Showing 1 - 18 results of 18 for search '"ДИНАМИЧЕСКОЕ ИНДЕНТИРОВАНИЕ"', query time: 0.58s Refine Results
  1. 1
    Academic Journal

    Contributors: The work was done with the support of Belarusian Republican Foundation for Fundamental Research. Contest BRFFR-MIRRU 2023. Project Т23УЗБ-035 «Study of structure forming processes and local deformation of cast iron aiming at creating their improved grades, methods and tools of nondestructive testing of their physical and mechanical properties»., Работа выполнена при поддержке Белорусского республиканского фонда фундаментальных исследований. Конкурс БРФФИ– МИРРУ 2023. Проект Т23УЗБ-035 «Изучение процессов структурообразования и локального деформирования чугунов с целью создания их улучшенных марок, методик и средств неразрушающего контроля физико-механических характеристик».

    Source: Devices and Methods of Measurements; Том 16, № 3 (2025); 222-234 ; Приборы и методы измерений; Том 16, № 3 (2025); 222-234 ; 2414-0473 ; 2220-9506 ; 10.21122/2220-9506-2025-16-3

    File Description: application/pdf

    Relation: https://pimi.bntu.by/jour/article/view/976/734; Баев А. Р. [и др.] Возможности контроля структуры чугунных и стальных изделий по данным ультразвуковых измерений. Литье и металлургия. 2004;(2):85-89.; Ghaemi, M. Material, Structure and Hardness Testing of Cast-Iron Safety Parts by NDT Methods. 10th European Conference on Non-Destructive Testing, Moscow 2010, June 7-11. https://www.ndt.net/?id=9347; Анисович, А. Г. Микроструктуры черных и цветных металлов / А. Г. Анисович, А. А. Андрушкевич // Минск: Белорусская наука, 2015. – 131 с.; Jian Weng, Rebecka Lindvall, Kejia Zhuang, JanEric Ståhl, Han Ding, Jinming Zhou A machine learning based approach for determining the stress-strain relation of grey cast iron from nanoindentation // Mechanics of Materials, Vol. 148, 2020, 103522. DOI:10.1016/j.mechmat.2020.103522; A. Kren, M. Delendik, A. Machikhin Non-destructive evaluation of metal plasticity using a single impact microindentation // International Journal of Impact Engineering. – 2022. – № 162. – p. 104141. DOI:10.1016/j.ijimpeng.2021.104141; Johnson K. L. Contact Mechanics. Cambridge: Cambridge University Press; 1985:448-452.; Chang, Chao, Garrido, M.A., Ruiz-Hervias, J., Zhang, Zhu, Zhang, Le-le, Representative Stress-Strain Curve by Spherical Indentation on Elastic-Plastic Materials, Advances in Materials Science and Engineering, 2018, 8316384, 9 pages, 2018. DOI:10.1155/2018/8316384; D. Tabor. Hardness of Metals. Clarendon Press, Oxford, 1951.; Чугун : справочник / А. Д. Шерман и др.; Под ред. А.Д. Шермана, А. А. Жукова // М.: Металлургия, 1991, 576 с.; Динник А. Н. Избранные труды. – Киев: АН УССР, 1952. – Т. 1. – 151 с.; Anthony C. Fischer-Cripps. Introduction to Contact Mechanics Springer New York, NY, 226 р. DOI:10.1007/978-0-387-68188-7; Kren, A. P. Determination of the Strain-Hardening Exponent of a Metallic Material by Low-Speed Impact Indentation / A. P. Kren, V. A. Rudnitskii // Russian Metallurgy (Metally). – 2019. – №. 4. – P. 478–483. DOI:10.1134/S0036029519040220; Kren A. P., Naumov A. O. Determination of the relaxation function for viscoelastic materials at low velocity impact // International Journal of Impact Engineering, Vol. 37, Iss. 2, 2010, P. 170-176. DOI:10.1016/j.ijimpeng.2009.08.001; https://pimi.bntu.by/jour/article/view/976

  2. 2
    Academic Journal

    Source: Devices and Methods of Measurements; Том 14, № 2 (2023); 115-125 ; Приборы и методы измерений; Том 14, № 2 (2023); 115-125 ; 2414-0473 ; 2220-9506 ; 10.21122/2220-9506-2023-14-2

    File Description: application/pdf

    Relation: https://pimi.bntu.by/jour/article/view/823/658; Kobayashi M., Matsui T., Murakami Y. Mechanism of creation of compressive residual stress by shot peening. International Journal of Fatigue, 1998, vol. 20, no. 5, pp. 351‒357.; Goulmy J.P., Boyer V., Retraint D., Kanoute P., Toualbi L., Rouhaud E. Modeling of the shot peening of a nickel alloy with the consideration of both residual stresses and work hardening. International Journal of Solids and Structures, 2023, vol. 264, p. 112120. DOI:10.1016/j.ijsolstr.2023.112120; Mahmoudi A.H., Ghasemi A., Farrahi G.H., Sherafatnia K. A comprehensive experimental and numerical study on redistribution of residual stresses by shot peening. Materials & Design, 2016, vol. 90, pp. 478‒487. DOI:10.1016/j.matdes.2015.10.162; Feng G., Qu S., Huang Y., Nix W.D. An analytical expression for the stress field around an elastoplastic indentation/contact. Acta Materialia, 2007, vol. 55, iss. 9, pp. 2929‒2938. DOI:10.1016/j.actamat.2006.12.030; Gang Feng, Shaoxing Qu, Yonggang Huang, William D. Nix. A quantitative analysis for the stress field around an elastoplastic indentation/contact. Journal of Materials Research, 2009, vol. 24, iss. 3, pp. 704–718. DOI:10.1557/jmr.2009.0097; Munawar Chaudhri M. Subsurface plastic strain distribution around spherical indentations in metals. Philosophical Magazine A, 1996, vol. 74, iss. 5, pp. 1213‒1224. DOI:10.1080/01418619608239721; Boyce B.L., Chen X., Hutchinson J.W., Ritchie R.O. The residual stress state due to a spherical hardbody impact. Mechanics of Materials, 2001, vol. 33, iss. 8, pp. 441‒454. DOI:10.1016/S0167-6636(01)00064-3; Kren A., Delendik M., Machikhin A. Non-destructive evaluation of metal plasticity using a single impact microindentation. International Journal of Impact Engineering, 2022, vol. 162, p. 104141. DOI:10.1016/j.ijimpeng.2021.104141; Kren A., Machikhin A., Marchenkov A. Impact indentation of metals in the transition region from the elastic to plastic state. Journal of Materials Science, 2023, vol. 58(2), pp. 961–970. DOI:10.1007/s10853-022-08122-7; https://pimi.bntu.by/jour/article/view/823

  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18