: A Much Neglected Multisystemic Disorder. Rambam Maimonides Med J 2016; 7(4): e0034. DOI:10.5041/RMMJ.10261; Forghani I. Updates in Clinical and Genetics Aspects of Hypermobile Ehlers Danlos Syndrome. Balkan Med J 2019; 36(1): 12–16. DOI:10.4274/balkanmedj.2018.1113; Demmler J.C., Atkinson M.D., Reinhold E.J., Choy E., Lyons R.A., Brophy S.T. Diagnosed prevalence of Ehlers–Danlos syndrome and hypermobility spectrum disorder in Wales, UK: a national electronic cohort study and case-control comparison. BMJ Open 2019; 9(11): e031365. DOI:10.1136/bmjopen-2019-031365; Castori M., Dordoni C., Valiante M., Sperduti I., Ritelli M., Morlino S. et al. Nosology and inheritance pattern(s) of joint hypermobility syndrome and Ehlers–Danlos syndrome, hypermobility type: a study of intrafamilial and interfamilial variability in 23 Italian pedigrees. Am J Med Genet A 2014; 164: 3010–3020. DOI:10.1002/ajmg.a.36805; Cederlöf M., Larsson H., Lichtenstein P., Almqvist C., Serlachius E., Ludvigsson J.F. Nationwide population-based cohort study of psychiatric disorders in individuals with Ehlers– Danlos syndrome or hypermobility syndrome and their siblings. BMC Psychiatry 2016; 16: 207. DOI:10.1186/s12888016-0922-6; Cortini F., Villa C. Ehlers–Danlos syndromes and epilepsy: An updated review. Seizure. 2018; 57: 1–4. DOI:10.1016/j. seizure.2018.02.013; D’hondt S., Van Damme T., Malfait F. Vascular phenotypes in nonvascular subtypes of the Ehlers–Danlos syndrome: a systematic review. Genet Med 2018; 20(6): 562–573. DOI:10.1038/gim.2017.138; Николаева Е.А., Семячкина А.Н., Новиков П.В. Применение Элькара (левокарнитина) при первичной и вторичной митохондриальной недостаточности у детей. Вопросы практической педиатрии 2008; 3(3): 31–34.; Zhou Z., Rewari A., Shanthanna H. Management of chronic pain in Ehlers–Danlos syndrome. Medicine (Baltimore) 2018; 97(45): e13115. DOI:10.1097/MD.0000000000013115; Bowen C.J., Calderón Giadrosic J.F., Burger Z., Rykiel G., Davis E.C., Helmers M.R., Benke K., MacFarlane E.G., Dietz H.C. Targetable cellular signaling events mediate vascular pathology in vascular Ehlers–Danlos syndrome. J Clin Invest 2020; 130(2): 686–698. DOI:10.1172/JCI130730; Frank M., Adham S., Seigle S., Legrand A., Mirault T., Henneton P., Albuisson J., Denarié N., Mazzella J.M., Mousseaux E. et al. Vascular Ehlers–Danlos Syndrome: Long-Term Observational Study. J Am Coll Cardiol 2019; 73(15):1948– 1957. DOI:10.1016/j.jacc.2019.01.058; Dubacher N., Münger J., Gorosabel M.C., Crabb J., Ksiazek A.A., Caspar S.M., Bakker E.N., van Bavel E., Ziegler U., Carrel T. et al. Celiprolol but not losartan improves the biomechanical integrity of the aorta in a mouse model of vascular Ehlers–Danlos syndrome. Cardiovascular Res 2020; 116(2): 457–465. DOI:10.1093/cvr/cvz095

  14. 14
    Academic Journal

    Πηγή: Ophthalmology in Russia; Том 18, № 1 (2021); 157-164 ; Офтальмология; Том 18, № 1 (2021); 157-164 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2021-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1450/812; Meyer-Schwickerath G., Gruterich E., Weyers H. Mikrophthalmussyndrome. Klin. Monatsbl. Augenheilkd. 1957;131:18–30.; Judisch G.F., Martin-Casals A., Hanson J.W., Olin W.H. Oculodentodigital dysplasia: four new reports and a literature review. Arch. Ophthal. 1979;97:878– 884.; Gutmann D.H., Zackai E.H. McDonald-McGinn D.M., Fischbeck K.H., Kamholz J. Oculodentodigital dysplasia syndrome associated with abnormal cerebral white matter. Am. J. Med. Genet. 1991;41:18–20. DOI:10.1002/ajmg.1320410106; De Bock M., Kerrebrouck M., Wang N., Leybaert L. Neurological manifestations of oculodentodigital dysplasia: a Cx43 channelopathy of the central nervous system? Front. Pharm. 2013;4:120. Note: Electronic Article. DOI:10.3389/fphar.2013.00120; Brice G., Ostergaard P., Jeffery S. A novel mutation in GJA1 causing oculodentodigital syndrome and primary lymphoedema in a three generation family. Clin. Genet. 2013;84:378–381. DOI:10.1111/cge.12158; Corcos I.A., Meese E.U., Loch-Caruso R. Human connexin 43 gene locus, GJA1, sublocalized to band 6q21-q23.2. Cytogenet. Cell Genet. 1993;64:31–32. DOI:10.1159/000133554; Gabriel L.A.R., Sachdeva R., Marcotty A. Oculodentodigital dysplasia: new ocular findings and a novel connexin 43 mutation. Arch. Ophthal. 2011;129:781–784. DOI:10.1001/archophthalmol.2011.113; Paznekas W.A., Karczeski B., Vermeer S. GJA1 mutations, variants, and connexin 43 dysfunction as it relates to oculodentodigital dysplasia phenotype. Hum. Mutat. 2009;30:724–733. DOI:10.1002/humu.20958; Paznekas W.A., Boyadjiev S.A., Shapirob R.E. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am. J. Hum. Genet. 2003;72:408–418. DOI:10.1086/346090; Boyadjiev S.A., Jabs E.W., LaBuda M. Linkage analysis narrows the critical region for oculodentodigital dysplasia to chromosome 6q22-q23. Genomics. 1999;58:34– 40. DOI:10.1006/geno.1999.5814; Dasgupta C., Martinez A.-M., Zuppan C.W. Identification of connexin43 (alpha-1) gap junction gene mutations in patients with hypoplastic left heart syndrome by denaturing gradient gel electrophoresis (DGGE). Mutat. Res. 2001;479:173–186.; Hu Y., Chen I., de Almeida S. A novel autosomal recessive GJA1 missense mutation linked to craniometaphyseal dysplasia. PLoS One. 2013;8:e73576. Note: Electronic Article. DOI:10.1371/journal.pone.0073576; Boyden L.M., Craiglow B.G., Zhou J. Dominant de novo mutations in GJA1 cause erythrokeratodermia variabilis et progressiva, without features of oculodentodigital dysplasia. J. Invest. Derm. 2015;135:1540–1547. DOI:10.1038/jid.2014.485; Wang H., Cao X., Lin Z. Exome sequencing reveals mutation in GJA1 as a cause of keratoderma-hypotrichosis-leukonychia totalis syndrome. Hum. Molec. Genet. 2015;24(1):243–250. DOI:10.1093/hmg/ddu442; Richardson R.R., Donnai D., Meire F., Dixon M.J. Expression of Gja1 correlates with the phenotype observed in oculodentodigital syndrome/type III syndactyly. J. Med. Genet. 2004;41:60–67. DOI:10.1136/jmg.2003.012005; Van Steensel M.A.M., Spruijt L., van der Burgt I. A 2-bp deletion in the GJA1 gene is associated with oculo-dento-digital dysplasia with palmoplantar keratoderma. Am. J. Med. Genet. 2005;132A:171–174. DOI:10.1002/ajmg.a.30412; Traboulsi E.I., Parks M.M. Glaucoma in oculo-dento-osseous dysplasia. Am. J. Ophthal. 1990;109:310–313.; Himi M., Fujimaki T., Yokoyama T. A case of oculodentodigital dysplasia syndrome with novel GJA1 gene mutation. Japanese Journal of Ophthalmology 2009;53(5):541– 545. DOI:10.1007/s10384-009-0711-6; Tsui E., Hill K.A., Laliberte A.M. Ocular pathology relevant to glaucoma in a Gja1(Jrt/+) mouse model of human oculodentodigital dysplasia. Invest. Ophthal. Vis. Sci. 2011;52:3539–3547. DOI:10.1167/iovs.10-6399; van Genderen M.M., Kinds G.F., Riemslag F.C., Hennekam R.C. Ocular features in Rubinstein-Taybi syndrome: investigation of 24 patients and review of the literature. Br J Ophthalmol. 2000;84(10):1177–1184. DOI:10.1136/bjo.84.10.1177; https://www.ophthalmojournal.com/opht/article/view/1450

  15. 15
    Academic Journal

    Συνεισφορές: Работа выполнена при финансовой поддержке РНФ, проект № 17-15-01051, и в рамках государственного задания Минобрнауки России для ФГБНУ «МГНЦ».

    Πηγή: Ophthalmology in Russia; Том 18, № 4 (2021); 897-907 ; Офтальмология; Том 18, № 4 (2021); 897-907 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2021-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1697/913; Allikmets R., Singh N., Sun H. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet. 1997;15:236–246. DOI:10.1038/ng0397-236; Gerber S., Rozet J.M., van de Pol T.J. Complete exon-intron structure of the retinaspecific ATP binding transporter gene (ABCR) allows the identification of novel mutations underlying Stargardt disease. Genomics. 1998;15;48(1):139–142. DOI:10.1006/geno.1997.5164; Sun H., Smallwood P.M. Nathans J. Biochemical defects in ABCR protein variants associated with human retinopathies. Nat Genet. 2000. Oct;26(2):242–246. DOI:10.1038/79994; Schulz H.L., Grassmann F., Kellner U., Spital G., Rüther K., Jägle H., Hufendiek K., Rating Ph., Huchzermeyer C., Baier M.J., Weber B.H.F., Stöhr H. Mutation Spectrum of the ABCA4 Gene in 335 Stargardt Disease Patients From a Multicenter German Cohort—Impact of Selected Deep Intronic Variants and Common SNPs. Invest Ophthalmol Vis Sci. 2017;58(1):394–403. DOI:10.1167/iovs.16-19936; Stargardt K. Ueber familiare, progressive Degeneration in der Makulagegend des Auges. Albrecht von Graefes Arch Klin Exp Ophthal. 1909;71:534–549.; Зольникова И.В, Рогатина Е.В. Дистрофия Штаргардта: клиника, диагностика, лечение. Клиницист. 2010;1:29–33.; Зольникова И.В., Карлова И.З., Рогатина Е.В. Макулярная и мультифокальная электроретинография в диагностике дистрофии Штаргардта. Вестник офтальмологии. 2009;125(1):41–46.; van Driel M.A., Maugeri A, Klevering BJ, Hoyng CB, Cremers FP. ABCR unites what ophthalmologists divide(s). Ophthalmic Genet. 1998;19(3):117–122. DOI:10.1076/opge.19.3.117.2187; Zolnikova I.V., Strelnikov V.V., Skvortsova N.A., Alexander S., Tanas А.S., Barh D., Rogatina E.V., Egorova I.V., Levina D.V., Demenkova O.N., Prikaziuk E.G., Ivanova M.E. Stargardt disease-associated mutation spectrum of a Russian Federation cohort. Eur J Med Genet. 2017;60(2):140–147. DOI:10.1016/j.ejmg.2016.12.002; Зольникова И.В., Иванова M.E., Стрельников В.В. Спектр мутаций при ABCA4-ассоциированной болезни Штаргардта в российской популяции. Российская педиатрическая офтальмология. 2016;1:14–22.; Cremers F.P., van de Pol D.J., van Driel M., den Hollander A.I., van Haren F.J., Knoers N.V., Tijmes N., Bergen A.A, Rohrschneider K, Blankenagel A, Pinckers AJ, Deutman AF, Hoyng CB. Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt’s disease gene ABCR. Hum. Mol.Genet. 1998;7:355–362. DOI:10.1093/hmg/7.3.355; Martínez-Mir A., Paloma E., Allikmets R. Ayuso C., del Río T., Dean M., Vilageliu L., Gonzàlez-Duarte R., Balcells S. Retinitis pigmentosa caused by a homozygous mutation in the Stargardt disease gene ABCR. Nat Genet. 1998;18(1):11–12. DOI:10.1038/ng0198-11; Rudolph G., Kalpadakis P., Haritoglou C., Rivera A., Weber B.H. Mutations in the ABCA4 gene in a family with Stargardt’s disease and retinitis pigmentosa Klin. Monbl. Augenheilkd. 2002;219(8):590–596. DOI:10.1055/s-2002-34425; Kitiratschky V.B.D., Grau T., Bernd A., Zrenner E., Jägle H., Renner A.B., Kellner U., Rudolph G., Jacobson S.G., Cideciyan A.V., Schaich S., Kohl S., Wissinger B. ABCA4gene analysis in patients with autosomal recessive cone and cone rod dystrophies. Eur J Hum Genet. 2008;16(7):812–819. DOI:10.1038/ejhg.2008.23; Lewis R.A., Shroyer N.F., Singh N., Allikmets R., Hutchinson A., Li Y., Lupski J.R., Leppert M., Dean M. Genotype/Phenotype analysis of a photoreceptor-specific ATP-binding cassette transporter gene, ABCR, in Stargardt disease. Am J Hum Genet. 1999;64(2):422–434. DOI:10.1086/302251; Tanna P., Strauss R.W., Fujinami K. Stargardt disease: clinical features, molecular genetics, animal models and therapeutic options. Br J Ophthalmol. 2017;101:25–30. DOI:10.1136/bjophthalmol-2016-308823; Rozet J.M., Gerber S., Souied E., Perrault I., Châtelin S., Ghazi I., Leowski C., Dufier J.L., Munnich A., Kaplan J. Spectrum of ABCR gene mutations in autosomal recessive macular dystrophies. Eur J Hum Genet. 1998 May-Jun;6(3):291–295. DOI:10.1038/sj.ejhg.5200221; Jespersgaard C., Fang M., Bertelsen M., Dang X, Jensen H, Chen Y, Bech N, Dai L, Rosenberg T., Zhang J., Møller L.B., Tümer Z., Brøndum-Nielsen K., Grønskov K. Molecular genetic analysis using targeted NGS analysis of 677 individuals with retinal dystrophy. Sci Rep. 2019;9(1):1219. DOI:10.1038/s41598-018-38007-2; Garces F., Jiang K., Molday L.L., Stöhr H., Weber B.H., Lyons C.J., Maberley D., Molday R.S. Correlating the Expression and Functional Activity of ABCA4 Disease Variants With the Phenotype of Patients With Stargardt Disease. Invest Ophthalmol Vis Sci. 2018:59(6):2305–2315. DOI:10.1167/iovs.17-23364.; Ścieżyńska A., Oziębło D., Ambroziak A.M., Korwin M., Szulborski K., Krawczyński M., Stawiński P., Szaflik J., Szaflik J.P., Płoski R., Ołdak M. Nextgeneration sequencing of ABCA4: High frequency of complex alleles and novel mutations in patients with retinal dystrophies from Central Europe. Exp Eye Res. 2016;145:93–99. DOI:10.1016/j.exer.2015.11.011; Zhang N., Tsybovsky Y., Kolesnikov A.V., Rozanowska M., Swider M., Schwartz S.B., Stone E.M., Palczewska G., Maeda A., Kefalov V.J., Jacobson S.G., Cideciyan A.V., Palczewski K. Protein misfolding and the pathogenesis of ABCA4-associated retinal degenerations. Hum Mol Genet. 2015;24(11):3220–3237. DOI:10.1093/hmg/ddv073; Cella W., Greenstein V.C., Zernant-Rajang J., Smith T.R., Barile G., Allikmets R., Stephen Tsang S.T. G1961E mutant allele in the Stargardt disease gene ABCA4 causes bull’s eye maculopathy. Exp Eye Res. 2009;89:16–24. DOI:10.1016/j. exer.2009.02.001; Testa F., Rossi S., Sodi A., Passerini I., Di Iorio V., Della Corte M., Banfi S., Surace E.M., Menchini U., Auricchio A., Simonelli F. Correlation between photoreceptor layer integrity and visual function in patients with Stargardt disease: implications for gene therapy. Invest Ophthalmol Vis Sci. 2012;8:4409–4415. DOI:10.1167/ iovs.11-8201; Fakin A., Robson A.G., Fujinami K., Moore A.T., Michaelides M., Pei-Wen Chiang J., Holder G., Webster A.R. Phenotype and Progression of Retinal Degeneration Associated With Nullizigosity of ABCA4. Invest Ophthalmol Vis Sci. 2016;57(11):4668–4678. DOI:10.1167/iovs.16-19829; Lee W., Schuerch K., Zernant J., Collison F.T., Bearelly S., Fishman G.A., Tsang S.H., Sparrow J.R. Genotypic spectrum and phenotype correlations of ABCA4-associated disease in patients of south Asian descent. Eur J Hum Genet. 2017;25(6):735–743. DOI:10.1038/ejhg.2017.13; Zernant J., Schubert C., Im K.M., Burke T., Brown C.M., Fishman G.A., Tsang S.H., Gouras P., Dean M., Allikmets R. Analysis of the ABCA4 gene by next-generation sequencing. Invest Ophthalmol Vis Sci. 2011;52:8479–8487. DOI:10.1167/iovs.11-8182; Zernant J., Lee W., Collison F.T. Fishman G.A., Sergeev Y.V., Schuerch K., Sparrow J.R., Tsang S.H., Allikmets R. Frequent hypomorphic alleles account for a significant fraction of ABCA4 disease and distinguish it from age-related macular degeneration. J Med Genet. 2017;54(6):404–412. DOI:10.1136/jmedgenet-2017-104540; Riveiro-Alvarez R., Lopez-Martinez M.A., Zernant J., Aguirre-Lamban J., Cantalapiedra D., Avila-Fernandez A., Gimenez A., Lopez-Molina M.I., Garcia-Sandoval B., Blanco-Kelly F., Corton M., Tatu S., Fernandez-San Jose P., Trujillo-Tiebas M.J., Ramos C., Allikmets R., Ayuso C. Outcome of ABCA4 disease-associated alleles in autosomal recessive Retinal Dystrophies: Retrospective analysis in 420 Spanish families. Ophthalmology. 2013;120(11):2332–2337. DOI:10.1016/j.ophtha.2013.04.002; Maugeri A., Klevering B.J., Rohrschneider K., Blankenagel A., Brunner H.G., Deutman A.F., Hoyng C.B., Cremers F.P. Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy. Am J Hum Genet. 2000 Oct;67(4):960–966. DOI:10.1086/303079; Wiszniewski W., Zaremba C.M., Yatsenko A.N., Jamrich M., Wensel T.G., Lewis R.A., Lupski J.R. ABCA4 mutations causing mislocalization are found frequently in patients with severe retinal dystrophies. Hum Mol Genet. 2005;14:2769–2778. DOI:10.1093/hmg/ddi310; https://www.ophthalmojournal.com/opht/article/view/1697

  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
    Academic Journal

    Πηγή: PULMONOLOGIYA; Том 28, № 3 (2018); 296-306 ; Пульмонология; Том 28, № 3 (2018); 296-306 ; 2541-9617 ; 0869-0189 ; 10.18093/0869-0189-2018-28-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/1001/838; Капранов Н.И., Каширская Н.Ю., ред. Муковисцидоз. M.: Медпрактика-М; 2014.; Conway S., Balfour-Lynn I.M., De Rijcke K. et al. European Cystic Fibrosis Society Standards of Care: Framework for the Cystic Fibrosis Centre. J. Cystic Fibrosis. 2014; 13 (Suppl. 1): S3–22. DOI:10.1016/j.jcf.2014.03.009.; Sinaasappel M., Stern M., Littlewood J. et al. Nutrition in patients with cystic fibrosis: a European Consensus. J. Cystic Fibrosis. 2002; 1 (2): 51–75. DOI:10.1016/S1569-1993(02)00032-2.; Smyth A.R., Bell S.C., Bojcin S. et al. European Cystic Fibrosis Society Standards of Care: Best practice guidelines. J. Cystic Fibrosis. 2014; 13 (Suppl. 1): S23–42. DOI:10.1016/j.jcf.2014.03.010.; Петрова Н.В., Кондратьева Е.И., Красовский С.А. и др. Проект национального консенсуса. «Муковисцидоз: определение, диагностические критерии, терапия». Раздел «Генетика муковисцидоза. Молекулярно-генетическая диагностика при муковисцидозе». Медицинская генетика. 2016; 15 (11): 29–45.; Royston P. An extension of Shapiro and Wilk's W test for normality to large samples. Applied Statistics. 1982; 31 (2): 115–124. DOI:10.2307/2347973.; Hollander M., Wolfe D.A. Nonparametric statistical methods. New York: John Wiley & Sons; 1973.; Васильева Ю.И., Каширская Н.Ю., Мизерницкий Ю.Л. и др. Ретроспективный анализ клинико-функциональной и фармакоэкономической эффективности современной терапии муковисцидоза у детей. Пульмонология. 2006; (прил.): 72–77.; Dentice R., Elkins M. Timing of dornasealfa inhalation for cystic fibrosis. Cochrane Database Syst. Rev. 2011; (5): CD007923. DOI:10.1002/14651858.CD007923.pub2.; Симонова О.И., Лукина О.Ф. Дорназа альфа в России: 15 лет спустя. Эффективность препарата в базисной терапии у детей с муковисцидозом. Вопросы современной педиатрии. 2012; 11 (2): 132–139. DOI:10.15690/vsp.v11i2.226.; Sawicki G.S., Signorovitch J.E., Zhang J. et al. Reduced mortality in cystic fibrosis patients treated with tobramycin inhalation solution. Pediatric Pulmonology. 2012; 47 (1): 44–52. DOI:10.1002/ppul.21521.; Mainz J.G., Schiller I., Ritschel C. et al. Sinonasal inhalation of dornase alfain CF: A double-blind placebo-controlled cross-over pilot trial. Auris Nasus Larynx. 2011; 38 (2): 220–227. DOI:10.1016/j.anl.2010.09.001.; Кондратьева Е.И., Каширская Н.Ю., Капранов Н.И., ред. Национальный консенсус «Муковисцидоз: определение, диагностические критерии, терапия». М.: ООО «Компания Боргес»; 2016.; Шерман В.Д., Кондратьева Е.И., Воронкова А.Ю. и др. Влияние неонатального скрининга на течение муковисцидоза на примере группы пациентов московского региона. Медицинский совет. 2017; (18): 124–128. DOI:10.21518/2079-701X-2017-18-124-128.; https://journal.pulmonology.ru/pulm/article/view/1001